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SPECTRUM OF QUANTIZED BLACK HOLE, CORRESPONDENCEPRINCIPLE, AND HOLOGRAPHIC BOUNDI. B. Khriplovi
h *Budker Institute of Nu
lear Physi
s630090, Novosibirsk, Russia,Novosibirsk University 630090, Novosibirsk, RussiaSubmitted 19 April 2004An equidistant spe
trum of the horizon area of a quantized bla
k hole does not follow from the 
orresponden
eprin
iple or from general statisti
al arguments. On the other hand, su
h a spe
trum obtained in loop quantumgravity (LQG) either does not 
omply with the holographi
 bound or requires a spe
ial 
hoi
e of the Barbero�Immirzi parameter for the horizon surfa
e, distin
t from its value for other quantized surfa
es. The problem ofdistinguishability of edges in LQG is dis
ussed, with the following 
on
lusion. Only under the assumption ofpartial distinguishability of the edges, the mi
ro
anoni
al entropy of a bla
k hole 
an be made both proportionalto the horizon area and satisfying the holographi
 bound.PACS: 04.60.-m, 04.70.-s, 04.70.Dy1. The idea of quantizing the horizon area of bla
kholes was put forward many years ago by Bekenstein inthe pioneering arti
le [1℄. It was based on the intriguingobservation, made by Christodoulou and Ru�ni [2, 3℄:the horizon area of a nonextremal bla
k hole behaves ina sense as an adiabati
 invariant. Of 
ourse, the quan-tization of an adiabati
 invariant is perfe
tly natural,in a

ordan
e with the 
orresponden
e prin
iple.One more 
onje
ture made in [1℄ is that the spe
-trum of a quantized horizon area is equidistant. Theargument therein was that a periodi
 system is quan-tized by equating its adiabati
 invariant to 2�~n,n = 0; 1; 2; : : : .Later, it was pointed out by Bekenstein [4℄ that the
lassi
al adiabati
 invarian
e does not by itself guaran-tee the equidistan
e of the spe
trum, at least be
auseany fun
tion of an adiabati
 invariant is itself an adia-bati
 invariant. But up to now, arti
les on the subje
tabound in assertions that the formA = � l2pn; n = 1; 2; : : : ; (1)*E-mail: khriplovi
h�inp.nsk.su

for the horizon area spe
trum1) is di
tated by the re-spe
table 
orresponden
e prin
iple. The list of thesereferen
es is too long to be presented here.We 
onsider an instru
tive example of the situationwhere a nonequidistant spe
trum arises in spite of the
lassi
al adiabati
 invarian
e. We start with a 
lassi
alspheri
al top of an angular momentum J. Of 
ourse,the z-proje
tion Jz of J is an adiabati
 invariant. If thez axis is 
hosen along J, the value of Jz is maximum,J , or ~j in the quantum 
ase. The 
lassi
al angularmomentum squared J2 is also an adiabati
 invariant,with the eigenvalues ~2j(j + 1) when quantized. Wenow try to use the operator Ĵ2 for the area quantiza-tion in quite natural units of l2p. For the horizon areaA to be �nite in the 
lassi
al limit, the power of thequantum number j in the result for j � 1 should bethe same as that of ~ in l2p [5℄. With l2p � ~, we thusarrive at A � l2ppj(j + 1):Be
ause pj(j + 1)! j + 1=2 for j � 1;1) Here and below, l2p = ~k=
3 is the Plan
k length squared,lp = 1:6 � 10�33 
m, k is the Newton gravitational 
onstant; � ishere some numeri
al fa
tor.527



