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UNIVERSALITY IN THE PARTIALLY ANISOTROPICTHREE-DIMENSIONAL ISING LATTICEM. A. Yurish
hev *Institute of Problems of Chemi
al Physi
s, Russian A
ademy of S
ien
es142432, Chernogolovka, Mos
ow Region, RussiaSubmitted 16 Mar
h 2004Using transfer-matrix extended phenomenologi
al renormalization-group methods, we study the 
riti
al prop-erties of the spin-1=2 Ising model on a simple-
ubi
 latti
e with partly anisotropi
 
oupling strengths~J = (J 0; J 0; J). The universality of both fundamental 
riti
al exponents yt and yh is 
on�rmed. It is shownthat the 
riti
al �nite-size s
aling amplitude ratios U = A�(4)A�=A2�, Y1 = A�00=A�, and Y2 = A�(4)=A�(4)are independent of the latti
e anisotropy parameter � = J 0=J . For the Y2 invariant of the three-dimensionalIsing universality 
lass, we give the �rst quantitative estimate Y2 � 2:013 (shape L�L�1, periodi
 boundary
onditions in both transverse dire
tions).PACS: 05.50.+q, 05.70.Jk, 64.60.Fr, 75.10.Hk1. INTRODUCTIONThe phenomenologi
al renormalization-group (RG)method in whi
h the transfer-matrix te
hnique and�nite-size s
aling (FSS) ideas are 
ombined is a power-ful tool for investigation of 
riti
al properties in di�er-ent two-dimensional systems [1, 2℄. Unfortunately, itsappli
ation in three and more dimensions is sharplyretarded due to huge sizes of the transfer matri
esarising in approximations of d-dimensional latti
es byLd�1 �1 subsystems.Indeed, even in the simplest 
ase of systems withonly two states of a site (the spin-1=2 Ising model), thesize of the transfer matrix in three dimensions (d = 3)in
reases as 2L2 (instead of the essentially more sparinglaw 2L in two dimensions). Hen
e, for the 3 � 3 �1
luster, the eigenproblem of the 512� 512 transfer ma-trix must be solved; for the 4� 4�1 subsystem, theproblem is for the 65 536� 65 536 matrix; and for the5� 5�1 
luster, it is required to �nd the eigenvaluesand eigenve
tors of dense matri
es with huge sizes of33 554 432 by 33 554 432.One 
an solve the full eigenproblem for the transfermatri
es of Ising parallelepipeds L � L �1 with theside length L � 4. Our aim in this paper is to use su
hsolutions with the maximum e�e
t and extra
t as mu
h*E-mail: yur�itp.a
.ru, yur�i
p.a
.ru

a

urate information about physi
al properties of thebulk system as possible.The ordinary phenomenologi
al RG is based on theFSS equations for 
orrelation lengths [1, 2℄. However,it is known [3�5℄ that the phenomenologi
al RG 
anbe built up using other quantities with a power diver-gen
e at the phase transition point. It is remarkablethat su
h modi�ed renormalizations 
an provide morepre
ise results with the same sizes of subsystems [6℄.In this paper, we 
al
ulate the values of di�erentinvariants of the 3D Ising universality 
lass and dis
usstheir universal and extrauniversal properties.2. BASIC EQUATIONSWe start from the ordinary FSS equations [1, 2℄ forthe inverse 
orrelation length �L(t; h) and the singularpart of the dimensionless free-energy density fsL(t; h),but we write them for the derivatives with respe
t tothe redu
ed temperature t = (T � T
)=T
 and the ex-ternal �eld h,�(m;n)L (t; h) = bmyt+nyh�1�(m;n)L=b (t0; h0) (1)and fs (m;n)L (t; h) = bmyt+nyh�dfs (m;n)L=b (t0; h0): (2)619
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hev ÆÝÒÔ, òîì 126, âûï. 3 (9), 2004Here, �(m;n)L (t; h) = �m+n�L�tm�hnand similarly for fs (m;n)L ; yt and yh are the thermaland magneti
 
