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We incorporate the effect of lattice thermal vibrations into the Glauber-theory description of particle and nucleus—
crystal Coulomb interactions at high energy. We show that taking the lattice thermal vibrations into account
produces a strong absorption effect: the phase shift function of the multiple-diffraction scattering on a chain
of N identical atoms acquires a large imaginary part and the radius of the absorption region in the impact
parameter plane grows logarithmically with N. Consequences of this observation for the elastic and quasielastic
Coulomb scattering are discussed. The practically interesting example of the coherent Coulomb excitation of
ultrarelativistic particles and nuclei passing through a crystal is considered in detail.

PACS: 25.75.-q
1. INTRODUCTION

In this paper, we develop the description of the ab-
sorption phenomenon in coherent particle and nucleus—
crystal Coulomb interactions at high energy in the
Glauber theory framework [1].

As is well known, multi-loop corrections generate
an imaginary part of the scattering amplitude even if
the tree-level amplitude is purely real. For example, the
purely real Born amplitude of the high-energy Coulomb
scattering in a crystal acquires an imaginary part due
to the multiple scattering (MS) effects. However, in the
widely used static/frozen lattice approximation (SL ap-
proximation), the account of rescatterings alters only
the overall real phase of the full amplitude, thus pro-
ducing no absorption effect. The latter is related to
the creation and annihilation of excited intermediate
states of the crystal and as such manifests itself only
beyond the SL approximation (see [2] for the analysis of
elastic scattering based on the SL approximation). In-
deed, the amplitude of small-angle elastic scattering on
a chain of N identical atoms in the impact parameter
representation is equal to

1=(S(0)),
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where the scattering matrix placed between the ground
states of the crystal is

(S(b)) = (explix(b)]),

with the purely real phase shift function
N
x(b) =D x;(0).
j=1

In the SL approximation,

(exp[ix(b)]) = exp[ix(b)].

In general, therefore, the Coulomb phase shift function
acquires a nonvanishing imaginary part, which is in-
terpreted as an absorption effect, only with the lattice
thermal vibrations taken into account. The imaginary
part appears only as a second-order perturbation,

i

~ —

51 = (0]

But the strength of the effect is proportional to >N,
where [ is the coupling constant. For the coherent
scattering of relativistic nuclei (the electric charge Z)
on the chain of N atoms (the atomic number Z,) in a
crystal, the effective coupling

B = 20[Z1 Z2
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is strong and the absorption effect is also strong. The
absorption is strong for the impact parameters b smaller
than some characteristic value

b, x log(BN)

and vanishes toward the region of larger b. This phe-
nomenon provides a natural ultraviolet regulator of the
theory and enables, in particular, consistent calculation
of the coherent elastic scattering cross section. The lat-
ter is calculated and turns out to be equal to half the
total cross section. As we see in what follows, the ab-
sorption effect is also of prime importance for quantita-
tive understanding of the phenomenon of the coherent
Coulomb excitation of relativistic particles and nuclei
passing through a crystal. A consistent description of
this phenomenon is the goal of our paper.

The outline of the paper is as follows. We start with
the well-known example of the coherent Coulomb elas-
tic scattering of charged particle/nucleus by a linear
chain of N identical atoms in a crystal target (Sec. 2).
In Sec. 3, we derive the scattering matrix with absorp-
tion and calculate the cross section o,; of the coherent
elastic scattering and the cross section gge; of the in-
coherent excitation and break-up of the target. Then
we find that in the large-V limit,

1

5 0tot -
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Oel R OQel I

In Sec. 4, we discuss the coherent Coulomb excitation
of ultrarelativistic particles and nuclei passing through
the crystal to the lowest order of perturbation theory.
The higher-order effects are considered in Sec. 5, where
the cross section of the process is calculated. We finally
conclude with a brief summary in Sec. 6.

