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RESONANT TRANSMITTANCE THROUGH PERIODICALLYMODULATED FILMSZ. D. Gen
hev *, D. G. Dosev **Institute of Ele
troni
s, Bulgarian A
ademy of S
ien
es1784, So�a, BulgariaSubmitted 31 May 2004We analyze the opti
al transmittan
e at normal in
iden
e for an ele
tron gas without losses. The ele
trongas is supposed to have a plane parallel slab geometry and its diele
tri
 permittivity is assumed periodi
allymodulated in one dire
tion parallel to the interfa
es. Due to the surfa
e plasmon polariton mode exitation,there exist resonan
e frequen
ies where the transmittan
e equals to unity. The number and positions of peaksare investigated analyti
ally and a 
omparison with the analyti
 theory by Dykhne et al. [6℄ is made.PACS: 42.25.Bs, 72.15.Gd, 05.70.Jk1. INTRODUCTIONIn the past, it has been thought that subwavelengthapertures have a very low transmission e�
ien
y oflight [1℄. Re
ently, however, high transmission e�
ien-
ies from arrays of subwavelength stru
tures in metal�lms have been reported. Sin
e the publi
ation of [2℄,many experimental and theoreti
al studies were 
arriedout in order to determine the physi
al origin of the ex-traordinarily enhan
ed transmission. They fo
used onthe des
ription of 
ompli
ated ele
tromagneti
 modesof the metal, originating from the intera
tion betweenphotons and surfa
e ele
trons, 
onsidering disorderedarrays of holes in a metal �lm [3℄, organized nanopar-ti
les [4℄ or periodi
 rough surfa
es [5℄.In this paper, we restri
t ourselves to the 
ase wherethe metal �lm o

upyng the spa
ejzj < d2 ; �1 < x <1; ��y = 0is in a va
uum enviroinment (jzj > d=2, �1 < x <1)and the diele
tri
 permittivity has the simple form"(x) = ~"0 + ~"1 
os(qx);with some pres
ribed periodi
ity a = 2�=q in the x̂dire
tion. Only transverse magneti
 waves (TM-mode)(Hy(x; z); Ex(x; z); Ez(x; z)) exp(�i!t)*E-mail: zgen
hev�ie.bas.bg**E-mail: dian�dosev2002�yahoo.
om

are 
onsidered in the two-wave approximationF (x; z) = F0(z) + F1(z) 
os(qx);where a full analyti
 treatment of the 
ompli
atedboundary value problem 
an be easily done. We followthe notation and the method of solution outlined in [6℄in order to obtain a 
lear physi
al understanding of thephenomenon of enhan
ed transmission. We also derive
on
rete results for the dissipationless free-ele
tron gaswith ~"0 = 1� !2p!2(!p is the ele
tron plasma frequen
y). In the futurework, these results will be extended to more realisti
opti
al 
hara
teristi
s of metal �lms, in
luding the ex-perimentally available data for opti
al 
onstants [7℄.2. GENERAL ANALYTIC FORMULATION OFTHE PROBLEMWe 
onsider the two-dimensional ele
tromagneti
problem shown s
hemati
ally in Fig. 1. The magneti
permeability in the whole spa
e is denoted by �0 andthe diele
tri
 permittivity of the free spa
e is denotedby "0. The physi
al system 
onsidered in this work 
on-sists of a va
uum (the relative diele
tri
 permittivity is"(!) = 1) in two regions jzj > d=2 and a metal slab1296
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T0 exp(ikz)exp(ikz)

