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We consider the model of a Fermi— Bose mixture with strong hard-core repulsion between particles of the same
sort and attraction between particles of different sorts. In this case, in addition to the standard anomalous
averages of the type (b), (bb), and (cc), a pairing between fermions and bosons of the type (bc) is possible. This
pairing corresponds to creation of composite fermions in the system. At low temperatures and equal densities
of fermions and bosons, composite fermions are further paired into the quartets. At higher temperatures, trios
consising of composite fermions and elementary bosons are also present in the system. Our investigations are
important in connection with the recent observation of weakly bound dimers in magnetic and optical dipole
traps at ultralow temperatures and with the observation of collapse of a Fermi gas in an attractive Fermi—Bose

mixture of neutral particles.

PACS: 32.80.Pj, 05.30.Fk, 05.30.Jp, 03.75.Mn

1. INTRODUCTION

The Fermi—Bose mixture model is currently very
popular in connection with different problems in con-
densed matter physics, such as high-T, supercon-
ductivity, superfluidity in *He—*He mixtures [1], and
fermionic superfluidity in magnetic traps.

In high-T, superconductivity, this model was first
proposed by Ranninger [2, 3] for simultaneous descrip-
tion of the high transition temperature and short co-
herence length of superconductive pairs on one hand
and of the presence of a well-defined Fermi surface on
the other.

In this paper, we show that the Fermi— Bose mix-
ture with attractive interaction between fermions and
bosons is unstable with respect to the creation of com-
posite fermions f = bc. Moreover, for low temperatures
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and equal densities of fermions and bosons, the compos-
ite fermions are further paired into the quartets (ff).
We note that the matrix element (f) = (bc) is nonzero
only for the transitions between states |Np; Np) and
(Np — 1;Ng — 1], where Np and Np are particle
numbers of elementary bosons and fermions, respec-
tively. For the superconductive state, the matrix ele-
ment (ff) is nonzero only for the transitions between
states |[Np; Nr) and (Np — 2; Np — 2|. Our results are
interesting not only for the physics of high-7, supercon-
ductors but also for Fermi—Bose mixtures in magnetic
and optical dipole traps as well as in optical lattices,
where we can easily tune the parameters of the system
such as the particle density and the sign and strength
of the interparticle interaction [4, 5].
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2. THEORETICAL MODEL

The model of the Fermi—Bose mixture has the fol-
lowing form on a lattice:

H=Hp+ Hp+ Hpp,

Hp :_tFZCZ;-CjU_'_UFFZnﬂnﬁ_
(i,5) i
_:qunf;v
tpo, 1 B, B (1)
HB:_tBZbi bj+§UBBZnZ’ n; —
(i,5) i

B
_/'LBE n;,
i

— E: B,_F
HBF—_UBF n, N,

i,0

This is a lattice analogue of the standard Hamilto-
nian considered, for example, in Ref. [6]. Here, tp
and tp are fermionic and bosonic hopping amplitudes,
and ¢, ¢y, b, and b; are fermionic and bosonic cre-
ation and annihilation operators; the Hubbard inter-
actions Urpp and Ugp correspond to hard-core repul-
sion between particles of the same sort; the interaction
Upr corresponds to attraction between fermions and
bosons; Wr = 8tp and Wp = 8tp are the bandwidths
in the two-dimensional case; and finally, ur and up
are fermionic and bosonic chemical potentials. For the
square lattice, the spectra of fermions and bosons after
the Fourier transformation are given by

&po = —2tp(cospyd + cospyd) — ur
for fermions and
np = —2tp(cospyd + cos pyd) — up

for bosons, where d is the lattice constant. In the in-
termediate coupling case
Wpr

—— < U < WgF,
(War/Tonr) BF BF

the energy of the bound state is given by
1 1

Ey|l = 2
‘ b‘ QmBFd2 exp[?w/mBFUBp]—l’ ( )
where mpmp
mBpp = ————
mp +mprp
is an effective mass and
4
War =
BF p—

T[)BF = 27m/mBF.

For simplicity, we consider the case of equal densities
np =nNrgp =n.