2. COHERENT ELASTIC SCATTERING AND
ABSORPTION

The interatomic distances in a crystal, a, are large
compared to the Thomas—Fermi screening radius ry,

a~35A4>r=rpz;® ~ 014,

where Z5 is the atomic number of the target atom and
rp is the Bohr radius [3]. The relevant impact parame-
ters b satisfy the condition b < a and the amplitudes of
scattering by different atomic chains parallel to a given
crystallographic axis are incoherent.

The amplitude of small-angle scattering of a
charged particle (charge Z;) by a linear chain of N
identical atoms in the eikonal approximation is given

by [1]
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_ip

Fila) = 22
X <‘ij({rj})|1 - S(b7517 s

/d2bexp(iq-b) X
sa)|¥i({r;})), (1)

where ¥; and ¥, are the initial and final state wave
functions of the crystal and q is the two-dimensional
vector of the momentum transfer. The incident particle
momentum p is assumed to be large enough to satisfy
the condition of applicability of the straight-paths ap-
proximation, p/q® > aN. The latter condition ensures
the coherence of interactions with different atoms.

The elastic scattering corresponds to i = f and the
brackets ( ) signify that the average is to be taken over
all configurations of atoms in the ground state,

<\II({rJ})‘1 - S(bvslv"' 7SN)‘\II({I']'})> =

- /d3r1 PN T ()P x

N
x |L—exp [iY x(ulb—s;|) (2)
j=1

In (2), the total scattering phase is the sum of the phase
shifts contributed by the individual atoms. The posi-
tions of the N atoms that make up the target are de-
fined by the three-dimensional vectorsr;, j =1,... , N.
The two-dimensional vectors s; are the projections of
these vectors on the impact parameter plane. We ne-
glect all position correlations of the atoms and describe
the ground state of the crystal by the wave function | )
such that

N
[T ({r; ) = H ()|, (3)

where the three-dimensional vectors u; are defined by

rj:(j—l)a—Fll]', jzl,...,N, a=(0,0,a)
and u; = (s;, 2;).

From Eq. (2), it follows that

Fii(q) = F(q)
= ip/bdb Jo(gb) {1 — (explix(ub))N}. (4)

Hereafter, Jo1(x) and Ko 1(x) are the Bessel functions
and the screened Coulomb phase shift function is

x(pb)

= —BKo(ub) (5)

with

-1

B=2aZ1Zy, p=ry
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After integration over longitudinal variables {z;} fol-
lowed by the azimuthal integration, the term (exp(iy))
takes the form

(exp(ix0) = [ s ps) explin(ib - s))] =
= exp(—0%b%) /dxexp(—x) X

x Io(2090/x) exp[—iS Ko (uv/x/Q)].  (6)

The two-dimensional vector s describes the position of
the target atom in the impact parameter plane. The
one-particle probability distribution p(s) is given by

p(s)=/dz\1p(s,z)\2=(Qz/ﬂ')exp(—ﬂzsz). (7)

For the most commonly studied elements at room tem-
perature, the ratio p/§ varies in a wide range, from
1/ ~0.1to u/Q2 ~1[3]. We first consider the region
of small impact parameters including b < 1/QY. For
b < 1/29, only small s, such that us < 1, contribute.
We can then set

Ko(us) ~ log(1/us)

and integrate over s,
. % 272
(exp(ix)) ~ (&) exp(=02?) x

X /dasgc’ﬂ/2 exp(—x)Io(26Qv/x) =
0

i3 ] ) o
(1) r<1+§>¢<—§;1;—9262>, (8)
where
1 2
‘b(a;b;z):l—l—%% %%—l—... 9)

is the confluent hypergeometric function and

—z).