Fig. 1. A plane wave is in
ident normally on a modu-lated �lm jzj < d=2. The two arrows show the dire
-tion of propagation of the beam in
ident from z = �1and the zero-order transmitted beam (T0 exp(ikz)) atz =1. The transmittan
e is de�ned as T = jT0j2(in the region jzj < d=2) 
hara
terized by the relativediele
tri
 fun
tion"(!; x) = �n2 (1� g 
os(qx))�1 : (1)If the modulation fa
tor g = 0, the diele
tri
 fun
tionof the slab (Eq. (1)) is assumed to be real and to sat-isfy the 
ondition n2 > 1 in some frequen
y range. It iswithin this frequen
y range that surfa
e-plasmon po-laritons exist. The parti
ular periodi
 x-dependen
ein (1) fa
ilitates the 
omparison with the analyti
 re-sults given in [6℄. The Maxwell equations in the linearharmoni
 approximation (exp(�i!t)),rotE(!; r) = i!�0H(!; r); (2)rotH(!; r) = �i!"0"(!; x; z)E(!; r); (3)are treated for transverse magneti
 waves (p-polariza-tion) E(Ex; 0; Ez), H(0; Hy; 0) under the assumption��y = 0:In the region jzj < d=2, we have�2Hy�z2 + "(x) ��x � 1"(x) �Hy�x �++ k2"(x)Hy(x; z) = 0; (4)Ex = � i!"0"(x) �Hy�z ; Ez = i!"0"(x) �Hy�x ; (5)

where k = !("0�0)1=2 = !
 :Equations (1) and (4) 
an be written as[1�g 
os(qx)℄ �2Hy�z2 + ��x �(1�g 
os(qx)) �Hy�x ��� k2n2Hy(x; z) = 0: (6)Negle
ting the generation of the 
os(lqx) harmoni
swith l higher than one and re
alling the Floquet theo-rem, we �ndHy �x; jzj < d2� = [A1 + 2A2 
os(qx)℄ [X ℄ ++ [B1 + 2B2 
os(qx)℄ [Y ℄; (7)where[X ℄ = se
h�dk n2 �1��� [X1 
h(knz�1)�X2 sh(knz�1)℄ ; (8)[Y ℄ = se
h�dk n2 �2��� [Y1 
h(knz�2)� Y2 sh(knz�2)℄ : (9)In formulas (8) and (9), X1, X2, Y1, and Y2 are arbi-trary 
onstants and �21;2 are dimensionless eigenvaluesgiven by [6℄�21 = 2�Q+ q212� g2 ; �22 = 2 +Q+ q212� g2 ; (10)where Q2 = q41 + 2g2(1� q21); q1 = qkn ; (11)A1, A2 and B1, B2 are eigenve
tors that satisfy thefour relations A1(�21 � 1)� gA2�21 = 0; (12)�g�21A1 + 2(�21 � 1� q21)A2 = 0; (13)B1(�22 � 1)� gB2�22 = 0; (14)�g�22B1 + 2(�22 � 1� q21)B2 = 0: (15)If the modulation amplitude is small (q � 1), it isstraightforward to obtain the following expansions upto the order O(g4):A1 = 1 + g24q21 + g44q21 (2F + q�21 ); (16)2 ÆÝÒÔ, âûï. 6 (12) 1297



Z. D. Gen
hev, D. G. Dosev ÆÝÒÔ, òîì 126, âûï. 6 (12), 2004A2 = � g2q21 �1� g22q21 � g24 (2F + q�21 )� ; (17)B1 = g2q21 �1 + q21 � g22 (q1 + q�11 )2++ g44 (2F + q21 + q�21 )� ; (18)B2 = 12 �1 + g22q21 (q1 + q�11 )2++ g44 (2F + 2 + q21 + q�21 )� ; (19)�21 = 1� g22q21 � g44 (2F + q�21 ); (20)�22 = 1 + q21 + g22 (2 + q21 + q�21 ) ++ g44 (2F + 2 + q21 + q�21 ); (21)where F = � (1 + q�21 )22q21 : (22)Be
ause of a misprint or error (reversed signs in AD2 ,BD1 ), the 
oe�
ients in [6℄ (formula (12)), denoted withthe supers
ript D here, must be 
orre
ted a

