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RADIATIVE CORRECTIONS TO DEEP INELASTICELECTRON�DEUTERON SCATTERING.THE CASE OF TENSOR-POLARIZED DEUTERONG. I. Gakh, O. N. Shekhovtsova *National Siene Center �Kharkov Institute of Physis and Tehnology�61108, Kharkov, UkraineSubmitted 6 April 2004Model-independent radiative orretions to deep inelasti sattering of an unpolarized eletron beam o� thetensor-polarized deuteron target are onsidered. The ontribution to the radiative orretions due to the hardphoton emission from the elasti eletron�deuteron sattering (the so-alled elasti radiative tail) is also inves-tigated. The alulation is based on the ovariant parameterization of the deuteron quadrupole polarizationtensor. Radiative orretions to the polarization observables are estimated numerially for the kinematialonditions of the urrent experiment at HERA.PACS: 12.20.-m, 13.40.-f, 13.60.-Hb, 13.88.+e1. INTRODUCTIONThe �avor struture of nuleons is desribed interms of parton distribution funtions. Most of theinformation on these funtions has up to now omefrom inlusive deep inelasti sattering proesses: ex-periments where only the sattered lepton is deteted.Investigation of the nuleon spin struture involves newtypes of reations. For example, the HERMES ex-periment was spei�ally designed to perform auratemeasurements of semi-inlusive reations, where in ad-dition to the sattered lepton, some of the produedhadrons are also deteted [1℄.The polarized nulei of deuterium and helium-3are used to extrat information on the neutron spin-dependent struture funtion g1(x) [2℄. In analyzingthe experimental data on inlusive spin asymmetriesfor deuterium, a small e�et due to a possible tensorpolarization in this spin-one target must be taken intoaount in order to dedue the spin-dependent stru-ture funtion gd1 . This is onneted with the preseneof additional tensor-polarized struture funtions in adeuteron target [1℄. So far, the spin-struture stud-ies have been foused on the spin-1/2 nuleon. Di�er-ent spin physis, suh as the tensor struture in the*E-mail: shekhovtsova�kipt.kharkov.ua

deuteron, exists for higher-spin hadrons. The measure-ment of these additional spin-dependent struture fun-tions provides important information about nonnule-oni omponents in spin-one nulei and tensor stru-tures on the quark�parton level [3℄. A general formal-ism of the deep inelasti eletron�deuteron satteringwas disussed in Ref. [4℄, where new four tensor stru-ture funtions bi(x), i = 1; : : : ; 4, were introdued.They an be measured using a tensor-polarized tar-get and an unpolarized eletron beam. Among thesenew struture funtions, only one, b1, is the leadingtwist in QCD [4℄, and it was found that this funtion issmall for a weakly oupled system of nuleons (for ex-ample, deuteron). Therefore, the measurement of b1 fordeuteron an give information about its possible exotiomponents.From the theoretial standpoint, the spin-dependent struture funtion b1(x) was investigated ina number of papers. The available �xed targets withJ � 1 are only nulei (deuteron is the most ommonlyused nuleus). If the nuleons in the deuteron are inthe S state, then b1(x) � 0: For nuleons in the Dstate, b1(x) 6= 0 in general [4℄. It was found [5℄ that inthe quark�parton model, the sum ruleZ dx b1(x) = 0is generally true if the sea of quarks and antiquarks1034



ÆÝÒÔ, òîì 126, âûï. 5 (11), 2004 Radiative orretions to deep inelasti : : :is unpolarized (and it was shown how this sumrule is modi�ed in the presene of a polarized sea).Mankiewiz [6℄ has studied b1(x) for the � meson andnotied empirially thatZ dx b1(x) = 0in his model. It was shown in Ref. [7℄ that multiple sat-tering terms at low x an still lead to b1 6= 0 even in thease where only the S-wave omponent is present. Var-ious twist-two struture funtions of deuteron (in par-tiular, b1) have been alulated in a version of the on-volution model that inorporates relativisti and bind-ing energy orretions [8℄. Simple parameterizationsof these struture funtions are given in terms of fewdeuteron wave funtion parameters and the free nu-leon struture funtions. The tensor struture fun-tions were disussed in Ref. [9℄ in the ase of leptonsattering and in hadron reations suh as the polar-ized proton � deuteron Drell �Yan proess.As is known, the HERMES experiment has beendesigned to measure the nuleon spin-dependent stru-ture funtions from deep inelasti sattering of longi-tudinally polarized positrons and eletrons from polar-ized gaseous targets (H, D, 3He). In 2000, HERMESolleted a data set with a tensor-polarized deuteriumtarget for the purpose of making the �rst measurementof the tensor struture funtion b1(x): The prelimi-nary results on this struture funtion are presentedin Ref. [10℄ for the kinemati range 0:002 < x < 0:85and 0:1 GeV2 < Q2 < 20 GeV2: The preliminary resultfor the tensor asymmetry is su�iently small to pro-due an e�et of more than 1% on the measurement ofgd1 : The dependene of b1 on the x variable is in qualita-tive agreement with the expetations based on oherentdouble-sattering models [11�13℄ and favors a sizeablevalue of b1 in the low-x region. This suggests a signi�-ant tensor polarization of the sea quarks, violating theClose �Kumano sum rule [5℄.The radiative orretions to deep inelasti satter-ing of unpolarized and longitudinally polarized eletronbeams on a polarized deuteron target were onsideredin Ref. [14℄ in a partiular ase of the deuteron polariza-tion (whih an be obtained from the general ovariantspin-density matrix [15℄ when spin funtions are eigen-vetors of the spin projetion operator). The leading-log model-independent radiative orretions in deep in-elasti sattering of an unpolarized eletron beam o�the tensor-polarized deuteron target were onsidered inRef. [16℄. The alulation is based on the ovariant pa-rameterization of the deuteron quadrupole polarizationtensor and use a Drell �Yan-like representation.

Current experiments at modern aeleratorsreahed a new level of preision, and this irumstanerequires a new approah to data analysis and inlusionof all possible systemati unertainties. One of theimportant soures of suh unertainties is the eletro-magneti radiative e�ets aused by physial proessesouring in higher orders of the perturbation theorywith respet to the eletromagneti interation. In thepresent paper, we give a ovariant desription of thedeep inelasti sattering of an unpolarized eletronbeam o� the tensor-polarized deuteron target (thepolarization state of the target is desribed by thespin-density matrix of the general form) with theradiative orretionse�(k1) + d(p)! e�(k2) +X(px) (1)taken into aount.The orresponding approah is based on the ovari-ant parameterization of the deuteron quadrupole po-larization tensor in terms of the 4-momenta of the par-tiles in proess (1) [16℄. We also performed numerialalulations of the radiative orretions for the kine-matial onditions of the experiment [10℄. The ontri-bution of the radiative tail from the elasti ed satteringis onsidered separately.2. BORN APPROXIMATIONThe standard set of variables used for the desrip-tion of deep inelasti sattering proesses isx = �q22pq ; y = 2pqV ;V = 2pk1; q2 = �V xy; q = k1 � k2; (2)where q is the 4-momentum of the intermediate heavyphoton that probes the deuteron struture. We �rstde�ne the deep inelasti sattering ross setion of pro-ess (1) in terms of the ontration of the leptoni L��and hadroniW�� tensors (in the Born approximation,we an neglet the eletron mass)d�dxdQ2B = ��2V Q4B yxL��W�� : (3)We note that only in the Born approximation (withoutaounting for radiative orretions),q = k1 � k2; Q2B = �q2 = 2k1k2:The Born leptoni tensor (in the unpolarizedase) is LB�� = q2g�� + 2(k1�k2� + k1�k2�): (4)1035



