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Model-independent radiative corrections to deep inelastic scattering of an unpolarized electron beam off the
tensor-polarized deuteron target are considered. The contribution to the radiative corrections due to the hard
photon emission from the elastic electron-deuteron scattering (the so-called elastic radiative tail) is also inves-
tigated. The calculation is based on the covariant parameterization of the deuteron quadrupole polarization

tensor.
conditions of the current experiment at HERA.

PACS: 12.20.-m, 13.40.-f, 13.60.-Hb, 13.88.++e
1. INTRODUCTION

The flavor structure of nucleons is described in
terms of parton distribution functions. Most of the
information on these functions has up to now come
from inclusive deep inelastic scattering processes: ex-
periments where only the scattered lepton is detected.
Investigation of the nucleon spin structure involves new
types of reactions. For example, the HERMES ex-
periment was specifically designed to perform accurate
measurements of semi-inclusive reactions, where in ad-
dition to the scattered lepton, some of the produced
hadrons are also detected [1].

The polarized nuclei of deuterium and helium-3
are used to extract information on the neutron spin-
dependent structure function ¢;(z) [2]. In analyzing
the experimental data on inclusive spin asymmetries
for deuterium, a small effect due to a possible tensor
polarization in this spin-one target must be taken into
account in order to deduce the spin-dependent struc-
ture function gf. This is connected with the presence
of additional tensor-polarized structure functions in a
deuteron target [1]. So far, the spin-structure stud-
ies have been focused on the spin-1/2 nucleon. Differ-
ent spin physics, such as the tensor structure in the
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Radiative corrections to the polarization observables are estimated numerically for the kinematical

deuteron, exists for higher-spin hadrons. The measure-
ment of these additional spin-dependent structure func-
tions provides important information about nonnucle-
onic components in spin-one nuclei and tensor struc-
tures on the quark—parton level [3]. A general formal-
ism of the deep inelastic electron—deuteron scattering
was discussed in Ref. [4], where new four tensor struc-
ture functions b;(x), i = 1,...,4, were introduced.
They can be measured using a tensor-polarized tar-
get and an unpolarized electron beam. Among these
new structure functions, only one, by, is the leading
twist in QCD [4], and it was found that this function is
small for a weakly coupled system of nucleons (for ex-
ample, deuteron). Therefore, the measurement of by for
deuteron can give information about its possible exotic
components.

From the theoretical standpoint, the spin-
dependent structure function by (z) was investigated in
a number of papers. The available fixed targets with
J > 1 are only nuclei (deuteron is the most commonly
used nucleus). If the nucleons in the deuteron are in
the S state, then by(2) = 0. For nucleons in the D
state, bi(x) # 0 in general [4]. It was found [5] that in
the quark—parton model, the sum rule

/dxbl(x) =0

is generally true if the sea of quarks and antiquarks
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is unpolarized (and it was shown how this sum
rule is modified in the presence of a polarized sea).
Mankiewicz [6] has studied b (z) for the p meson and
noticed empirically that

/dxbl(x):()

in his model. Tt was shown in Ref. [7] that multiple scat-
tering terms at low 2 can still lead to b; # 0 even in the
case where only the S-wave component is present. Var-
ious twist-two structure functions of deuteron (in par-
ticular, b;) have been calculated in a version of the con-
volution model that incorporates relativistic and bind-
ing energy corrections [8]. Simple parameterizations
of these structure functions are given in terms of few
deuteron wave function parameters and the free nu-
cleon structure functions. The tensor structure func-
tions were discussed in Ref. [9] in the case of lepton
scattering and in hadron reactions such as the polar-
ized proton —deuteron Drell - Yan process.

Ag is known, the HERMES experiment has been
designed to measure the nucleon spin-dependent struc-
ture functions from deep inelastic scattering of longi-
tudinally polarized positrons and electrons from polar-
ized gaseous targets (H, D, *He). In 2000, HERMES
collected a data set with a tensor-polarized deuterium
target for the purpose of making the first measurement
of the tensor structure function b;(z). The prelimi-
nary results on this structure function are presented
in Ref. [10] for the kinematic range 0.002 < = < 0.85
and 0.1 GeV? < Q2 < 20 GeV2. The preliminary result
for the tensor asymmetry is sufficiently small to pro-
duce an effect of more than 1% on the measurement of
g. The dependence of b; on the x variable is in qualita-
tive agreement with the expectations based on coherent
double-scattering models [11-13] and favors a sizeable
value of by in the low-z region. This suggests a signifi-
cant tensor polarization of the sea quarks, violating the
Close - Kumano sum rule [5].

The radiative corrections to deep inelastic scatter-
ing of unpolarized and longitudinally polarized electron
beams on a polarized deuteron target were considered
in Ref. [14] in a particular case of the deuteron polariza-
tion (which can be obtained from the general covariant
spin-density matrix [15] when spin functions are eigen-
vectors of the spin projection operator). The leading-
log model-independent radiative corrections in deep in-
elastic scattering of an unpolarized electron beam off
the tensor-polarized deuteron target were considered in
Ref. [16]. The calculation is based on the covariant pa-
rameterization of the deuteron quadrupole polarization
tensor and use a Drell — Yan-like representation.

Current experiments at modern accelerators
reached a new level of precision, and this circumstance
requires a new approach to data analysis and inclusion
of all possible systematic uncertainties. One of the
important sources of such uncertainties is the electro-
magnetic radiative effects caused by physical processes
occuring in higher orders of the perturbation theory
with respect to the electromagnetic interaction. In the
present paper, we give a covariant description of the
deep inelastic scattering of an unpolarized electron
beam off the tensor-polarized deuteron target (the
polarization state of the target is described by the
spin-density matrix of the general form) with the

radiative corrections
e (k1) +d(p) = e (k2) + X (pa) (1)

taken into account.

The corresponding approach is based on the covari-
ant parameterization of the deuteron quadrupole po-
larization tensor in terms of the 4-momenta of the par-
ticles in process (1) [16]. We also performed numerical
calculations of the radiative corrections for the kine-
matical conditions of the experiment [10]. The contri-
bution of the radiative tail from the elastic ed scattering
is considered separately.