ording tothe relationsA1 = AD1 = Q+ q21 � g2(1 + q21)q21(2� g2) ;AD2 = 2A2 = �g[2 + q21 �Q℄q21 [2� g2℄ ; (23)B1 = BD1 = �g[2 + q21 +Q℄2q21 [2� g2℄ ;BD2 = 2B2 = q21 +Q+ g2q21(2� g2) : (24)Obviously, Eqs. (5), (7), (8), and (9) imply that thetangential ele
tri
 �eld in the slab is given by!"0k Ex = ex�x; jzj < d2� = in �� f[X 0℄ (A1 � gA2 + 
os(qx)(2A2 � gA1)) ++ [Y 0℄ (B1 � gB2 + 
os(qx)(2B2 � gB1))g ; (25)where analagously to (8) and (9), we have de�ned thez-dependent fun
tions[X 0℄ = �1 se
h�dk n�12 ��� [X1 sh(knz�1)�X2 
h(knz�1)℄ ; (26)

[Y 0℄ = �2 se
h�dk n�22 ��� [Y1 sh(knz�2)� Y2 
h(knz�2)℄ : (27)In the va
uum regions, we have the following �elds: inthe left half-spa
e in Fig. 1,Hy �x; z + d2 < 0� = exp(ik�+) ++ Xp=0;�1Rp exp [ik(
px� �p�+)℄ ; (28)�+ = z + d2 ; 
p = p qk ; R1 = R�1;�p = [1� 
2p ℄1=2 = iVp; Im�p = ReVp � 0; (29)and in the right half-spa
e in Fig. 1,Hy �x; z � d2 > 0� == Xp=0;�1Tp exp [ik(
px+ �p��)℄ ; (30)where �� � z � d2 > 0; T1 = T�1:The 
ontinuity 
ondition for the tangential ele
tromag-neti
 �eld on the interfa
es z = �d=2 leads to the fol-lowing four equations 
ontaining eight unknown quan-tities X1, X2, Y1, Y2, R0, R1, T0, T1:A1[X1 +X2t1℄ +B1[Y1 + Y2t2℄ + 2 
os(qx)�� [A2[X1 +X2t1℄ +B2[Y1 + Y2t2℄℄ == 1 +R0 + 2 
os(qx)R1; (31)A1[X1 �X2t1℄ +B1[Y1 � Y2t2℄ + 2 
os(qx)�� [A2[X1 �X2t1℄ +B2[Y1 � Y2t2℄℄ == T0 + 2 
os(qx)T1; (32)�1(A1�gA2)[X1t1�X2℄+�2(B1�gB2)[Y1t1�Y2℄++ 
os(qx) [�1(2A2 � gA1) [X1t1 �X2℄ ++ �2(2B2 � gB1) [Y1t2 � Y2℄℄ == �inT0 + 2nvT1 
os(qx); (33)�1(A1�gA2)[X1t1+X2℄+�2(B1�gB2)[Y1t2+Y2℄++ 
os(qx) [�1(2A2 � gA1) [X1t1 +X2℄ ++ �2(2B2 � gB1) [Y1t2 + Y2℄℄ == in(1�R0) + 2nvR1 
os(qx): (34)Here, we use the notation1298



ÆÝÒÔ, òîì 126, âûï. 6 (12), 2004 Resonant transmittan
e through periodi
ally modulated �lmst1;2 � th�knd2�1;2� ;v =r� qk�2 � 1; Re v � 0: (35)The introdu
tion of the se
h((dk n=2)�1;2) 
oe�
ientsin (8), (9) and in (26), (27) is not obligatory, but it sim-pli�es the 
al
ulations be
ause only tanh-terms de�nedin (35) then simultaneously appear in all four equations(31)�(34).3. CALCULATION OF THE RESONANTTRANSMITANCE THROUGHA MODULATED SLABIt is 
onvenient to �rst equate the terms propor-tional to 
os(qx) in (31)�(34) and to eliminate the un-