I. B. Khriplovi
h ÆÝÒÔ, òîì 126, âûï. 3 (9), 2004we have returned to the equidistant spe
trum in the
lassi
al limit. However, the equidistant spe
trum 
anbe avoided as follows. We assume that the horizon area
onsists of sites with area of the order of l2p, and toea
h site i as
ribe its own quantum number ji and the
ontribution pji(ji + 1) to the area. Then the aboveformula 
hanges toA � l2pXi pji(ji + 1) (2)(in fa
t, this formula for a quantized area arises as aspe
ial 
ase in loop quantum gravity, see below). Of
ourse, to retain a �nite 
lassi
al limit for A, we shouldrequire that Xi pji(ji + 1)� 1:But any of the ji 
an be well 
omparable with unity.Therefore, in spite of the adiabati
 invarian
e of A, itsquantum spe
trum (2) is not equidistant, although of
ourse dis
rete.One more quite popular argument in favor ofequidistant spe
trum (1) is as follows [4, 6, 7℄. On theone hand, the entropy S of a horizon is related to itsarea A by the Bekenstein�Hawking formulaA = 4l2pS: (3)On the other hand, the entropy is nothing but ln g(n),where the statisti
al weight g(n) of any quantum staten is an integer. In [4, 6, 7℄, the requirement of integerg(n) is taken literally, and results after simple reason-ing not only in equidistant spe
trum (1), but also inthe following allowed values for the numeri
al fa
tor �in this spe
trum:� = 4 ln k; k = 2; 3; : : : :We 
an imagine, however, that with some modelfor S, g(n) is given by a noninteger K + Æ, 0 < Æ < 1,instead of an integer value K. Then the entropy isS = ln(K + Æ) = lnK + Æ=K:Now, the typi
al value of the bla
k hole entropyS = lnK = A4l2pis huge, roughly 1076. Therefore, the 
orre
tion Æ=K isabsolutely negligible 
ompared to S = lnK. Moreover,it is far below any 
on
eivable a

ura
y of a des
riptionof entropy, and 
an therefore be safely omitted and for-gotten. As usual for ma
ros
opi
 obje
ts, the fa
t that

the statisti
al weight is an integer has no 
onsequen
esfor the entropy.Thus, 
ontrary to the popular belief, the equidis-tan
e of the spe
trum for the horizon area does notfollow from the 
orresponden
e prin
iple and/or fromgeneral statisti
al arguments.2. This does not mean, however, that any modelleading to an equidistant spe
trum for the quantizedhorizon area should be automati
ally reje
ted. Quitesimple and elegant version of su
h a model, so-
alled�it from bit�, was formulated for a S
hwarzs
hild bla
khole by Wheeler [8℄. The assumption is that the hori-zon surfa
e 
onsists of � pat
hes, ea
h of them suppliedwith an �angular momentum� quantum number j withtwo possible proje
tions �1=2. The total number K ofdegenerate quantum states of this system isK = 2� : (4)Then the entropy of the bla
k hole isS1=2 = lnK = � ln 2: (5)With Bekenstein�Hawking relation (3), one obtains thefollowing equidistant formula for the area spe
trum:A1=2 = 4 ln 2 l2p �: (6)This model of a quantized S
hwarzs
hild bla
k holelooks by itself �awless.This result was later derived in Ref. [9℄ in the frame-work of loop quantum gravity (LQG) [10�14℄. We dis-
uss below whether the �it from bit� pi
ture, if 
onsid-ered as a spe
ial 
ase of the area quantization in LQG,
an be re
on
iled with the holographi
 bound [15�17℄.More generally, a quantized surfa
e in LQG is de-s
ribed as follows. One as
ribes a set of pun
tures tothe surfa
e. Ea
h pun
ture is supplied with two integeror half-integer �angular momenta� ju and jd,ju; jd = 1=2; 1; 3=2; : : : : (7)ju and jd are related to edges dire
ted up and downthe normal to the surfa
e, respe
tively, and add up tothe angular momentum jud,jud = ju + jd; jju � jdj � jud � ju + jd: (8)The area of the surfa
e isA == �l2pXi q2jui (jui +1)+2jdi (jdi +1)�judi (judi +1): (9)528
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trum of quantized bla
k hole : : :The overall numeri
al fa
tor � in (9) 
annot be de-termined without an additional physi
al input. Thisambiguity originates from a free (so-
alled Barbero�Immirzi) parameter [18, 19℄ that 
orresponds to a fam-ily of inequivalent quantum theories, all of them beingviable without su
h an input.The result (6) was obtained in [9℄ under the ad-ditional 
ondition that the gravitational �eld on thehorizon is des
ribed by the U(1) Chern�Simons theory.Formula (6) is a spe
ial 
ase of general one (9) with alljd vanishing and all ju equal to 1=2 (or vi
e versa). Asregards the overall fa
tor �, its value here is2)� = 8 ln 2p3 : (10)We now turn to the holographi
 bound [15�17℄. A
-
ording to it, the entropy S of any spheri
ally sym-metri
 system 
on�ned inside a sphere of area A isbounded as S � A4l2p ; (11)with the equality attained only for a system that is abla
k hole.A simple intuitive argument 
on�rming this boundis as follows [17℄. We 
onsider the dis
ussed system 
ol-lapsing into a bla
k hole. During the 
ollapse, the en-tropy in
reases from S to Sbh, and the resulting horizonarea Abh is 
ertainly smaller than the initial 
on�ningarea A. Now, with Bekenstein�Hawking relation (3)for a bla
k hole taken into a

