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We analyze the optical transmittance at normal incidence for an electron gas without losses. The electron
gas is supposed to have a plane parallel slab geometry and its dielectric permittivity is assumed periodically
modulated in one direction parallel to the interfaces. Due to the surface plasmon polariton mode exitation,
there exist resonance frequencies where the transmittance equals to unity. The number and positions of peaks
are investigated analytically and a comparison with the analytic theory by Dykhne et al. [6] is made.
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1. INTRODUCTION

In the past, it has been thought that subwavelength
apertures have a very low transmission efficiency of
light [1]. Recently, however, high transmission efficien-
cies from arrays of subwavelength structures in metal
films have been reported. Since the publication of [2],
many experimental and theoretical studies were carried
out in order to determine the physical origin of the ex-
traordinarily enhanced transmission. They focused on
the description of complicated electromagnetic modes
of the metal, originating from the interaction between
photons and surface electrons, considering disordered
arrays of holes in a metal film [3], organized nanopar-
ticles [4] or periodic rough surfaces [5].

In this paper, we restrict ourselves to the case where
the metal film occupyng the space

d
|2 <

3 —x<r<oo, —=0

dy

is in a vacuum enviroinment (|]z| > d/2, —oo < ¥ < )
and the dielectric permittivity has the simple form

e(z) =& + &1 cos(qa),

with some prescribed periodicity a = 27 /q in the &
direction. Only transverse magnetic waves (TM-mode)

(Hy(x, Z) E, (1‘., Z) Ez(xa 2)) exp(_i‘*)t)

3 3
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are considered in the two-wave approximation
F(a,2) = Fo(2) + Fi(2) cos(qa),

where a full analytic treatment of the complicated
boundary value problem can be easily done. We follow
the notation and the method of solution outlined in [6]
in order to obtain a clear physical understanding of the
phenomenon of enhanced transmission. We also derive
concrete results for the dissipationless free-electron gas
with
2
f=1--2
(wp is the electron plasma frequency). In the future
work, these results will be extended to more realistic
optical characteristics of metal films, including the ex-
perimentally available data for optical constants [7].

2. GENERAL ANALYTIC FORMULATION OF
THE PROBLEM

We consider the two-dimensional electromagnetic
problem shown schematically in Fig. 1. The magnetic
permeability in the whole space is denoted by uo and
the dielectric permittivity of the free space is denoted
by €¢. The physical system considered in this work con-
sists of a vacuum (the relative dielectric permittivity is
e(w) = 1) in two regions |z| > d/2 and a metal slab
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Fig.1. A plane wave is incident normally on a modu-
lated film |z| < d/2. The two arrows show the direc-
tion of propagation of the beam incident from 2 = —o0
and the zero-order transmitted beam (7o exp(ikz)) at
z = 0o. The transmittance is defined as T = |Tp|?

(in the region |z| < d/2) characterized by the relative
dielectric function

e(w,x) = —n? (1 — gcos(qz)) ™" . (1)

If the modulation factor g = 0, the dielectric function
of the slab (Eq. (1)) is assumed to be real and to sat-
isfy the condition n? > 1 in some frequency range. It is
within this frequency range that surface-plasmon po-
laritons exist. The particular periodic x-dependence
in (1) facilitates the comparison with the analytic re-
sults given in [6]. The Maxwell equations in the linear
harmonic approximation (exp(—iwt)),

rot E(w,r) = iwpeH(w, 1), (2)

rot Hw,r) = —iwepe(w, z, 2) E(w, 1), (3)

are treated for transverse magnetic waves (p-polariza-
tion) E(E,,0, E.), H(0, H,,0) under the assumption

0

In the region |z| < d/2, we have

922 " oz |e(x) ox
+ k*e(z)Hy(2,2) =0, (4)
___ i 9H, __ i 9H,
E. = weoe(z) 9z’ E. = weoe(z) Oz’ (5)

2 ZKOT®, Bem. 6 (12)

where
)1/2 — 2

k = w(eopo
&

Equations (1) and (4) can be written as

02H, 0 o
[1—g cos(qz)] 22 . (1—gcos(gz)) o |~
) =

y
—k*n’Hy(z,2) = 0. (6)

