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Using transfer-matrix extended phenomenological renormalization-group methods, we study the critical prop-
erties of the spin-1/2 Ising model on a simple-cubic lattice with partly anisotropic coupling strengths
J = (J',J',J). The universality of both fundamental critical exponents y; and vy, is confirmed. It is shown

that the critical finite-size scaling amplitude ratios U = A4 () A /AL YL = A /Ay, and Y

A /A @

are independent of the lattice anisotropy parameter A = .J'/.J. For the Y> invariant of the three-dimensional
Ising universality class, we give the first quantitative estimate Y2 & 2.013 (shape L x L x oo, periodic boundary

conditions in both transverse directions).
PACS: 05.50.+q, 05.70.Jk, 64.60.Fr, 75.10.Hk

1. INTRODUCTION

The phenomenological renormalization-group (RG)
method in which the transfer-matrix technique and
finite-size scaling (FSS) ideas are combined is a power-
ful tool for investigation of critical properties in differ-
ent two-dimensional systems [1, 2]. Unfortunately, its
application in three and more dimensions is sharply
retarded due to huge sizes of the transfer matrices
arising in approximations of d-dimensional lattices by
L4~ x 00 subsystems.

Indeed, even in the simplest case of systems with
only two states of a site (the spin-1/2 Ising model), the
size of the transfer matrix in three dimensions (d = 3)
increases as 2°° (instead of the essentially more sparing
law 2% in two dimensions). Hence, for the 3 x 3 x oo
cluster, the eigenproblem of the 512 x 512 transfer ma-
trix must be solved; for the 4 x 4 x oo subsystem, the
problem is for the 65536 x 65536 matrix; and for the
5 X 5 x 0o cluster, it is required to find the eigenvalues
and eigenvectors of dense matrices with huge sizes of
33554432 by 33554 432.

One can solve the full eigenproblem for the transfer
matrices of Ising parallelepipeds L x L x oo with the
side length L < 4. Our aim in this paper is to use such
solutions with the maximum effect and extract as much
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accurate information about physical properties of the
bulk system as possible.

The ordinary phenomenological RG is based on the
FSS equations for correlation lengths [1, 2]. However,
it is known [3-5] that the phenomenological RG can
be built up using other quantities with a power diver-
gence at the phase transition point. It is remarkable
that such modified renormalizations can provide more
precise results with the same sizes of subsystems [6].

In this paper, we calculate the values of different
invariants of the 3D Ising universality class and discuss
their universal and extrauniversal properties.

2. BASIC EQUATIONS

We start from the ordinary FSS equations [1, 2] for
the inverse correlation length k7, (¢, h) and the singular
part of the dimensionless free-energy density f; (¢, h),
but we write them for the derivatives with respect to
the reduced temperature t = (T — T,)/T,. and the ex-
ternal field A,

R (8, h) = ek =L ¢ )

(1)
and

£70 (8, ) = pvecknn=d g G g (2)
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Here,
am+nh:L

Atmohn
and similarly for fz(m’ : y¢ and yp are the thermal
and magnetic critical exponents of the system, respec-
tively; and b = L/L' is the rescaling factor. In deriving
Eqgs. (1) and (2), we used a linearized form of the RG
equations t' ~ b¥'t and h' ~ b¥" h.

In the traditional phenomenological RG theory [1,
2], Eq. (1) with m = n = 0 is considered as an RG
mapping (t,h) — (¢',h') for a cluster pair (L, L"). The
critical temperature 7, is then estimated from the equa-
tion

K(Lm,n)

(t,h) =

n)

LI{L(TC) = L’IiLr(Tc). (3)

The phenomenological renormalization (t,h) —
— (t',h') can also be realized by using any of rela-
tions (1) and (2) or their combination. It has been
shown by the author [6] that some of such extended
renormalizations lead to more rapid convergence in L
than the standard phenomenological RG transforma-
tion. In particular, test examples on the fully isotropic
systems [6] have shown that the relations

k! K
v sl Bl i = ol I (4)
L XL T, (L ) XL' |1,
X(L4) _ X(L4’) (5)
rh|, ~ @,

locate T, more accurately in comparison with the or-
dinary RG equation (3). In relations (4) and (5),
the derivative x// = 9%k /Oh?, the zero-field suscep-
tibility xr = fz(w), and the nonlinear susceptibility
X(L4) = fz(OA) can be evaluated by standard formulas
via the eigenvalues and eigenvectors of transfer matri-
ces (see, e.g., [7-9]).