2. BORN APPROXIMATION

The standard set of variables used for the descrip-
tion of deep inelastic scattering processes is

_ ¢,
2pq’ v’ (2)
V=2pki, ¢ =-Vay, q=k — ko,

T

where ¢ is the 4-momentum of the intermediate heavy
photon that probes the deuteron structure. We first
define the deep inelastic scattering cross section of pro-
cess (1) in terms of the contraction of the leptonic L,
and hadronic W), tensors (in the Born approximation,
we can neglect the electron mass)

do ma® vy
—— = — =L, W.. 3
dedQ%  VQy x MM (3)
We note that only in the Born approximation (without
accounting for radiative corrections)

3

g=k —ky, Qp=—¢ =2kiks.

The Born leptonic tensor (in the unpolarized
case) is

Lfy = q2guu + 2(k1uk2y + klquM)- (4)
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The hadronic tensor is defined as
Wi = (212 3 64
X

where J, is the electromagnetic current for the
v* +d — X transition (y* is the virtual photon).
The sum means summation over the final states and
the bar means averaging over the polarizations of the
target and summation over the polarizations of the
final particles. To write the hadron tensor in terms of
the structure functions, we first define the deuteron
spin-density matrix (we do not consider the effect
caused by the vector polarization of the deuteron in

what follows)
(guy Suuz\ps)\pp‘l'Quu
Q;u/ = Quua Quu qu;w =0,

where s, and @, are the target deuteron polariza-
tion 4-vector and the deuteron quadrupole polariza-
tion tensor. The corresponding hadron tensor has
both the polarization-independent and polarization-
dependent parts and in the general case can be written
as

(ki +p — ko — pa)JuJi,

DPubv
Puv = —35 . )

(5)

Wut/ = Wuu(o) + Wuu(v) + WMV (T)7 (6)

where W,,,,(0) corresponds to the unpolarized case and
Wy (V) (W (T')) corresponds to the case of the vec-
tor (tensor) polarization of the deuteron target. The
W, (0) term has the form

N Wy .
Wuy(o) - _ng;w + —szupm
(7)
. dudv o
Guv = Guv — q2 s DPp = DPu — q_qua

where M is the deuteron mass and W, » are the unpo-
larized structure functions depending on two indepen-
dent variables z and ¢2. The part of the hadron tensor
that depends on the quadrupole polarization tensor can
be represented as

M? By _
Y)Y {QQBQaQB <Blguu + EQuPu) +

W (1) = (pq)

+ BSQa (ﬁuQDa +]5uQﬂa) +qu4@ul/} . (8)

Here, B; (i = 1,2,3,4) are the spin-dependent struc-
ture functions (caused by the tensor polarization of the
target). They are also functions of the two variables ¢*
and x. Because the hadron tensor W, (T') is symmetric
under y <> v, measuring these new structure functions
does not require the electron beam to be polarized.

We used the following notation in formula (8):

Qvqa
Q Q;w - —Quoz-, QuﬂQV - 07
A qudv QVQQ
Qut/ - Qut/"‘ M QaﬁQaqﬁ Qua_
QMqoz an, @uuqu — 0 (9)

We note that the deuteron spin-dependent structure
functions B; are also related to the structure functions
b; introduced in Ref. [4] as

b
By = —by, BQ=§2+b3+b4,
b b b (10)
Ba=2_2% B =2_
3= % " 1=73 bs.

In calculating radiative corrections, it is convenient
to parameterize the polarization state of the deuteron
target in terms of the 4-momenta of the particles partic-
ipating in the reaction under consideration. Therefore,
first, we have to find the set of the axes and write them
in a covariant form in terms of the 4-momenta. If we
choose, in the laboratory system of reaction (1), the
longitudinal direction 1 along the electron beam and
the transverse one t in the plane (k;,ks) and perpen-
dicular to 1, then

s = 2k b
S0 = ko — (1 —y — wa)km Ty (11)
g(n) — 2emrpoPrkiphag
1 Vd )
Vayb, b=1-y—xyr, 7= M?/V.

We chose one of the axes along the direction 1 because
in the experiment on measuring the b; structure func-
tion [10], the direction of the magnetic field used for
polarization of the deuteron target is along the positron
beam line. The direction of the magnetic field provides
the quantization axis for the nuclear spin in the target
It can be verified that the set of the 4-vectors S, (1t.n)
has the properties
S(e) g(B)

wo P = —0as; S(D‘)pu:()_/

m avﬂ = lat-,nv (12)

and that in the rest frame of the deuteron (the labora-
tory system),

S =(0,1), SP =(0,1),

; S = (0.m),

1w
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n, — (1’11 . 1’12)111

l:nl, t= \/1727
~ (n1 o) (13)
n; X ng k1,2
nN= ——————, nj»=—-.
\/1—(1’11'112)2 b2 |k1,2|

Adding one more 4-vector S‘(LO) = pu/M to set (11),
we obtain a complete set of orthogonal 4-vectors with
the properties

§(m) g(m)

m v = YGuuv
14
Slgm)sl(ln) = 9mn, m,n = 07l7tan- ( )

This allows us to express the deuteron quadrupole po-
larization tensor, in the general case, as

Quv = S{™ S Ry = S SP) R,
RaB = Rﬁaa Roo =0,

because the components Rgg, Roa, and R,o are identi-
cally equal to zero due to the condition @, p, = 0.

In the Born approximation, the components Ry,
and Ry, do not contribute to the cross section (be-
cause the 4-momenta ¢, and ki, are orthogonal to the
d-vector S and expansion (15) can be rewritten in
the standard form

(15)

1
Quv = |88 = 5SS | Ru +

1
+§sg)sgt>(Rtt—Rnn)+(sy>s§t)+sg)sy>)3”, (16)
where we took into account that
Rll + Rtt + Rnn =0.

In what follows, we consider the deep inelastic
scattering of the unpolarized electron beam from the
tensor-polarized deuteron target. Thus, we have to cal-
culate only the contraction of the Born leptonic tensor
LB, and the hadronic tensor Wy, (T) caused by the
tensor polarization of the target,

SP(T) = L, W (T) =

1
- {——2[ny31 +(a—1+1)Bs +yBa)Qo+

[@WBV&M@+&@*aﬂU

+
< =&

S(L) 27(k1 — ka2)p — ypu
# M\/yh

§(T) _ (14 2x7)koy — (1 —y — 227) k1 — (2 — y)pu

where

a = TyT, QO = QO(BQOéqBa

Q1 = Qaplakip, Q11 = Qaskiakis.