.y 1/2
2sh<7r/3/2>} ’

D(a;b;2) = exp(2)®(b — a; b;

From Eq. (8), it follows that

fespli) i = | (10)

1) We note that the smallness of the ratio % /u? ~ 1076-1075,
where 74 is the nuclear radius and u = 1/Q is the amplitude of
lattice thermal vibrations, allows neglecting the nuclear interac-
tions of the projectile up to N ~ 105. As we see in what follows,
the absorption effect in which we are interested enters the game
at much smaller N.
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Example of the relevant multiple scattering diagrams

to the order 3%, The unitarity cut of the elastic am-

plitude a that contributes to the absorption is shown

by crosses. Diagram b allows cuts only between the

projectile-atom blocks and does not contribute to the
absorption effect

where the identity

. 27
T(iB/2)]* = Gsh(xB/2) (11)
has been used. In the weak coupling regime 3 < 1,
1
[{exp(ix)) =0 & 1 = 5((X*) = (0)?)
and
232
() — 2= T (12)
For p > 1,
|(exp(iX)) =0 ~ V7B exp(=m5/4). (13)

Therefore, at small impact parameters b < 1/29Q, the
intensity of outgoing nuclear waves as a function of
N exhibits the exponential attenuation. In terms of
the unitarity cuts of the elastic scattering amplitude,
the imaginary part of the phase shift function comes
from the cuts through the multi-photon projectile-atom
blocks as shown in Fig. a. The account of diagrams
like that in Fig. b, which allows cuts only between
projectile-atom blocks, gives the scattering matrix of
the form exp(iN(x)) and affects only the overall real
phase of the amplitude.

The absorption effect becomes weaker toward the
region of large impact parameters b > 1/2Q,

[{exp(ix)) ™ & [{exp(ix))]pg X
NpB?

4
)

X [1+

(14)

For still larger b, b > 1/2Q, using the asymptotic form

Io(2) ~ (2r2) Y% exp(2),
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(exp(i)) ~ 29/ \j%exp[—QQ(b — )] %

x explix(us)]. (15)

To evaluate the integral in (15), we expand x(us
powers of (s —b),

) in
V() ~ X (ub) + w(s — b).
If the frequency w,

dx

db
is small compared to (Q,

w = — = ufKi(ub),

w L 1, (16)

then

and

(exp(ix)) = exp [ix — iwb] x

NG
(17)

Condition (16) is satisfied if b > /. For the impact
parameters from the region

BIAK b L1/,
we can write w ~ 3/b; for larger b such that b > p~!,

™
w = pby b exp(—pub).

From the consideration presented above, it follows that
the absorption effect in the elastic scattering amplitude
is especially strong for impact parameters
T’ N
40?2

For b < b,, the atomic chain acts as an opaque «black»
disc. Certainly, the value of this finding differs for dif-
ferent observables and for different processes proceed-
ing at different impact parameters. The only thing
which is worth noticing here is the representation of
the scattering matrix in the form

exp [—Q%(b — 5)?] expliws] ~

~ exp(iy) exp[—w? /49?].

(18)

~ log (19)

2

w -1
4(22)’ b> Q™. (20)

(S(b)) ~ exp <z'NX -
Equation (20) supplemented with the observation that

(50) ~ (1) exp (- 27

simplifies all further calculations greatly.

) ., b<aTh o (21)
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3. THE CROSS SECTIONS

3.1. The elastic cross section

Integrating by parts reduces F'(q) to the form con-
venient for evaluation of the total cross section,

ipuN

F(q) = / bdb Jy(gb){ix" exp(ix)) x

x (exp(iy)) N7, (22)

At small impact parameters b < 1/2pu,

(X" exp(ix)) =~ 3 (M)iﬁ_l exp(—Q2b?) x

o (1)1

if+1
2 2
Because of multiple scatterings, only large impact pa-
rameters b may contribute to F(g) at large N and
small ¢. Hence,

i1 92b2> . (23)

ipuN

F(q) ~ / bdb Ji(gb) [ix' — ww'/20%] x

1/u

x exp(iNy) exp(—Nw?/40%), (24)

where the explicit form of {(exp(iy)) at large b, Eq. (17),
has been used. For large b,

w? o exp(—2ub);

as b grows, w? decreases much faster than the phase
shift function y (ub), which is proportional to exp(—pub).
We see that the leading contribution to the elastic scat-
tering amplitude (24) comes from

pHE > by,

where
¢ = log(BN).