To find the thermal critical exponent y;, we applied
two approaches. First, we again used the standard
finite-size expression

In[Lin /(Lep)]
STy

which follows from Eq. (1) with m 1
k1 = 0k /Ot. Second, we took the formula

_ IiLrI'iL — h:Ll'iLr
(KJLKJL/I%}LI%}L/)U2 ln(L/L’)

(7)

This expression is a direct consequence of the well-
known Roomany—Wyld approximant to the Callan—
Symanzik S-function [2].
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To calculate the magnetic critical exponent y;, we
also used two ways,

_d In(xz/xz")
R YT HI7) (®)
and
1 In(k}/KY}))

Y= T (L)L) ()
(these finite-size relations follow from Eqs. (1) and (2)).

In addition, we calculated the universal ratios of
the critical FSS amplitudes. Ratios of this type can be
identified from the Privman—Fisher functional expres-
sions [10]. For the discussed anisotropic systems, they
are given by [8]

kr(t,h) = L7 ' GoK(CytLY, Coah L) (10)

3

fi(t,h) = LG F(CtLY, CohL¥™).  (11)

The scaling functions K(x1,22) and F(x1,22) are the
same within the limits of a given universality class,
but they may depend on the boundary conditions and
the subsystem shape (a cube, infinitely long paral-
lelepipeds, etc.). Thus, all nonuniversality, including
the lattice anisotropy parameter A, is absorbed in the
geometry prefactor GGo and metric coefficients Cy and
Cs. The critical amplitude ratios from which the pa-
rameters Go, Cp, and Cy drop out should be extrauni-
versal. In particular, the amplitude combinations
_ RLX(L4)

Ld—lx%

Ay Ax
A3

U= (12)

(a Binder-like ratio for the spatially anisotropic sys-
tems),

K h}’lI/

V) = = , 13
AX Ldﬁle ( )
A (4)

vy = e = ML (14)

AX(4) N Ld_lX(L4)

are expected to be independent of the lattice anisotropy
parameter A = .J'/.J.

3. RESULTS AND DISCUSSION

We have carried out calculations for the subsystems
L x L x oo with L = 3, 4. To avoid undesirable sur-
face effects, the periodic boundary conditions were im-
posed in both transverse directions of parallelepipeds
L x L x oo. Thus, the transfer matrices for which
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the eigenproblem was solved were dense matrices of
sizes up to 65536 x 65 536. To solve the eigenproblem,
we took the internal and lattice symmetries of subsys-
tems into account and used the block-diagonalization
method (see, e.g., [7,9]). Calculations were performed
on an 800 MHz Pentium III PC running the FreeBSD
operating system.

3.1. Critical temperature

The critical temperature estimates coming from so-
lutions of transcendental equations (4) and (5) are col-
lected in Table 1.

In the purely isotropic case (J' J), there are
high-precision numerical estimates for the critical point
of the three-dimensional Ising model. The most pre-
cise values for it have been obtained by Monte Carlo
simulations [11, 12]: K, = 0.22165459(10), i.e.,
kpT./J =1/K,. = 4.5115240(21).

Inspecting Table 1, one can see that the estimates
for J' J that follow from Eq. (4) and (5) are
the lower and upper bounds respectively. Therefore,
their mean value has the accuracy of 0.01%. We
also note that our mean estimate is better than the
value kpT./J = 4.53371 obtained in Ref. [13] (see
also [14]) for the fully isotropic lattice using the or-
dinary phenomenological renormalization of the bars
with L =4, 5.

We now discuss the anisotropic case. Here, there is
the well-known exact asymptotic formula for the criti-
cal temperature [15],

kT, _ 2 (15)
I ) wsym  0(J/2J")=InIn(J/2J")+0(1)
Table 1. Lower and upper bounds on the criti-

cal temperature and their mean values (improved es-

timates of kgT./.J) in the three-dimensional simple-

cubic spin-1/2 Ising lattice vs A = J'/.J. Calculations
with a cluster pair (3,4)

A Eq. (4) Eq. (5) mean
1.0 4.47965814 | 4.54424309 | 4.51195062
0.5 2.91008665 | 2.94295713 | 2.92652189
0.1 1.33649605 | 1.34570054 | 1.34109829
0.05 1.03544938 | 1.04144927 | 1.03844933
0.01 0.65054054 | 0.65323146 | 0.65188600
0.005 | 0.55440490 | 0.55643112 | 0.55541801
0.001 | 0.40743000 | 0.40859011 | 0.40801006
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as J'/J — 0. It is a direct consequence of the
molecular-field approximation in which the linear Ising
chain is taken as a cluster.

