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Based on principles of classical hydrodynamics and Newtonian gravity, the theory of hydrogravity, formulated
in the manner of hydromagnetic theory, is developed to account for the gravitational effect of global pulsations
of a star on the motions of the ambient gas—dust interstellar medium. Analytic derivation of the dispersion
relation for canonical gravity waves at the free surface of an incompressible inviscid liquid is presented illustrating
practical usefulness of the proposed approach, heavily relying on the concept of classical gravitational stress
introduced long ago by Fock and Chandrasekhar, and accentuating the shear character of this mode. Particular
attention is given to gas-dynamical oscillations of a similar physical nature generated by a pulsating neutron star
in an unbounded spherical shell of gas and dust promoted by circumstellar gravitational stresses and damped
by viscosity of the interstellar matter. Computed in the long-wavelength approximation, the periods of these
gravity-driven shear modes, referred to as quasistatic modes of hydrogravity, are found to be proportional to
periods of the gravity modes in the neutron star bulk. Given that collective oscillations of cosmic plasma in the
wave under consideration should be accompanied by electromagnetic radiation and taking into account that only
the radio waves of this radiation can freely travel through the galactic gas—dust clouds, it is conjectured that the
considered effect of gravitational coupling between seismic vibrations of a neutron star and fluctuations of the
galactic interstellar medium should manifest itself in the radio range of pulsar spectra. Some useful implications
of the theory developed here to a number of current problems of asteroseismology are briefly discussed.

PACS: 92.60.Dj, 97.10.Fy, 97.10.Sj, 97.60.Jd

1. INTRODUCTION by millisecond micropulses, owes its origin to seismic
vibrations triggered either by implosion effects of su-
pernova events or by starquakes [1-3], which may be
connected with some short gamma-ray bursts [4, 5]. By
now, there are tolerably coherent arguments showing

It has been realized long ago that the restless be-
havior of neutron stars, exhibited in the pulsar spectra
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that neutron stars (both pulsars and magnetars) can
support long-lasting pulsations driven by bulk forces of
elasticity, gravity, and magnetism of the neutron star
matter [6-10]. At the same time, the influence of neu-
tron star pulsations on a gas—dust interstellar medium
(ISM), which serves as a fluid matrix mediating a vast
variety of gas-dynamical processes (e.g., [11]), remains
less studied. This work discusses the hydrodynamic
mechanism of gravitational coupling between seismic
vibrations of a neutron star and fluctuations of gas—
dust flows in the ambient envelope. Specifically, we
consider a model in which a pulsating neutron star
embedded in a gas—dust spherical shell is regarded as
a source of large-scale hydrodynamical wave motions
promoted by circumstellar gravitational stresses and
damped by viscous stresses. The oscillatory motions
in question have the same physical nature as the grav-
ity waves at the free surface of an incompressible vis-
cous fluid caused by the presence of a constant field
of Newtonian gravity (e.g., [12-14]), the wave process
being well-known in the physics of planetary atmo-
spheres [15].

This paper presents arguments that proper mathe-
matical treatment of these gravity-driven wave motions
of interstellar medium can be developed on the basis of
self-consistent equations for variables of classical hydro-
dynamics and Newtonian gravity, which are formulated
in a manner of governing equations of the hydromag-
netic theory. In pursuit of this aim, we follow two dif-
ferent approaches, both relying on the key concept of
Newtonian gravitational stress. The underlying idea of
the first method, constituting the content of Secs. 2 and
3, is to include the Newtonian gravitational field in a
set of gas-dynamical variables of circumstellar motions
by considering this field on an equal footing with the
standard hydrodynamical variables such as the density
and velocity. The second method, formulated in the
Appendix, is based on coupled equations involving the
density, the velocity, and the gravitational stress ten-
sor. Particular attention is drawn to the fact that both
these methods yield analytically identical estimates for
the frequency and lifetime of the gravity modes owing
their existence to fluctuations in circumstellar gravita-
tional stresses caused by pulsations of a neutron star.
In the discussion, we point out some useful applications
of the theory developed here.