Neglecting the generation of the cos(lgz) harmonics
with [ higher than one and recalling the Floquet theo-
rem, we find

H, <x 2] < g) = [Aq + 245 cos(ga)] [X] +
+ [B1 + 2By cos(qx)] [Y], (7)

where

[X] = sech <dan)\1> X

X [ Xy ch(knzAy) — Xosh(knzA)], (8)

[Y] = sech <dan)\2> X
X [Y1 ch(/mz)\z) — Yz sh(knz)\z)] . (9)

In formulas (8) and (9), X1, X, Y7, and Y3 are arbi-
trary constants and A}, are dimensionless eigenvalues
given by [6]

2-Q+4qf o _2+0+4

2 _
/\1 - 9 _ g2 ) 2 9 92 (10)
where
: q
@ =aq+20-q) a=1- (11)

Ay, Ay and By, B, are eigenvectors that satisfy the
four relations

A (AT = 1) = gAxA] =0, (12)
—g\N2 A +2002 —1—¢2) A4y =0, (13)
Bi(\3 —1) — gBa)3 =0, (14)
—g 3B +2(\5 —1—¢?)B, = 0. (15)

If the modulation amplitude is small (¢ <« 1), it is
straightforward to obtain the following expansions up
to the order O(g*):

2

4
A=+ 4 5

2F + ¢;7?), 16
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2 2
g g g -2
Ay=—-5|1—- =5 —=(2F +¢ }, 17

2
g 2 9 —1\2
B == |1 - =
1 qu[ +q 2(Q1+Q1 )"+

4
g _
P LeF ™), 09

32:1 1+92(q1+qf1)2+
2 2}
g4

+Z(2F+2+q%+q12)}, (19)

2 4

g g —2

M=1-2L5 -2 (2F . 2
1 2 4( +4q,7), (20)

2
g _
N=14ag+=2+¢ +q7)+

2
g4
+ Z(QF +2+ ¢ +4q7%, (21
where ( 2)2
1+q;
F= —27q;. (22)
1

Because of a misprint or error (reversed signs in AP,
BP), the coefficients in [6] (formula (12)), denoted with
the superscript D here, must be corrected according to
the relations

Q+ai —g*(1+q})

Ay = AP =
1 =g o3)
D _ g2+ 4 - Q)
Ay =24y = =T,
Q1[2_9]
2+ q7 +
BlzBlD:_g[qulf]’
D _ 3+ Q+g
By =2B, = - ———.
Q1(2_g)

Obviously, Eqgs. (5), (7), (8), and (9) imply that the
tangential electric field in the slab is given by

d
@Ez =€z <l‘,|2| < 5) =

i X

L
n
X {[X'] (A1 = gAs + cos(qr) (242 — gA1)) +

+ [Y'](By — gB> + cos(qz)(2B> — gB1))}, (25)
where analagously to (8) and (9), we have defined the
z-dependent functions

[X'] = Ay sech <dk;/\1> X

X [X1 sh(/mz)\l) — X2 ch(/mz)\l)] N (26)

[Y'] = Ay sech <dk;/\2> X

X [Y1 sh(/mz)\g) — Y2 ch(/mz)\g)] . (27)

In the vacuum regions, we have the following fields: in
the left half-space in Fig. 1,

d
H, <x,z + 5 < 0) =exp(ik(y) +

+ Z Ry exp [ik(ypx — Bp(4)],  (28)

p=0,£1

d
C+:Z+§v ’szp%v Ry =Ry,

Bp=[1-72"*=iV,, ImpB,=ReV,>0, (29)
and in the right half-space in Fig. 1,

Hy<x,z—%l>0>=

= Z Tp exp ['Lk’("y/px + ﬂpc—)] 9 (30)
p=0,F1

where

(_=z- g >0,
The continuity condition for the tangential electromag-
netic field on the interfaces z = Fd/2 leads to the fol-
lowing four equations containing eight unknown quan-

tities Xla X27 Y17 Y27 ROa R17 TOa Tl:

hn=T_.