G. I. Gakh, O. N. Shekhovtsova ÆÝÒÔ, òîì 126, âûï. 5 (11), 2004The hadroni tensor is de�ned asW�� = (2�)3XX Æ(4)(k1 + p� k2 � px)J�J�� ;where J� is the eletromagneti urrent for the� + d ! X transition (� is the virtual photon).The sum means summation over the �nal states andthe bar means averaging over the polarizations of thetarget and summation over the polarizations of the�nal partiles. To write the hadron tensor in terms ofthe struture funtions, we �rst de�ne the deuteronspin-density matrix (we do not onsider the e�etaused by the vetor polarization of the deuteron inwhat follows)��� = �13 �g���p�p�M2 �� i2M "����s�p�+Q�� ;Q�� = Q��; Q�� = 0; p�Q�� = 0; (5)where s� and Q�� are the target deuteron polariza-tion 4-vetor and the deuteron quadrupole polariza-tion tensor. The orresponding hadron tensor hasboth the polarization-independent and polarization-dependent parts and in the general ase an be writtenas W�� = W��(0) +W��(V ) +W��(T ); (6)where W�� (0) orresponds to the unpolarized ase andW��(V )(W�� (T )) orresponds to the ase of the ve-tor (tensor) polarization of the deuteron target. TheW��(0) term has the formW��(0) = �W1~g�� + W2M2 ~p�~p� ;~g�� = g�� � q�q�q2 ; ~p� = p� � pqq2 q�; (7)where M is the deuteron mass and W1;2 are the unpo-larized struture funtions depending on two indepen-dent variables x and q2: The part of the hadron tensorthat depends on the quadrupole polarization tensor anbe represented asW��(T ) = M2(pq)2 �Q��q�q� �B1~g�� + B2pq ~p�~p��++ B3q�(~p�Q~�� + ~p�Q~��) + pqB4 eQ��� : (8)Here, Bi (i = 1; 2; 3; 4) are the spin-dependent stru-ture funtions (aused by the tensor polarization of thetarget). They are also funtions of the two variables q2and x. Beause the hadron tensorW��(T ) is symmetriunder �$ �, measuring these new struture funtionsdoes not require the eletron beam to be polarized.

We used the following notation in formula (8):Q�~� = Q�� � q�q�q2 Q��; Q�~�q� = 0;eQ�� = Q��+q�q�q4 Q��q�q��q�q�q2 Q���� q�q�q2 Q��; eQ��q� = 0: (9)We note that the deuteron spin-dependent struturefuntions Bi are also related to the struture funtionsbi introdued in Ref. [4℄ asB1 = �b1; B2 = b23 + b3 + b4;B3 = b26 � b42 ; B4 = b23 � b3: (10)In alulating radiative orretions, it is onvenientto parameterize the polarization state of the deuterontarget in terms of the 4-momenta of the partiles parti-ipating in the reation under onsideration. Therefore,�rst, we have to �nd the set of the axes and write themin a ovariant form in terms of the 4-momenta. If wehoose, in the laboratory system of reation (1), thelongitudinal diretion l along the eletron beam andthe transverse one t in the plane (k1;k2) and perpen-diular to l, thenS(l)� = 2�k1� � p�M ;S(t)� = k2� � (1� y � 2xy�)k1� � xyp�d ;S(n)� = 2"����p�k1�k2�V d ; (11)d =pV xyb; b = 1� y � xy�; � = M2=V:We hose one of the axes along the diretion l beausein the experiment on measuring the b1 struture fun-tion [10℄, the diretion of the magneti �eld used forpolarization of the deuteron target is along the positronbeam line. The diretion of the magneti �eld providesthe quantization axis for the nulear spin in the target.It an be veri�ed that the set of the 4-vetors S(l;t;n)�has the propertiesS(�)� S(�)� = �Æ��; S(�)� p� = 0; �; � = l; t; n; (12)and that in the rest frame of the deuteron (the labora-tory system),S(l)� = (0; l); S(t)� = (0; t); S(n)� = (0;n);1036



ÆÝÒÔ, òîì 126, âûï. 5 (11), 2004 Radiative orretions to deep inelasti : : :l = n1; t = n2 � (n1 � n2)n1p1� (n1 � n2)2 ;n = n1 � n2p1� (n1 � n2)2 ; n1;2 = k1;2jk1;2j : (13)Adding one more 4-vetor S(0)� = p�=M to set (11),we obtain a omplete set of orthogonal 4-vetors withthe propertiesS(m)� S(m)� = g�� ;S(m)� S(n)� = gmn; m; n = 0; l; t; n: (14)This allows us to express the deuteron quadrupole po-larization tensor, in the general ase, asQ�� = S(m)� S(n)� Rmn � S(�)� S(�)� R�� ;R�� = R��; R�� = 0; (15)beause the omponents R00, R0�, and R�0 are identi-ally equal to zero due to the ondition Q��p� = 0:In the Born approximation, the omponents Rlnand Rtn do not ontribute to the ross setion (be-ause the 4-momenta q� and k1� are orthogonal to the4-vetor S(n)� ) and expansion (15) an be rewritten inthe standard formQ�� = �S(l)� S(l)� � 12S(t)� S(t)� �Rll ++12S(t)� S(t)� �Rtt�Rnn�+�S(l)� S(t)� +S(t)� S(l)� �Rlt; (16)where we took into aount thatRll +Rtt +Rnn = 0:In what follows, we onsider the deep inelastisattering of the unpolarized eletron beam from thetensor-polarized deuteron target. Thus, we have to al-ulate only the ontration of the Born leptoni tensorLB�� and the hadroni tensor W�� (T ) aused by thetensor polarization of the target,SB(T ) = LB��W�� (T ) == 8�y �� 1y2 [xy2B1 + (a� 1 + y)B2 + yB3℄Q0++1y [(2� y)B3 � yB4℄Q1 +B4Q11� ; (17)

where a = xy�; Q0 = Q��q�q�;Q1 = Q��q�k1� ; Q11 = Q��k1�k1� :Using the formulas for the vetors S(�)� , we an al-ulate the ontrations. After simple alulation, wehaved�B(T )dxdQ2B == 2��2xQ4B �SllRll + Stt(Rtt �Rnn) + SltRlt�; (18)withSll = �2xb��y(1+2x�)2�G+2b(1+3x�)B3+(b�a)B4;Slt = 2sxb�y �� �2(y + 2a)G+ (2� y � 4b)B3 + yB4�; (19)Stt = �2xb�(G+B3); G = xyB1 � byB2:Therefore, in the general ase, the ross setionof deep inelasti sattering of an unpolarized eletronbeam from a tensor-polarized target is determined, inthe Born approximation, by the omponents of thequadrupole polarization tensor Rll, Rlt, and the om-bination (Rtt �Rnn):We now onsider just one more, ommonly used,hoie of the oordinate axes: omponents of thedeuteron polarization tensor are de�ned in the oor-dinate system with the axes along the diretions L, T,and N in the rest frame of the deuteron, whereL = k1�k2jk1�k2j ; T = n1�(n1 � L)Lp1�(n1 � L)2 ; N = n: (20)The orresponding ovariant form of set (20) is given byS(L)� = 2�(k1 � k2)� � yp�Mpyh ;S(T )� = (1 + 2x�)k2� � (1� y � 2x�)k1� � x(2� y)p�pV xbh ; (21)
1037



