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An equidistant spectrum of the horizon area of a quantized black hole does not follow from the correspondence
principle or from general statistical arguments. On the other hand, such a spectrum obtained in loop quantum
gravity (LQG) either does not comply with the holographic bound or requires a special choice of the Barbero—
Immirzi parameter for the horizon surface, distinct from its value for other quantized surfaces. The problem of
distinguishability of edges in LQG is discussed, with the following conclusion. Only under the assumption of
partial distinguishability of the edges, the microcanonical entropy of a black hole can be made both proportional
to the horizon area and satisfying the holographic bound.
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1. The idea of quantizing the horizon area of black
holes was put forward many years ago by Bekenstein in
the pioneering article [1]. It was based on the intriguing
observation, made by Christodoulou and Ruffini [2, 3]:
the horizon area of a nonextremal black hole behaves in
a sense as an adiabatic invariant. Of course, the quan-
tization of an adiabatic invariant is perfectly natural,
in accordance with the correspondence principle.

One more conjecture made in [1] is that the spec-
trum of a quantized horizon area is equidistant. The
argument therein was that a periodic system is quan-
tized by equating its adiabatic invariant to 2mwhn,
n=0,1,2,....

Later, it was pointed out by Bekenstein [4] that the
classical adiabatic invariance does not by itself guaran-
tee the equidistance of the spectrum, at least because
any function of an adiabatic invariant is itself an adia-
batic invariant. But up to now, articles on the subject
abound in assertions that the form

n=12,...,

A= Blf,n., (1)
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for the horizon area spectrum®) is dictated by the re-
spectable correspondence principle. The list of these
references is too long to be presented here.

We consider an instructive example of the situation
where a nonequidistant spectrum arises in spite of the
classical adiabatic invariance. We start with a classical
spherical top of an angular momentum J. Of course,
the z-projection J, of J is an adiabatic invariant. If the
z axis is chosen along J, the value of J, is maximum,
J, or hij in the quantum case. The classical angular
momentum squared .J? is also an adiabatic invariant,
with the eigenvalues h%j(j + 1) when quantized. We
now try to use the operator J? for the area quantiza-
tion in quite natural units of lf,. For the horizon area
A to be finite in the classical limit, the power of the
quantum number j in the result for 7 > 1 should be
the same as that of & in I [5]. With I ~ h, we thus
arrive at

A~ lf)\/j(j +1).
Because
Vig+1) = j54+1/2 forj>1,
1) Here and below, l; = hk/c3 is the Planck length squared,

lp =1.6-10733 ¢cm, k is the Newton gravitational constant; 3 is
here some numerical factor.
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we have returned to the equidistant spectrum in the
classical limit. However, the equidistant spectrum can
be avoided as follows. We assume that the horizon area
consists of sites with area of the order of lf,, and to
each site ¢ ascribe its own quantum number j; and the
contribution \/j;(j; + 1) to the area. Then the above
formula changes to

A~EY VAT 2)

(in fact, this formula for a quantized area arises as a
special case in loop quantum gravity, see below). Of
course, to retain a finite classical limit for A, we should

Z Vi +1) > 1.

But any of the j; can be well comparable with unity.
Therefore, in spite of the adiabatic invariance of A, its
quantum spectrum (2) is not equidistant, although of
course discrete.

require that

One more quite popular argument in favor of
equidistant spectrum (1) is as follows [4, 6, 7]. On the
one hand, the entropy S of a horizon is related to its
area A by the Bekenstein—-Hawking formula

(3)

On the other hand, the entropy is nothing but In g(n),
where the statistical weight g(n) of any quantum state
n is an integer. In [4, 6, 7], the requirement of integer
g(n) is taken literally, and results after simple reason-
ing not only in equidistant spectrum (1), but also in
the following allowed values for the numerical factor
in this spectrum:

A =428,

B=4lnk, k=23, ....

We can imagine, however, that with some model
for S, g(n) is given by a noninteger K + ¢, 0 < § < 1,
instead of an integer value K. Then the entropy is

S=In(K+6)=InK+§/K.

Now, the typical value of the black hole entropy

A
S=hhK=—
42

is huge, roughly 1078, Therefore, the correction §/K is
absolutely negligible compared to S = In K. Moreover,
it is far below any conceivable accuracy of a description
of entropy, and can therefore be safely omitted and for-
gotten. As usual for macroscopic objects, the fact that
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the statistical weight is an integer has no consequences
for the entropy.