2. GOVERNING EQUATIONS OF
HYDROGRAVITY

The point of departure in our considerations is the
representation of the body force of gravity

F=-pg, Vg=dnGp, g=-VU (1)

through the tensor of gravitational stresses G:

0G i,
Fy=—pgi =——F—,
Pg Dz )
RN S P PR “
ik = G gi 8k D) 8j 85 )0ik

To the best of our knowledge, this form of the gravi-
tational force in the stationary material continuum of
density p was first discussed long ago by Fock [17] and
justified by Chandrasekhar [18]. Such a possibility is
apparent from the identity

oU 0
Fi = pal‘l = _6—xk X
{ 1 [GUGU 1<6U 8U> }}
X — — =\ = 6ik . (3)
drG | Ox; Oz 2 \ Ozj; Ox;
Also, the discussion of Newtonian gravitational stresses
can be found in [19, 20]. The matter of particular inter-
est for our present discussion is Chandrasekhar’s sug-
gestion [18] to incorporate the above tensor represen-
tation for the static force of Newtonian gravity in the
dynamical description of the gravity-driven motions of
an inviscid fluid. Specifically, it is shown in [18] that

replacement of the standard expression for the gravita-
tional force,

Fi = —pgi,
in the Euler equation for an ideal fluid
dv; oP d 0 0
= - - 08, —==+Vie— 4
Pt G TR

by the above tensor representation
F; = =V.Gix

allows one to rewrite (4) in the form of a conservation
law for the density of linear momentum pV;,

O(pVi) _ 0Pk
ot B 8l‘k '

Pit, = pViVi + P + Gir. (D)

where Pj, is the total flux density.

We recall at this point that the key statement in
the MHD theory is that the state of motion of a mag-
netoactive fluid can be uniquely specified by the density
p(r, t), the flow velocity V(r,t), and the magnetic flux
density B(r,t), which are regarded on an equal footing
as independent dynamical variables (see, e.g., [21-23]).
The equations of dissipation-free MHD theory

@ o _6ka
ot Oxy,
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v 1
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0DB; 15}
5 %[VBIC Vi Bj]

describe the fluid mechanics of a highly ionized (per-
fectly conducting) ISM threaded by a galactic magnetic
field B.

Remarkably, Eq. (5) permits the equivalent repre-
sentation

2

avi _ 9 <p_ g_> _
pdt T Oxy G
0
= o { [gigk +gkgz]}, (6)

which in appearance is similar to the Euler equation
of the hydromagnetic model for interstellar gas dynam-
ics. This then indicates that the constructive treatment
of the gravity-driven gas dynamics of the interstellar
medium can be developed on a methodological footing
similar to that lying at the base of magnetohydrody-
namics. In particular, this suggests that the gravita-
tional field g(r,t) can be regarded as an independent
variable of the ISM motion on an equal footing with
basic variables of interstellar gas dynamics, the density
p(r,t) and the flow velocity V(r,t). Then, adhering to
this attitude, our next goal is to specify the form of
the constitutive equation for the gravity—flow coupling,
that is, an equation describing the kinematic relation
between the vector field of classical gravity g(r,t) and
the density of linear momentum p(r, )V (r,t).

It is customarily taken for granted that the time
evolution of the density governed by the continuity
equation

dp
ot

A(pVi)
8xk

(7)
does not affect the analytic form of the equation for the

static gravitational field,

98k
8xk

1 Ogy

=dnGp = p= AnG Oxy,

(8)

The partial derivative with respect to time of the
left-hand side of Eq. (8) should therefore be equal to
the left-hand side of continuity equation (7),

1 Ogs

()=

2 [0
oxy, 6t

o _
ot

0
6$k

0

87(ka) —

+4n Gka} =0. (9)
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It follows that the equation
dgr

ot

resulting from the last identity is in agreement with
both the equation of static gravity and the continu-
ity equation. As postulated by the above arguments,
Eq. (10) should be regarded as the constitutive equa-
tion for kinematic gravity—flow coupling. This shows
that the standard equation for static Newtonian gravi-

ty,

= —4nGpVi (10)

vkgk = 47era

preserves its validity at all times, if valid initially. With
all the above reservations in mind, we arrive at self-con-
sistent equations of hydrodynamics and gravity—flow
coupling,

dp 6Vk _
@t Pany 0, (11)
av; o g2
Pt Ox; <P a 871'G> *
15}
+ . { [gigk +gkgz]} =0, (12)
8§t’“ +47GpVy =0, (13)

which in what follows are called the equations of hy-
drogravity for short.

The extension of these equations to the case of a
viscous fluid is straightforward,

f P; I1;
AV OW _OPu M g
t ox; ory, Oxy (14)
—_— 1/0Vi OV
k=9 Oxr,  Ox; )’
g 1
W=P-— Fywvel ik = “ % G[gzgk +grgil,  (15)

where W is the total pressure and Py is the anisotropic
gravitational stress tensor. We use II;; to denote the
viscous stress tensor, Vj; the rate-of-strain tensor, and
v the kinematic viscosity of the gas—dust circumstellar
medium.

