ОСОБЕННОСТИ ОТРАЖЕНИЯ ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ КРИСТАЛЛИЧЕСКИМИ ДИЭЛЕКТРИКАМИ В МАГНИТНОМ ПОЛЕ

А. Ф. Кравец^а^{*}, Ю. И. Джежеря^a, В. Г. Кравец^b, Е. С. Климук^a

^а Институт магнетизма Национальной академии наук Украины 03680, Киев, Украина

^b Институт проблем регистрации информации Национальной академии наук Украины , Киев, Украина

Поступила в редакцию 2 февраля 2004 г.

Исследованы изменения в спектрах отражения $R(\lambda)$ кристаллических диэлектриков Al₂O₃, LiF и MgO в инфракрасном диапазоне ($\lambda = 2.5-25$ мкм), вызванные воздействием магнитного поля. Обнаружено, что спектры отражения характеризуются особенностями в окрестностях длин волн, соответствующих возбуждению оптических фононных мод в исследуемых кристаллах, а магнитное поле приводит к заметному изменению величины отражения на этих длинах волн. Для количественного описания влияния магнитного поля на отражение света были исследованы спектры магнитоотражения $\Delta R/R$. На спектрах $\Delta R/R$ наблюдаются резкие пики в окрестностях длин волн, при которых исследуемые материалы характеризуются минимальными отражающими способностями. Значения $\Delta R/R$ для *p*-поляризованного инфракрасного излучения в магнитном поле примерно 12 кЭ составили для Al₂O₃ около 0.5 % на $\lambda \approx 9.6$ мкм, для LiF приблизительно 7 % на $\lambda \approx 11.1$ мкм и для MgO примерно 0.07 % на $\lambda \approx 11.7$ мкм.

PACS: 78.20.Ci, 78.20.Ls, 78.30.Am

Нанокомпозитные материалы, содержащие ферромагнитные наноразмерные гранулы, диспергированные в диэлектрических матрицах (Al₂O₃, HfO₂, MgO), играют существенную роль в изучении процессов туннельного магнитосопротивления (ТМС). Тип магнитных и оксидных материалов, стехиометрия их состава, форма и концентрация ферромагнитных включений определяют величину ТМС. Для выяснения деталей физической природы ТМС в последнее время широко используется открытый недавно магниторефрактивный эффект (МРЭ) [1], представляющий собой зависимость коэффициентов отражения, пропускания и поглощения света в материалах от приложенного магнитного поля. Считается [1], что природа МРЭ связана со спиновой зависимостью оптической проводимости материалов. МРЭ был теоретически предсказан в металлических магнитных многослойных [1] и гранулированных [2] структурах. Экспериментальное подтверждение МРЭ получил в работах [3, 4] при магниторефрактивных исследованиях магнитных многослойных структур и в экспериментах, проведенных на гранулированных металлических [5, 6] и металлодиэлектрических [7–12] структурах.

При исследовании металлодиэлектрических нанокомпозитов [7–12] наблюдались пики в спектрах МРЭ в частотной области, близкой к проявлению оптических фононных мод в материалах диэлектрических матриц. Природа этих пиков не была выяснена. Было также установлено, что спектры МРЭ металлодиэлектрических пленок зависят от поляризации падающего света [10-12]. Следует отметить, что МРЭ при отражении достигает максимального значения для *p*-поляризованного света при приближении к углу Брюстера. Особенно это характерно для металлодиэлектрических структур с содержанием ферромагнитных гранул, близким к перколяционному порогу [11, 12]. Авторами этих работ разработана теоретическая модель для описания спектров МРЭ в структурах подобного типа, объясняющая

^{*}E-mail: kravets@imag.kiev.ua

связь магниторефрактивного эффекта с величиной туннельного магнитосопротивления и оптическими параметрами системы [11, 12].

В настоящей работе предпринята попытка выявления роли дисперсионных свойств материалов диэлектрических матриц в процессе отражения инфракрасного излучения металлодиэлектрическими нанокомпозитами в магнитном поле. Были получены экспериментальные зависимости спектров отражения в ИК-области для материалов, часто используемых в качестве диэлектрических матриц в нанокомпозитах. Также исследовано изменение характеристик отражения под действием магнитного поля. Эксперименты проводились с соблюдением тех же условий, что и при изучении магниторефрактивных свойств металлодиэлектрических пленок [10].