riti
al exponents of the system, respe
-tively; and b = L=L0 is the res
aling fa
tor. In derivingEqs. (1) and (2), we used a linearized form of the RGequations t0 � bytt and h0 � byhh.In the traditional phenomenologi
al RG theory [1,2℄, Eq. (1) with m = n = 0 is 
onsidered as an RGmapping (t; h)! (t0; h0) for a 
luster pair (L;L0). The
riti
al temperature T
 is then estimated from the equa-tion L�L(T
) = L0�L0(T
): (3)The phenomenologi
al renormalization (t; h) !! (t0; h0) 
an also be realized by using any of rela-tions (1) and (2) or their 
ombination. It has beenshown by the author [6℄ that some of su
h extendedrenormalizations lead to more rapid 
onvergen
e in Lthan the standard phenomenologi
al RG transforma-tion. In parti
ular, test examples on the fully isotropi
systems [6℄ have shown that the relations�00LLd�1�L ����T
 = �00L0(L0)d�1�L0 ����T
 ; (4)�(4)LLd�2L �����T
 = �(4)L0(L0)d�2L0 �����T
 (5)lo
ate T
 more a

urately in 
omparison with the or-dinary RG equation (3). In relations (4) and (5),the derivative �00L = �2�L=�h2, the zero-�eld sus
ep-tibility �L = fs (0;2)L , and the nonlinear sus
eptibility�(4)L = fs (0;4)L 
an be evaluated by standard formulasvia the eigenvalues and eigenve
tors of transfer matri-
es (see, e.g., [7�9℄).To �nd the thermal 
riti
al exponent yt, we appliedtwo approa
hes. First, we again used the standard�nite-size expressionyt = ln[L _�L=(L0 _�L0)℄ln(L=L0) ; (6)whi
h follows from Eq. (1) with m = 1, n = 0;_�L = ��L=�t. Se
ond, we took the formulayt = �L0 _�L � �L _�L0(�L�L0 _�L _�L0)1=2 ln(L=L0) : (7)This expression is a dire
t 
onsequen
e of the well-known Roomany�Wyld approximant to the Callan�Symanzik �-fun
tion [2℄.

To 
al
ulate the magneti
 
riti
al exponent yh, wealso used two ways,yh = d2 + ln(�L=�L0)2 ln(L=L0) (8)and yh = 12 + ln(�00L=�00L0)2 ln(L=L0) (9)(these �nite-size relations follow from Eqs. (1) and (2)).In addition, we 
al
ulated the universal ratios ofthe 
riti
al FSS amplitudes. Ratios of this type 
an beidenti�ed from the Privman�Fisher fun
tional expres-sions [10℄. For the dis
ussed anisotropi
 systems, theyare given by [8℄�L(t; h) = L�1G0K(C1tLyt ; C2hLyh); (10)fsL(t; h) = L�dG0F(C1tLyt ; C2hLyh): (11)The s
aling fun
tions K(x1; x2) and F(x1; x2) are thesame within the limits of a given universality 
lass,but they may depend on the boundary 
onditions andthe subsystem shape (a 
ube, in�nitely long paral-lelepipeds, et
.). Thus, all nonuniversality, in
ludingthe latti
e anisotropy parameter �, is absorbed in thegeometry prefa
tor G0 and metri
 
oe�
ients C1 andC2. The 
riti
al amplitude ratios from whi
h the pa-rameters G0, C1, and C2 drop out should be extrauni-versal. In parti
ular, the amplitude 
ombinationsU = A�(4)A�A2� = �L�(4)LLd�1�2L (12)(a Binder-like ratio for the spatially anisotropi
 sys-tems), Y1 = A�00A� = �00LLd�1�L ; (13)Y2 = A�(4)A�(4) = �(4)LLd�1�(4)L (14)are expe
ted to be independent of the latti
e anisotropyparameter � = J 0=J .3. RESULTS AND DISCUSSIONWe have 
arried out 
al
ulations for the subsystemsL � L �1 with L = 3, 4. To avoid undesirable sur-fa
e e�e
ts, the periodi
 boundary 
onditions were im-posed in both transverse dire
tions of parallelepipedsL � L � 1. Thus, the transfer matri
es for whi
h620
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 : : :the eigenproblem was solved were dense matri
es ofsizes up to 65 536� 65 536. To solve the eigenproblem,we took the internal and latti
e symmetries of subsys-tems into a