For large NN, the second term in the square brackets
in (24) is small compared to the first one. Then, for

¢ < g0 = /€
and & > 1, the steepest descent from the saddle point
bo = '€ + ir/2] (25)

in Eq. (24) yields

(26)
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The effect of lattice thermal vibrations at small ¢
appears to be marginal and reduces to the factor
exp(u?/4Q2N) in (26), which is irrelevant at large N.
The amplitude F'(¢) in Eq. (26) coincides with the elas-
tic scattering amplitude given by the SL approxima-
tion [2].
If ¢ 2 qo, the stationary phase approximation gives
the elastic scattering amplitude of the form
). en

—i
e () e (-
Mg Iz
n =log(uBN/q) > 1.
The account of the lattice thermal vibrations ensures
the convergence of the integral for the coherent elastic
scattering cross section,

T
o =— [ dg®|F(q)?
! p2/ F(q)

2

q
F(q) =~ 100N

where

2
do
dg?

5]
0

J2 <q

2

=

which for f > 1 is simply

&.

Tel R

1

3.2. The quasielastic cross section

In this paper, we focus on coherent nucleus—atom
interactions. The incoherent process of ionization of
the target atom is suppressed by the factor of the order
of Z2_1. Then the inelastic process, which by unitarity
gives rise to attenuation of the elastic amplitude, is the
process of the quasielastic scattering (Fig. a). Its cross
section is given by [1]

Z [Fri(q)

where the sum extends over all final states of the crys-
tal in which no particle production occurs. The closure
relation then yields

dO’Qel

|Fii(@)?,

(30)

dgf;l = #/d% d*b' expliq(b — b")] x
x {{explix(ub) — ix* (ub" YN —
—(explix (ub)])™ (exp[—ix* (ub )N} (31)
and
Oqel = / @b {1 expli ()Y} (32)
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In the SL approximation,

(exp[ix(ub)])| =
and
OQel = 0.

From (20) and the discussion of the absorption radius
b, presented above, it follows that for & > 1,

1= [(explix(ub))|*" = 6(2b, — b) (33)
and
el ~ T(2ba)? ~ %g?. (34)

3.3. The total cross section

From Eq. (26), by means of the optical theorem, we
find the total cross section

47

27
( )

Otot —€2~ 35
2 (35)
We therefore conclude that at high energy and in the
large-N limit,
1

S O0tot-

5 (36)

Oel R OQel ~

4. COULOMB EXCITATION OF
ULTRARELATIVISTIC PARTICLES AND
NUCLEI IN A CRYSTAL CHANNEL. THE
EXCITATION CROSS SECTION TO THE

LOWEST ORDER. THE BORN
APPROXIMATION

We now consider the process of the coherent
Coulomb excitation of ultrarelativistic particles and nu-
clei passing through the crystal. This way of the ex-
perimental study of rare processes has been proposed
in [4-10].

An ultrarelativistic projectile nucleus (mass num-
ber A, charge Z;, and 4-momentum p) moving along a
crystal axis undergoes a correlated series of soft colli-
sions that give rise to diagonal (A — A, A* — A*) and
off-diagonal (A — A*, A* — A) transitions.