Unfortunately, simple formula (15) yields consider-
able errors in the region 1073 < J'/J < 1. Its modifi-
cations in the spirit of Ref. [16],

keT. _ 2
J " In(J/J) —Inln(J/J")’

lead to a loss of monotonic convergence as .J'/.J varies
from unity to zero.

We choose infinitely long clusters L x L X oo
stretched in a lattice direction with the dominant in-
teraction .J. Such a cluster geometry reflects the phys-
ical situation in the system. We may therefore ex-
pect more precise results for the critical temperature
as the anisotropy of the quasi-one-dimensional lattice
increases. We may also expect a monotonic conver-
gence for the estimates in Eq. (4) and (5) because there
must be physical reasons (finite length of clusters in the
longitudinal direction, etc.) for a nonmonotonic or os-
cillatory character of behavior; they are absent in our
approximations. That is, if Eq. (4) yields the lower
bound in the most unfavorable case .J' = .J, then it
should preserve such behavior for all J' < J. Similar
arguments are valid for the estimates following from
Eq. (5); these estimates are upper.

We note that the mean values in Table 1 are not
only better than the estimates of kgT./J calculated
with the (3,4) cluster pair by the standard phenomeno-
logical RG method, but also better than their improve-
ments found by means of three-point extrapolations
from the sizes L = 2, 3, 4 to the bulk limit [17].

In the range 1072 < J'/J < 1, there are also the
data for the critical temperature of a simple-cubic Ising
lattice that were extracted from the Padé-approximant
analysis of the high-temperature series [18]. For J' = J,
according to these data, kpT./J = 4.5106, which is
lower by 0.014% in comparison with the results in
Ref. [12]. For J'/J = 0.1, the authors of Ref. [1§]
found the value kgT,/.J = 1.343. This quantity some-
what overestimates the mean value in Table 1. Fi-
nally, for J'/J = 0.01, the series method [18] yields
kpT./J = 0.65, which goes out of our lower bound.
This is not surprising because the calculations based
on the high-temperature series rapidly deteriorate ow-
ing to the very limited number (< 11) of terms available
in such series for the anisotropic lattices.

Therefore, we may treat the values found from
Eqs. (4) and (5) as lower and upper bounds on the real
critical temperature. Their mean value for each J'/.J
yields the best estimate that we achieve in this paper
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Table 2.  Estimates of the thermal and magnetic critical exponents for different values of A = .J'/J. Calculations with
a cluster pair (3,4)
Yt Yn
A kpT./J Eq. (6) Eq. (7) Eq. (8) Eq. (9)

1.0 4.51195062 1.5760695 1.7246286 2.5971647 2.5886128
0.5 2.92652189 1.5256373 1.6636718 2.5902006 2.5819462
0.1 1.34109829 1.4700811 1.5972576 2.5843305 2.5766511
0.05 1.03844933 1.4533899 1.5791439 2.5836720 2.5761101
0.01 0.65188600 1.4236178 1.5480583 2.5832982 2.5758028
0.005 0.55541801 1.4141719 1.5383503 2.5832029 2.5757888
0.001 0.40801006 1.3984754 1.5222765 2.5834573 2.5757953

1.47{6} 1.60{7} 2.586{5} 2.579{5}

for the reduced critical temperature kgT./.J (the last
column in Table 1). Hence, its absolute error is not
larger in any case than half the difference of the corre-
sponding upper and lower bounds. Using the data in
Table 1, we establish that the relative errors for kpT,/.J
monotonically decrease from 0.72% to 0.14% as J'/.J
goes from 1 to 1073,

3.2. Invariants of the three-dimensional Ising
universality class

With the improved estimates for the critical tem-
perature of an anisotropic simple-cubic lattice, we now
calculate some invariants of the three-dimensional Ising
model universality class.

3.2.1. Critical exponents

According to the RG theory, critical exponents are
determined entirely by a fixed point and do not depend
on the lattice anisotropy. For a three-dimensional Ising
model, the universality of critical exponents has been
confirmed for A € [0.2,5] by the high-temperature se-
ries calculations [19].

At present, the most precise estimates of critical
exponents are provided by the high-temperature ex-
pansions for ordinary models [20] and for models with
improved potentials characterized by suppressed lead-
ing scaling corrections [21]. For the three-dimensional
(fully isotropic) Ising lattice, these methods yield v =
= 0.63012(16) and v = 1.2373(2). Hence, y; = 1/v =
= 1.5870(4) and y, = (d + v/v)/2 = 2.48180(18).