ount and used the blo
k-diagonalizationmethod (see, e.g., [7; 9℄). Cal
ulations were performedon an 800 MHz Pentium III PC running the FreeBSDoperating system.3.1. Criti
al temperatureThe 
riti
al temperature estimates 
oming from so-lutions of trans
endental equations (4) and (5) are 
ol-le
ted in Table 1.In the purely isotropi
 
ase (J 0 = J), there arehigh-pre
ision numeri
al estimates for the 
riti
al pointof the three-dimensional Ising model. The most pre-
ise values for it have been obtained by Monte Carlosimulations [11, 12℄: K
 = 0:221 654 59(10), i.e.,kBT
=J = 1=K
 = 4:511 5240(21).Inspe
ting Table 1, one 
an see that the estimatesfor J 0 = J that follow from Eq. (4) and (5) arethe lower and upper bounds respe
tively. Therefore,their mean value has the a

ura
y of 0.01%. Wealso note that our mean estimate is better than thevalue kBT
=J = 4:533 71 obtained in Ref. [13℄ (seealso [14℄) for the fully isotropi
 latti
e using the or-dinary phenomenologi
al renormalization of the barswith L = 4; 5.We now dis
uss the anisotropi
 
ase. Here, there isthe well-known exa
t asymptoti
 formula for the 
riti-
al temperature [15℄,�kBT
J �asym = 2ln(J=2J 0)� ln ln(J=2J 0)+O(1) (15)Table 1. Lower and upper bounds on the 
riti-
al temperature and their mean values (improved es-timates of kBT
=J) in the three-dimensional simple-
ubi
 spin-1/2 Ising latti
e vs � = J 0=J . Cal
ulationswith a 
luster pair (3; 4)� Eq. (4) Eq. (5) mean1.0 4.47965814 4.54424309 4.511950620.5 2.91008665 2.94295713 2.926521890.1 1.33649605 1.34570054 1.341098290.05 1.03544938 1.04144927 1.038449330.01 0.65054054 0.65323146 0.651886000.005 0.55440490 0.55643112 0.555418010.001 0.40743000 0.40859011 0.40801006

as J 0=J ! 0. It is a dire
t 
onsequen
e of themole
ular-�eld approximation in whi
h the linear Ising
hain is taken as a 
luster.Unfortunately, simple formula (15) yields 
onsider-able errors in the region 10�3 � J 0=J � 1. Its modi�-
ations in the spirit of Ref. [16℄,kBT
J � 2ln(J=J 0)� ln ln(J=J 0) ;lead to a loss of monotoni
 
onvergen
e as J 0=J variesfrom unity to zero.We 
hoose in�nitely long 
lusters L � L � 1stret
hed in a latti
e dire
tion with the dominant in-tera
tion J . Su
h a 
luster geometry re�e
ts the phys-i
al situation in the system. We may therefore ex-pe
t more pre
ise results for the 
riti
al temperatureas the anisotropy of the quasi-one-dimensional latti
ein
reases. We may also expe
t a monotoni
 
onver-gen
e for the estimates in Eq. (4) and (5) be
ause theremust be physi
al reasons (�nite length of 
lusters in thelongitudinal dire
tion, et
.) for a nonmonotoni
 or os-
illatory 
hara
ter of behavior; they are absent in ourapproximations. That is, if Eq. (4) yields the lowerbound in the most unfavorable 
ase J 0 = J , then itshould preserve su
h behavior for all J 0 < J . Similararguments are valid for the estimates following fromEq. (5); these estimates are upper.We note that the mean values in Table 1 are notonly better than the estimates of kBT
=J 
al
ulatedwith the (3; 4) 
luster pair by the standard phenomeno-logi
al RG method, but also better than their improve-ments found by means of three-point extrapolationsfrom the sizes L = 2, 3, 4 to the bulk limit [17℄.In the range 10�2 � J 0=J � 1, there are also thedata for the 
riti
al temperature of a simple-
ubi
 Isinglatti
e that were extra
ted from the Padé-approximantanalysis of the high-temperature series [18℄. For J 0 = J ,a