Using the formulas for the vectors S,(f‘), we can cal-
culate the contractions. After simple calculation, we
have

dog(T)
ddeZB B
_ 2ra?

= —7 [SllRll + St (Rit — Rnn) + Sltth]7
Q%

(18)

with

Su = [22br —y(1+227)*]G+2b(1+327) B3+ (b—a) Ba.

o
Y
x [2(y 4+ 2a)G + (2 — y — 4b) B3 + yBa],

SltZQ X

(19)

b
Stt = —QSUbT(G-FBg), GZJUyBl — ;BQ

Therefore, in the general case, the cross section
of deep inelastic scattering of an unpolarized electron
beam from a tensor-polarized target is determined, in
the Born approximation, by the components of the
quadrupole polarization tensor Ry, R;:, and the com-
bination (Ry — Run)-

We now consider just one more, commonly used,
choice of the coordinate axes: components of the
deuteron polarization tensor are defined in the coor-
dinate system with the axes along the directions L, T,
and N in the rest frame of the deuteron, where

ki —ko

o N nl—(nl L)L
T ki—ko|

T N=mn. (20)

The corresponding covariant form of set (20) is given by

(21)

1w

VVaxbh '
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S(N) — g(n)

M us h=y+4der,

and the expansion of the deuteron polarization tensor
is defined in full analogy with (16),

1
Quv = |SPSIH) — gsﬁT)S,(/T) Rrr +
1
+ §S£T)S£T) (Rrr — Rnn) +

+ (SEST + STSENRL . (22)

These two sets of orthogonal 4-vectors are connected

by an orthogonal matrix that describes a rotation in

the plane perpendicular to the direction n = N,
L) _ 1 : t

S, ) = coseSﬁ(L) +smesp,

T) _ 1 t

S = —sin S + cos S,

(23)

142 b
ya+2er) g o T
Vyh h
In this set of axes, the part of the differential cross
section that depends on the tensor polarization can be

written as
dop(T) _ 27ma® "
dzdQ% — 2Q%
x [StrRrr + Str(Rrr — Ryn) + SprRir],  (24)

B
Srr = —hG+2ng+T4[(1—y)(y—2xT) —2a(y +x7)],

2xbt
Srr = . By,

xbt y (25)
Spr = 2“ 7(2 -v) (33 + EB4) .

3. RADIATIVE CORRECTIONS

In this paper, we consider only the QED radia-
tive corrections to the deep inelastic scattering process
(1). We confine ourselves to calculation of the so-called
model-independent radiative corrections, correspond-
ing to photons radiated from a lepton line with the
vacuum polarization taken into account. The reason is
that it gives the leading contribution to radiative cor-
rections due to the smallness of the electron mass, and
can be calculated without any additional assumptions.
Nevertheless, these radiative corrections depend on the
shape of the deuteron structure functions (both spin-
independent and spin-dependent) through their depen-
dence on the z and Q? variables.

There exist two contributions to radiative correc-
tions when we take the corrections of the order a into
account. The first one is caused by virtual and soft
photon emission that cannot affect the kinematics of
process (1). The second one arises due to the radiation
of a hard photon,

e (ki) +d(p) = e (k) + (k) + X(ps).  (26)

The leptonic tensor corresponding to the hard-
photon radiation is well-known [17, 18]. For an un-
polarized electron beam, it can be written as

LY, = AoGuw + Atkukiy + Askay ko, (27)
where
2 2 2 _ 2 1 1
Ay = L) (07— x2) _2m2q2<_2+_2>7
X1X2 X1 X2

2 2m2
A = —4< Ty —2>,
X1X2 X2

2 2 2
A2=_4< q +£>7

X1X2 X%
~ qk .
kiu = kiu - _;qua 1= 1721
q
with
X1,2 = 2]@]6172,

m is the electron mass,
q2=X2—X1—QQB-,

and
q=k1—k2—k

in this section. The hadronic tensor in this case has
the same form as the hadronic tensor in the Born ap-
proximation, but the momentum transfer ¢ differs from
the Born one and the structure functions B; depend on
the new momentum ¢. Here and in what follows, we
neglect the terms vanishing as m — 0.

We consider the hard photon (with the energy
w > Ae, where A < 1) emission process using the
approach in [19], where it was applied to the process of
deep inelastic scattering on an unpolarized target. We
introduce the variables suitable for this process,

Z:MZQ—M2:q2+2pq r:—i
14 \% ' 2B’

' _q2 ryr
= Py = Py X1,2 = 2kk1 2,
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where M, is the invariant mass of the hadron system
produced in scattering of the photon (with the virtual-
ity ¢*) by the target.

We note the physical meaning of the z variable: it
shows the degree of deviation from the elastic process
(ed — ed). Therefore, the value z = 0 corresponds
to the elastic ed scattering threshold and the value
z =eq4/e1 (where g4 is the deuteron bound energy and
€1 is the electron beam energy in the laboratory sys-
tem) corresponds to the ed — enp reaction threshold
(quasielastic ed scattering).

The contraction of the leptonic and hadronic ten-
sors can be represented as

SY(T) = AAg + BA; + CAs, (28)

2
A=NQ, [3}31 + By + =5 (B, +2B; + B4)] :
c 2zxyr

QQB+X1

2rQ%
+
+% <B + 3 Q2 (BQ+2Bg+B4)>:|

5+ v
+V Q1 [33 — 62;762?:16(33 + B4)] + 50Q11B4} )

{QO[ By -V (Bs + B3)+

o= a3t

+VQQB 02, (1 —y)(By + Bs) + (QZTQ:2) y
8 <B1 + 2 QQ (B2 +2B3 +B4)>}
+ VQZ [Bg(l — y) QQB Q2 (B3 n B4):|

v
+ 50Q22B4} )

where
N =41/Vc?, c=z+xyr

The quantities Qp, Q1, @2, Q11, and Q2 are the
contractions of the deuteron quadrupole polarization
tensor and 4-momenta. They can be expressed in terms
of the scalar products of the 4-momenta of the particles
participating in the reaction and the set of 4-vectors
Sfll’tm). Therefore, these contractions are given by

1 1
Qo = Qaptags = |(l)* = 5(ta)” — 5(n9)*| x
X Ry + 2lqtqRy; + 2nqlqRy, +

L1(ta)® = (n@)*) (R - Rum),

+ 2nqtqRy + 2[

1
Q1 = Qaplakis = (lk1lq - Etkth> Ry +
+ (lkltq + tkllq)th + lklanln +

1
+ tkingRy, + 515]61 tq(Rtt — Rnn), (29)

1
Q11 = Qaskiakis = [(lk1)2 - _(tkl)ﬁ Ry +
+ 21kt Ry + = (tkl) (Rtt - Rnn)a

Q2 = Q1(k1 = k2), Qa2 = Qui(k1 = k2),

ia = Sfli)au, i=1,t,n,

where we used the conditions
Ry + Ry + Ry, =0, nky =nky =0.