knowns R1 and T1 that are not interesting in this study.Thus we derive the following two relations between the
onstants (X1, X2) 
orresponding to the fundamentalbeam and the 
onstants (Y1, Y2) des
ribing the 
os(qx)mode:Y1 = k1X1 = �1(2A2 � gA1)t1 � 2nvA22nB2v � �2(2B2 � gB1)t2 X1; (36)Y2 = k2X2 = �1(2A2 � gA1)� 2nvA2t12nB2t2v � �2(2B2 � gB1) X2: (37)We note that these expressions are exa
t in the a
-
epted two-mode (F0(z) + 2F1(z) 
os(qx)) approxima-tion. We now equate the zero-order terms in boundary
onditions (31)�(34) (the fundamental x-independentmode); eliminating R0 and T0 from these four equa-tions, we then haveX1 = ininA1 + inB1k1 + �1(A1 � gA2)t1 + �2t2k1(B1 � gB2) ; (38)X2 = ininA1t1 + inB1k1t2 + �1(A1 � gA2) + �2k2(B1 � gB2) : (39)The transmission 
oe�
ient is given byT0 = X1(A1 + k1B1)�X2(t1A1 + k2t2B1); (40)whi
h 
an also be written asT0 = �(q1)� �(q1)(1 + �(q1)) (1 + �(q1)) ; (41)where �(q1) and �(q1) 
an be written as simple fun
-tions of q1, n, t1, t2, k1, k2 using formulas (16)�(21) forA1, B1, A2, B2, �1, �2 with O(g4) terms negle
ted,�(q1) == t1 �1+g24 (q�21 +2q�41 )�+t2k1gp1+q212 q�21in�1 + g22 q�41 + k1g2 (1 + q�21 )� ; (42)�(q1) == 1 + g24 (q�21 + q�41 ) + k2g g�212 q1 + q21in�t1�1 + g22 q�41 �+ t2k2g 1 + q�212 � : (43)We �rst 
onsider two trivial 
onsequen
es of formu-las (42) and (43). If the �lm thi
kness vanishes(t1 = t2 = 0), we have� = 0; � =1;

and therefore T0 = 1:If there is no modulation, theng = 0; � = t1in ; � = 1int1 ;and we have the well-known resultT0(g = 0) = 2n2n 
h(knd) + im2 sh(knd) ;m2 = n2 � 1: (44)We next 
onsider the most interesting 
ase of a thi
kmetal �lm with thi
kness d greater than the skin depth,that is, t1 = 1� 2�1; t2 = 1� 2�2; (45)where�1 = exp(�knd); �2 = exp��kndq1 + q21 � ; (46)and �1 � 1, �2 � 1. In writting Eqs. (46), we approx-imate �1;2 from (20) and (21) as�1 = 1; �2 =q1 + q21 :Moreover, for an SPP resonan
e,kq = mn ; m =pn2 � 1 ;1299 2*



Z. D. Gen
hev, D. G. Dosev ÆÝÒÔ, òîì 126, âûï. 6 (12), 2004as we see in what follows, and thereforeq�11 = mand�2 = exp �kndr1 + 1m2 ! = exp��kdn2m � : (47)In this regime, we derive from the de�nitions of k1;2 in(36) and (37) thatk1 = 2gm(n�m)2m(1 + n2)n2 (q�11 �m)� 4�2 � n2g22 ; (48)k2 = 2gm(n�m)2m(1 + n2)n2 (q�11 �m) + 4�2 � n2g22 : (49)It is important to note that the general formula(41) 
onsidered in the 
omplex wave-number plane(Re q1, Im q1) has two poles at the points where�(Q+1 ) = �(Q�1 ) = 1:With the aid of (48) and (49), we 
an show that these
omplex wave numbers are given by(Q+1 )�1 = m+ 2n2�2m(1 + n2) + g2n34m(1 + n2)2 �� �n(1+n2)�2m(n�m)(n+m3)��� ig2n5(n�m)22(1 + n2)2 ; (50)Q�1 (�2) = Q+1 (��2): (51)Two remarks are appropriate to formulas (50) and(51). The �rst remark 
on
erns the absen
e of termsproportional to �1, that is, the limit t1 = 1 is appropri-ate, but the �nite penetratation depth for the 
os(qx)mode is 
ru
ial be
ause there is no resonant enhan
e-ment of the transmission at �2 = 0. The se
ond re-mark is that we negle
t terms of the order O(g4) in (50)and (51). It is now 
lear that if we set� = (q�11 �m)2m(1 + n2)n2 == �kq � mn � 2m(1 + n2)n ; (52)then for small values of � su
h that terms of the order��2, �g2 
an be negle
ted, we have� = � � 4�2 + g2M1in[� � 4�2 + g2M2℄ ;� = � + 4�2 + g2M1in[� + 4�2 + g2M2℄ ; (53)