3. HYDROGRAVITY MODES IN THE
STELLAR COCOON MODEL

In the stellar cocoon model under consideration, a
neutron star, embedded in a thick dusty shell of su-
pernova debris, is regarded as a solid globe immersed
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in a spherical fluid matrix. To make the problem ana-
lytically tractable, we adopt the uniform density ap-
proximation for both the stellar matter ps; and the
gas—dust medium p. It is presumed that the star and
spherical dusty envelope are in hydrostatic equilibrium.
This means that the characteristic times of the accre-
tion processes are long compared to times of hydro-
dynamical fluctuations of gas—dust flow in the circum-
stellar shell. The purpose of this section is to delineate
the equilibrium parameters of such an object, to wit,
the spatial distribution of the static gravitational field
g(r) and the hydrostatic pressure P(r) in the regions
of space relevant to the problem in question. In the
absence of the accretion processes, the above charac-
teristics are determined by the equations

Vegs(r) =4n G ps, VPs(r) = —psgs(r),

16

r < Ry, (16)

Ve'(r) =4nGp, VP(r)=—pg’(r), an
Rs;<r <R.

Equations (16) describe the static gravitational field g
and hydrostatic pressure P; in the star bulk, Ry is the
star radius, and

M, = (47/3)ps R®

is the star mass. Equations (17) determine the static
gravitational field g° and hydrostatic pressure Py in
the dusty cocoon of radius R. In the star interior, the
solutions of (16) are given by

gs(r)

4m _ 2T 9y o
3 Gpsr, Ps(r)= 3 psG(Rs ), (18)

r < Rs.

In the stellar envelope, the static gravitational field
g%(r) and hydrostatic pressure Py(r) are given by the
following solutions of Eqs. (17):

dm (ps — p) RE
Oy = — Gpl1+ 2 N 7s
g (=13 p[ o T (9
R; <r <R,
2 2/ p2 2
Po(r) =5 Gp™(R" —r") +
4 R? —r
+?G’Ep(ps—p)7, Rs; <r < R. (20)

The detailed derivation of this latter equation, in a
somewhat different context, can be found in [16]. Here-
after, superscript zero labels the static gravity field in
the ambient gas—dust envelope.
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3.1. Shear oscillations driven by gravitational
stresses

In what follows, we consider small-amplitude dis-
turbances in the dense gas—dust shell of a stellar enve-
lope, generated by seismic vibrations of the central neu-
tron star. We assume that these are not accompanied
by fluctuations in density. While the model of incom-
pressible viscous fluid is admittedly a highly idealized
approximation, nevertheless we do not expect to lose
any essential gas-dynamical features of gravity waves
in the interstellar medium on this account. Under such
disturbances, the quantities entering the equations of
hydrogravity are infinitesimally perturbed as

‘/i = ‘/io + vy, ‘/io = 07 (21)
gi =g +0gi, P=P+p.
2
2o
W=Wo+w, Wy=PFP-—,
8 G (22)
w=p-— L )
=D 4 808k,
Py =P} +tix, P =—-—=lgveh +grell,
b = ——— [g%gK + gl0g;
k 1C 8198k + grdgil,
My =09 + mp, M9 =0,
1 /0v; Ov (24)

ﬂ'ik:2’/Pvika < )7
where g¥ and P, are determined by Eqgs. (19) and (20),
respectively. Inserting (21)—(24) in (11)—(13), we arrive
at the linearized equations of hydrogravity for heavy
incompressible viscous fluid,

Uz’k=§

8l‘k 81‘2

61)2’ o ow 8tl~k 67Tl'k Svk o
T v ol el Pl
8(ng _
5 = —4rGpu;. (26)

Scalar multiplication of (25) with v; and integration
over the cocoon volume (ignoring the effects of surface
stresses) yields

9 [ pv?

%/ o dy = — /[tik + k] vig dV. (27)

This equation gives the rate at which the kinetic en-
ergy of the gas-dynamical motions changes. The most
important point for our present discussion is that gravi-
tational forces in the volume of the dusty shell do work,
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which is characterized by the inseparable link between
anisotropic gravitational stresses and shear fluctuations
of material flow, t;,v;,. This suggests that gravita-
tional stresses impart to the ambient gas—dust matter
a portion of mechanical rigidity generic to viscoelastic
materials whose response to an external disturbance is
accompanied by shear fluctuations.

In appearance, Eq. (27) is similar to the equation
of energy balance for shear response of an isotropic vis-
coelastic material continuum,

15} 02 .
En pTdV =- /[C"ik + Tl dV, o = 200w,
o — 1 Ou;  Ouy Oup 0
k= 2 8l‘k axl ' 8l‘k o

where u; is the material displacement field (related to
the velocity as v; = u;, which implies v;; = @, for the
rate of strains), o is the Hookean shear stress, w;; is
the shear strain tensor, and p is the shear modulus.
This last equation is obtained by scalar multiplication
with 1; of the basic equation of continuum mechanics
of viscoelastic incompressible matter,

pliy = Vo4 + Vi,

followed by integration over the volume.