For the set of the 4-vectors S,(f’t’n), we also have
tky = 0.
It is convenient to separate the poles in the term

(x1x2) ! using the relation

1 1 1 < 1 1 )
X1X2 Q B Xi o x2/’
Then the radiative correction (caused by the hard-
photon emission) to the differential cross section of deep

inelastic scattering of an unpolarized electron beam by
the tensor polarized target has the form

do” ay d*k
_e 49 [ 2 e
dedQ% Vax / 2w (z7), (30)

where w is the energy of the hard photon and

S(s,r) = 214 {Ro(z,r) + <i - i) Ri(z,r)+

Q% X1 X2
2 2
+ D) le(Z,’f’) + P} RZm(Zar)} 9 (31)
1 X2
2
RO__T_ZA
Ri=—|(1+5)Qha-2B+0O),
| B r

Rypm =2 <@A— %0) ,
r

It is convenient to write the integral in Eq. (30) as

A3k
I: KZ(Z T)—Ilm+12m+IR, (32)
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where we separate the contributions proportional
to m2,

3 2/(,2 2
Ilm = /ﬂ a (q ) m_le(Z-,r)',

2w 4 2
QB X7 (33)
APk a?(q?) m?
I = [ L@ .
2w QF X3

We first consider the integrals I;,,, i = 1,2. The
numerator of the integrands in I, (I2,,) is then calcu-
lated in the approximation x; = 0 (x2 = 0) [19]. The
integration measure over the hard-photon phase space
is written as

ok
2Tw 2y — 2

WQko
o’

s=yl-2).  (34)

Using the invariance of w?df);, we can integrate
over the angular variables dfj in the most suitable co-
ordinate system, namely, in the coordinate frame where

k1—k2+p:0

(the center-of-mass system of the scattered electron and
the produced hadronic system). We obtain
/ w2dQy m? 1

2 X%,2 S 2

3.1. Integral I,

We calculate the integrand in the approximation
where y; = 0 (except in the denominator). This ap-
proximation corresponds to the emission of a collinear
photon along the initial-electron momentum. In this
case, the variables take the values

1l-y+z 9 9 ) TYry
r=—-—-": =-r , Ty = ——.

! 1—2xy N 105 V7 a4 aym

After integrating over the hard-photon angular vari-
ables, the integral I;,, can be represented as

Zm

1 dz
Lim = =1 / mo@z\qzl(g), (35)
B A +

L1(2) = SwRu + 1 Ris + Z144 (Rt — Rn),
2
Yip = b%(Gt + Bay),
1
V. Jzyb

Y = o T[(y—1+r1)B4t+(a—3b+r1)B3t+
1

+2(a — b+r1)Gt],

V
21” = ﬁ{(a — b)(y -1 +’I’1)B4t +

+2b(b—2a — r1)Bs; — [2ab— (a — b+ 11)*]G4 },

G = xyBit — y—l%rlB%’ ar = alq),
N = (z —l—i;rl)Z’
Zm =24 —p, p=20e\/(T+24)/V,
By = Bi(¢3,2}), i=1-4.

It is convenient to explicitly extract the contribution
containing the infrared divergence. For this, we add to
the numerator of the integrand and subtract from it its
value at z = z;. At this value, we have
Ny =4r/y?, o) ==

lela ap = aQ,

The integral I;,, can thus be written as

z

I —L/d—zx
QL) sy -2

0
4t
X [a%lel(z) —a2y—221(2+) +

Ve o dos
y 2y dedQ%’

(36)

3.2. Integral I,

Calculation of the integrand is performed in the ap-
proximation ys = 0, which corresponds to the emission
of a collinear photon along the final-electron momen-
tum. In this case, the variables take the values

1=z
_1—Z+’

2 2 ! TYra
g5 = —12Qp, TH=-—"T - "-"—"—.
2 B 2T 1—ry(1—y)

]

After integrating over the hard-photon angular vari-
ables, the integral I5,, is represented as

Zm

17 e
QL) 2+ —=z

0

Iy, = agNZZQ(Z)a (37)

Yo (2) = SauRu + Yo Rt + Sowt (Ret — Run)s
You = bQQB(th + Bss),

b 1
Sopp =~V 2L { (y —1+ —) Bus+
T ]

+ <a— 30 + %) Bss +2[1 + (a — b)rg]Gs} ,
2
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San = 5o {(a = L= 12(1 = )] B, -

—2b[1+ (2a—b)rs] By — [2abri — (1+ar, —br2)?]G,s |

b
Gs =xyBs — mB%a Qy = a(q%),
N2:47T_ BiS:Bi(qg.x;). 1=1,2,3,4.
(z + ayrs)?’ T /

The contribution containing the infrared divergence is
extracted explicitly in a similar manner as for the Iy,
integral. At the value z = z,, we have

ro = ].,

ay=a, Ny=4r/y?, =)=z

The integral I,,, is then rewritten as

z

T —L/—dz X
Qm_Q%O p =2

4T
X |:Q§N2ZQ(Z) —042?22(24) +

Ve p dop
—In — .
+ Y t 24 dxdQ%

(38)

The radiative corrections due to the virtual photon
exchange and real soft-photon emission (with energy
w < Ag) can be related to the Born cross section as')

do.(S+V)
dz dQ%

do
_ SV B
= Q% (39)

where the factor 6%V is [19]

2
sV = & [(L—l)ln&+§L—
™ £1€2 2

2 2
- 1lr125—1—7r——2—f <cos2 g)} , L=1In Qg (40)

27 & 6 m2’

€1(e2) is the initial (final) electron energy, and 6 is the
electron scattering angle in the coordinate frame where

kl—k2—|—p=0.

The function f is defined as

flz) = /%ln(l —t).

0

1) We note that the vacuum polarization effects are included
in the Born cross section through the dependence of the coupling
constant « on the virtual-photon momentum.