ording to these data, kBT
=J = 4:5106, whi
h islower by 0.014% in 
omparison with the results inRef. [12℄. For J 0=J = 0:1, the authors of Ref. [18℄found the value kBT
=J = 1:343. This quantity some-what overestimates the mean value in Table 1. Fi-nally, for J 0=J = 0:01, the series method [18℄ yieldskBT
=J = 0:65, whi
h goes out of our lower bound.This is not surprising be
ause the 
al
ulations basedon the high-temperature series rapidly deteriorate ow-ing to the very limited number (� 11) of terms availablein su
h series for the anisotropi
 latti
es.Therefore, we may treat the values found fromEqs. (4) and (5) as lower and upper bounds on the real
riti
al temperature. Their mean value for ea
h J 0=Jyields the best estimate that we a
hieve in this paper621



M. A. Yurish
hev ÆÝÒÔ, òîì 126, âûï. 3 (9), 2004Table 2. Estimates of the thermal and magneti
 
riti
al exponents for di�erent values of � = J 0=J . Cal
ulations witha 
luster pair (3; 4)yt yh� kBT
=J Eq. (6) Eq. (7) Eq. (8) Eq. (9)1.0 4.51195062 1.5760695 1.7246286 2.5971647 2.58861280.5 2.92652189 1.5256373 1.6636718 2.5902006 2.58194620.1 1.34109829 1.4700811 1.5972576 2.5843305 2.57665110.05 1.03844933 1.4533899 1.5791439 2.5836720 2.57611010.01 0.65188600 1.4236178 1.5480583 2.5832982 2.57580280.005 0.55541801 1.4141719 1.5383503 2.5832029 2.57578880.001 0.40801006 1.3984754 1.5222765 2.5834573 2.57579531.47{6} 1.60{7} 2.586{5} 2.579{5}for the redu
ed 
riti
al temperature kBT
=J (the last
olumn in Table 1). Hen
e, its absolute error is notlarger in any 
ase than half the di�eren
e of the 
orre-sponding upper and lower bounds. Using the data inTable 1, we establish that the relative errors for kBT
=Jmonotoni
ally de
rease from 0.72% to 0.14% as J 0=Jgoes from 1 to 10�3.3.2. Invariants of the three-dimensional Isinguniversality 
lassWith the improved estimates for the 
riti
al tem-perature of an anisotropi
 simple-
ubi
 latti
e, we now
al
ulate some invariants of the three-dimensional Isingmodel universality 
lass.3.2.1. Criti
al exponentsA

ording to the RG theory, 
riti
al exponents aredetermined entirely by a �xed point and do not dependon the latti
e anisotropy. For a three-dimensional Isingmodel, the universality of 
riti
al exponents has been
on�rmed for � 2 [0:2; 5℄ by the high-temperature se-ries 
al
ulations [19℄.At present, the most pre
ise estimates of 
riti
alexponents are provided by the high-temperature ex-pansions for ordinary models [20℄ and for models withimproved potentials 
hara
terized by suppressed lead-ing s
aling 
orre
tions [21℄. For the three-dimensional(fully isotropi
) Ising latti
e, these methods yield � == 0:63012(16) and 
 = 1:2373(2). Hen
e, yt = 1=� == 1:5870(4) and yh = (d+ 
=�)=2 = 2:48180(18).In Table 2, we report our estimates for the 
riti-
al exponents yt and yh. It follows from those datathat as the latti
e anisotropy parameter � varies by

three orders (from unity to 10�3), the estimates of 
rit-i
al exponents are 
hanged only by a few per 
ent orless. In parti
ular, 
al
ulations via Eqs. (6) and (7)with the 
luster pair (3; 4) yield yt = 1:47f6g andyt = 1:60f7g respe
tively. (Here and below, the num-bers in 
urly bra
kets are dispersions of averages overthe latti
e anisotropy parameter �.) Their variationsare in the range 4�4.4%. Similar 
al
ulations of themagneti
 