We note that in the intermediate coupling case, the
binding energy |E,| between a fermion and a boson is
larger than the bosonic and fermionic degeneracy tem-
peratures

and

but smaller than the bandwidths W and Wg. In this
case, pairing of fermions and bosons, (bc) # 0, oc-
curs earlier (at higher temperatures) than both Bose—
Einstein condensation of bosons (or bibosons) ({b) # 0
or (bb) # 0) and superconductive pairing of fermions
({cc) # 0). We note that in the case of a very strong
attraction Ugpr > Wpgp, we have the natural result
|Ey| = Upp, and the effective mass

« _ mprUpp

is additionally enhanced on the lattice [7]. We also note
that the Hubbard interactions Urr and Upp satisfy the
inequalities
w
UrF > e,

(g /1)

B
In(Wg/|Es|)

We now consider the temperature evolution of the
system. It is governed by the corresponding Bethe -
Salpeter equation. After the analytic continuation
iw, — w+1i0 (see Ref. [8]), the solution of this equation
becomes

Upp >

I(q, w) =
—Ugr

) 1—UBF/ (dzp nrE@)+naap)’

2m)2 &(p)+n(q—p)—w—i0

where )

2mF T HE

2

n(p) =

N 2mB

— MUB

are spectra of fermions and bosons at low densities
npd?> < 1 and ngd®> <€ 1. We note that the tem-
perature factor

1—nr(&(p)) +npn(a—p))

enters the pole of the Bethe —Salpeter equation, in con-
trast with the factor

1 —np(¢(p)) —nr(€(a—-p))
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for two-fermion superconductive pairing and
1+np(n(p)) +ns(n(q-p))

for two-boson pairing. The pole of the Bethe —Salpeter
equation corresponds to the spectrum of the composite
fermions, )

I
Q(mB + mF)

W

o = (4)

— Hcomp:

where

(5)

is the chemical potential of the composite fermions.
Composite fermions are well-defined quasiparticles, be-
cause the damping of quasiparticles is equal to zero
in the case of a bound state (E, < 0), but becomes
nonzero and is proportional to Ej in the case of a vir-
tual state (E, > 0). The dynamical equilibrium (bo-
son + fermion = composite fermion) is governed by
the standard Saha formula [9]. In the two-dimensional

case, it is
m{ }.

The crossover temperature T is determined, as usual,
from the condition that the number of composite
fermions is equal to the number of unbound fermions
and bosons:

Heomp = UB + HF + |Eb|

_B
T

npnr

mBFT
2T

(6)

Necomp

Necomp =NB =NF = N.

This conditions yields
T Bl
In (|Eb|/2T0BF)
We note that the Boltzmann regime
|Ey| > {Top; Tor}, we actually deal with the pairing of
two Boltzmann particles. Therefore, this pairing does
not differ drastically from the pairing of two particles
of the same type of statistics. Indeed, if we replace
up + pp in (5) with 2up or 2up, we obtain the fa-
miliar expressions for chemical potentials of composite
bosons consisting of either two bosons [10,11] or two
fermions [12,13]. The crossover temperature T plays
the role of a pseudogap temperature, and therefore the
Green’s functions of elementary fermions and bosons
acquire a two-pole structure below T, in similarity
with Ref. [13].

For lower temperatures Top < T < T, where
2mn
To

>>{TOB;T0F}. (7)

in

mr +mp

is the degeneracy temperature of composite fermions,
the numbers of elementary fermions and bosons are ex-
ponentially small. The chemical potential of composite
fermions is given by

Heomp = T In(T/T)

3
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Fig.1. The skeleton diagram for the coefficient b at T*
in the effective action. The dashed lines correspond to
bosons, the solid lines correspond to fermions

and hence
‘IJ/COmp| < |Eb| for T < T,.

By the Hubbard —Stratonovich transformation, the
original partition function

Z = /DEDbDEDceXp{—BF}
can be written in terms of the composite fermions,
7 = /@‘i’aﬂ‘l’a exp {—ﬂFeff} .