8 ZKOT®, Bem. 5 (11)

The quantities €1, €9, and 6 can be expressed in terms
of the invariant variables as

. V(1 —2zy) . V(1l—2zy)
1= —F, &= Y,
2 V(T+Z+) 2\/V(T+Z+) (41)
, 0 1—y—ayr
cos” — =

2T U—ay)i—21)

The radiative correction 6°" is finally rewritten as

2 1—y—ayr
V=2l 1T
27r{ 3 Y T

+(L—-1)x

e 1 -2y

1—Z+

" <3+21“<1_w’;?1_2+>>}~ (42)

3.3. Integral Iy

To calculate this integral, we use the results in
Ref. [19]. In addition to the integrals calculated in that
paper, we need the integrals

To calculate these integrals, we write the hard-photon
phase space measure as

3 2
k_ 7(23 d—gpdz dr. (44)

21w 9, /y2 + 4a 27

Because the function F'is independent of the ¢ variable
in our case, we can integrate over this variable. We do
this in the coordinate frame specified above. The re-
sults are

o [de __Qf

S e y2 + 4a X
x[2-py-0-1-nE+20)| @5

_[dp o _ 10,5 Qp(l-ay)? 2

2= [5-Xi=3 {311 T da (r—ri)°|.

After simple calculations, the integral Ir is (with the
contributions proportional to the R;, and Ry, compo-
nents omitted)
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T 204

Y

i=1 m,n

L2 dz ~
G (z,
+1—Z+/1—T2 ! (Z/r2)+

Zm T4
1 mn
+—/dz/ dr Gi""(z,7) _
1—2ay |r —rq] 1—r
Gmn
/ / _ i (Z7T2)]+
1—z+ |r — ro]

].—’I“Q
/dz/dr
\/y +4a

B; [Coi" (z,1) + i1 CT7"

ngn(z7’rl):| +

1—7‘1

G (z,r)
1—7r

(2,7) + 02057 (2, 7)1}, (46)

where
. Qp(1-ay)® o QB(1-2zy)?
L= eyt 2T M ey traayy (47
re(z) = !

— X
2ay(r + 1)

2oy(r +2) + (24 — )y = Vy? + 4a),
Gl (z,r) = r_2(1 —r)B; A" (z,r),

é;n”(z,r) = —2(1 —r)B;B"(z,7),

with m,n = [, t,n. We note that the structure functions
B; are functions of two independent variables

ryr
2 __ 2 I
¢ =-rQp, =

2+ ayr’

The expressions for the coefficients A", B"",
o, k=0,1,2, are given in Appendix A. The contri-
butions proportional to the R;, and R;, components
are considered in more detail in Appendix B.

We now briefly discuss the singularities in the Ip
integral. The value r = 1 corresponds to the real
soft-photon emission (there is an infrared divergence
at this point), and the value r = ry(ry) corresponds
to the emission of a collinear photon along the initial-
(final-) electron momentum (the so-called collinear di-
vergence). The singularity at the point z = 2z is the
infrared one. The divergence at r = 1 is unphysical.
It arises during the integration procedure due to the
separation of the poles in the expression (yiy2) !. It

is necessary to explicitly extract the collinear and in-
frared divergences in the above formula.

The integrand in the above expression can be writ-
ten in the form that does not explicitly contain the
infrared divergences if we add term (39) to it. For this,
we use the transformations

/ =

G(z,r;) o

1-— ri
" G(z,r)  G(z i) _ P/ dr "
1—r 1—r; (1=r)|r—r;]

X[G@ﬂﬂ—G@m”} i=1,2, (48)

vi(z,y)
xy(T + 24)

where

991(56,y) = (1—33y)27 (1_Z+)2a

and the symbol P denotes the principal value of the
integral. The total radiative correction (which is the
sum of the contribution due to the hard-photon emis-
sion and the contribution due to the real soft-photon
emission and virtual-photon contribution) to the part
of the differential cross section caused by the tensor
polarization of the target is written as

902(93731) =

do dop
= + 8t 49
dedQ%  drdQ% (49)
where
2
stot = L 13 1oL — 1)1 “+ -
e R (e
_ 2
_2lze_, T
1-— Z4 3
dop ay
-2
f{ (1 —zy)( 1—z+) }dmdQQB +xQ4
/ [a%lel(z) +(J4§N2ZQ(Z)—
24 —Z
0
8T ay
2
_av—y221(2) 2VQ4X
4 At
sy (s [ o
— Z+_Z 1 ) 1 )
i=1 m,n 0

%
v y? + 4a

Coim™(z,r) + 1, O (1) +

= Gz rs) + G (24,1)] +

Z4 r4 9
X/M/W%B
r
0 T_

+ i CT(z,r)| + R 5. (50)
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The term R;"" has different forms depending on the
integration region of the variable r. In the regions
r— <r <rand res <r < ry (where r # 1, and
therefore the divergence at the point » = 1 is absent)
the function R} has the form

v
T

i l—xy/z/(l—r)lr—ﬁlx
0 r_

x [G;n“(z,r) - G;ﬂn(z,rl)] +

Z4 T4+
+ 1 /dz/idr X
1= 2y A=)l —ral
0 r_

x [é;ﬂn(z.,r) —é?m(z.,m)]. (51)

)

In the region 1 < r < 19, we have

24
1—r_
Rg’mz/dzm =
0

7"+—].

1
24 —Z

X {gg’f"(z.,l)— 1z 1) + X
x [gm™ (2, 1) = gl (2,m0) +

bR = )] |+

Z4 r4 d
r mn mn
+/dz/m{gi1 (z,7) — gt (2, 1)—
0 r—

—fi" ) + [z ) +
1
1—2xy

1

1—Z+

+

[Fm”(z,r) — F™"(z, 1)] —

X [Fm"(zr) — Fmn(z, 1)] } ,  (52)
where we introduce the notation
G?m(zﬂ”) = g;gn(zar) + Algznlln(zvr)a
G’?m(zvr) = z’rgn(zvr) + Az z‘qm(z'/r)?
1
r—rnrg
mn 1 mn mn
B (ar) = ———[£57(2,m) = £ (2om2) .
r ro

Ay =(1—-ay)r—a—>b—z,

In obtaining the above formula, we use the relation

F7m"(z,r) =

™ (zm) = gig™(2.0)|. .