It is expected, therefore, that a pulsating neutron
star is to generate shear oscillations of gas—dust matter
in the circumstellar envelope. Clearly, the only way of
exploring this statement is to evaluate the frequency
and lifetime of the mode promoted by gravitational
stresses. In doing this, we use the energy variational
principle. The procedure is as follows. The first step
is to use the separable representation for fluctuating
variables

vi(r,t) = a;(r) a(t), wvi(r,t) = au (r) a(t),

1 (28)
Al = i[viak + Vkai].

Substituting this form for v; in (26) and eliminating
the time derivative, we obtain

0gi(r,t) = —47 G pa;(r) alt). (29)

The analogous separable forms for tensors of gravita-
tional ¢;; and viscous m;; stresses are
tik (I‘, t) = Tik (r)a(t),
Tir(r) = plg? (r)ar (r) + g (r)a;(r)],
Tik = 2 pV Gk Q.

(30)

Hereafter, a;(r) is the instantaneous displacement field
and «a(t) is the temporal amplitude of the oscillations.
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Inserting (28) and (30) in (27), we arrive at the equa-
tion governing the time evolution of a(t) having the
form of the standard equation for a damped harmonic
oscillator,

Mé(t) + Da(t) + Ka(t) = 0, (31)

where the parameters (inertia M, stiffness K, and vis-
cous friction D) are given by

M = [ pa;(r)ai(r)dV,
: (32)
D = 3 /pl/[viak + Via;] [Viar + Via;] dV,
1
K= [ olgtan + gail (Vi + Viadav. (33

The well-known solution of (31) is
a(t) = ag exp(—t/T) coswt,

where

_2M
T="pH
Here, wq stands for the frequency of nondissipative free
oscillations and 7 is the viscous damping time. Long-
lasting oscillations exist if wgr > 1. Thus, to evalu-
ate the frequency and lifetime of the gravity modes in
the spherical gas—dust nebula surrounding a pulsating
neutron star, we must specify the form of the instanta-
neous displacement a(r), which is solenoidal in view of
our adopted approximation of incompressible fluid. In
doing this, we consider the quasistatic regime of wave
motions of a spherical envelope generated by seismic
vibrations of a neutron star. In the case of quasistatic
waves, the velocity field v(r,t) is determined by solu-
tions of the Laplace equation

w? = w21 — (wor)™?], (34)

which is regarded as the long-wavelength limit of the
Helmholtz equation of standing waves

V2v(r,t) + k>v(r,t) =0,

since in the limit of extremely long wavelengths
(A = o), the wave vector £ = 27/\ — 0. In view
of the relation

v =a(r)a(t),

the instantaneous displacement field a(r) satisfies the
equations

VZa(r) =0, Va(r)=0. (35)
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The poloidal solution of (35),

as(r) = (N/D[V x [V xer= "' Py(p)]] =
NV~ py(p)

= u=-cosf, (36)

3

describes a spheroidal quasistatic wave (the long-
wavelength limit of a standing wave) in the circumstel-
lar envelope. Here, Py(u) is the Legendre polynomial
of degree /; the spherical polar coordinate system with
fixed polar axis is used. This irrotational (V x ay = 0)
field of displacement is generated by a spheroidally pul-
sating neutron star.

A neutron star executing global torsional vibrations
produces fluctuations of gas—dust flows of substantially
differentially-rotational character. The field of material
displacements in this kind of oscillatory motions of the
circumstellar shell is given by the toroidal vector field

[p(r) x x],

This field is also the general solution of (35). It is note-
worthy that the parameters M, K, and D depend on
arbitrary constant N as N2, and hence wg and 7 are
independent of the specific form of N.

ay(r) ¢ =NV (= Py(p). (37)

3.2. Spheroidal hydrogravity mode

We assume that R, the radius of the circumstellar
cloud, is much larger than the star radius Rj:

R,/R< 1.

Therefore, the limits of integration along the radial
variable r can be taken from the surface of the star,
r = Rg, to the outer surface of the gas—dust shell re-
moved to infinity, r = R — oo; a neutron star looks like
an oscillating blob immersed in a spherical gas—dust
matrix of infinitely large radius. For the parameters of
inertia M, (¢), internal friction Dg(¢), and the lifetime
75(¢) of a spheroidal g-mode, computed as functions of
the multipole degree of oscillations (¢), we obtain