ount, we arrive, throughthe obvious 
hain of (in)equalitiesS � Sbh = Abh4l2p � A4l2p ;at the dis
ussed bound (11).The result (11) 
an be formulated di�erently.Among spheri
al surfa
es of a given area, the surfa
eof a bla
k hole horizon has the largest entropy.On the other hand, it is only natural that the en-tropy of an eternal bla
k hole in equilibrium is maxi-mum. This was used by Vaz and Witten [20℄ in a modelof the quantum bla
k hole originating from a dust 
ol-lapse. The idea was then employed by us [21, 22℄ inthe problem of quantizing the horizon of a bla
k holein LQG. In parti
ular, the 
oe�
ient � was 
al
ulatedin Ref. [22℄ in the 
ase where the area of a bla
k holehorizon is given by the general formula (9) of LQG, as2) The 
ommon 
onvention for the numeri
al fa
tor in for-mula (9) is 8��; with it, the parameter � is smaller than ours bythe fa
tor 8�.

well as under some more spe
ial assumptions on the val-ues of ju, jd, and jud. Moreover, it was demonstratedin Ref. [22℄ for a rather general 
lass of the horizonquantization s
hemes that the maximum entropy of aquantized surfa
e is proportional to its area.We sket
h the proof of this result (for more te
hni-
al details, see [22℄). Here and below, we 
onsider themi
ro
anoni
al entropy S of a surfa
e (although with�xed area instead of �xed energy). It is de�ned as thelogarithm of the number of states of this surfa
e witha �xed area A, i.e., with a �xed sumN =Xi q2jui (jui +1)+2jdi (jdi +1)�judi (judi +1): (12)Let �im be the number of pun
tures with a given set ofmomenta jui , jdi , judi , and a given proje
tion m of judi .The total number of pun
tures is� =Xi;m �im:We assume that the edges with the same set of thequantum numbers i;m (i.e., with the same jui , jdi , judi ,and m) are indistinguishable, and therefore inter
hang-ing them does not result in new states. All other per-mutations, those among the edges with di�ering i;m,do 
reate new states, and hen
e su
h edges, with dif-fering i;m, are distinguishable,We note that the �it from bit� values (4) and (5)for the number of states and entropy also follow fromthis assumption. Indeed, let � be the total numberof pat
hes with j = 1=2 and let �+ and �� = � � �+pat
hes have the respe
tive proje
tions+1=2 and�1=2.Then the number of the 
orresponding states is obvi-ously given by �!�+! (� � �+)! ;and the total number of states isK = �X�+=0 �!�+! (� � �+)! = 2� ;in agreement with (4).Thus, the entropy isS = ln24� !Yi;m 1�im !35 : (13)The stru
ture of expressions (9) and (13) is so di�erentthat the entropy 
ertainly 
annot be proportional tothe area in the general 
ase. However, this is the 
asefor the maximum entropy in the 
lassi
al limit.2 ÆÝÒÔ, âûï. 3 (9) 529
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ombinatorial reasons, it is natural to expe
tthat the absolute maximum of entropy is rea
hed whenall values of quantum numbers ju;d;udi are present. Wealso assume that in the 
lassi
al limit, the typi
al val-ues of pun
ture numbers �im are large. Then, with theStirling formula for fa
torials, expression (13) be
omesS = 0�Xi;m �im1A ln0�Xi0;m0 �i0m01A��Xi;m (�im ln �im) : (14)We seek the extremum of expression (14) under the
ondition N =Xi �im ri = 
onst; (15)where ea
h partial 
ontributionri =q2jui (jui + 1) + 2jdi (jdi + 1)� judi (judi + 1)is independent of m. The problem redu
es to the solu-tion of the system of equationsln0�Xi 0;m 0 �i 0m 01A� ln �im = �ri ; (16)or �im = e��ri Xi 0;m 0 �i 0m 0 = � e��ri : (17)Here, � is the Lagrange multiplier for 
onstraint (15).Summing expressions (17) over i and m, we arrive atthe equation for �,Xi;m e��ri =Xi gi e��ri = 1; (18)the statisti
al weightgi = 2judi + 1of a pun
ture arises here be
ause ri are independent ofm. On the other hand, multiplying Eq. (16) by �im andsumming over i and m, with 
onstraint (15), we arriveat the following result for the maximum entropy for agiven value of the sum N , or the bla
k hole area A:S max = �N = ��l2p A: (19)One more 
urious feature of the obtained pi
ture isworth noting: it gives a sort of the Boltzmann distri-bution for the o