P/1(1_70T\IJ(T):/1(1_70T[‘1’(7”)—‘1’(1)] +
+\If(1)1n1_“1. (54)
ry —

Ay =(1-y+ay)r+z—1

r
T =T+
1 —
I
I
|
Zmin 24+ Z
Fig.1. The integration domain in the r and z vari-

ables

We finally consider the part of the integral I caused
by the R;, and Ry, components of the deuteron
quadrupole polarization tensor. As stated above, these
components do not contribute to the cross section
treated in the Born approximation. If these terms are
integrated over the whole region of the ¢ variable, then
these integrals are equal to zero as well (because only
one plane remains after such integration). We discuss
this problem in more detail in Appendix B.

We note that the integration limits for the variable z
in formula (50) are given somewhat schematically. This
integral contains two contributions (we neglect here the
contribution of the radiative tail from the quasielastic
scattering). One of them is the so-called inelastic con-
tribution; the integration region for it in the variables r
and z is presented in Fig. 1 by the dashed triangle. The
integration over z for this contribution must be carried

out from
— Mtzh - M
min — V

to zy, where M, is the inelastic threshold
(My, = M + my). The second contribution, re-
lated to the radiative tail of the elastic peak, is given

by the interval

2=0, r_(0) <r<ra(0),

The contribution of the elastic radiative tail to the
total radiative correction §t°¢ (i.e., inclusion of radia-
tive corrections to the elastic ed scattering) can be ob-
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tained from formula (30) by a simple substitution in
the hadronic tensor,

Bi(¢*,2') — —q%é(l — x')Bgel), i=1,2,3,4, (55)

where Bi(d) are expressed in terms of the deuteron elec-
tromagnetic form factors as

B =ng*G3;. BYY = —2¢* x
4Gq

x |G2, +
MT 4y

(Ge +5Gq +nGu)| . (56)

BYY = 2P¢° G (G +2Gq),
Bi = —m?(1+n)G3y, = —¢*/4M?,

Here, G¢, Gu, and Gg are the deuteron charge
monopole, magnetic dipole, and quadrupole form fac-
tors, respectively. These form factors have the norma-
lizations

Ge(0) =1, Gu(0) = (M/mn)ua,

Go(0) = M*Qu,

where m,, is the nucleon mass and pq(Qq) is the
deuteron magnetic (quadrupole) moment, with the val-
ues

pa = 0.857, Qg = 0.2859 fm?.

After substitution of de) in formula (30), we have to
do a trivial integration over the z variable using the
d-function

O(1 —2a") = ayré(z).

4. NUMERICAL ESTIMATE

We calculate the radiative corrections for the kine-
matical conditions of the HERMES experiment [10].
The energy of the positron beam is 27.6 GeV. The
HERMES installation has provided the first direct mea-
surement of the structure function b; in the kinematic
range 0.002 < » < 0.85 and 0.1 GeV2 < Q? < 20 GeV?2.
A cylindrical target cell confines the polarized gas along
the positron beam line, where a longitudinal magnetic
field provides the quantization axis for the nuclear
spin. The corresponding tensor atomic polarization is
T = 0.83 (see Appendix C for the definition of this
quantity).

The analysis of the experimental data was per-
formed in the approximation b3 = by = 0. In the nu-
merical estimate below, we also neglect these functions.

The deuteron spin-dependent structure function by
is extracted from the measured tensor asymmetry A,,
via the relation [10]

3, (1+7H)F

by = —= 2278 /1 1 Dy
YT 27 (14 R)

(57)

where the deuteron spin-independent structure func-
tion F{ is expressed in terms of the ratio

or  F(1+4M%%)Q%)

R = 1
or 2z F{
(see [20]) and
,  4MZ%a?
V= —
Q2

is a kinematic factor. Here, o (o) is the cross section
for the absorption of transversely (longitudinally) po-
larized virtual photons by the unpolarized target. The
Born cross section of the deep inelastic scattering of
the unpolarized electron beam by the unpolarized tar-
get has the form

doly"  4mwa? y
dzdQ% Q%

X [(1 =y —2yn) F' (2, Q) + 2y’ Fi'(x,Q%)].  (58)

The structure functions Ff{2 are related to the struc-
ture functions Wi » (introduced in formula (7)) as

Wy = 2F7, Wy = 4(r/y)F.

The deuteron spin-independent structure function

Fy(1+ F3'/F7)

Fy =
2 2

is calculated using parameterizations for the proton
structure functions FY [21] and the ratio FJ'/FY [22].
The deuteron spin-dependent structure function bs is
also extracted from the experiment using the Callan -
Gross relation

1+ R

by = 20—
2 1‘1+72

by. (59)

According to the preliminary results of the
HERMES experiment, the tensor asymmetry can be
parameterized as [23]

A, =-156-10" (1 - 1.74z — 1.45\/x ). (60)

The influence of the radiative correction on the spin-
dependent part of the Born cross section is shown in
Fig. 2 as a function of the variable z for various Q>
values. Inclusion of the radiative correction shifts the
zero value of by and by to the region of smaller = (see
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Ao, nb/GeV?
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z,1073
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0.015

—0.015

—0.045

—0.075

—0.105 L
0.05 0.14

Il Il
0.23 0.32 0.41

xT

Fig. 2.

Ao, nb/GeV?
7

T T T -

b

—2.7

—4.7

—6.7

—8.7
1.1

9.9
x,1072
Ao,107% nb/GeV?
2.00 .

0.75

—0.50

—1.75

-3.00
0.11

Il Il Il
0.30 0.49 0.68 0.87

T

The spin-dependent part of the cross section calculated for the kinematical conditions of the HERMES experi-

ment [10]. The solid line is the Born approximation, the dotted line corresponds to the inclusion of the radiative corrections.

The Q? values are as follows: ¢ — 0.1 GeV?,

Fig. 2¢ and d). In the range of low 2 (v ~ 1073-1072),
the value of the radiative correction changes from 10 %
to 30 % compared with the Born contribution. This re-
gion is of the utmost importance for by measurements.
According to the theoretical predictions in [11-13], the
structure function by increases very rapidly in this re-
gion, and this fact was confirmed in the HERMES ex-
periment [10].

From our estimate, we conclude that the radiative

b—1GeV?, ¢ — 4 GeV?, d — 10 GeV?

corrections to process (1) are not small, especially
for the low-z region, and they have to be taken into
account in the data analysis.