G. I. Gakh, O. N. Shekhovtsova ÆÝÒÔ, òîì 126, âûï. 5 (11), 2004S(N)� = S(n)� ; h = y + 4x�;and the expansion of the deuteron polarization tensoris de�ned in full analogy with (16),Q�� = �S(L)� S(L)� � 12S(T )� S(T )� �RLL ++ 12S(T )� S(T )� �RTT �RNN�++ �S(L)� S(T )� + S(T )� S(L)� �RLT : (22)These two sets of orthogonal 4-vetors are onnetedby an orthogonal matrix that desribes a rotation inthe plane perpendiular to the diretion n = N,S(L)� = os �S(l)� + sin �S(t)� ;S(T )� = � sin �S(l)� + os �S(t)� ; (23)os � = y(1 + 2x�)pyh ; sin � = �2rxb�h :In this set of axes, the part of the di�erential rosssetion that depends on the tensor polarization an bewritten asd�B(T )dxdQ2B = 2��2xQ4B �� �SLLRLL + STT (RTT �RNN ) + SLTRLT �; (24)SLL = �hG+2bB3+ B4h [(1�y)(y�2x�)�2a(y+x�)℄;STT = 2xb�h B4;SLT = 2sxb�y (2� y)�B3 + yhB4� : (25)3. RADIATIVE CORRECTIONSIn this paper, we onsider only the QED radia-tive orretions to the deep inelasti sattering proess(1). We on�ne ourselves to alulation of the so-alledmodel-independent radiative orretions, orrespond-ing to photons radiated from a lepton line with thevauum polarization taken into aount. The reason isthat it gives the leading ontribution to radiative or-retions due to the smallness of the eletron mass, andan be alulated without any additional assumptions.Nevertheless, these radiative orretions depend on theshape of the deuteron struture funtions (both spin-independent and spin-dependent) through their depen-dene on the x and Q2 variables.

There exist two ontributions to radiative orre-tions when we take the orretions of the order � intoaount. The �rst one is aused by virtual and softphoton emission that annot a�et the kinematis ofproess (1). The seond one arises due to the radiationof a hard photon,e�(k1) + d(p)! e�(k2) + (k) +X(px): (26)The leptoni tensor orresponding to the hard-photon radiation is well-known [17, 18℄. For an un-polarized eletron beam, it an be written asL�� = A0eg�� +A1ek1�ek1� +A2ek2�ek2� ; (27)whereA0 = � (q2 + �1)2 + (q2 � �2)2�1�2 � 2m2q2� 1�21 + 1�22�;A1 = �4� q2�1�2 + 2m2�22 �;A2 = �4� q2�1�2 + 2m2�21 �;~ki� = ki� � qkiq2 q�; i = 1; 2;with �1;2 = 2kk1;2;m is the eletron mass,q2 = �2 � �1 �Q2B ;and q = k1 � k2 � kin this setion. The hadroni tensor in this ase hasthe same form as the hadroni tensor in the Born ap-proximation, but the momentum transfer q di�ers fromthe Born one and the struture funtions Bi depend onthe new momentum q. Here and in what follows, weneglet the terms vanishing as m! 0:We onsider the hard photon (with the energy! > �", where � � 1) emission proess using theapproah in [19℄, where it was applied to the proess ofdeep inelasti sattering on an unpolarized target. Weintrodue the variables suitable for this proess,z = M2x �M2V = q2 + 2pqV ; r = � q2Q2B ;x0 = �q22pq = xyrxyr + z ; �1;2 = 2kk1;2;1038



ÆÝÒÔ, òîì 126, âûï. 5 (11), 2004 Radiative orretions to deep inelasti : : :where Mx is the invariant mass of the hadron systemprodued in sattering of the photon (with the virtual-ity q2) by the target.We note the physial meaning of the z variable: itshows the degree of deviation from the elasti proess(ed ! ed). Therefore, the value z = 0 orrespondsto the elasti ed sattering threshold and the valuez = "d="1 (where "d is the deuteron bound energy and"1 is the eletron beam energy in the laboratory sys-tem) orresponds to the ed ! enp reation threshold(quasielasti ed sattering).The ontration of the leptoni and hadroni ten-sors an be represented asS(T ) = AA0 +BA1 + CA2; (28)A = NQ0 �3B1 + 2� B2 + 2xyr (B2 + 2B3 +B4)� ;B = N �Q0 � V2B2 � V Q2B + �12rQ2B (B2 +B3)++ (Q2B + �1)24rQ2B �B1 + V 2rQ2B (B2 + 2B3 +B4)��++V Q1 �B3 � Q2B + �12rQ2B (B3 +B4)�+ V2 Q11B4� ;C = N �Q0 �V2 (1� y)2 B2++ V Q2B � �22rQ2B (1� y)(B2 +B3) + (Q2B � �2)24rQ2B �� �B1 + V 2rQ2B (B2 + 2B3 +B4)��++ V Q2 �B3(1� y) + Q2B � �22rQ2B (B3 +B4)�++ V2 Q22B4� ;where N = 4�=V 2;  = z + xyr:The quantities Q0; Q1; Q2; Q11, and Q22 are theontrations of the deuteron quadrupole polarizationtensor and 4-momenta. They an be expressed in termsof the salar produts of the 4-momenta of the partilespartiipating in the reation and the set of 4-vetorsS(l;t;n)� . Therefore, these ontrations are given byQ0 = Q��q�q� = �(lq)2 � 12(tq)2 � 12(nq)2��� Rll + 2lqtqRlt + 2nqlqRln ++ 2nqtqRtn + 12[(tq)2 � (nq)2℄(Rtt �Rnn);

Q1 = Q��q�k1� = �lk1lq � 12 tk1tq�Rll ++ (lk1tq + tk1lq)Rlt + lk1nqRln ++ tk1nqRtn + 12tk1tq(Rtt �Rnn); (29)Q11 = Q��k1�k1� = �(lk1)2 � 12(tk1)2�Rll ++ 2lk1tk1Rlt + 12(tk1)2(Rtt �Rnn);Q2 = Q1(k1 ! k2); Q22 = Q11(k1 ! k2);ia = S(i)� a�; i = l; t; n;where we used the onditionsRll +Rtt +Rnn = 0; nk1 = nk2 = 0:For the set of the 4-vetors S(l;t;n)� , we also havetk1 = 0:It is onvenient to separate the poles in the term(�1�2)�1 using the relation1�1�2 = 1Q2B 11� r � 1�1 � 1�2� :Then the radiative orretion (aused by the hard-photon emission) to the di�erential ross setion of deepinelasti sattering of an unpolarized eletron beam bythe tensor polarized target has the formd�dxdQ2B = �yV x Z d3k2�!�(z; r); (30)where ! is the energy of the hard photon and�(z; r) = �2(q2)Q4B �R0(z; r) +� 1�1 � 1�2�R1(z; r)++ m2�21 R1m(z; r) + m2�22 R2m(z; r)� ; (31)R0 = � 2r2A;R1 = 1r � 1 ��1 + 1r2�Q2BA� 4r (B + C)� ;R1m = 2�Q2Br A� 4r2C� ;R2m = 2�Q2Br A� 4r2B� :It is onvenient to write the integral in Eq. (30) asI = Z d3k2�!�(z; r) = I1m + I2m + IR; (32)1039