Al [Xl + X2t1] + Bl [Y1 + Ygtg] + 2 COS(ql‘) X
X [AQ[Xl + X2t1] + BQ[Yl + thg]] =
=1+ Ry + 2cos(qx)Ry, (31)

Al [Xl — X2t1] + Bl [Y1 — Ygtg] + 2 COS(ql‘) X
X [AQ[Xl — X2t1] + BQ[Yl — Ygtg]] =
=To + 2cos(qx)Ty, (32)

A (A1 —gAs) [ X1t —Xo]4+ A2 (B1—gBy)[Y1t1 — Y]+
+ cos(qx) [AM (242 — gA1) [Xat — Xo] +
+ A2(2By — gBy) [Yita — Y2]] =
= —inTo + 2nvT; cos(qx), (33)

A (A1 —gAs) [ X1t +Xo]4+ A2 (B1—gBy) [Yit2+ Y2 ]+
+ cos(qz) [M (245 — gAq) [X1t1 + Xa] +
+ A2(2By — gBy) [Yits + Y]] =
=in(1 — Ro) + 2nvRy cos(qz). (34)

Here, we use the notation
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t1’2 =th (kng)\Lg) s

v = (%)2—1, Rev > 0.

The introduction of the sech((dkn/2)\1 ) coefficients

(35)

knowns R; and 7} that are not interesting in this study.
Thus we derive the following two relations between the
constants (X7, X2) corresponding to the fundamental
beam and the constants (Y7, Y2) describing the cos(qz)
mode:

_ Al (2A2 — gAl)tl — 2’[1’1}142

in (8), (9) and in (26), (27) is not obligatory, but it sim- Vi = Jr Xy = X 36
plifies the calculations because only tanh-terms defined ! e 2nByv — A2 (2By — gBy)ts v (36)
in (35) then simultaneously appear in all four equations

(31)-(34). Yo = kaX, = SL2A2 90 _Bmodsh g

3. CALCULATION OF THE RESONANT
TRANSMITANCE THROUGH
A MODULATED SLAB

It is convenient to first equate the terms propor-
tional to cos(gz) in (31)—(34) and to eliminate the un-

27’LB2t2U — A2(2B2 — gBl)

We note that these expressions are exact in the ac-
cepted two-mode (Fy(z) + 2F1(2) cos(qx)) approxima-
tion. We now equate the zero-order terms in boundary
conditions (31)—(34) (the fundamental z-independent
mode); eliminating Ro and Ty from these four equa-
tions, we then have

mn

X, = , 38
! ZTLAl + inBlkl + Al (A1 — gAz)tl + A2t2k1 (Bl — gBQ) ' ( )
mn
X, = . 39
2 iTLAltl + inBlkltz + )\1 (Al — gAQ) + )\QkQ(Bl — gBQ) ( )
The transmission coefficient is given by and therefore
Ty = 1.
To =X1(A1 +lel) —Xg(tlAl +I€2t231), (40)
If there is no modulation, then
which can also be written as
P R
L= Pla)—ala) (41) I=0 T P
(1+a(q)) (14 B(ar))
and we have the well-known result
where a(q;) and $(q1) can be written as simple func-
tions of q1, n, t1, ta, k1, ko using formulas (16)—(21) for To(g = 0) = 2n' : )
Ay, By, As, By, M1, Ma with O(g*) terms neglected, 2n ch(knd) + im? sh(knd) (44)

alq) =
9, s —4 +¢; s
41 1+Z(q1 +2q1 ) +itakig D) 4y
= , (42)
. 92 4 kig -2
in<l+=—q¢q " +—00+¢ )
2 2
Blq) =
g’ 9>
1+ Z(qu +qh + kzg—12 V1+¢
= (43)

= 3 1 —5 -
in{tl <1+%q1—4> +t2]€29 +2q1 }

We first consider two trivial consequences of formu-
las (42) and (43). If the film thickness vanishes
(t; =t2 = 0), we have

04207 BZOO,

m? =n’—-1.

We next consider the most interesting case of a thick
metal film with thickness d greater than the skin depth,
that is,

t1=1-2¢, t2=1-20, (45)

where
¢ = exp(—knd), ( =exp <—knd 1+ q%) . (46)

and (1 € 1, (o < 1. In writting Eqs. (46), we approx-
imate Ay » from (20) and (21) as

/\1=17 /\2=\/1+qf.