We wish to thank N. P. Merenkov for useful discus-
sions and comments. We warmly acknowledge M. Con-
talbrigo for useful discussions on the HERA experimen-
tal conditions, as well as for sending us preliminary re-
sults on the A,, parameterization.
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ni

APPENDIX A Al = e (G 1)% = 2a(b+ Ay)],
In this Appendix, we present the formulas for

the coefficients A", B/"", and CJ!", (m,n = I,t,

1 =1,2,3,4, j = 0,1,2) determining the cross section

of the hard-photon emission process (see formula (50)). clh = —T{(f - A1) +af3a(l+7%) —2(b+ Al)]}-,
The coefficients determining the contribution pro- .

portional to the B; structure function are Cll = —6N(c+2a), Cl =- NV’

Bil = %{[(Qa —b)r4+ 14+ A% —ar(2+ 3ar)},

2
Alt = %QZB(26+ A7 — Ay),

Blt = 2”1 TEQB(A —2bn)[(a = br + 1+ Ao,

Ol = _4nyQ% [a(l +12)(y + 2a) — 2b7F — Ay (e + 2a — 2b)],
Ol = —4n, [(y + 4a)(c + 2a) — 2a(F + 2b)] ,

-
Cyi = 8n2V(y + 2a),

n
tt 1
Al ———

Q% >
; 7B[b +(b+ A7, (A.1)

ni Q2
Bit = TVB( 26%r% — 2brAy + A3),
N 2
clt = —% {(1 +7r2)(y? + 4a — 2ab) + (2b + A1) + Aﬂ,
2N

C’H—T{b(1+y+2a—r)+(1+a)A1],

ot = — g[ +2a(2—b)]

The coefficients determining the contribution proportional to the Bs structure function are
n
A = 2 o1+ 1) + (1= r+ry)A | [(F = A1) = 2a(b+ A1),

Bl = —% [b(l 4 r2) = Ag(F — 2a)} {[(2a B+ 1+ Ao —ar(2+ 3ar)},
(7=3y)c® +3a(5—y +r)c+ 3a® (3+r2)—ar[5+3(a+b)2]},

7.2

Wa

==

N
Ol = =3r—[4(a+c) —cy|, Ch = —6N

2
Al = —2n;/?d3 (2b+ A (7 — Ar) {5(1 +r)+(1-r+ ry)Al},

Bl = _ ”;fB (80— 26r)[1+ Ag + (a = B)r][B(L+7) + (a + b= )], (A2)

NV?
Mde

za{za(b— a+r)+ (y+2a)(r—a(l+r*) +r(a+ 5)2)] },

ClL = {Qac[yr—l—(?)b—}—a)(l—l—r) —y— 8a] -c [2a+(2—y)(y+4a)]+
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clt, ——4n2£ 2a(1 —3r 4+ 2F +4¢) + cy(2+b—a)|, CLf = 8ngcT—V(y—|—2a),

Al = %H3Z1 207 + A1 (20 + Ay)],

Bl = —%MZQ [26%12 + As(As — 2br)],

(14 a)2- y)] +c[(3 —2y+a® +b%)(F—2a) +4(ab+b—a’) + 4r(a — 62)]

Oy = {2 fat

—2a[(r—a)2+b2]+(1+2a—2b+a2+62)[r—a(1+7“2)+(a+b)2r]},
Cfgz—%{ [1+7a(1+a)—b(1+b)+(a+b)(a2+b2)]+4a[(a—b)(1—r)+a2+62 ]}
ol = ]\;2 [y +202-1)].

The coefficients determining the contribution proportional to the Bs structure function are

Al = ngg{(a-l-f‘) {221 -|-rA1(2a-|-r—A1)] A [r2(r CAN) 4200+ A1) +r(a+b)(atr— A )}}

Bél - _n3§{2Z2 {1 + (2a = b)r + A2] + 3al, [(b —a)r—1-— A2] },

= -37N(2-y), Oy =0,

N
— [c(6a —16+9y) + 6a(y — 3 — 7')] , cl

ct =
2
Al = —ngj g {2Z1(3b a—r)+ Ay [4r(1 + b% 4 3ab) — 2a(1 +72) + c(ar — 3 + 5b7’)] },
1t cQ% 2 2
BYf =ny 5 {222 {(Bb—a)r— ]+A2[(1+ar)(a—66)—(a+36)(r +Ag)+r(b —1)+b+A2(3r—26)]}, (A.3)
Cclh = ngV{4a [267" — > 40 — a)] - c[3y(2 —y)+8a(l+a+ 2b)] },
M
Cly = _2N7(2 —y)(y +2a), Cl =
A = nayT{ (A1 — (1 +17) + <1—r+ry>A1]+bA1[1+r<b—a+A1>]},
Bl = naay- {(2br = Do) [b(1+7%) + (1 =7 = y)Ao] + bAs[r(b — a +71) A2)]}v
tt VN 2,12 2 _ _ —
Cos = ST 3b—a—(a”+b")(24+a+b)+r[y“+2y(2b—a)+2a(3—a)]+c[y(1+y+3a)—4(1+a)—2ab)
VN
013—_2d2 (2 = y)[y* + 2a(2 - b)], O3t =0.
The coefficients determining the contribution proportional to the By structure function are
2 2
Al =S { - a1+ + Aft4r@a-b)|} B =neS[@ =01+ + As(a+7)]
T T
cNV
Coy = — 5 [1+3(b_a)]7 Ciy = C4y =
It Q% 2 It *Q% 2 -
Al = ny {2b(1+r )+A1[1—r(3b—a)”., Bl = ny =L [—2b(1+r )+A2(r—2b)],
(A.4)

NV
Ol = =5 [1+4ab— (a—b)?|, Clf =l =
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cNV

Al = —xyrc®Aing, B = —T(y +2a), Cfj=0C =0.

= —ayctAang, Cl =
We here use the notation

. s _ N1 _ NV _ N V?

cTeTmn e N T Y V7 M R T
) 5 47
e =0Qs, Ar=0-zy)r—a-b—=z, As=A-y+ayr+z-1, N:W’

Zi=b(1+r)+ A1(1—r+yr), Zy=b1+7r?)+As(1—y—r).