Thus, contrary to the popular belief, the equidis-
tance of the spectrum for the horizon area does not
follow from the correspondence principle and/or from
general statistical arguments.

2. This does not mean, however, that any model
leading to an equidistant spectrum for the quantized
horizon area should be automatically rejected. Quite
simple and elegant version of such a model, so-called
«it from bity, was formulated for a Schwarzschild black
hole by Wheeler [8]. The assumption is that the hori-
zon surface consists of v patches, each of them supplied
with an «angular momentum» quantum number j with
two possible projections £1/2. The total number K of
degenerate quantum states of this system is

K =2".

(4)
Then the entropy of the black hole is

Sip=InK =vin2. (5)
With Bekenstein-Hawking relation (3), one obtains the
following equidistant formula for the area spectrum:

(6)

This model of a quantized Schwarzschild black hole
looks by itself flawless.

This result was later derived in Ref. [9] in the frame-
work of loop quantum gravity (LQG) [10-14]. We dis-
cuss below whether the «it from bity picture, if consid-
ered as a special case of the area quantization in LQG,
can be reconciled with the holographic bound [15-17].

More generally, a quantized surface in LQG is de-
scribed as follows. One ascribes a set of punctures to
the surface. Each puncture is supplied with two integer
or half-integer «angular momenta» j* and j%,

A1/2 :4:11’121127 V.

it it =1/2,1,3/2,... . (7)

4% and j? are related to edges directed up and down
the normal to the surface, respectively, and add up to
the angular momentum j¥<,

jUd:ju+jd-, ‘]u_]d|§]ud§]u+]d

(8)
The area of the surface is
A=

= 81237 /251 GE D) +250 G D)~ R 1). (9)
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The overall numerical factor § in (9) cannot be de-
termined without an additional physical input. This
ambiguity originates from a free (so-called Barbero—
Immirzi) parameter [18, 19] that corresponds to a fam-
ily of inequivalent quantum theories, all of them being
viable without such an input.

The result (6) was obtained in [9] under the ad-
ditional condition that the gravitational field on the
horizon is described by the U(1) Chern—Simons theory.
Formula (6) is a special case of general one (9) with all
j¢ vanishing and all j* equal to 1/2 (or vice versa). As
regards the overall factor 3, its value here is?

_ 8In2

=75
We now turn to the holographic bound [15-17]. Ac-

cording to it, the entropy S of any spherically sym-

metric system confined inside a sphere of area A is
bounded as

B

(10)

A

<
S_4l

(11)

ST

with the equality attained only for a system that is a
black hole.

A simple intuitive argument confirming this bound
is as follows [17]. We consider the discussed system col-
lapsing into a black hole. During the collapse, the en-
tropy increases from S to Sy, and the resulting horizon
area Ay, is certainly smaller than the initial confining
area A. Now, with Bekenstein-Hawking relation (3)
for a black hole taken into account, we arrive, through
the obvious chain of (in)equalities

Apn, A
S<Sph=—5 < —
TR

at the discussed bound (11).

The result (11) can be formulated differently.
Among spherical surfaces of a given area, the surface
of a black hole horizon has the largest entropy.

On the other hand, it is only natural that the en-
tropy of an eternal black hole in equilibrium is maxi-
mum. This was used by Vaz and Witten [20] in a model
of the quantum black hole originating from a dust col-
lapse. The idea was then employed by us [21, 22] in
the problem of quantizing the horizon of a black hole
in LQG. In particular, the coefficient 3 was calculated
in Ref. [22] in the case where the area of a black hole
horizon is given by the general formula (9) of LQG, as

2) The common convention for the numerical factor in for-
mula (9) is 87 3; with it, the parameter 8 is smaller than ours by
the factor 8.

2 ZKST®, Bem. 3 (9)
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well as under some more special assumptions on the val-
ues of j¥, j¢, and j*¢. Moreover, it was demonstrated
in Ref. [22] for a rather general class of the horizon
quantization schemes that the maximum entropy of a
quantized surface is proportional to its area.