This procedure gives the magnitude of the interaction
between the composite fermions. The lowest order of
the series expansion is given in Fig. 1. Analytically,
this diagram is given by

%/

d2p 2 . 2 .
(2m)2 {GF(P§ iwnr)GR(—P; —iwnB)+

(8)

+ GE(—p; —iwnr)GB (P iwns) }

where
1
iWpp — €(p)
1
iwnp = 1(P)
are the fermion and boson Matsubara Green’s func-
tions, and

Gr

b

Gp =

wnr = 2n+ )T, w,p =2naxT

are the fermion and boson Matsubara frequencies. This
integral actually determines the coefficient b at ¥* in
the effective action. Evaluation of integral (8) yields

. _N0)
[Ey|?

(9)

where
N(O) = mBF/27T.
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Fig.2. The corrections to the coefficient b containing
boson-boson and fermion—fermion interactions

The corrections to the coefficient b are presented in
Fig. 2. They explicitly contain the T-matrices for the
boson-boson and fermion—fermion interactions. In the
intermediate coupling case, these diagrams are small in
the small parameters

1 1

IBB0 ~ w /B T W I E))

Therefore, the exchange diagram indeed gives the main
contribution to the coefficient b.

The coefficient at the quadratic term ¥? in the effec-
tive action, in agreement with general rules of diagram
technique (see Ref. [8]), is given by

cq? 1

T R M

where I'(¢; 0) is given by (3). The solution of (10) yields

N(0)

c= By a = N(0)In(T/T,).

Therefore, although T, in reality corresponds to a
smooth crossover and not to a real second-order phase
transition, the effective action of composite fermions at
temperatures T' ~ T, formally resembles the Ginzburg—
Landau functional for the Grassmann field ¥,,.

If we want to rewrite the effective action with gra-
dient terms

C

AF = a0, _
“Fa a+2(mF+mB)

(Va)(VTa) +
1 - -
+§b‘11a\115‘115‘1’a (11)
in the form of the energy functional of a nonlinear
Schrédinger equation for the composite particle with

the mass mpg + mpg, we have to introduce the effective
order parameter

15 ZK3T®, Bem. 3(9)

Accordingly, in terms of A, the new coefficients @ and
b at the quadratic and quartic terms become
a

= b

a =
We note that the Grassmann field A, corresponds to
the composite fermions and is normalized by the con-
dition

AzAa = Ncomp-
Hence, the coefficient b plays the role of the effective
interaction between composite particles. From Eqs. (9)
and (10),
1

This result coincides by the absolute value with
the result in [14], but has the opposite sign. In [14],
the residual interaction between two composite bosons,
each consisting of two elementary fermions, was calcu-
lated in the two-dimensional case. The sign difference
between these two results is due to different statistics
of elementary particles in the two cases. It is also im-
portant to calculate b(g), where the momenta of the
incoming composite fermions are equal to (q, —q). It
is easy to find that

1 d*p
b(q) = —= —
(@) 2;/mwx
x {GB(p;iwnB)GF(P; —iwnr) X
x Gp(p + 4 iwnp)GF(P — 4; —iwnr) +
+ GB(p, _iwnB)GF (pa iwnF) X
X Gp(p — q; —iw,p)Gr(P + q;iwer)} . (12)
In the case of equal masses mp = mp = m, a straight-
forward calculation for small ¢ yields

m

b = _ . 13
D= =BT+ #lamp =
Accordingly,
~ 47
b= =~ — , 14
c? m(1+ ¢?/4m|E,|)?’ (14)
where
|E | — L
O a2

A similar result in the three-dimensional case was ob-
tained in [15]. Hence, the four-particle interaction has
a Yukawa form in momentum space. Therefore,

1 a 2r
U4(T) ~ —m gexp <—E>
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corresponds to an attractive potential with the inter-
action radius equal to a/2. We can now calculate the
binding energy |E4| of quartets. A straightforward cal-
culation, absolutely similar to the calculation of |Ej|
yields

3

- 2/a
b d
1:\|(mB+mF)/ ‘ qdq (s)
2 ¢>+ (mp + mp)|E4|
0
Hence,
|Eq| =
4
(16)

47

|bl(mp + mr)