APPENDIX B
In this Appendix, we consider the part of the integral I that is caused by the Rj, and Ry, components of

the deuteron quadrupole polarization tensor (these components do not contribute to the differential cross section
treated in the Born approximation). We define the integral caused by the Rj, component as

>k
I, = | —X.(z.r, n
! /27rw (27 9) B

(B.1)
with 2(2)
a?(q*) 2VN Py Py
Zm(Z,’I“,(P) = Q4B M2 nq < Xln - X2n + Uoin + UllnXl) )
_ Vv 2 1 2y _
Pin = T, cgry(1+r°)By + glc(1 —r(1 —y)) +a(l +r°) —4fr|Bs+
1 1
+ [Qa —fr+ 5(3(1 —r+yr)+ 2ar)]Bg + 50[1 + (a — b)r]B4} , (B.2)
2 2 2 c?
Py, = 1= —zy(1+7r*)(c+ 2ar)B; + E[—ar(a(l +7r%) —4fr) + E(l —y—r)+
+§(4fr — a(1+ 3% + 2yr — 27))]Bs + [r(f — 2ar) — %(Qa +3(r+y—1))]B; — g(a —b+ r)B4} ,
U(][n = 29(031 + TB2) + 27’(2 — y)(BQ + Bg),
4t T
Utin = 7(31 + 232)7
and
c=ztayr, f=1+1-y) g=1+2a/c, ng=50q.

The second integral, caused by the Ry, component, is defined as

tn 2 tn2, T, @ tn; .
where the integrand is

2(¢g? 2VN Py Poyy
Etn(27T799) = = (q ) v < o 2

— Uoin + Uitn ,
Q% dr2(r—1)nq X1 X2 + o B Xl)’

Pun = Q3 { fay(1+12)B; - % a1+ 1) = ar(f + 4y)] Bot

+F[1+r(y — 1)](Bs + Bs) + bre(Bs + By) + 2br(1 — y)Bg},
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Py = —QQB{x;yg(l +72)B; + g[a(l +72) — 4fr|By +

C

+3(r — 1 +y)(Bs + Bs) — be(Bs + By) — 2br(1 — y)Bg}, (B.4)

Uotn = (r — 1) |22y f(By + %BQ) +(2—y)(2a + y)(Bs + B3)|,

Uitn = l{(r —1)(2a + y)G1 — fGy — E[M(Qa-l-y) —27d|(By + Bs3) —

V Mzy

c

2
G, =3B, + %Bz + ——(Bs + 2B; + By),

2zyr

and

d’ = bQ237

\
As before, we calculate the above integrals in the

center-of-mass system of the hard photon and the un-
detected hadron system:

kl—k2—|—p=0.

The electron momenta k; and ks define the xz plane,
the z axis is directed along the deuteron momentum p.
Then the hard-photon momentum k is determined by
the azimuthal () and polar (f) angles, and the phase
space of the hard photon can be written as

Pr @y dy
— = ————— —dzd B.5
Dy 9 y2 n 1a o zar, ( )

where w is the hard-photon energy.

The quantity ng can be written in this coordinate
system as ng = i sin ¢, where i1 is a factor independent
of . Then the integration over the ¢ variable in the
region (0,27) leads to the result

Iy, = I, = 0.

Therefore, the Ry, and Ry, components of the deuteron
quadrupole polarization tensor do not contribute to the
differential cross section of deep inelastic scattering of
the unpolarized electron beam by the tensor polarized
target. This is because only the scattered-electron vari-
ables are measured (this corresponds to the HERA ex-
perimental conditions, for example).

If the hard photon is detected, then I;,, and I;, sur-
vive and the expressions for ¥;, and ¥;, have to be
taken into account.

APPENDIX C

In this Appendix, we give some formulas describing
the polarization state of the deuteron target in differ-
ent cases. In the case of an arbitrary polarization of

f=b—a—z+r(1l—2ay),

Tragle 200 - 2)]02},

C

Gy =—-D; (Bs + 2B3 + By),

2xyr

g=z—-1+r(a—b+zy).

the target, it is described by the general spin-density
matrix (defined by 8 parameters in general), which in
the coordinate representation has the form

1 PuPv {
Puv =73 ( S VE ) Taare SRt Qs 4
Qut/ = Qt/u-, Quu =0, quuu =0,

where p,, is the deuteron 4-momentum, and s, and @,
are the deuteron polarization 4-vector and the deuteron
quadrupole polarization tensor.

In the deuteron rest frame, the above formula is
written as
i

. (C.2)

1 ..
pij = 552’3' + seijrse + Qi 1j =T,y 2.
This spin-density matrix can be written in the helicity
representation using the relation

A (N
PAN :pijez(' )*65' ), A =+, -0,

(C.3)
where egA) are the deuteron spin functions that have
the deuteron spin projection A on the quantization axis
(the z axis). They are

1
e®) = x—(1,+i,0)

V2
The elements of the spin-density matrix in the helicity
representation are related to those in the coordinate
representation by

e® =(0,0,1). (C.4)

3

1 1 1 1
pii:_:F_Sz__sz-, 900:_+Q22’
32 2 3 (C.5)
1 . '
P+— = _E(sz — Qyy) +iQay,
(52— i5,) = =(Quz — Qy2)
= — Sy — 18 - = zz — 1 z)
PH0="5 V2 !
1 . 1 .
p70 = _—(Sm =+ Z.Sy) + (sz + ZQyz)-,

2

Sl

2V/2
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pax = (paa)”.
To obtain these relations, we use that Q.. + Qyy +
+ Q.. =0.

The polarized deuteron target described by the pop-
ulation numbers ny, n_, and ng is often used in spin
experiments. Here, ny, n_, and ng are the fractions
of atoms with the respective nuclear spin projection on
the quantization axis m = +1, m = =1, and m = 0. If
the spin-density matrix is normalized to 1, i.e.,

Spp=1,
then we have
ng +n_ +ng=1.

Thus, the polarization state of the deuteron target is
defined in this case by two parameters: the so-called V'
(vector) and T (tensor) polarizations,

V=ny—n_, T=1-3n. (C.6)
Using the definitions of the quantities ny o,
ni = pijegi)*eﬁi), no = pijego)*eﬁo), (C.7)

we have the following relation between V and 7' and the
parameters of the spin-density matrix in the coordinate
representation (in the case where the quantization axis
is directed along the z axis):

1 1 1 1
ng = 3 +Q::y, ni= 3 + §Sz - §Q227 (C.8)
or
T=-3Q.., V=-s.. (09)
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