G. I. Gakh, O. N. Shekhovtsova ÆÝÒÔ, òîì 126, âûï. 5 (11), 2004where we separate the ontributions proportionalto m2, I1m = Z d3k2�! �2(q2)Q4B m2�21 R1m(z; r);I2m = Z d3k2�! �2(q2)Q4B m2�22 R2m(z; r): (33)We �rst onsider the integrals Iim, i = 1; 2: Thenumerator of the integrands in I1m(I2m) is then alu-lated in the approximation �1 = 0 (�2 = 0) [19℄. Theintegration measure over the hard-photon phase spaeis written asd3k2�! = dzz+ � z !2d
k2� ; z+ = y(1� x): (34)Using the invariane of !2d
k, we an integrateover the angular variables d
k in the most suitable o-ordinate system, namely, in the oordinate frame wherek1 � k2 + p = 0(the enter-of-mass system of the sattered eletron andthe produed hadroni system). We obtainZ !2d
k2� m2�21;2 = 12 :3.1. Integral I1mWe alulate the integrand in the approximationwhere �1 = 0 (exept in the denominator). This ap-proximation orresponds to the emission of a ollinearphoton along the initial-eletron momentum. In thisase, the variables take the valuesr1 = 1� y + z1� xy ; q21 = �r1Q2B; x01 = xyr1z + xyr1 :After integrating over the hard-photon angular vari-ables, the integral I1m an be represented asI1m = 1Q4B zmZ0 dzz+ � z �21N1�1(z); (35)�1(z) = �1llRll +�1ltRlt +�1tt(Rtt �Rnn);�1tt = bQ2Br1 (Gt +B3t);�1lt = �Vr1rxyb� �(y�1+r1)B4t+(a�3b+r1)B3t++ 2(a� b+ r1)Gt�;

�1ll = V2�r1 �(a� b)(y � 1 + r1)B4t ++ 2b(b� 2a� r1)B3t � [2ab� (a� b+ r1)2℄Gt	;Gt = xyB1t � by � 1 + r1B2t; �1 = �(q21);N1 = 4�(z + xyr1)2 ;zm = z+ � �; � = 2�"p(� + z+)=V ;Bit = Bi(q21 ; x01); i = 1�4:It is onvenient to expliitly extrat the ontributionontaining the infrared divergene. For this, we add tothe numerator of the integrand and subtrat from it itsvalue at z = z+: At this value, we haver1 = 1; �1 = �; N1 = 4�=y2; x01 = x:The integral I1m an thus be written asI1m = 1Q4B z+Z0 dzz+ � z �� ��21N1�1(z)� �2 4�y2�1(z+)�++ V x�y ln �z+ d�Bdx dQ2B : (36)3.2. Integral I2mCalulation of the integrand is performed in the ap-proximation �2 = 0, whih orresponds to the emissionof a ollinear photon along the �nal-eletron momen-tum. In this ase, the variables take the valuesr2 = 1� z1� z+ ; q22 = �r2Q2B ; x02 = xyr21� r2(1� y) :After integrating over the hard-photon angular vari-ables, the integral I2m is represented asI2m = 1Q4B zmZ0 dzz+ � z �22N2�2(z); (37)�2(z) = �2llRll +�2ltRlt +�2tt(Rtt �Rnn);�2tt = bQ2B(r2Gs +B3s);�2lt = �Vrxyb� ��y � 1 + 1r2�B4s++ �a� 3b+ 1r2�B3s + 2[1 + (a� b)r2℄Gs� ;1040



ÆÝÒÔ, òîì 126, âûï. 5 (11), 2004 Radiative orretions to deep inelasti : : :�2ll = V2�r2�(a� b)[1� r2(1� y)℄B4s ��2b[1+(2a�b)r2℄B3s�[2abr22�(1+ar2�br2)2℄Gs	;Gs = xyB1s � b1� r2(1� y)B2s; �2 = �(q22);N2 = 4�(z + xyr2)2 ; Bis = Bi(q22 ; x02); i = 1; 2; 3; 4:The ontribution ontaining the infrared divergene isextrated expliitly in a similar manner as for the I1mintegral. At the value z = z+, we haver2 = 1; �2 = �; N2 = 4�=y2; x02 = x:The integral I2m is then rewritten asI2m = 1Q4B z+Z0 dzz+ � z �� ��22N2�2(z)� �2 4�y2�2(z+)�++ V x�y ln �z+ d�Bdx dQ2B : (38)The radiative orretions due to the virtual photonexhange and real soft-photon emission (with energy! < �") an be related to the Born ross setion as1)d�(S+V )dx dQ2B = ÆSV d�Bdx dQ2B ; (39)where the fator ÆSV is [19℄ÆSV = �� �(L� 1) ln (�")2"1"2 + 32L�� 12 ln2 "1"2��26 �2�f �os2 �2�� ; L = ln Q2Bm2 ; (40)"1("2) is the initial (�nal) eletron energy, and � is theeletron sattering angle in the oordinate frame wherek1 � k2 + p = 0:The funtion f is de�ned asf(x) = xZ0 dtt ln(1� t):1) We note that the vauum polarization e�ets are inludedin the Born ross setion through the dependene of the ouplingonstant � on the virtual-photon momentum.

The quantities "1, "2, and � an be expressed in termsof the invariant variables as"1 = V (1� xy)2pV (� + z+) ; "2 = V (1� z+)2pV (� + z+) ;os2 �2 = 1� y � xy�(1� xy)(1� z+) : (41)The radiative orretion ÆSV is �nally rewritten asÆSV = �2� ��1� �23 � 2f � 1� y � xy�(1� xy)(1� z+)��� ln2 1� xy1� z+ + (L� 1)�� �3 + 2 ln �2(1� xy)(1� z+)�� : (42)3.3. Integral IRTo alulate this integral, we use the results inRef. [19℄. In addition to the integrals alulated in thatpaper, we need the integralsZ d3k2�!F (z; r)�1; Z d3k2�!F (z; r)�21: (43)To alulate these integrals, we write the hard-photonphase spae measure asd3k2�! = Q2B2py2 + 4a d'2� dz dr: (44)Beause the funtion F is independent of the ' variablein our ase, we an integrate over this variable. We dothis in the oordinate frame spei�ed above. The re-sults arei1 = Z d'2� �1 = Q2By2 + 4a �� h(2� y)(y � )� (1� r)(y + 2a)i; (45)i2 = Z d'2� �21 = 12 �3i21 � Q4B(1� xy)2y2 + 4a (r � r1)2� :After simple alulations, the integral IR is (with theontributions proportional to the Rln and Rtn ompo-nents omitted)8 ÆÝÒÔ, âûï. 5 (11) 1041