riti
al exponent performed with Eqs. (8)and (9), also with the pair (3; 4), lead to yh = 2:586f5gand yh = 2:579f5g, 
orrespondingly. Relative disper-sions of these estimates are about 0.2%.Thus, our 
al
ulations 
on�rm the universality ofboth 
riti
al exponents in an essentially wider range of� than in earlier investigations. Systemati
 errors ofthe a
hieved estimates arise due to small sizes L of thesubsystems used.3.2.2. Criti
al FSS amplitude ratiosCriti
al amplitudes are determined by s
aling fun
-tions. As a result, their �universal ratios� likeA�(4)A�(4) = K(0;4)(0; 0)F (0;4)(0; 0)depend, generally speaking, on the latti
e anisotropybe
ause it 
an 
hange the shape of subsystems. But inthe 
ase of parallelepipeds Ld�1 �1 with un
hanged(between themselves) transverse 
oupling 
onstants,the shape of a sample (all its aspe
t ratios) is inde-pendent of the intera
tion in the longitudinal dire
tion.Su
h a kind of universality is studied here.Table 3 
ontains results of our 
al
ulations forthe 
riti
al FSS amplitude ratios U = A�(4)A�=A2�,622
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 : : :Table 3. Estimates of the universal 
riti
al FSS amplitude ratios U = A�(4)A�=A2�, Y1 = A�(2)=A�, andY2 = A�(4)=A�(4) for the Ising system with the 
ylindri
al geometry L � L � 1 and periodi
 boundary 
onditions.Data for L = 4� kBT
=J U Y1 Y21.0 4.51195062 4.8956599 1.7550004 2.01464430.5 2.92652189 4.8967625 1.7572512 2.01365190.1 1.34109829 4.9011909 1.7596003 2.01298290.05 1.03844933 4.9014406 1.7597697 2.01292850.01 0.65188600 4.9015375 1.7598563 2.01289770.005 0.55541801 4.9015529 1.7598646 2.01289530.001 0.40801006 4.9015782 1.7598732 2.01289384.900{3} 1.759{2} 2.0133{6}Y1 = A�00=A�, and Y2 = A�(4)=A�(4) . Cal
ulationshave been performed for � 2 [10�3; 1℄ using a 
y
li

luster 4� 4�1.In a

ordan
e with the data in Table 3, the averageratio U = 4:900f3g. Hen
e, as the anisotropy parame-ter � varies by three orders, this quantity 
hanges onlyby 0.06%. With su
h a

ura
y, we may 
onsider thegiven ratio a 
onstant. In the 
ase of a fully isotropi
latti
e, A� = 1:26(5) and A�(4)=A2� = 3:9(2) [8℄, andtherefore A�(4)A�=A2� = 4:9(5). Our values of U inTable 3 are in good agreement with this estimate.It follows from Table 3 that Y1 = A�00=A� = 1:759(2).Hen
e, the 
onstan
y of this universal amplitude ratiois estimated at least as a few times 10�3. Our averagevalue for Y1 agrees well with the estimate for theisotropi
 latti
e, A�00=A� = 1:749(6) [8℄.A

ording to the data in Table 3, the amplituderatio Y2 = A�(4)=A�(4) = 2:0133f6g. This quantity istherefore most stable of all the invariants of the three-dimensional Ising universality 
lass that were investi-gated in this paper. We note that we are not aware ofany quantitative estimates for A�(4)=A�(4) .4. CONCLUSIONSIn this paper, the large-s
ale transfer-matrix 
om-putations have been performed. Appli
ation of theextended phenomenologi
al RG s
hemes has allowed�nding tight bounds on the 
riti
al temperature in theanisotropi
 simple-
ubi
 Ising latti
e and improving theavailable estimates for it.We 
al
ulated the thermal and magneti
 
riti
al ex-ponents. Our results 
on�rm the universality of yt

within 4�4.4% and of yh within 0.2% over a remarkablywider range of � (10�3 � � � 1) than in Ref. [19℄.Finally, the presented results give 
lear ev-iden
e that the 
riti
al FSS amplitude ratiosU = A�(4)A�=A2�, Y1 = A�00=A�, and Y2 = A�(4)=A�(4)are independent of the latti
e anisotropy parameter� = J 0=J with a

ura
ies at least 0.1%. Probably forthe �rst time in the literature, we give an estimate forthe universal quantity Y2.This work was supported by the RFBR (grants�� 03-02-16909 and 04-03-32528).REFERENCES1. P. Nightingale, J. Appl. Phys. 53, 7927 (1982).2. M. N. Barber, in Phase Transitions and Criti
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