upation numbers (see (17)). In this

distribution, the partial 
ontributions ri to the areaare analogues of energies and the Lagrange multiplier� 
orresponds (up to a fa
tor) to the inverse tempera-ture.It should be emphasized that relation (19) is truenot only in LQG, but applies to a more general 
lassof approa
hes to quantization of surfa
es. The follow-ing assumption is ne
essary here: the surfa
e should
onsist of pat
hes of di�erent sorts, su
h that thereare �im pat
hes of ea
h sort i;m, with a generalizede�e
tive quantum number ri and a statisti
al weightgi. Equally ne
essary is the above assumption on thedistinguishability of the pat
hes.Thus, the maximum entropy of a surfa
e is propor-tional to its area in the 
lassi
al limit. This proportio-nality 
ertainly o

urs for a 
lassi
al bla
k hole. Thisis one more strong argument in favor of the assumptionthat the bla
k hole entropy is maximum.We now return to the result in Ref. [9℄. If we as-sume that the value (10) of the parameter � is univer-sal (i.e., is not spe
ial to bla
k holes, but refers to anyquantized spheri
al surfa
e), then the value in (5) isnot the maximum one in LQG for a surfa
e of area (6).This looks quite natural: with the transition from theunique 
hoi
e made in Ref. [9℄,ju(d) = 1=2; jd(u) = 0;to a more extended and ri
h one, the number of de-generate quantum states should, generally speaking,in
rease. Together with this number, its logarithm,whi
h is the entropy of a quantized surfa
e, in
reasesas well.We start the proof of the above statement withrewriting formula (5) asS1=2 = ln 2r43 N = 0:80N; N =r34 � : (20)From now on, we 
onsider this value of N �xed.We start with a relatively simple example wherejd(u) = 0;and hen
e the general formula (9) for a surfa
e arearedu
es toA = � l2pXi pji(ji + 1) == � l2p 1Xj=1=2pj(j + 1) �j ; j = ju(d) (21)530
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trum of quantized bla
k hole : : :(and 
oin
ides with our naive model (2)). We �ndthe maximum entropy of su
h a surfa
e for the �xedvalue of N = 1Xj=1=2pj(j + 1) �j ; (22)whi
h should be equal to the �it from bit� one, �p3=4.Here, the statisti
al weight of a pun
ture with the quan-tum number j is gj = 2j + 1;and Eq. (18) 
an be rewritten as1Xp=1(p+ 1) zpp(p+2) = 1; p = 2j; z = e��=2: (23)Its solution is � = �2 ln z = 1:722(see Ref. [22℄) and the maximum entropySmax;1 = 1:72N (24)then ex
eeds the result in (20).As expe
ted, in the general 
ase, with N given byformula (12) with all the values of jui , jdi , judi allowedand gi = 2judi + 1;the maximum entropy is even larger [22℄,Smax = 3:12N: (25)Thus, the 
on�i
t is obvious between the holo-graphi
 bound and the result (20) found within theLQG approa
h in [9℄.One might try to avoid the 
on�i
t by assumingthat value (10) of the Barbero�Immirzi parameter � isspe
ial for bla
k holes only, while for other quantizedsurfa
es, � is smaller. However, su
h a way out wouldbe unattra
tive and unnatural.3. We now return to the essential assumption madein the previous se
tion: the edges with the same setof the quantum numbers i;m are identi
al, the edgeswith di�ering i;m are distinguishable. In prin
iple, onemight try to modify this assumption of partial distin-guishability of edges in two opposite ways.One possibility, whi
h might look quite appealing, isthat of 
omplete indistinguishability of edges. It meansthat no permutation of any edges results in new states.To simplify the dis
ussion, we 
on�ne ourself to ex-pression (21) for the horizon area, instead of the most