where M1 = m2n(n�m)� n22 ;M2 = mn2(n�m)� n22 : (54)From (41), (53), and (54), we derive the transmittan
eof a dissipationless �lm in the formT = jT0j2 = 4~g4�� ~��1�2+~g4� �� ~�2+1�2+~g4� ; (55)where we have introdu
ed the renormalized modulation~g2 = g2n2m(n�m)24�2(n2 + 1) (56)and the detuning from the surfa
e-plasmon polaritonfrequen
y~� = �m(1 + n2)2n�2 �kq � mn �++ g2n8�2(1 + n2) �n3 + n� 2m(n�m)(n3 +m)� : (57)Due to the equality(n�m)2(n+n3+2m) � n3+n�2m(n�m)(n3+m);our formulas (56) and (57) are analogous to formulas(33) and (34) in [6℄, but �2 is given by (47) and not by� = �1 as de�ned in [6℄. Only in the limit n!1 bothformulations 
oin
ide,limn!1�n� n2m� = 0:The physi
al e�e
ts asso
iated with the two smallparameters �1 and �2 were not dis
ussed in [6℄. Al-though this was not written expli
itly, these authorsassumed that n � 1 in order to 
onsider the in�uen
eof a single small parameter � = �1 � �2. Our treat-ment of the strong skin e�e
t in the modulated slab(summarized in formulas (55)�(57)) is free of the re-stri
tion n � 1, that is, the formulas are valid for all1 < n < 1 provided of 
ourse that the less restri
tive
onditions written after formula (46) are ful�lled. Ournew and (as we believe) more 
orre
t analyti
 formu-lation (55)�(57) leads to appre
iable di�eren
ies fromthe previously proposed analyti
 formulation [6℄ for a
on
rete plasma parameterization given in Se
. 4.1300



ÆÝÒÔ, òîì 126, âûï. 6 (12), 2004 Resonant transmittan
e through periodi
ally modulated �lms4. TRANSMISSION OF ELECTROMAGNETICWAVES THROUGH A SLAB OFCOLLISIONLESS PLASMAAs a spe
i�
 example, we 
onsider the 
ase wheren2 = !2p!2 � 1 = 2� x2x2 ;! = !pp2 x; 0 < x < 1: (58)If we introdu
e the dimensionless parametersD = !pd
 ; p = !p
q ; (59)the zero-order resonan
e frequen
y that follows fromthe 
ondition kq = mnis equal to the following value of x:x0 =s1 + 2p2 �r1 + 4p4 ; 0 < x0 < 1: (60)The value x0(p) is de�ned for all 0 < p < 1. Inthe spe
ial 
ase where p � 1, x0(p) is very small, i.e.,x0 � p2 =p. On the other hand, if p � 1, x0 is very
lose to one, x0 � 1� p28 :It is instru
tive to note that�2(x) = exp��D1� x2=2p1� x2 � (61)tends to the 
onstant value exp(�D) for small x, butif x is 
lose to one, then�2 � exp��Dp � ; (62)whereas �1(x = 1) = exp�� Dp2 � ;and therefore using the result in [6℄ for p � 1 givessubstantial deviations from the present theory. We 
on-sider the number and exa
t positions of points wherethe transmittan
e T is equal to one. We �rst note thatformula (55) 
an be represented in the form2pT�1 � 1 =  ~�~g !2�~g�2+~g2 = A(n; p;D; g): (63)In writting Eq. (63), we have �xed! = !p=p1 + n2 ;