In [4,5,9], it has been proposed to study the elec-
tric dipole transition in 'F, the excitation of the
state |J™ = 1/27) from the ground state |1/27).
The phenomenological matrix element of the transition
1/2% — 1/27 is [11]

1 o
M= Edu (p')s (G¢ -

£q) u(p), (37)
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where u(p') and u(p) are bispinors of the initial and
final states of the projectile, d is the transition dipole
moment, and ¢ is the photon polarization vector. The
transverse and longitudinal components of the 4-vector
p — p' are denoted by q and k, respectively. In what
follows, ¢ = |q|. The only phenomenological param-
eter in the problem is the dipole moment d. The
measured life-time of the 110 keV level 1PF(1/27) is
7 = (0.853 £ 0.010) - 1072 s [12]; the dipole moment
of the 1/2t — 1/27 transition, determined from the
width of the level *F(1/27),is d ~ 5-107% keV ! [11].
Then, first, because of the large value of 7, the decay of
the excited state inside the target crystal can be safely
neglected and, second, due to the smallness of d, the
excitation amplitude is much smaller than the elastic
Coulomb amplitude for all ¢ up to ¢ ~ vV4raZ;/d and
can be considered a perturbation. Thus, the multi-
channel problem reduces to the one-channel one.

The high-energy helicity-flip Born amplitude of the
transition 1/27 — 1/27 in collision of the projectile
nucleus with N bound atoms in the crystal is given by

exp< ) . (38)

where o (01,02,03) is the Pauli spin vector,
{0i,0;} = 26;;, and the amplitude we are construct-
ing is to be regarded as an operator that transforms
the initial helicity state of the projectile into its final
state. In the denominator of Eq. (38), A2 = p? + 2. In
the Glauber approximation, the longitudinal momen-
tum transfer, which determines the coherency length
le ~ k™1, is given by [13]

q2

p gle-q) -
40°

B —
Feac(q) _S(K)Qﬂ. q2+)\2

MAE
K= ,
p

(39)

where M is the mass of the projectile and AFE is the
excitation enerng).

In the first order in ¢, the structure factor of the
crystal is

If the projectile momentum satisfies the resonance con-
dition [4,5,7,9]

KJQ

402

sin(kNa/2)

sin(ka/2) (40)

() = exp |

MAE_27r_n
p

n=0,1,2,..., (41)

a

2) The Fresnel corrections to the eikonal approximation, which
are neglected here, become important at large N or at large g¢;
they diminish the coherency length and additionally suppress co-
herent processes [14].
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then S(k) ~ N. In the first order in ¢ and in the zeroth
order in /8 (the Born approximation), the cross section
of the coherent excitation of the projectile in scattering
on a chain of N atoms in a crystal is

o
2N2

™

=2 |Fa (@) ~

202
|:10g <1 + ?>

g = VaradZs,.

The central idea in [4-7,9,10], based on the Born ap-
proximation, is that the transition rate can be en-
hanced substantially due to coherency of interactions,
which is assumed to sustain over the large-distance
scale. The law 0., o N?2 is expected to hold up to
the crystal thicknesses N = L/a ~ 10°-10% in a tung-
sten target. In [10], the Born approximation for the co-
herent excitation of ¥1 in high-energy proton—crystal
interactions py — Y% was assumed to be valid up to
N ~ 108. However, the account of the initial and final
state Coulomb interactions dramatically changes the
dependence of ., on N. For instance, at N = 2, the
excitation amplitude is of the form

U
A2 + 202

~

| @

where

2

exr

(q) = g/de exp(iq - b)(f5 exp(ix)) x

x (exp(ix)). (43)

The first of the two bracketed factors in Eq. (43) cor-
responds to the nuclear excitation amplitude in scat-
tering on a bound atom. It differs from the excitation
amplitude of the Born approximation, f2 (b), by phase
factor that occurs due to the initial and final state mul-

tiple Coulomb scattering. At small impact parameters
b<1/20,

(f5 explin) ~ (k) 5=

x sh (%9262> exp (—%9262> . (44)

(O"Ilb) X

For large b,

(B exp(i0) = S() L [ &5 p(s)(o- (my - ) x
X MK (A[np — ng) exp [ix (ulny — ng|)] ~
~ S(n)%(a ) MK (AD) exp(iy) X
). )

2
xexp(

402
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where n, = b/|b|, ng; = s/|s|, and b > 1. Because
[(£5 exp(ix))]” o %0

for small b and
HbE (ub) o exp(—2ub)

for large impact parameters b 2> 1/pu, the cross section
o2 = [ &b (12 explin) Pllexp(i) ? =~

2
~ 40 <1 - W) (46)

is dominated by b ~ 1/2u. For the diamond crystal,
1/Q ~ 0.16 [3]. Hence,

w28 1

202 7 2 20°
This estimate shows that even for the diamond crys-

tal target, the Born approximation is invalid already
at N 2 10.