general one (9). Then, the total number of angularmomentum states 
reated by�j =Xm �jmindistinguishable edges of a given j with all 2j+1 pro-je
tions allowed, from �j to j, is3)Kj = (�j + 2j)!�j ! (2j)! : (26)Those partial 
ontributionssj = lnKjto the bla
k hole entropyS =Xj sjthat 
an potentially dominate the numeri
ally largeentropy may 
orrespond to the three 
ases: j � �j ,j � �j , and j � �j � 1. These 
ontributions are asfollows: j � �j ; sj � 2j ln �j ;j � �j ; sj � �j ln j;j � �j � 1; sj � 4j ln 2:In all the three 
ases, the partial 
ontributions tothe entropy S are mu
h smaller parametri
ally than the
orresponding 
ontributionsaj � j�jto the area A =Xj aj :Therefore, S � A in all these 
ases, and hen
e withindistinguishable edges of the same j, one 
annot makethe entropy of a bla
k hole proportional to its area.This was pointed out earlier in Refs. [23, 24℄.We now 
onsider the last 
on
eivable option, thatof 
ompletely distinguishable edges. In this 
ase, thetotal number of states is just K = � !, instead of (13),with the mi
ro
anoni
al entropyS = � ln �:In prin
iple, this entropy 
an be made proportional tothe bla
k hole area A. The model (whi
h does not3) Perhaps, the simplest derivation of this formula is as follows.E�e
tively, we here seek the number of ways of distributing �jidenti
al balls into 2j + 1 boxes. Then the line of reasoningpresented in [27, � 54℄ results in formula (26). I am grateful toV. F. Dmitriev for bringing to my attention that formula (26)
an be derived in this simple way.531 2*
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ould be as follows. We 
hoosea large quantum number J � 1 and assume that thehorizon area A is saturated by the edges with j in theinterval J < j < 2J and with �o

upation numbers��j � ln J . Then the estimates for both S and A areof the order of J ln J , and the proportionality betweenthe entropy and the area 
an be attained.However, although the entropy 
an be proportionalto the area under the assumption of 
omplete distin-guishability, the maximum entropy for a given area ismu
h larger than the area itself. Obviously, the maxi-mum entropy for �xedA �Xj pj(j + 1) �jis here attained with all j's being as small as possible,e.g., 1=2 or 1. In the 
lassi
al limit � � 1, the entropyof a bla
k hole then grows faster than its area, A � �,while S = � ln � � A lnA:Thus, the assumption of 
omplete distinguishability isin 
on�i
t with the holographi
 bound, and thereforeshould be dis
arded.There is no disagreement between this our 
on-
lusion and that in Refs. [23; 25; 26℄: what is 
alled
omplete distinguishability therein 
orresponds to ourpartial distinguishability.I am grateful to V. F. Dmitriev, V. M. Khatsy-movsky, and G. Yu. Ruban for dis
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