)=

For equal masses mp = mp, the coupling constant

a?(mp +mp) {GXP <

b|(mp +mr) _1
47 2’
and therefore
2| Ey|
|Ey| = (G 3| Ep|. (17)

The dynamical equilibrium (composite fermion + com-
posite fermion = quartet) is again governed by the
Saha formula

2

ncomp m4T |E4‘
Zcomp _ M7 e 18
. 5 XDy T (s (18)
where mp + mp
M=y

The number of composite fermions is equal to half the
number of quartets, ny = ny/2, for the crossover tem-
perature

| B

T =
In(|E4]/2T5)

(19)
Below this temperature, the quartets of the type
(firbi; fj1b;) play the dominant role in the system. We
note that T*(f) > T,, and therefore quartets are domi-
nant over pairs (composite fermions) in the entire tem-
perature interval. We also note that the quartets are
in the spin-singlet state. The creation of spin-triplet
quartets is prohibited or at least strongly reduced by
the Pauli principle. The triplet p-wave pairs of compos-
ite fermions are possibly created in the strong-coupling
case |Ey| > W, where the corrections to the coefficient b
given by the diagrams in Fig. 2 are large and repulsive.
However small parameters are absent in this case, and
it is very difficult to control the diagram expansion.

738

N
(15
p1+4q

Fig.3. The exchange diagram for the three-particle

interaction

3. THREE-PARTICLE PROBLEM

If we consider the scattering process of an elemen-
tary fermion on a composite fermion, we obtain a re-
pulsive sign of the interaction regardless of the rela-
tive spin orientation of the composite and elementary
fermions. The same result in three dimensions for scat-
tering of an elementary fermion on a dimer consisting
of two fermions was obtained in [16]. However, for a
scattering process of an elementary boson on a com-
posite fermion, we obtain an attractive sign of the in-
teraction. Moreover, in the two-dimensional case, the
Fourier component of the three-particle interaction for
mp = mp = m is given by (see Fig. 3)

8&m

1
=-Gr(0,q) = Tt ga)

Us(q) p

(20)
where G (0,q) is the Green’s function of elementary
fermions and ¢ = N(0)/|Es|. Hence,

\/gexp(—r/a)7 (21)

which again corresponds to an attracting potential of
the Yukawa type, but now with the interaction range
equal to a. Calculation of the three-particle bound-
state energy yields

1
Us(r) ~ —wKo(T/a) ~

1

~N ——

ma?

_B0)
2
1/a
qdq
X . (22
0/q2/2m3+q2/2<m3+mF>+|E3 2
Hence, for mp = mp = m, we have
3 1
E = =
B dma? [exp (37 /m|Us|) — 1]
3| Eb|
= —— — =~ 1.65|F,|. (23
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We note that we are studying trios and quartets in the
zeroth-order exchange approximation. A more rigorous
solution of the three- and four-particle problems re-
quires analyzing the Skorniakov — Ter-Martirosian type
of equations [17]. This investigation will be the subject
of a separate publication. The dynamical equilibrium
of the type composite fermion 4+ boson 2 trio is gover-
ned by the Saha formula

NBMNcomp m3T ‘E3|
= —— 24
ooy _ 12 exp{ AL e

where mp(mp +mr)

ms = ————=,
2mp + mp

Accordingly, trios dominate over unbound bosons for
temperatures T < T*(f)., where

| B

7= 8
In(|E5|/2T0)

(25)

We note that T*(f) < T*(f), and therefore trios are not
so important as quartets.

As a result, there are mostly quartets in the system
for T < T*(f). The quartets are Bose-condensed at the
critical temperature

T,—__To
81nIn(4/na?)

in the case of equal masses. It is important to note
that in the Feshbach resonance scheme [4, 5, 18], we are
usually in the regime T ~ Ty, where quartets prevail
over trios and pairs. In this scheme, the particles are
first cooled to very low temperatures T' < Ty and only
then the sign of the scattering length is changed by a
magnetic field to support the formation of bound pairs.
We emphasize that in the restricted geometry of mag-
netic or optical dipole traps, our theory is valid under
the condition 7, > w, where w is the level spacing in
the trap. For a large number of particles N > 1 in the
two-dimensional trap, w ~ To/N'/? (w ~ Ty/N'/? in
three-dimensional traps), and this condition is there-
fore easily satisfied. We also note that octets are not
formed in the system because two quartets repel each
other due to the Pauli principle, in similarity with the
results in [14, 19].