We sketch the proof of this result (for more techni-
cal details, see [22]). Here and below, we consider the
microcanonical entropy S of a surface (although with
fixed area instead of fixed energy). It is defined as the
logarithm of the number of states of this surface with
a fixed area A, i.e., with a fixed sum

N = 3025 D425 )G+, (12)
1

Let v, be the number of punctures with a given set of
momenta j;*, jid., jg‘d, and a given projection m of ji“d.
The total number of punctures is

v = E Vim-
i,m

We assume that the edges with the same set of the
quantum numbers i,m (i.e., with the same j¥, j¢, j#,
and m) are indistinguishable, and therefore interchang-
ing them does not result in new states. All other per-
mutations, those among the edges with differing ¢, m,
do create new states, and hence such edges, with dif-
fering i, m, are distinguishable,

We note that the «it from bity values (4) and (5)
for the number of states and entropy also follow from
this assumption. Indeed, let v be the total number
of patches with j = 1/2 and let vy and v_ = v — vy
patches have the respective projections +1/2 and —1/2.
Then the number of the corresponding states is obvi-
ously given by

!
vl (v—v)!’

and the total number of states is

v

K=Y

l/+:0

v!

I R — Y
vyl (v —vy)!

bl

in agreement with (4).
Thus, the entropy is

S =1In I/!H

The structure of expressions (9) and (13) is so different
that the entropy certainly cannot be proportional to
the area in the general case. However, this is the case
for the maximum entropy in the classical limit.

L (13)

Vim -
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By combinatorial reasons, it is natural to expect
that the absolute maximum of entropy is reached when
all values of quantum numbers j“*? are present. We
also assume that in the classical limit, the typical val-
ues of puncture numbers vy, are large. Then, with the

Stirling formula for factorials, expression (13) becomes

S = Zl/l'm ln Z Vitm! —
i,m i’ ,m’
=Y WimInvim). (14)

We seek the extremum of expression (14) under the
condition

N = Zl/im r; = const, (15)

where each partial contribution

ri = 250G+ 1)+ 25GE 1) — 3R+ 1)

is independent of m. The problem reduces to the solu-
tion of the system of equations

In Z Vitm' | — Inviy, = ury, (16)
ey
or
Vi, = € HTi Z Vit =ve Hi, (17)

i’ ,m’

Here, u is the Lagrange multiplier for constraint (15).
Summing expressions (17) over i and m, we arrive at
the equation for p,

E e HTi — E gi L — 1;
i,m i

the statistical weight

(18)

gi = 2ji" +1

of a puncture arises here because r; are independent of
m. On the other hand, multiplying Eq. (16) by vy, and
summing over ¢ and m, with constraint (15), we arrive
at the following result for the maximum entropy for a
given value of the sum N, or the black hole area A:

Smax =puN = (19)

I
— A.
Bl
One more curious feature of the obtained picture is
worth noting: it gives a sort of the Boltzmann distri-
bution for the occupation numbers (see (17)). In this
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distribution, the partial contributions r; to the area
are analogues of energies and the Lagrange multiplier
1 corresponds (up to a factor) to the inverse tempera-
ture.

It should be emphasized that relation (19) is true
not only in LQG, but applies to a more general class
of approaches to quantization of surfaces. The follow-
ing assumption is necessary here: the surface should
consist of patches of different sorts, such that there
are vy, patches of each sort i,m, with a generalized
effective quantum number r; and a statistical weight
g;. Equally necessary is the above assumption on the
distinguishability of the patches.

Thus, the maximum entropy of a surface is propor-
tional to its area in the classical limit. This proportio-
nality certainly occurs for a classical black hole. This
is one more strong argument in favor of the assumption
that the black hole entropy is maximum.

We now return to the result in Ref. [9]. If we as-
sume that the value (10) of the parameter  is univer-
sal (i.e., is not special to black holes, but refers to any
quantized spherical surface), then the value in (5) is
not the maximum one in LQG for a surface of area (6).
This looks quite natural: with the transition from the
unique choice made in Ref. [9],

jd(U)

jH =1/2, =0,
to a more extended and rich one, the number of de-
generate quantum states should, generally speaking,
increase. Together with this number, its logarithm,
which is the entropy of a quantized surface, increases
as well.