also having de�nitions (59) in mind. The trans
enden-tal equation A(n; p;D; g) = 0 (64)
an be solved numeri
ally or approximately by analyti
treatment using the fa
t that g � 1 and D is of theorder of one, and hen
e�2(n) = exp�� Dn2pn4 � 1 �� 1 (65)for every n > 1. An analysis of Eq. (64) for the modelin [6℄ must be based on�1(n) = exp�� Dnpn2 + 1 �� 1 (66)instead of Eq. (65). Using formulas (56) and (57), werewrite Eq. (64) asa2(n) = exp �� 2Dn2pn4 � 1 �+ 2g2a(n)b(n)�� g4 �b2(n) + 
2(n)� = B(n); (67)where a(n) = 1 + n22n m � p(1 + n2)1=2 � mn � ;m2 � n2 � 1; (68)b(n) = n(n�m)2(n3 + n+ 2m)8(1 + n2) ; (69)
(n) = n2m(n�m)24(1 + n2) : (70)If we negle
t the right-hand side of Eq. (67), we de-rive the zero-order solution n0, given by formula (60),that is, n0 =sp2 +pp4 + 42 : (71)If B(n0) > 0, we �nd two formal maxima of thetransmittan
e (Tmax = 1) at points n�, wheren� = n0 � 2n301 + n40 pB(n0) ; (72)within the �rst-order perturbation theory. The minussign in Eq. (72) 
an lead to a nonphysi
al solutionn� < 1 if the 
orre
tion term in (72) is su�
ientlylarge. In the limiting 
ase where B(n) < 0 for everyn, the transmittan
e never attains a maximum valueof one. Nevertheless, the transmittan
e 
an have max-imum values that are smaller than one (Fig. 2
). Thisquantitative analysis was 
on�rmed by numeri
al 
al-
ulations shown in Fig. 2. Here, D = 1, g = 0:2, and1301
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e as a fun
tion of n at D = 1,g = 0:2, and p = 0:1 (a), 1 (b), 10 (
). Our results �
ontinuous lines, model [6℄ � dashed linesp = 0:1, 1 and 10 in the respe
tive Figures 2a, b, 
.The numeri
al results based on formula (66), that is,the Dykhne model [6℄, are shown by dashed lines. Wesee not more than two maxima in all 
ases. The Dykhnemodel predi
ts only one peak in the 
ases p = 0:1 andp = 1, whereas our model leads to two maxima in thesetwo 
ases. 5. CONCLUSIONWe have presented a method to analyti
ally de-s
ribe the resonant transmittan
e of ele
tromagneti
waves through periodi
ally modulated �lms. The phe-nomenologi
al des
ription of the medium jzj < d=2through Eq. (1) allows 
omplex values of the parame-ters

n = n1 � in2; g = g1 + ig2;but in this paper, we analyze in detail only the dissipa-tionless 
ase (real values of n and g). In the frameworkof the same physi
al model, it is not di�
ult to analyzethe more general parameterization"(x) = ~"0 + ~"1 
os(qx)(where both numbers ~"0, ~"1 are 
omplex) and to
onsider oblique in
iden
e of the primary �eld. Theinvestigation of the intera
tion of in
ident light withsurfa
e plasmon modes 
omplements the study in [6℄as well as the analyti
 results in [8℄.We thank Drs. J. R. O
kendon and G. Kozyre�for bringing the transmission problem to our attentionand for interesting diss
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