Moreover, for an SPP resonance,

§=ﬂ7 m=+vyn?-1,
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as we see in what follows, and therefore where
~1
=m 2
ql M, :m2n(n—m)—%,
and 2 (54)
My = mn*(n —m) — %

2
G2 = exp (—knd\/l + % ) = exp <— hen > . (47)
m m

In this regime, we derive from the definitions of &y » in

(36) and (37) that
2gm(n —m)
= 4
k1 2m(1+n?), _, nZg?’ (48)
T R

by = 2gm(n —m) . (49)

2
2T (gt ) 4 4o~

It is important to note that the general formula

(41) considered in the complex wave-number plane

(Req1, Im ¢1) has two poles at the points where

a(Qf) =p(Qy) =1.

With the aid of (48) and (49), we can show that these
complex wave numbers are given by

1 2n2<2 anS
Q) =m+ m(l+n2) | dm(l + n2)2 x
x [n(1+n®)—2m(n—m)(n+m?*)] —

_on’(n—m)?

Yo T )2

Q1 (¢2) = Qf (=) (51)
Two remarks are appropriate to formulas (50) and
(51). The first remark concerns the absence of terms
proportional to (i, that is, the limit £, = 1 is appropri-
ate, but the finite penetratation depth for the cos(qx)
mode is crucial because there is no resonant enhance-
ment of the transmission at (; = 0. The second re-
mark is that we neglect terms of the order O(g*) in (50)
and (51). It is now clear that if we set

(50)

€= (g —m) 2RI
<k m> 2m(1 +n?)

n

- .6

then for small values of ¢ such that terms of the order
£y, g% can be neglected, we have

£ —4G+ M,y
in[€ — 4G + g Ms]’

5= E+4G + ¢* My
in[€ +4C + g2 Mo’

(53)

From (41), (53), and (54), we derive the transmittance
of a dissipationless film in the form

{(A_l)ﬁgzx] {(Am)hgq

where we have introduced the renormalized modulation

T =|Ty|” = ., (55)

> g’n*m(n —m)?

4G(n? +1) (56)

and the detuning from the surface-plasmon polariton
frequency

Due to the equality
(n—m)?(n+n4+2m) = n*+n—2m(n—m)(n*+m),

our formulas (56) and (57) are analogous to formulas
(33) and (34) in [6], but ¢ is given by (47) and not by
¢ = (1 as defined in [6]. Only in the limit n — oo both
formulations coincide,

2
lim (n — n_) =0.
n—oo m

The physical effects associated with the two small
parameters (; and (» were not discussed in [6]. Al-
though this was not written explicitly, these authors
assumed that n > 1 in order to consider the influence
of a single small parameter ( = (; ~ (5. Our treat-
ment of the strong skin effect in the modulated slab
(summarized in formulas (55)—(57)) is free of the re-
striction n > 1, that is, the formulas are valid for all
1 < n < oo provided of course that the less restrictive
conditions written after formula (46) are fulfilled. Our
new and (as we believe) more correct analytic formu-
lation (55)—(57) leads to appreciable differencies from
the previously proposed analytic formulation [6] for a
concrete plasma parameterization given in Sec. 4.
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4. TRANSMISSION OF ELECTROMAGNETIC
WAVES THROUGH A SLAB OF
COLLISIONLESS PLASMA

As a specific example, we consider the case where

w2 9 _ g2
n? = —12’ —-1= 2ac ,
w T (58)
w = “p z, O<zx<l
\/5 ’
If we introduce the dimensionless parameters
d
D=2 p==2 (59)
c cq

the zero-order resonance frequency that follows from

the condition
k _m

qg n
is equal to the following value of x:

2 1
xoz\/1+P— 45 0<m <t (60)

The value xo(p) is defined for all 0 < p < oo. In
the special case where p > 1, xo(p) is very small, i.e.,
zo ~ /2 /p. On the other hand, if p < 1, x is very
close to one,

2
$0N1—%.