G. I. Gakh, O. N. Shekhovtsova ÆÝÒÔ, òîì 126, âûï. 5 (11), 2004IR = 12Q4B �� 4Xi=1Xm;nRmn8<: L11� xy zmZ0 dz1� r1Gmni (z; r1)++ L21� z+ zmZ0 dz1� r2 ~Gmni (z; r2) ++ 11� xy zmZ0 dz r+Zr� drjr � r1j �Gmni (z; r)1� r � Gmni (z; r1)1� r1 �++ 11� z+ zmZ0 dz r+Zr� drjr � r2j " ~Gmni (z; r)1� r � ~Gmni (z; r2)1� r2 #++ Q2Bpy2 + 4a zmZ0 dz r+Zr� dr�2r2 �� Bi [Cmn0i (z; r) + i1Cmn1i (z; r) + i2Cmn2i (z; r)℄g ; (46)whereL1 = ln Q2B(1�xy)2m2xy(�+z+) ; L2 = ln Q2B(1�z+)2m2xy(�+z+) ; (47)r�(z) = 12xy(� + z+) �� h2xy(� + z) + (z+ � z)(y �py2 + 4a)i;Gmni (z; r) = �2r2 (1� r)BiAmni (z; r);~Gmni (z; r) = �2r2 (1� r)BiBmni (z; r);withm;n = l; t; n:We note that the struture funtionsBi are funtions of two independent variablesq2 = �rQ2B ; x0 = xyrz + xyr :The expressions for the oe�ients Amni ; Bmni ;Cmnki ; k = 0; 1; 2, are given in Appendix A. The ontri-butions proportional to the Rln and Rtn omponentsare onsidered in more detail in Appendix B.We now brie�y disuss the singularities in the IRintegral. The value r = 1 orresponds to the realsoft-photon emission (there is an infrared divergeneat this point), and the value r = r1(r2) orrespondsto the emission of a ollinear photon along the initial-(�nal-) eletron momentum (the so-alled ollinear di-vergene). The singularity at the point z = z+ is theinfrared one. The divergene at r = 1 is unphysial.It arises during the integration proedure due to theseparation of the poles in the expression (�1�2)�1: It

is neessary to expliitly extrat the ollinear and in-frared divergenes in the above formula.The integrand in the above expression an be writ-ten in the form that does not expliitly ontain theinfrared divergenes if we add term (39) to it. For this,we use the transformationsG(z; ri)1� ri ln 'i(x; y)xy(� + z+) + r+Zr� drjr � rij �� �G(z; r)1� r � G(z; ri)1� ri � = P r+Zr� dr(1�r)jr�rij �� hG(z; r)�G(z; ri)i; i = 1; 2; (48)where'1(x; y) = (1� xy)2; '2(x; y) = (1� z+)2;and the symbol P denotes the prinipal value of theintegral. The total radiative orretion (whih is thesum of the ontribution due to the hard-photon emis-sion and the ontribution due to the real soft-photonemission and virtual-photon ontribution) to the partof the di�erential ross setion aused by the tensorpolarization of the target is written asd�dx dQ2B = d�Bdx dQ2B + Ætot; (49)whereÆtot = �2� �3L+ 2(L� 1) ln z2+(1� xy)(1� z+)�� ln2 1� xy1� z+ � 4� �23 �� 2f � b(1� xy)(1� z+)�� d�Bdx dQ2B + �yxQ4B �� z+Z0 dzz+ � z ��21N1�1(z) + �22N2�2(z)�� �2 8�V y2�1(z+)�+ �y2xV Q4B �� 4Xi=1Xm;nRmn8<:L z+Z0 dzz+�z hGmni (z; r1)�Gmni (z+; 1)�� ~Gmni (z; r2) + ~Gmni (z+; 1)i+ Q2Bpy2 + 4a �� z+Z0 dz r+Zr� dr�2r2 BihCmn0i (z; r) + i1Cmn1i (z; r) ++ i2Cmn2i (z; r)i+Rmni 9=; : (50)1042



ÆÝÒÔ, òîì 126, âûï. 5 (11), 2004 Radiative orretions to deep inelasti : : :The term Rmni has di�erent forms depending on theintegration region of the variable r: In the regionsr� � r � r1 and r2 � r � r+ (where r 6= 1, andtherefore the divergene at the point r = 1 is absent),the funtion Rmni has the formRmni = 11� xy z+Z0 dz r+Zr� dr(1� r)jr � r1j �� hGmni (z; r)�Gmni (z; r1)i++ 11� z+ z+Z0 dz r+Zr� dr(1� r)jr � r2j �� h ~Gmni (z; r)� ~Gmni (z; r2)i: (51)In the region r1 < r < r2, we haveRmni = z+Z0 dz ln 1� r�r+ � 1 ���gmni1 (z; 1)� fmni1 (z; 1) + 1z+ � z �� hgmni0 (z; 1)� gmni0 (z; r1) ++ fmni0 (z; 1)� fmni0 (z; r2)i�++ z+Z0 dz r+Zr� dr1� r �gmni1 (z; r)� gmni1 (z; 1)�� fmni1 (z; r) + fmni1 (z; 1) ++ 11� xy hFmn(z; r)� Fmn(z; 1)i� 11� z+ �� h ~Fmn(z; r)� ~Fmn(z; 1)i� ; (52)where we introdue the notationGmni (z; r) = gmni0 (z; r) + �1gmni1 (z; r);~Gmni (z; r) = fmni0 (z; r) + �2fmni1 (z; r);Fmn(z; r) = 1r � r1 hgmni0 (z; r)� gmni0 (z; r1)i;~Fmn(z; r) = 1r � r2 hfmni0 (z; r)� fmni0 (z; r2)i; (53)�1 = (1�xy)r�a�b�z; �2 = (1�y+xy)r+z�1:In obtaining the above formula, we use the relationP r+Zr� dr1� r	(r) = r+Zr� dr1� r h	(r)�	(1)i++	(1) ln 1� r�r+ � 1 : (54)
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Fig. 1. The integration domain in the r and z vari-ablesWe �nally onsider the part of the integral I ausedby the Rln and Rtn omponents of the deuteronquadrupole polarization tensor. As stated above, theseomponents do not ontribute to the ross setiontreated in the Born approximation. If these terms areintegrated over the whole region of the ' variable, thenthese integrals are equal to zero as well (beause onlyone plane remains after suh integration). We disussthis problem in more detail in Appendix B.We note that the integration limits for the variable zin formula (50) are given somewhat shematially. Thisintegral ontains two ontributions (we neglet here theontribution of the radiative tail from the quasielastisattering). One of them is the so-alled inelasti on-tribution; the integration region for it in the variables rand z is presented in Fig. 1 by the dashed triangle. Theintegration over z for this ontribution must be arriedout from zmin = M2th �MVto z+; where Mth is the inelasti threshold(Mth = M + m�). The seond ontribution, re-lated to the radiative tail of the elasti peak, is givenby the intervalz = 0; r�(0) � r � r+(0):The ontribution of the elasti radiative tail to thetotal radiative orretion Ætot (i.e., inlusion of radia-tive orretions to the elasti ed sattering) an be ob-1043 8*