5. MULTIPLE SCATTERING EFFECTS AND
ABSORPTION IN THE COHERENT
COULOMB EXCITATION PROCESSES

The transition amplitude on a chain of N identi-
cal atoms including all the multi-photon ¢-channel ex-
changes is given by

Fea(q) = g/deexp(iol-b)(ffz exp(ix)) x

x (exp(ix))N " (47)

Because of both the multiple scattering effect and ab-

sorption, only large impact parameters b > p~ ' may

contribute to F.,(q). Evaluation of F,,(q) then gives

Fo(q) ~%S(n)(a.nq)/bdbh(qb) x
1/

x AK1 (D) exp(iNy) exp(—Nw?/4Q%), (48)

where n, = q/|q|. The contribution of the domain
q < qo = p/€ to the excitation cross section can be
neglected because F,, o ¢ in this region. If ¢ > ¢¢ and
& > 1, the stationary phase approximation gives the
coherent excitation amplitude of the form

i ‘ng) S(k) A
Fua(a) = 212220 S0 2 ey (a1

. 2
X exp <—%> exp <_45;1—2N> . (49)

10 ZK3T®, Bem. 4 (10)

We see that the helicity-flip dynamics removes the fac-
tor 1/q from elastic amplitude (27), thus making the
UV regularization of the excitation cross section indis-
pensable. This cross section is evaluated as

71'
Oex = E/dqQ |Fex(Q)‘2 ~

27714
2N N
o C'log <57> ,  (50)

where
C =72AT(A), v=20%/8)7,

A=Xp, §=A-1~r*/2p7<1.

In (50), we simply set S(k) = N. Thus, the account
of multiple scatterings and absorption turns the Born

approximation cross section
Oz X N 2

into

Oex X N1 log N.

In the limit as p — oo and § — 0,

N N
Oex ™~ gg—ﬂ_"VIOg (7) : (51)

The dependence of o., on N differs from that of the
fully unitarized elastic cross section,

el X log2 N.

The reason is that in o.,, we sum the eikonal diagrams
to all orders in 8 but only to the first order in g. Such
a unitarization procedure is, of course, incomplete, but
this is not important for practical purposes because
the smallness of d?Q? makes the next-to-leading-order
terms negligibly small up to

N ~aZ}/6Q%d* ~ 10'2.

6. SUMMARY

The main goal we pursued in this paper was a con-
sistent description of the coherent Coulomb excitation
of ultrarelativistic particles and nuclei passing through
the aligned crystal. We started with the discussion of
the elastic scattering and found that the account of
lattice thermal vibrations within the Glauber multiple
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scattering theory gives rise to a strong absorption ef-
fect. The radius of the absorption region in the impact
parameter space appeared to grow logarithmically as
the crystal thickness grows. We derived convenient rep-
resentation for the scattering matrix with absorption
and calculated the coherent elastic and the incoherent
quasielastic cross sections. Suppression of scattering
amplitudes in the absorption region was shown to serve
as a natural UV regulator and to enable consistent
calculation of the cross section o., of the coherent nu-
clear excitation. The dependence of o, on the crystal
thickness is found. The multiple scattering effects are
shown to become numerically important already at
N =1, thus leaving no room for the Born approxima-
tion widely used in early analyses of the problem.

The author thanks N. N. Nikolaev for useful com-
ments.
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