N?Z (+1
M,(0) = 4”9@ YRR a9
N (+1
D,(0) = 87”7@ 2
Ts(0) =T [20+ 1)(C+2)]7",
R? n (39)
T=— v= -,
v p

where 7 is the dynamical viscosity of the interstellar
medium, 7 is the time constant of exponential time
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decay due to viscous dissipation of the oscillatory mo-
tions. In somewhat different context, this last expres-
sion for 74(¢) has first been established by Lamb [12].
More laborious are calculations of the restoring force
parameter K of hydrogravity whose analytic form is
given by expression (33). We omit discussion of the
tedious integration procedure and only note that these
calculations are appreciably facilitated by use of Maple
symbolic algebra software. As a result, we obtain

. 1672 G p?
Ky () = TNQW(€+1) X
20+1 p

Figure 1 illustrates circumstellar gravitational stresses
generated by spheroidal quadrupole vibrations of a
neutron star. The frequency of undamped spheroidal
modes of hydrogravity in the galactic ISM is given by

4T
() = ?GP

Ps — P

p

2(( + 2)
20+ 1

2

Wos (20 +1)

(41)

Because the density of the star ps is much greater
than that of the ambient interstellar medium p, that
is, p/ps < 1, the last formula (41) can be replaced by

4 _ GM,

2 = 22 1 2= — s —
(0) =wg (20+1), wg 3GP R

Wos

(42)

where M, and R are the mass and radius of the neu-
tron star and wg is the natural unit of frequency of
g-modes in the star bulk. This result is perhaps the
most striking outcome of the considered models, which
shows that the frequency of the hydrogravity mode in
the ISM is independent of the density of the galactic in-
terstellar matter. Formula (42) can be compared with
that for the frequency of nonradial spheroidal g-modes
in the neutron star bulk computed in [24] as a function
of the multipole degree (,

wi(0Ge) = w§ [2( - 1)]. (43)
We see that in the limit of very high overtones, ¢ > 1,
the frequency of spheroidal g-modes in the ISM coin-
cides with that for g-modes in the neutron star bulk,

wgs(é) = ws(oGé).

3.3. Toroidal hydrogravity mode

The inertia M;((), internal friction D;(¢), and life-
time 74(¢) as functions of the multipole degree ¢ of the
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Fig.1. Geometric illustration of material displacements in circumstellar hydrogravity waves generated by spheroidally (top
picture) and torsionally (bottom picture) oscillating neutron star

toroidal hydrogravity mode are given by

5 4r ((0+1
M(€) = N7 géfl 20 +<1)(25)— 1 »
Dy(t) = 2t (D +2) (44)
R2tH1 2c+1) 7’
n(0) =27[(20-1)(+2)]7",
R (45)
T = 5 =

The obtained analytic estimate (45) for the time of
viscous relaxation of rotational oscillations in the cir-
cumstellar envelope (pictured in the lower part of
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Fig. 1) has the same practical usefulness as Lamb’s for-
mula (39). Tt follows that high-multipole gravity modes
decay faster then low-multipole ones, and this conclu-
sion is independent of the adopted approximation of
incompressible matter. A similar conclusion has been
derived in [26] for the decay time of the toroidal mode
in the neutron star bulk. In a cosmic hydrogen plasma,

pv =2.2-10"1T5/2/InA.

~
~

The numerical value of the factor A 10-15 and
p~ 107 g-cm™3 [15]. For pr = 1071° cm? s, the time
of viscous relaxation 7, &~ 10% s; for pr = 10720 cm? -5,
the lifetime of interstellar mode of hydrogravity is of
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the order of 10 years. Another way of computing the
time of viscous dissipation is based on the formula

n=nkgT/v

(where v is the collision frequency in the gas—dust in-
terstellar matter, n is the particle density, and T is
the temperature), which leads to lifetimes from 10? to
108 years. All this leaves no doubt about the existence
of the hydrogravity mode in the galactic interstellar
medium.

The restoring force parameter K () is given by

2 2
K(0) = 8 N2 Gp* (({+2)

3 RAL 20+1 %
2(0+1)  ps—p
4
20-1 P (46)

The frequency of the dissipationless toroidal hydrograv-
ity mode in the ambient ISM is given by

(20— 1)(¢ +2)
(+1
20+ 1)
20— 1

2r
wor(0) = gGﬂ
Ps — P
p

(47)

In the natural limit p/ps < 1, the latter formula is
replaced by

L (20— 1)(0+2)

2
YCTT 1)

Wot

(0) = (48)
where wg stands for the frequency of g-modes in the
neutron star bulk. This equation again highlights the
fact that the frequency of the hydrogravity mode is
independent of the material properties of the galactic
interstellar matter. For the sake of comparison, the fre-
quency of the torsional g-modes in the neutron star is
given by [25]

wi(0Ge) = wg(l = 1), (49)
We see that in the limit ¢ > 1, we have wy(¢) =
= wi(oGy¢). The difference between periods of hydro-
gravity modes in the ISM and g-modes in the neutron
star bulk is illustrated in Fig. 2. Our expectation that
considered kind of interstellar motions can be detected
in an electromagnetic signal from a pulsating neutron
star rests on the plausible assumption that collective
oscillations of charged species in the interstellar grav-
ity waves should be accompanied by emission of elec-
tromagnetic waves. That the radio range of such an
emission is not extinguished by the gas—dust cloud of
the ISM suggests that the interstellar gravity waves
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P s
0.003 [T