It is instructive to note that

Gale) = exp (-1 L) (61)

tends to the constant value exp(—D) for small x, but
if = is close to one, then

D
(o =~ exp <_E> , (62)

whereas

e =1 =exp (-2 ).

and therefore using the result in [6] for p < 1 gives
substantial deviations from the present theory. We con-
sider the number and exact positions of points where
the transmittance 7T is equal to one. We first note that
formula (55) can be represented in the form

~\ 2
A
2 T71 -1= (3) _§_2+§2 = A(n,paDag) (63)

In writting Eq. (63), we have fixed

w=wp/V1+n2,

also having definitions (59) in mind. The transcenden-
tal equation
A(n,p,D,g) =0 (64)

can be solved numerically or approximately by analytic
treatment using the fact that ¢ < 1 and D is of the
order of one, and hence

Dn?

nt—1

G2(n) = exp {— } <1 (65)

for every n > 1. An analysis of Eq. (64) for the model
in [6] must be based on

Dn
vn? +1

instead of Eq. (65). Using formulas (56) and (57), we
rewrite Eq. (64) as

Gi(n) = exp {— } <1 (66)

a*(n) = exp {— 27511 - } + 2¢%a(n)b(n) —
— [bQ(n) + 62(11)] = B(n), (67)
where
_lver o om
a(m) = 12 [ e n} .

m? =n? -1,

n(n —m)?(n® +n + 2m)

bln) = 8(1+n?) ’ (69)
_n*m(n—m)?
c(n) = 41+ n?) (70)

If we neglect the right-hand side of Eq. (67), we de-
rive the zero-order solution ng, given by formula (60),

that is,
2 /od + 4
ne = ,/% , (71)

If B(ng) > 0, we find two formal maxima of the
transmittance (T,q, = 1) at points ny, where

26 /B, (72)

1+ng

ne =ng *

within the first-order perturbation theory. The minus
sign in Eq. (72) can lead to a nonphysical solution
n_ < 1 if the correction term in (72) is sufficiently
large. In the limiting case where B(n) < 0 for every
n, the transmittance never attains a maximum value
of one. Nevertheless, the transmittance can have max-
imum values that are smaller than one (Fig. 2¢). This
quantitative analysis was confirmed by numerical cal-
culations shown in Fig. 2. Here, D = 1, ¢ = 0.2, and

1301



Z. D. Genchev, D. G. Dosev

MIT®, Tom 126, Beim. 6 (12), 2004

3

T
1oF T T T T T T T T T T T T ]
‘ a |
1
1
1
0.5 -
I
"
n
0 L L L Il Il 1 L 1 1 -l "
1.00 1.04 108 1.12 1.16 1.20 1.24 1.28
T n
1oF T T T T T T ]
' b
I
[}
i
0.5F : E
i
I
"
0 | | | | | A\
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
T n
T T T T T T T T T
1.0 y
C
|
0.5 | | -
\ {
\ {
\ {
\ {
0 P Ah 1 1 1 1 1 I
9.90 9.94 9.98 10.02 10.06 10.10
n
Fig.2. Transmittance as a function of n at D = 1,

g=20.2,and p = 0.1 (a), 1 (b), 10 (¢). Our results —
continuous lines, model [6] — dashed lines

p = 0.1, 1 and 10 in the respective Figures 2a, b, c.
The numerical results based on formula (66), that is,
the Dykhne model [6], are shown by dashed lines. We
see not more than two maxima in all cases. The Dykhne
model predicts only one peak in the cases p = 0.1 and
p = 1, whereas our model leads to two maxima in these
two cases.

5. CONCLUSION

We have presented a method to analytically de-
scribe the resonant transmittance of electromagnetic
waves through periodically modulated films. The phe-
nomenological description of the medium |z| < d/2
through Eq. (1) allows complex values of the parame-
ters

n=mn;—ina, ¢=gi+igs,

but in this paper, we analyze in detail only the dissipa-
tionless case (real values of n and g). In the framework
of the same physical model, it is not difficult to analyze
the more general parameterization

e(x) = éo + &1 cos(qx)

(where both numbers £y, £; are complex) and to
consider oblique incidence of the primary field. The
investigation of the interaction of incident light with
surface plasmon modes complements the study in [6]
as well as the analytic results in [8].
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