G. I. Gakh, O. N. Shekhovtsova ÆÝÒÔ, òîì 126, âûï. 5 (11), 2004tained from formula (30) by a simple substitution inthe hadroni tensor,Bi(q2; x0)! � 1q2 Æ(1� x0)B(el)i ; i = 1; 2; 3; 4; (55)where B(el)i are expressed in terms of the deuteron ele-tromagneti form fators asB(el)1 = �q2G2M ; B(el)2 = �2�2q2 �� �G2M + 4GQ1 + � (GC + �3GQ + �GM )� ; (56)B(el)3 = 2�2q2GM (GM + 2GQ);B(el)4 = �2�q2(1 + �)G2M ; � = �q2=4M2:Here, GC ; GM , and GQ are the deuteron hargemonopole, magneti dipole, and quadrupole form fa-tors, respetively. These form fators have the norma-lizations GC(0) = 1; GM (0) = (M=mn)�d;GQ(0) = M2Qd;where mn is the nuleon mass and �d(Qd) is thedeuteron magneti (quadrupole) moment, with the val-ues �d = 0:857; Qd = 0:2859 fm2:After substitution of B(el)i in formula (30), we have todo a trivial integration over the z variable using theÆ-funtion Æ(1� x0) = xyrÆ(z):4. NUMERICAL ESTIMATEWe alulate the radiative orretions for the kine-matial onditions of the HERMES experiment [10℄.The energy of the positron beam is 27.6 GeV. TheHERMES installation has provided the �rst diret mea-surement of the struture funtion b1 in the kinematirange 0:002 < x < 0:85 and 0:1 GeV2 < Q2 < 20 GeV2:A ylindrial target ell on�nes the polarized gas alongthe positron beam line, where a longitudinal magneti�eld provides the quantization axis for the nulearspin. The orresponding tensor atomi polarization isT = 0:83 (see Appendix C for the de�nition of thisquantity).The analysis of the experimental data was per-formed in the approximation b3 = b4 = 0: In the nu-merial estimate below, we also neglet these funtions.

The deuteron spin-dependent struture funtion b1is extrated from the measured tensor asymmetry Azzvia the relation [10℄b1 = �32Azz (1 + 2)F d22x(1 +R) ; (57)where the deuteron spin-independent struture fun-tion F d1 is expressed in terms of the ratioR = �L�T = F d2 (1 + 4M2x2=Q2)2xF d1 � 1(see [20℄) and 2 = 4M2x2Q2is a kinemati fator. Here, �T (�L) is the ross setionfor the absorption of transversely (longitudinally) po-larized virtual photons by the unpolarized target. TheBorn ross setion of the deep inelasti sattering ofthe unpolarized eletron beam by the unpolarized tar-get has the formd�unBdxdQ2B = 4��2xQ4B �� [(1� y � xy�)F d2 (x;Q2) + xy2F d1 (x;Q2)℄: (58)The struture funtions F d1;2 are related to the stru-ture funtions W1;2 (introdued in formula (7)) asW1 = 2F d1 ; W2 = 4(�=y)F d2 :The deuteron spin-independent struture funtionF d2 = F p2 (1 + Fn2 =F p2 )2is alulated using parameterizations for the protonstruture funtions F p2 [21℄ and the ratio Fn2 =F p2 [22℄.The deuteron spin-dependent struture funtion b2 isalso extrated from the experiment using the Callan �Gross relation b2 = 2x 1 +R1 + 2 b1: (59)Aording to the preliminary results of theHERMES experiment, the tensor asymmetry an beparameterized as [23℄Azz = �1:56 � 10�2 �1� 1:74x� 1:45px � : (60)The in�uene of the radiative orretion on the spin-dependent part of the Born ross setion is shown inFig. 2 as a funtion of the variable x for various Q2values. Inlusion of the radiative orretion shifts thezero value of b1 and b2 to the region of smaller x (see1044
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Fig. 2. The spin-dependent part of the ross setion alulated for the kinematial onditions of the HERMES experi-ment [10℄. The solid line is the Born approximation, the dotted line orresponds to the inlusion of the radiative orretions.The Q2 values are as follows: a � 0:1 GeV2, b � 1 GeV2,  � 4 GeV2, d � 10 GeV2Fig. 2 and d). In the range of low x (x � 10�3�10�2),the value of the radiative orretion hanges from 10%to 30% ompared with the Born ontribution. This re-gion is of the utmost importane for b1 measurements.Aording to the theoretial preditions in [11�13℄, thestruture funtion b1 inreases very rapidly in this re-gion, and this fat was on�rmed in the HERMES ex-periment [10℄.From our estimate, we onlude that the radiative
orretions to proess (1) are not small, espeiallyfor the low-x region, and they have to be taken intoaount in the data analysis.We wish to thank N. P. Merenkov for useful disus-sions and omments. We warmly aknowledge M. Con-talbrigo for useful disussions on the HERA experimen-tal onditions, as well as for sending us preliminary re-sults on the Azz parameterization.1045



G. I. Gakh, O. N. Shekhovtsova ÆÝÒÔ, òîì 126, âûï. 5 (11), 2004APPENDIX AIn this Appendix, we present the formulas forthe oe�ients Amni , Bmni , and Cmnji ; (m;n = l; t,i = 1; 2; 3; 4, j = 0; 1; 2) determining the ross setionof the hard-photon emission proess (see formula (50)).The oe�ients determining the ontribution pro-portional to the B1 struture funtion are
All1 = �n1� [(�r ��1)2 � 2a(b+�1)℄;Bll1 = n1� n[(2a� b)r + 1 +�2℄2 � ar(2 + 3ar)o;Cll01 = �V N� n(�r ��1)2 + a[3a(1 + r2)� 2(b+�1)℄o;Cll11 = �6N(+ 2a); Cll21 = �6N �V ;Alt1 = 2n1MdQ2B(2b+�1)(�r ��1);Blt1 = 2n1MdQ2B(�2 � 2br)[(a� b)r + 1 +�2℄;Clt01 = �4n2Q2Bha(1 + r2)(y + 2a)� 2b�r ��1(+ 2a� 2b)i;Clt11 = �4n2h(y + 4a)(+ 2a)� 2a(�r + 2b)i;Clt21 = �8n2 �V (y + 2a);Att1 = �n1b Q2BV [b2 + (b+�1)2℄; (A.1)Btt1 = n1b Q2BV (2b2r2 � 2br�2 +�22);Ctt01 = �NQ2B2b h(1 + r2)(y2 + 4a� 2ab) + (2b+�1)2 +�21i;Ctt11 = 2Nb hb(1 + y + 2a� r) + (1 + a)�1i;Ctt21 = �Nd2 hy2 + 2a(2� b)i:The oe�ients determining the ontribution proportional to the B2 struture funtion areAll2 = n3� hb(1 + r2) + (1� r + ry)�1ih(�r ��1)2 � 2a(b+�1)i;Bll2 = �n3� hb(1 + r2)��2(�r � 2a)in[(2a� b)r + 1 +�2℄2 � ar(2 + 3ar)o;Cll02 = �NV n(7� 3y)2 + 3a(5� y + r)+ 3a2(3 + r2)� ar[5 + 3(a+ b)2℄o;Cll12 = �3� N h4(a+ )� yi; Cll22 = �6N �2V ;Alt2 = �2n3Q2BMd (2b+�1)(�r ��1)hb(1 + r2) + (1� r + ry)�1i;Blt2 = �2n3Q2BMd (�2 � 2br)[1 + �2 + (a� b)r℄hb(1 + r2) + (a+ b� r)�2i; (A.2)Clt02 = NV 2Mdn2ahy�r + (3b+ a)(1 + r) � y � 8ai� 2h2a+ (2� y)(y + 4a)i+2ah2a(b� a+ r) + (y + 2a)(r � a(1 + r2) + r(a+ b)2)io;1046