0.002

0.001

0.003

0.002

0.001

Fig.2. Period Py, in seconds, as a function of multi-

pole degree ¢ of spheroidal (a) and torsional () hydro-

gravity modes in the circumstellar envelope (solid line)

and the corresponding g-modes in the neutron star bulk

(dashed line) computed for two models of neutron stars.

1— M; =13My, Rs =13 km; 2 — M, = 0.1Mg,
Rs = 18 km

could manifest themselves by a periodic radio signal
whose timing is determined by the frequency of the
gravity mode in the central star. Also, it is noteworthy
that in [27], it is shown that accounting for electromag-
netic processes around a torsionally oscillating neutron
star can provide understanding some peculiarities of
gamma-ray bursts.

3.4. Canonical gravity waves from equations of
hydrogravity

In this subsection, we show that the approach sug-
gested above regains the well-known results of the clas-
sical fluid-dynamic theory regarding the dispersion re-
lation for the free surface gravity waves in an incom-
pressible inviscid liquid caused by the presence of a
constant gravitational field (see, e.g., [12-14]). This
is interesting in its own right because the developed
treatment discloses the fact that the classical gravity
waves are of a substantially shear character. From the
energy balance equation (27) obtained above, it follows
that the dissipative free fluctuations of an incompress-
ible liquid promoted by anisotropic Newtonian gravita-
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tional stresses are governed by equations of the form

—(47G) "'V [g) dgk + gpogil,
—4nGpv;.

pU;

53 (50)

These equations should be supplemented by the incom-
pressibility condition

Vv =0,
which implies that
Vig = 0.

Adhering to the treatment of hydrodynamic gravity
waves in an incompressible fluid of infinite depth, given
in [14], we take the plane z = 0 as corresponding to the
equilibrium fluid surface. In this case, the constant
gravitational field g® has the components

g"=[2.=0, g =0, g.=—g]=const. (51)

The motions are restricted to the xz plane, which
means that the fluctuating field of the velocity is a
function of # and z and therefore has just two nonzero
components

v =vz(2,2), vy =0, v, =wvs(22) (52)

Given (51) and (52), in the Cartesian coordinates,
Eqgs. (50) break up into the set of noncombining equa-
tions

vy _ 8 00g. 00g. _
Pt T InG 0. o mGeva, (53)
v _ 8 ddg ddg _
P ot TG 0.0 ot mGev (54)

exhibiting strong coupling between fluctuations in the
velocity of hydrodynamical flow and gravitational field.
Taking time derivative in Eqs. (53) and (54), we find
that the resultant equations can easily be combined to
give identical equations for each fluctuating variable,

0%v, ov,  0%g, = 0dg,

o2 - 8. o - 85,0 (9
0%v, ov,  0%*0g. 9dg.
o2 = %9, op — 8. (50

We consider an incompressible liquid with a free sur-
face. By «free gravity wave» we understand a distur-
bance traveling in this liquid whose amplitude is expo-
nentially decreasing toward the depth, i.e., as z = —oo,
and for which the velocity components are described by

v, = —Ake** sin(kx — wt)

v, = Ake** cos(kx — wt).

vy, =0,

3

(57)
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The components of the fluctuating gravity field in this
wave have the form

4
EP,,,

4
0gs = 5gy =0, Jg.= _vam-,
where v, and v, are given by expressions (57). Substi-
tuting (57) in (55), we arrive at the well-known disper-
sion relation of a classical free surface gravity wave in

an incompressible liquid of infinite depth [14, 15],

w:\/g_ka Vg =

where V¢ is the group velocity of the gravity wave.
In this wave, the velocity vector v, at any fixed value
of the depth coordinate z in the 2z plane, undergoes a

Ow

ok 2

1

g

NC

uniform rotation in this plane preserving its magnitude.
This is clearly seen by representing the flow velocity as

v=I[Vx(e, f)l=[Vf xe,

f = Ae** sin(kz — wt) (59)

where e, is the unit vector in the positive direction of
the y axis around which, at a fixed value of z, the ve-
locity vector v executes uniform rotation. However, it
should be clearly realized that this rotation has nothing
to do with vorticity of the fluid flow, since the vector
field of vorticity