Для магнитооптических измерений были использованы оптически полированные с одной стороны кристаллические образцы: Al₂O₃ — кристаллы с ориентацией [1012] (R-plane) и [1120] (A-plane); LiF кристалл ориентации [001]; MgO — кристалл ориентации [100]. Чистота кристаллов производства фирмы «Goodfellow» составляла 99.99%. Спектры отражения света $R(\lambda)$ в среднем инфракрасном диапазоне длин волн от 2.5 до 25 мкм были записаны на фурье-спектрометре Nicolet-670 с фотодетектором МСТ-В, который охлаждался жидким азотом. Спектральные измерения в поляризованном свете проводились с использованием сеточного поляризатора KRS-5. При проведении измерений, заключающихся в установлении зависимости спектров отражения света от магнитного поля, зеркала фурье-спектрометра выносились за его пределы, для того чтобы можно было сфокусировать инфракрасное излучение на образец, помещенный в зазор внешнего электромагнита. Образцы фиксировались на медном столике с целью предотвращения их смещения при включении магнитного поля. Угол падения света на образцы приблизительно равнялся 65°. Величина угла падения света была близкой к углу Брюстера, что позволяло получить максимальное значение эффекта [8, 11, 12]. Оптические спектры отражения были нормированы на соответствующие зависимости для толстых пленок серебра, которые обладали отражением примерно 0.9. Следует также отметить, что результаты измерений для Al₂O₃ повторялись для кристаллов с различной ориентацией их оси, а также для поликристаллических образцов. Для кристалла Al₂O₃ величина эффекта была максимальной при отражении от плоскости с ориентацией [1120]. Соответствующие спектры обсуждаются в этой работе.

По аналогии с МРЭ в нанокомпозитах для диэлектриков введем коэффициент магнитоотражения (MO), величина которого определяется из соотношения

$$\Delta R/R = (R_0 - R_H)/R_0, \qquad (1)$$

где R_H , R_0 — коэффициенты отражения света материалом соответственно при наличии и в отсутствие магнитного поля.

Магнитное поле было ориентировано перпендикулярно направлению распространения ИК-излучения и параллельно поверхности кристаллов.

Было обнаружено, что спектры MO сильно зависят как от поляризации падающего света, так и от величины магнитного поля.

Приведенные в работе спектральные зависимости $R(\lambda)$ и $\Delta R/R$ являются результатом усреднения многочисленных сканирований (около 400), проведенных на фурье-спектрометре. В качестве тестов проводилось также определение спектров отражения чистых толстых пленок серебра и алюминия, помещенных в магнитное поле. Эти тесты показали отсутствие зависимости коэффициента отражения $R(\lambda)$ от магнитного поля.

В предшествующей работе [10] было показано, что в магнитном поле спектры $\Delta R/R$ чистого Al₂O₃ претерпевают изменения, которые наиболее отчетливо проявляются в окрестностях длин волн, соответствующих возбуждению фононных мод в Al₂O₃ вблизи $\lambda \approx 9.6$ мкм.

Для формирования более полного представления о физической сущности величины $\Delta R/R$ в диэлектриках, наряду с Al₂O₃, характеризующимся ковалентной полярной связью, были также измерены спектры отражения $R(\lambda)$ и спектры $\Delta R/R$ в ковалентном полярном кристалле MgO и в ионном кристалле LiF.

На рис. 1 приведены спектры отражения *p*-поляризованного ИК-излучения от поверхности массивных кристаллических образцов Al_2O_3 , MgO и LiF. На всех спектрах наблюдаются минимумы в окрестности $\lambda \approx 9-12$ мкм, соответствующие возбуждению оптических фононных мод в этих материалах [13, 14].

На рис. 2 приведены спектры $\Delta R/R$ в указанных диэлектриках, измеренные в магнитном поле 12.2 кЭ. На всех спектрах $\Delta R/R$ эффект проявляется только в окрестности длин волн λ_0 , где отражение минимально: $\lambda_0 \approx 9.6$ мкм для Al_2O_3 ; $\lambda_0 \approx 11.7$ мкм для MgO и $\lambda \approx 11.1$ мкм для LiF. На рисунке видно, что из числа исследованных кристаллов наиболь-

Рис. 1. Спектры коэффициентов отражения *p*-поляризованного ИК-света для кристаллических диэлектриков

шей величиной $\Delta R/R$ обладает LiF, а наименьшей — MgO.

Поскольку ввиду уникальности физических свойств соединение Al₂O₃ нашло широкое применение в получении нанокомпозитных материалов, в настоящей работе проведено более детальное исследование эффекта MO именно для этого материала, а исследования на LiF и MgO проведены для демонстрации универсальности данного явления.

На рис. 3 приведены спектры $\Delta R/R$ для Al₂O₃, снятые в магнитных полях различной величины. С увеличением магнитного поля с 1 до 12.2 кЭ абсолютное значение величины $\Delta R/R$ возрастает по нелинейному закону с 0.15 до 0.57%. Минимум $\Delta R/R$ в Al₂O₃ приходится на длину волны $\lambda_0 \approx 9.6$ мкм (рис. 3). Изменение его спектрального положения в различных полях не наблюдалось в рамках точности измерений.