In Table 2, we report our estimates for the criti-
cal exponents y; and yp,. It follows from those data
that as the lattice anisotropy parameter A varies by
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three orders (from unity to 107%), the estimates of crit-
ical exponents are changed only by a few per cent or
less. In particular, calculations via Eqs. (6) and (7)
with the cluster pair (3,4) yield y; = 1.47{6} and
yr = 1.60{7} respectively. (Here and below, the num-
bers in curly brackets are dispersions of averages over
the lattice anisotropy parameter A.) Their variations
are in the range 4-4.4%. Similar calculations of the
magnetic critical exponent performed with Eqs. (8)
and (9), also with the pair (3,4), lead to y, = 2.586{5}
and y, = 2.579{5}, correspondingly. Relative disper-
sions of these estimates are about 0.2 %.

Thus, our calculations confirm the universality of
both critical exponents in an essentially wider range of
A than in earlier investigations. Systematic errors of
the achieved estimates arise due to small sizes L of the
subsystems used.

3.2.2. Critical FSS amplitude ratios

Critical amplitudes are determined by scaling func-
tions. As a result, their «universal ratios» like

Ag@
Ay

~ K©4(0,0)
— F0.9(0,0)

depend, generally speaking, on the lattice anisotropy
because it can change the shape of subsystems. But in
the case of parallelepipeds L4~ x oo with unchanged
(between themselves) transverse coupling constants,
the shape of a sample (all its aspect ratios) is inde-
pendent of the interaction in the longitudinal direction.
Such a kind of universality is studied here.

Table 3 contains results of our calculations for
the critical FSS amplitude ratios U = A, A,Q/Ai.,
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Table 3.

Estimates of the universal critical FSS amplitude ratios U = AX(4)A~/A3<, Y1 = A2 /Ay, and

Y2 = A, /A @ for the Ising system with the cylindrical geometry L x L x oo and periodic boundary conditions.

Data for L = 4
A kpT,)J U Vi Ys

1.0 4.51195062 4.8956599 1.7550004 2.0146443
0.5 2.92652189 4.8967625 1.7572512 2.0136519
0.1 1.34109829 4.9011909 1.7596003 2.0129829
0.05 1.03844933 4.9014406 1.7597697 2.0129285
0.01 0.65188600 4.9015375 1.7598563 2.0128977
0.005 0.55541801 4.9015529 1.7598646 2.0128953
0.001 0.40801006 4.9015782 1.7598732 2.0128938

4.900{3} 1.759{2} 2.0133{6}

Yi = Ay /Ay, and Yo = A, /A . Calculations  within 4-4.4 % and of y within 0.2 % over a remarkably

have been performed for A € [1072%,1] using a cyclic
cluster 4 x 4 x oc.

In accordance with the data in Table 3, the average
ratio U = 4.900{3}. Hence, as the anisotropy parame-
ter A varies by three orders, this quantity changes only
by 0.06 %. With such accuracy, we may consider the
given ratio a constant. In the case of a fully isotropic
lattice, Ax = 1.26(5) and A, ) /A = 3.9(2) [8], and
therefore A ) A./A7 = 4.9(5). Our values of U in
Table 3 are in good agreement with this estimate.

It follows from Table 3 that Y7 = A, /A, = 1.759(2).

Hence, the constancy of this universal amplitude ratio
is estimated at least as a few times 1072, Our average
value for Y; agrees well with the estimate for the
isotropic lattice, A, /A, = 1.749(6) [8].

According to the data in Table 3, the amplitude
ratio Yo = A, /Ay = 2.0133{6}. This quantity is
therefore most stable of all the invariants of the three-
dimensional Ising universality class that were investi-
gated in this paper. We note that we are not aware of
any quantitative estimates for A, () /AX(4).

4. CONCLUSIONS

In this paper, the large-scale transfer-matrix com-
putations have been performed. Application of the
extended phenomenological RG schemes has allowed
finding tight bounds on the critical temperature in the
anisotropic simple-cubic Ising lattice and improving the
available estimates for it.

We calculated the thermal and magnetic critical ex-
ponents. OQur results confirm the universality of
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wider range of A (1073 < A < 1) than in Ref. [19].

Finally, the presented results give clear ev-
idence that the critical FSS amplitude ratios
U= AX(4) AN/Ai, Yl = A,{H /AX7 and Y2 = An(4) /AX(4)
are independent of the lattice anisotropy parameter
A = J'/J with accuracies at least 0.1 %. Probably for
the first time in the literature, we give an estimate for
the universal quantity Y5.

This work was supported by the RFBR (grants
NeNe 03-02-16909 and 04-03-32528).
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