=V xv=0.
On the other hand, the requirements

V-v=0, Vxv=0 (60)

imply that v can be represented as the gradient of a
scalar function ¢

v=Vo¢, &= A" cos(kx —wt). (61)

It can be verified that the velocity field in the surface
gravity wave v, Eq. (57), obeys the equation

Viv=0

as well. It is this fact that has been used as a guide in
the above adopted classification of the gravity modes
in a spherical circumstellar shell as spheroidal and
toroidal modes in which the fields of displacements are
described by two general solutions of the vector Laplace
equation. Thus, the proposed equations of hydrograv-
ity provide a proper account of the canonical gravity
waves by accentuating the shear character of this mode.
Essentially, this means that gravitational stress endows
an incompressible fluid with the mechanical properties
typical of viscoelastic materials capable of transmitting
shear waves.
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4. DISCUSSION

An understanding of physical mechanisms gov-
erning the large-scale motions of galactic interstellar
medium brought about by seismic vibrations of stars is
important in two areas of current astrophysics: astero-
seismology and interstellar gas dynamics. In this work,
we have investigated the wave motions of galactic inter-
stellar medium promoted by circumstellar gravitational
fields of pulsating stars. In doing this, we have set up
self-consistent equations of hydrogravity having in ap-
pearance some features in common with those lying
at the base of the hydromagnetic theory. By exam-
ining potential capabilities of such an approach, heav-
ily relayed on the concept of Newtonian gravitational
stresses, we have shown that the proposed theory re-
gains the dispersion equation for the canonical gravity
waves traveling near the surface of an incompressible
inviscid liquid of infinite depth, the wave process being
well-known in the theoretical oceanology and physics
of planetary atmospheres. Newly highlighted here is
the shear character of oscillating flows in this wave, ow-
ing its origin to fluctuations of Newtonian gravitational
stresses.

Based on this and working from the homogeneous
model of a spherical stellar cocoon (a star surrounded
by an extended spherical shell of gas—dust medium),
we apply the proposed theory of hydrogravity to anal-
ysis of the small-amplitude gravity modes generated in
the interstellar medium by a neutron star executing
spheroidal and torsional vibrations in quiescent, pre-
sumably post-starquake, regime. In presented calcula-
tions (carried out by two constructively different op-
erational tools), the approximation of incompressible
viscous fluid has been adopted. This implies that dis-
turbances outgoing from a pulsating neutron star lead
to weak perturbations accompanied by coupled fluctu-
ations of the velocity and gravitational field, whereas
the equilibrium density and hydrostatic pressure in
the ambient gas—dust shell remain unaffected. Clearly,
such an approximation is unwarranted for violent star-
quakes generating the shock and compressional waves.
The extension of the proposed theory to the case of
these latter waves requires special investigation, which
is out of our present discussion. The practical useful-
ness of the considered, admittedly idealized, model is
that it allows one to attain conclusive inferences re-
garding the dependence of period and lifetime of con-
sidered modes upon characteristic parameters of both
a pulsating star and surrounding gas—dust interstellar
matter and the multipole degree of oscillations as well.
From the physical side, the finding of particular inter-
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est is that the frequency of these weakly attenuated
modes of hydrogravity in an unbounded dusty enve-
lope is proportional to the frequency of the g-mode in
the neutron star bulk. The corresponding period falls
in the interval from 0.1 to 20 milliseconds. This in-
ference is in agreement with the Boriakoff-Van Horn
conjecture [2, 3] that micropulses of millisecond dura-
tion clearly discernible in the windows of the main pulse
train owe their existence to pulsations of neutron stars.
Together with this, it seems fairly plausible that un-
predictable irregularities and perturbations in the ISM
mediating the considered waves of hydrogravity should
substantially affect the coherency of these micropulses,
as extensively discussed in [28].

While the developed theory is presented in the con-
text of neutron star pulsations, it is hoped that the the-
oretical predictions inferred here can find useful appli-
cations to another area of astroseismology. In this con-
nection, it is important that considered mechanisms of
gravitational coupling between small-amplitude vibra-
tions of a star and a stellar envelope presume that col-
lective oscillations of charged particles (forming circum-
stellar plasma) in the quasistatic wave of hydrogravity
are accompanied by electromagnetic radiation whose
frequency coincides with that for the gravity mode in
the star bulk. It is expected, therefore, that such a
radiation can be observed in the vicinity of any star
surrounded by interstellar plasma and executing small-
amplitude nonradial vibrations driven by self-gravity.
In this case, the considered quasistatic waves of hydro-
gravity can exist in the solar envelope, provided the
Sun undergoes global nonradial gravity-driven vibra-
tions of small amplitude with the frequencies propor-
tional to the basic frequency of g-mode wg. Such an
attitude sheds some new light on the known problem
of helioseismology [29] regarding 160-minute variability
discovered long ago in solar observations [30, 31], which
has been interpreted as a manifestation of the gravi-
ty-driven vibrations of the Sun (see also [32]). How-
ever, in the subsequent years, the authenticity of solar
origin of this signal has been the subject of controversy
(e.g. [33]). In recent work [34] advocating the solar ori-
gin of this signal, it is argued that this variability can-
not be ascribed to some terrestrial cause or to an arti-
fact of the data reduction procedure. Notwithstanding
the fact that further measurements (preferably with the
use of satellite-based telescopes) are needed to attain
more definite statements regarding the very source and
physical nature of this intriguing signal, we conclude
that predictions of the theory developed in this work
are in line with the hypothesis about helioseismic ori-
gin of this phenomenon.
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APPENDIX