We start the proof of the above statement with

rewriting formula (5) as

1 3
S/ _1n2\/gN_0.80N, N= \/;u. (20)

From now on, we consider this value of N fixed.
We start with a relatively simple example where

and hence the general formula (9) for a surface area
reduces to

A=BD> Vili+1) =
=B Y ViG+ D, j=j"D (21)

j=1/2
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(and coincides with our naive model (2)). We find
the maximum entropy of such a surface for the fixed
value of

N= > Vilj+1)y, (22)
j=1/2

which should be equal to the «it from bit» one, 1/\/3/_4.
Here, the statistical weight of a puncture with the quan-
tum number j is

9;=2j+1,

and Eq. (18) can be rewritten as

Zp+1 ) 2VP(+2) — 1

p=1

p=2j, z=e "2 (23)

Its solution is
w=—2lnz=1."722
(see Ref. [22]) and the maximum entropy
Smazi = 1L.72N (24)

then exceeds the result in (20).
As expected, in the general case, with N given by

formula (12) with all the values of j*, j&, ju? allowed
and

9i=2j{" + 1,
the maximum entropy is even larger [22],

Smaz = 3.12N. (25)

Thus,
graphic bound and the result (2
LQG approach in [9].

One might try to avoid the conflict by assuming
that value (10) of the Barbero-Immirzi parameter j3 is
special for black holes only, while for other quantized
surfaces, (3 is smaller. However, such a way out would
be unattractive and unnatural.

3. We now return to the essential assumption made
in the previous section: the edges with the same set
of the quantum numbers i, m are identical, the edges
with differing i, m are distinguishable. In principle, one
might try to modify this assumption of partial distin-
guishability of edges in two opposite ways.

One possibility, which might look quite appealing, is
that of complete indistinguishability of edges. It means
that no permutation of any edges results in new states.
To simplify the discussion, we confine ourself to ex-
pression (21) for the horizon area, instead of the most

the conflict is obvious between the holo-
0) found within the

general one (9). Then, the total number of angular
momentum states created by

VJ = E ij
m

indistinguishable edges of a given j with all 25 + 1 pro-
jections allowed, from —j to j, is®)

(vj +2j)!
vl (2))

Those partial contributions

K; = (26)

S5 = In [(j
to the black hole entropy
S = Z Sj
J

that can potentially dominate the numerically large
entropy may correspond to the three cases: j < vj,
J > vj, and j ~ v; > 1. These contributions are as
follows:

Jj <L vy, sj~ 2jInvy;
Jj > v, s; ~ vjlnj;
j~vp>1, s ~4jIn2.

In all the three cases, the partial contributions to
the entropy S are much smaller parametrically than the
corresponding contributions

aj ~Jvj

A:Zaj.
J

Therefore, S < A in all these cases, and hence with
indistinguishable edges of the same j, one cannot make
the entropy of a black hole proportional to its area.
This was pointed out earlier in Refs. [23, 24].

We now consider the last conceivable option, that
of completely distinguishable edges. In this case, the
total number of states is just K = v!, instead of (13),

to the area

with the microcanonical entropy

S=vinv.

In principle, this entropy can be made proportional to
the black hole area A. The model (which does not

3) Perhaps, the simplest derivation of this formula is as follows.
Effectively, we here seek the number of ways of distributing v;
identical balls into 25 + 1 boxes. Then the line of reasoning
presented in [27, § 54| results in formula (26). I am grateful to
V. F. Dmitriev for bringing to my attention that formula (26)
can be derived in this simple way.

531 ok
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look natural, however) could be as follows. We choose
a large quantum number J > 1 and assume that the
horizon area A is saturated by the edges with j in the
interval J < j < 2J and with «occupation numbers»
vj ~ InJ. Then the estimates for both S and A are
of the order of J1In.J, and the proportionality between
the entropy and the area can be attained.

However, although the entropy can be proportional
to the area under the assumption of complete distin-
guishability, the maximum entropy for a given area is
much larger than the area itself. Obviously, the maxi-
mum entropy for fixed

A~ VGG + 1)y
J

is here attained with all j’s being as small as possible,
e.g., 1/2 or 1. In the classical limit v >> 1, the entropy
of a black hole then grows faster than its area, A ~ v,
while S=vinv~ Aln A.

Thus, the assumption of complete distinguishability is
in conflict with the holographic bound, and therefore
should be discarded.

There is no disagreement between this our con-
clusion and that in Refs. [23,25,26]: what is called
complete distinguishability therein corresponds to our
partial distinguishability.

I am grateful to V. F. Dmitriev, V. M. Khatsy-
movsky, and G. Yu. Ruban for discussions. The in-

vestigation was supported in part by the REBR (grant
Ne03-02-17612).
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