ÆÝÒÔ, òîì 126, âûï. 5 (11), 2004 Radiative orretions to deep inelasti : : :Clt12 = �4n2 � h2a(1� 3r + 2�r + 4) + y(2 + b� a)i; Clt22 = �8n2 �2V (y + 2a);Att2 = xyb n3Z1[2b2 +�1(2b+�1)℄;Btt2 = �xyb n3Z2[2b2r2 +�2(�2 � 2br)℄;Ctt02 = V N2b n�22ha+ (1 + a)(2� y)i+ h(3� 2y + a2 + b2)(�r � 2a) + 4(ab+ b� a2) + 4r(a� b2)i��2ah(r � a)2 + b2i+ (1 + 2a� 2b+ a2 + b2)hr � a(1 + r2) + (a+ b)2rio;Ctt12 = � V N2d2nh1 + 7a(1 + a)� b(1 + b) + (a+ b)(a2 + b2)i+ 4ah(a� b)(1� r) + a2 + b2 � rio;Ctt22 = �N�d2 hy2 + 2a(2� b)i:The oe�ients determining the ontribution proportional to the B3 struture funtion areAll3 = n3 � n(a+ �r)h2Z1 + r�1(2a+ r ��1)i��1hr2(r ��1) + 2(b+�1) + r(a+ b)(a+ r ��1)io;Bll3 = �n3 � n2Z2h1 + (2a� b)r +�2i+ 3a�2h(b� a)r � 1��2io;Cll03 = V N2 h(6a� 16 + 9y) + 6a(y � 3� r)i; Cll13 = �3�N(2� y); Cll23 = 0;Alt3 = �n3 Q2BMd n2Z1(3b� a� r) + �1h4r(1 + b2 + 3ab)� 2a(1 + r2) + (ar � 3 + 5br)io;Blt3 = n3 Q2BMd n2Z2h(3b�a)r�1i+�2h(1+ar)(a�6b)�(a+3b)(r2+�2)+r(b2�1)+b+�2(3r�2b)io; (A.3)Clt03 = n2V n4ah2b�r � y2 + 4(b2 � a)i� h3y(2� y) + 8a(1 + a+ 2b)io;Clt13 = �2NMd (2� y)(y + 2a); Clt23 = 0;Att3 = n3xy bn(�1 � 2b)[b(1 + r2) + (1� r + ry)�1℄ + b�1[1 + r(b� a+�1)℄o;Btt3 = n3xy bn(2br ��2)[b(1 + r2) + (1� r � y)�2℄ + b�2[r(b � a+ r)��2)℄o;Ctt03 = V N2b n3b�a�(a2+b2)(2+a+b)+r[y2+2y(2b�a)+2a(3�a)℄+[y(1+y+3a)�4(1+a)�2ab℄o;Ctt13 = �V N2d2 (2� y)[y2 + 2a(2� b)℄; Ctt23 = 0:The oe�ients determining the ontribution proportional to the B4 struture funtion areAll4 = n3 2� n(b� a)(1 + r2) + �1h1 + r(2a� b)io; Bll4 = n3 2� h(a� b)(1 + r2) + �2(a+ �r)i;Cll04 = �NV2 h1 + 3(b� a)i; Cll14 = Cll24 = 0;Alt4 = n3 2Q2BMd n2b(1 + r2) + �1h1� r(3b� a)io; Blt4 = n3 2Q2BMd h�2b(1 + r2) + �2(�r � 2b)i;Clt04 = �NV 22Md h1 + 4ab� (a� b)2i; Clt14 = Clt24 = 0; (A.4)1047



G. I. Gakh, O. N. Shekhovtsova ÆÝÒÔ, òîì 126, âûï. 5 (11), 2004Att4 = �xyr2�1n3; Btt4 = �xy2�2n3; Ctt04 = �NV2 (y + 2a); Ctt14 = Ctt24 = 0:We here use the notation = z + xyr; �r = a� b+ r; n1 = N2 1 + r21� r V Q2B ; n2 = NV2Md; n3 = N2 V 21� r ;d2 = bQ2B; �1 = (1� xy)r � a� b� z; �2 = (1� y + xy)r + z � 1; N = 4�V 2 ;Z1 = b(1 + r2) + �1(1� r + yr); Z2 = b(1 + r2) + �2(1� y � r):APPENDIX BIn this Appendix, we onsider the part of the integral I that is aused by the Rln and Rtn omponents ofthe deuteron quadrupole polarization tensor (these omponents do not ontribute to the di�erential ross setiontreated in the Born approximation). We de�ne the integral aused by the Rln omponent asIln = Z d3k2�!�ln(z; r; ')Rln; (B.1)with �ln(z; r; ') = �2(q2)Q4B 2V NMr2 nq�P1ln�1 � P2ln�2 + U0ln + U1ln�1� ;P1ln = V1� r ngxy(1 + r2)B1 + gh(1� r(1� y)) + a(1 + r2)� 4friB2++ h2a� fr + 12(3(1� r + yr) + 2ar)iB3 + 12[1 + (a� b)r℄B4� ; (B.2)P2ln = � V1� r ��xy(1 + r2)(+ 2ar)B1 + 2 [�ar(a(1 + r2)� 4fr) + 22 (1� y � r)++ 2(4fr � a(1 + 3r2 + 2yr � 2r))℄B2 + [r(f � 2ar)� 2(2a+ 3(r + y � 1))℄B3 � 2(a� b+ r)B4� ;U0ln = 2g(B1 + �B2) + 2�(2� y)(B2 +B3);U1ln = 4�V (B1 + � B2);and  = z + xyr; f = 1 + (1� y)2; g = 1 + 2a=; nq = S(n)� q�:The seond integral, aused by the Rtn omponent, is de�ned asItn = Z d3k2�!�tn(z; r; ')Rtn; (B.3)where the integrand is�tn(z; r; ') = �2(q2)Q4B 2V Ndr2(r � 1)nq�P1tn�1 � P2tn�2 + U0tn + U1tn�1� ;P1tn = Q2Bn �fxy(1 + r2)B1 � �f ha(1 + r2)� 4r(f + 4y)iB2++ �f [1 + r(y � 1)℄(B2 +B3) + br(B3 +B4) + 2br(1� y)B3o;1048