In this Appendix, we show that the results obtained
above can be derived from a different mathematical
footing. The basic idea of this method is to use the
gravitational stress tensor GG, as the dynamical vari-
able of motions together with the density p and the
velocity field V;, whose evolution is governed by cou-
pled equations of the form

dp 6Vk
— — =0, 2
@t P = O (62)
dv; 0P  0Gy _ Ol
p dt + 695, B 8l‘k B 6-Tk ’ (63)
lem Vi av; av;
dt +G]6xj+G]“6xj+Gk8xj 0 (6)

Such an approach has been used in [8, 9] to compute
the gravity modes in the neutron star bulk.

As in the previous section, we focus on disturbances
of the gas—dust cocoon triggered by seismic vibrations
of a neutron star that are not accompanied by fluctua-
tions in density but solely in the velocity, pressure, and
gravitational stresses,

Vi(r,t) = V2(0) + vp(r, 1),
P(r,t) = Po(r) + p(r, 1), (65)
Gir(r,t) = G (r) + gir(r, 1).
We note that in this model, the static gravitational

stresses in the stationary cloud surrounding the neu-
tron star are determined by the hydrostatic pressure

(Eq. (20)) as
GO (r) = =Po(r)dis,

2
Po(T): ?Gp2(R§—T2)+ (66)
4 1 1
TGplps—p)R (= - =]
+3 p(ps — p) s<r Rs>]

Inserting (65) in (62)—-(64), we arrive at linearized equa-
tions of gravity-driven fluctuations,

Ov; Op  Ogi Omix

TR P PR PR (o7
0gi
Stk = 2P0(T) Vik + U]V]PO (T)(sik', (68)
1 81)2' a'Uk
Tix = 2Up Vi, Vix = 3 <8xk + 8xi> ' (69)

The energy balance equation is

2

% % dy = — /[gik + k] vig dV. (70)
This equation is obtained by scalar multiplication
of (67) with v; and integration over the cloud volume,
provided that surface stresses are negligible. The next
step is to use a separable r and ¢ representation for both
the kinematic characteristics of motion like the field of
material displacements and the rate-of-strain tensor

vi(r, 1) = ai(r) a(t), vi(r,t) = ai (r) a(t), (71)

and for the strength characteristics of motion such as
the stress tensors of gravity and viscosity

gik(r,t) = [2Po(r)aik (v)+a;(r)V; Po(r)dix]al(t),

. (72)
Tk = Qnaik O/,(t).

Substituting (71) and (72) in (70), we obtain the equa-
tion of damped harmonic oscillations

Mé(t) + Da(t) + Ka(t) = 0 (73)

in which the parameters of inertia M, stiffness K, and
viscous friction D are given by the integrals

M = | pai(r)a;(r)dV,
: (ra)
D = 3 /pl/[viak + Vkai] [Viak + Vkai]dV,
1
K = 5 / Py [V, ap + Vi ai] [Vz ar + Vi a,»]dV. (75)

These equations show that the frequency and lifetime of
quasistatic modes of hydrogravity can be computed us-
ing the above specified fields of spheroidal and toroidal
instantaneous displacements. Also, it is noteworthy
that the last expression for K is similar to the equa-
tion for the rigidity coefficient of a viscoelastic mate-
rial whose oscillatory response is controlled by Hooke’s
restoring force. This again leads us to conclude that the
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gravitational stresses imparts to the gas—dust circum-
stellar material a portion of shear mechanical rigidity
typical of viscoelastic soft matter. Deserving particular
emphasis is the fact that the parameter of rigidity (75)
computed for both the spheroidal hydrogravity mode
(with field of displacement (36)) and toroidal hydro-
gravity mode (with fields of displacement (37)) has the
analytically identical form with that given by Eqs. (40)
and (46). Therefore, all physically significant results in-
ferred in the body of this paper can be recovered within
the approach outlined in this appendix.
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