4. CONCLUSIONS

We have considered the appearance and pairing of
composite fermions in a Fermi—Bose mixture with an
attractive interaction between fermions and bosons.

At equal densities of elementary fermions and
bosons, the system is described at low temperatures
by a one-component attractive Fermi gas for composite

fermions and is unstable with respect to the formation
of quartets.

The problem that we considered is important
for theoretical understanding of high-temperature su-
perconductive materials and for the investigation of
Fermi—Bose mixtures of neutral particles at low and
ultralow temperatures. In high-7,. superconductors,
quartets play the role of singlet superconductive pairs.
The radius of the quartets (the coherence length of the
superconducting pair) is governed by the binding en-
ergy |E4| of the quartets. If |E,| is larger that Tj, the
quartets are local: pra < 1. For

Ty
T,=—— 0
“ " 8lnln(4/na?)’

the local quartets are Bose-condensed and the system
becomes superconductive. We note that at higher tem-
peratures T > Tp, some amount of trios is also present
in the system in addition to the quartets. The role of
trios is usually neglected in the standard theories of
high-T, superconductivity.

We also note that we consider the low-density limit
|Ey| > Tp. In the opposite case of higher densities
To > |Ep|, Bose—Einstein condensation of bosons or
bibosons (see Refs. [11, 20] and [21]) occurs earlier than
the creation of composite fermions and quartets. Such
a state can be distinguished from the ordinary BCS-
superconductor by measuring the temperature depen-
dence of the specific heat and the normal density.

For Fermi-Bose mixtures, our investigations en-
rich superfluid phase diagram in magnetic and opti-
cal dipole traps and are important in connection with
recent experiments where weakly bound dimers ®Li,
and 49K, consisting of two elementary fermions, were
observed [22,23]. We note that in an optical dipole
trap, it is possible to obtain an attractive scattering
length for fermion—boson interaction with the help of
the Feshbach resonance [18]. We also note that even
in the absence of the Feshbach resonance, it is exper-
imentally possible now to create a Fermi—Bose mix-
ture with attractive interaction between fermions and
bosons. For example, in Refs. [24, 25], such a mixture of
87TRb (bosons) and “°K (fermions) was experimentally
studied. Moreover, the authors of Refs. [24,25] exper-
imentally observed the collapse of the Fermi gas with
a sudden disappearance of fermionic ‘°K atoms when
the system enters the degenerate regime. We cannot
exclude in principle that it is just a manifestation of
the creation of the (be; be) quartets in the system. We
note that in the regime of strong attraction between
fermions and bosons, phase separation with the cre-
ation of larger clusters or droplets is also possible. We

15%
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also note that much slower collapse in the Bose sub-
system of 8”Rb atoms can possibly be explained by the
fact that the number of Rb atoms in the trap is much
larger than the number of K atoms, and therefore af-
ter the formation of composite fermions, many residual
bosons are still present in the system. A more thorough
comparison of our results with an experimental situa-
tion will be the subject of a separate publication. Here,
we only mention that for the experiments performed in
Refs. [24,25], the three-dimensional case is more rele-
vant. In the three-dimensional case, the attractive in-
teraction between composite fermions acquires the form

TAeff

blg) = — ) 26
(a) mprll+ ¢*/2(mp + mp)|Ep] (26)
where > 1
‘ b‘ - 2mBFa2

is a shallow level of a fermion-boson bound state. We
note that in the case of a repulsive interaction between
two bosons (each of which consists of two fermions),
aefs = 2a in the mean-field theory in [19], acr = 0.75a
in the calculations in [15], and aep = 0.6a in the cal-
culations in [16]. The shallow bound state of quartets
exists in the three-dimensional case only if

mar > 3/2

— (27)
mp+mprg

aepp > 2ma <
For mp = mp = m, we have

Qepr > ma/4.
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