ÆÝÒÔ, òîì 126, âûï. 5 (11), 2004 Radiative orretions to deep inelasti : : :P2tn = �Q2Bnxy�g(1 + r2)B1 + �g [a(1 + r2)� 4fr℄B2 ++ �g(r � 1 + y)(B2 +B3)� b(B3 +B4)� 2br(1� y)B3o; (B.4)U0tn = (r � 1)h�2xy �f(B1 + � B2) + (2� y)(2a+ y)(B2 +B3)i;U1tn = 1V n(r � 1)(2a+ y)G1 � �fG2 � y � 2Mxy [M(2a+ y)� 2�d℄(B2 +B3)� dMxy [� 2a(r � 2)℄G2o;G1 = 3B1 + 2� B2 + 2xyr (B2 + 2B3 +B4); G2 = �B1 � 2xyr (B2 + 2B3 +B4);and d2 = bQ2B; �f = b� a� z + r(1� xy); �g = z � 1 + r(a� b+ xy):As before, we alulate the above integrals in theenter-of-mass system of the hard photon and the un-deteted hadron system:k1 � k2 + p = 0:The eletron momenta k1 and k2 de�ne the xz plane,the z axis is direted along the deuteron momentum p:Then the hard-photon momentum k is determined bythe azimuthal (') and polar (�) angles, and the phasespae of the hard photon an be written asd3k2�! = Q2B2py2 + 4a d'2� dzdr; (B.5)where ! is the hard-photon energy.The quantity nq an be written in this oordinatesystem as nq = �n sin', where �n is a fator independentof ': Then the integration over the ' variable in theregion (0; 2�) leads to the resultIln = Itn = 0:Therefore, the Rln and Rtn omponents of the deuteronquadrupole polarization tensor do not ontribute to thedi�erential ross setion of deep inelasti sattering ofthe unpolarized eletron beam by the tensor polarizedtarget. This is beause only the sattered-eletron vari-ables are measured (this orresponds to the HERA ex-perimental onditions, for example).If the hard photon is deteted, then Iln and Itn sur-vive and the expressions for �ln and �tn have to betaken into aount.APPENDIX CIn this Appendix, we give some formulas desribingthe polarization state of the deuteron target in di�er-ent ases. In the ase of an arbitrary polarization of

the target, it is desribed by the general spin-densitymatrix (de�ned by 8 parameters in general), whih inthe oordinate representation has the form��� = �13 �g���p�p�M2 �� i2M "����s�p�+Q�� ;Q�� = Q��; Q�� = 0; p�Q�� = 0; (C.1)where p� is the deuteron 4-momentum, and s� and Q��are the deuteron polarization 4-vetor and the deuteronquadrupole polarization tensor.In the deuteron rest frame, the above formula iswritten as�ij = 13Æij + i2"ijksk +Qij ; ij = x; y; z: (C.2)This spin-density matrix an be written in the heliityrepresentation using the relation���0 = �ije(�)�i e(�0)j ; �; �0 = +;�; 0; (C.3)where e(�)i are the deuteron spin funtions that havethe deuteron spin projetion � on the quantization axis(the z axis). They aree(�) = � 1p2(1;�i; 0); e(0) = (0; 0; 1): (C.4)The elements of the spin-density matrix in the heliityrepresentation are related to those in the oordinaterepresentation by��� = 13 � 12sz � 12Qzz; �00 = 13 +Qzz;�+� = �12(Qxx �Qyy) + iQxy; (C.5)�+0 = � 12p2(sx � isy)� 1p2(Qxz � iQyz);��0 = � 12p2(sx + isy) + 1p2(Qxz + iQyz);1049



G. I. Gakh, O. N. Shekhovtsova ÆÝÒÔ, òîì 126, âûï. 5 (11), 2004���0 = (��0�)�:To obtain these relations, we use that Qxx + Qyy ++Qzz = 0:The polarized deuteron target desribed by the pop-ulation numbers n+, n�, and n0 is often used in spinexperiments. Here, n+, n�, and n0 are the frationsof atoms with the respetive nulear spin projetion onthe quantization axis m = +1, m = �1, and m = 0. Ifthe spin-density matrix is normalized to 1, i.e.,Sp � = 1;then we have n+ + n� + n0 = 1:Thus, the polarization state of the deuteron target isde�ned in this ase by two parameters: the so-alled V(vetor) and T (tensor) polarizations,V = n+ � n�; T = 1� 3n0: (C.6)Using the de�nitions of the quantities n�;0,n� = �ije(�)�i e(�)j ; n0 = �ije(0)�i e(0)j ; (C.7)we have the following relation between V and T and theparameters of the spin-density matrix in the oordinaterepresentation (in the ase where the quantization axisis direted along the z axis):n0 = 13 +Qzz; n� = 13 � 12sz � 12Qzz; (C.8)or T = �3Qzz; V = �sz: (C.9)REFERENCES1. D. Rykbosh, E-print arhives hep-ex/0311021.2. Spin Muon Collaboration: D. Adams, B. Adeva,E. Arik et al., Phys. Lett. B 357, 248 (1995); P. L. An-thony, R. G. Arnold, H. R. Band et al., Phys. Rev.D 54, 6620 (1996).3. S. Kumano, Preprint MKPH-T-93-03, Univ. Mainz,Germany (1993).

4. P. Hoodbhoy, R. L. Ja�e, and A. Manohar, Nul. Phys.B 312, 571 (1989).5. F. E. Close and S. Kumano, Phys. Rev. D 42, 2377(1990).6. L. Mankiewiz, Phys. Rev. D 40, 255 (1989).7. H. Khan and P. Hoodbhoy, Phys. Lett. B 298, 181(1993).8. H. Khan and P. Hoodbhoy, Phys. Rev. C 44, 1219(1991).9. S. Kumano, E-print arhives hep-ph/0012341.10. M. Contalbrigo, E-print arhives hep-ex/0211014.11. N. N. Nikolaev et al., Phys. Lett. B 398, 245 (1997).12. J. Edelmann et al., Phys. Rev. C 57, 254 (1998).13. K. Bora et al., Phys. Rev. D 57, 6906 (1998).14. I. V. Akushevih and N. M. Shumeiko, J. Phys. G:Nul. Part. Phys. 20, 513 (1994).15. S. Y. Choi, T. Lee, and H. S. Song, Phys. Rev. D 40,2477 (1989).16. G. I. Gakh and N. P. Merenkov, Pis'ma v ZhETF 73,659 (2001).17. E. A. Kuraev, N. P. Merenkov, and V. S. Fadin, Yad.Fiz. 45, 782 (1987).18. T. V. Kukhto and N. P. Shumeiko, Nul. Phys. B 219,412 (1983).19. E. A. Kuraev, N. P. Merenkov, and V. S. Fadin, Yad.Fiz. 47, 1593 (1988).20. L. W. Whitlow et al., Phys. Lett. B 250, 193 (1990).21. ALLM97 parameterization: H. Abramowiz et al.,E-print arhives hep-ph/9712415.22. NMC Collaboration: P. Amaudruz et al., Nul. Phys.B 371, 3 (1992).23. M. Contalbrigo, private ommuniation.
1050