Проявление существенной зависимости коэффициента отражения от магнитного поля для Al_2O_3 , MgO и LiF наблюдается лишь в спектральных областях, где значения $R(\lambda)$ этих материалов принимают малую величину (рис. 4). Коэффициенты отражения для обеих компонент световой волны, поляризованных в плоскости падения и перпендикулярно ей, характеризуются малой величиной лишь в частотной области, где диэлектрическая проницаемость вещества имеет резкую временную дисперсию, точнее, при тех значениях длин волн, при которых диэлектрическая проницаемость близка к единице. При этом показатели преломления окружающей среды и кристалла практически уравниваются

Рис.2. Спектры $\Delta R/R$ диэлектриков, измеренные в магнитном поле 12.2 кЭ

и граница раздела сред теряет отражающую способность. Тогда малые поправки, обусловленные влиянием магнитного поля на фоне слабого отражения, становятся заметными и имеют относительно большую величину. Это, естественно, приводит к увеличению коэффициента МО, поскольку ΔR в выражении $\Delta R/R$ делится на малую величину. Однако столь резкая спектральная зависимость МО (рис. 2) связана исключительно с характером изменения абсолютного значения $\Delta R = R_0 - R_H$. В подтверждение на рис. 5 представлены спектральные зависимости ΔR для *p*-поляризованного света. При проведении этих измерений к образцам прикладывалось максимально доступное в данном эксперименте магнитное поле 13.5 кЭ. На рис. 2 и 5 видно, что

Рис.3. Спектры $\Delta R/R$ Al $_2$ O $_3$ для p-поляризованного излучения при разных значения магнитного поля H

Рис. 4. Сравнение спектров коэффициента отражения R и магнитоотражения $\Delta R/R$ в Al₂O₃

Рис.5. Спектры $\Delta R = R_0 - R_H$ диэлектриков для *p*-поляризованного излучения, измеренные в магнитном поле 13.5 кЭ

спектральные зависимости $\Delta R/R$ и ΔR подобны, что подтверждает влияние магнитного поля на спектры отражения исследуемых диэлектриков. Следует также отметить, что наблюдаемый эффект является четным по полю, поскольку не было обнаружено изменения знака ΔR при изменении направления магнитного поля на противоположное. Функция ΔR демонстрирует существенные изменения только в окрестностях $\lambda \sim 9-12$ мкм, во всем же остальном спектральном диапазоне она постоянна и близка к нулю. В спектре ΔR ионного кристалла LiF наблюдается наиболее узкий и глубокий минимум в диапазоне 11.1–12.2 мкм, в то время как для Al₂O₃ этот диапазон составляет 5.1–10.1 мкм, а у MgO равен 8–12.4 мкм.

Таким образом, в настоящей работе показано, что аномалии в спектрах магниторефрактивного эффекта магнитных нанокомпозитов в некоторой окрестности частот инфракрасного диапазона могут быть объяснены дисперсионными свойствами диэлектрической матрицы.

ЛИТЕРАТУРА

- J. C. Jacquet and T. Valet, MRS Symp. Proc. 384, 477 (1995).
- А. Б. Грановский, М. В. Кузьмичев, Ж. П. Клерк, ЖЭТФ 116, 1762 (1999).
- S. Uran, M. Grimsditch, E. E. Fullerton, and S. D. Bader, Phys. Rev. B 57, 2705 (1998).

- 4. J. van Driel, F. R. de Boer, R. Coehoorn, G. H. Rietjens, and E. S. J. Heuvelmans-Wijdenes, Phys. Rev. B 61, 15321 (2000).
- J. P. Camplin, S. M. Thompson, D. R. Loraine, D. I. Pugh, J. F. Collingwood, E. M. McCash, and A. B. Horn, J. Appl. Phys. 87, 4846 (2000).
- V. G. Kravets, D. Bozec, J. A. D. Matthew, S. M. Thompson, H. Menard, A. B. Horn, and A. F. Kravets, Phys. Rev. B 65, 054415 (2002).
- 7. И. В. Быков, Е. А. Ганьшина, А. Б. Грановский, В. С. Гущин, ФТТ 42, 487 (2000).
- D. Bozec, V. G. Kravets, J. A. D. Matthew, and S. M. Thompson, J. Appl. Phys. 91, 8795 (2002).

- А. Грановский, В. Гущин, И. Быков, А. Козлов, N. Kobayashi, S. Ohnuma, T. Masumoto, M. Inoue, ФТТ 45, 868 (2003).
- В. Г. Кравец, А. Н. Погорелый, А. Ф. Кравец, А. Я. Вовк, Ю. И. Джежеря, ФТТ 45, 1456 (2003).
- **11.** А. Б. Грановский, М. Инуе, Ж. П. Клерк, А. Н. Юрасов, ФТТ **46**, 484 (2004).
- 12. А. Б. Грановский, И. В. Быков, Е. А. Ганьшина,
 В. С. Гущин, М. Инуе, Ю. Б. Калинин, А. А. Козлов, А. Н. Юрасов, ЖЭТФ 123, 1256 (2003).
- 13. W. Zhu, C. J. Hirschmugl, A. D. Laine, B. Sinkovic, and S. S. P. Parkin, Appl. Phys. Lett. 78, 3103 (2001).
- 14. P. Brüesh, R. Kötz, H. Neff, and L. Pietronero, Phys. Rev. B 29, 4691 (1984).