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RELATIVISTIC QUANTUM THEORY OF CYCLOTRONRESONANCE IN A MEDIUMH. K. Avetissian *, G. F. Mkrthian, M. G. PoghosyanDepartment of Quantum Eletronis, Plasma Physis Laboratory, Yerevan State University375025, Yerevan, ArmeniaSubmitted 20 Otober 2003The relativisti quantum theory of ylotron resonane in a medium with arbitrary dispersive properties is pre-sented. The quantum equation of motion for a harged partile in the �eld of a plane eletromagneti wave andin the uniform magneti �eld in a medium is solved in the eikonal approximation. The probabilities of induedmultiphoton transitions between the Landau levels in a strong laser �eld are alulated.PACS: 03.65.Pm, 71.70.Di, 52.25.Os, 42.50.Hz1. INTRODUCTIONAs is known, if a harged partile moves in the�eld of a transverse eletromagneti (EM) wave in thepresene of a uniform magneti �eld direted along thewave propagation vetor, a resonant e�et of the waveon the partile motion is possible. If the interationtakes plae in the vauum, this is the well-known phe-nomenon of autoresonane [1�3℄, when the ratio of theDoppler-shifted wave frequeny !0 to the ylotron fre-queny 
 of the partile is onserved, !0=
 = onst,and the resonane reated at the initial moment auto-matially holds in the ourse of interation. But if theinteration takes plae in a medium where the phaseveloity of an EM wave is larger (plasma-like medium)or smaller (dieletri medium) than the light speed inthe vauum, the piture of the wave�partile intera-tion is essentially hanged. In partiular, the autoreso-nane phenomenon is violated in the medium beauseof a nonequidistant Stark shift of magneti sublevels ofan eletron (Landau levels) in the eletri �eld of anEM wave. As a result, the intensity e�et of the wavegoverns the resonane harateristis, and the partilestate essentially depends on the initial onditions andthe wave �eld magnitude at whih the nonlinear reso-nane is ahieved [4℄. The ylotron resonane (CR) ina medium was �rst investigated in the sope of lassialtheory in papers [3; 5℄, where osillating solutions forthe partile energy were obtained. However, suh be-*E-mail: avetissian�ysu.am

havior is valid only for the EM wave intensity less thansome ritial value. As shown in [4℄, at the intensitiesabove that ritial value, a nonlinear resonane phe-nomenon of a threshold nature � the so-alled �ele-tron hysteresis� � ours (the EM wave is turned onadiabatially). If the intensity peak of an atual wavepulse exeeds the mentioned ritial value, then signif-iant aeleration of harged partiles an be ahieved(it is lear that the medium must be plasma-like forthis purpose) [6℄.Below the threshold intensity of the eletron hys-teresis, when the linear CR ours in a medium [3; 5℄,the free eletron laser version has been proposed, basedon the ombined sheme of CR and Cherenkov radia-tion in a dieletri�gaseous medium [7℄.We note that lassial equations of motion for thisproess in a medium allow an exat solution only in apartiular ase where the initial veloity of a partileis parallel to the wave propagation diretion and thewave has a irular polarization (namely, the eletronhysteresis phenomenon has been obtained in this ase).Conerning the quantum desription of CR, the rel-ativisti quantum equation of motion allows exat so-lution only for CR in the vauum [8℄ (see [9℄ and refer-enes therein for the desription of related quantumeletrodynami proesses, suh as eletron�positronpair prodution, nonlinear Compton sattering in thepresene of uniform magneti �eld, et., by this wavefuntion). We note that the on�guration of EM �eldswith a uniform magneti �eld direted along the prop-327



H. K. Avetissian, G. F. Mkrthian, M. G. Poghosyan ÆÝÒÔ, òîì 126, âûï. 2 (8), 2004agation of the transverse wave is one of the exoti aseswhere the relativisti quantum equation of motion inthe vauum allows an exat solution. In a medium,even in the absene of a uniform magneti �eld, the rel-ativisti quantum equation of motion for the partile�monohromati wave interation redues to the Math-ieu type (in general, Hill type) equation, the exat so-lution of whih is unknown. In this ase, obtaining anapproximate analyti solution desribing the nonlinearproess of partile�wave interation is already problem-ati [10�12℄.The purpose of this paper is to obtain a nonlinear(in the �eld) approximate solution of the relativistiquantum equation of motion for a harged partile inthe plane EM wave in a medium in the presene of auniform magneti �eld, a solution that su�iently welldesribes the quantum piture of ylotron resonanein a medium at high intensities of the external radiation�eld, in partiular, multiphoton stimulated transitionsbetween the Landau levels.In what follows, the wave funtion of a harged par-tile moving in a medium in the �eld of a transverseEM wave in the presene of a uniform magneti �elddireted along the wave propagation diretion is ob-tained. Then the multiphoton CR in a medium is on-sidered and the probabilities of indued multiphotontransitions in a strong irularly polarized EM waveare alulated.2. WAVE FUNCTION OF A CHARGEDPARTICLE IN THE PLANEELECTROMAGNETIC WAVE IN A MEDIUMIN THE PRESENCE OF A UNIFORMMAGNETIC FIELDLet a harged partile move in a medium in the �eldof a oherent EM wave and a uniform magneti �eldalong the wave propagation diretion (hosen as the zaxis). The four-vetor potential of this on�guration ofthe EM �eld an be represented asA�(x) = A�(x1) +A�(�); (1)where A�(x1) = (0; x1H0; 0; 0) (2)is the four-vetor potential of the uniform magneti�eld with the strength H0 andA�(�) = nA1 �t� nx3 � ; A2 �t� nx3 � ; 0; 0o (3)

is the four-vetor potential of a plane transverse EMwave, x is the four-omponent radius vetor, and� = t� nx3=is the plane wave oordinate. For four-omponent ve-tors, we hose the metri a = (a; ia0). In (3), n = n(!)is the refrative index of the medium and  is the lightspeed in the vauum. Hereafter, we take the EM waveto be laser radiation that is quasimonohromati withhigh auray (�! � !, where ! is the arrier fre-queny), n(!) � n = onst:We assume that the EM wave is swithed on/o�adiabatially, and therefore, for the vetor potentialA�(�), we have thatA�(�) = 0 at t = �1:Beause we assume the oherent EM wave to bea laser radiation one for whih the photon energy isnegligibly small ompared with the relativisti eletronenergy, we an neglet the spin interation, and theDira equation in the quadrati form therefore reduesto the Klein�Gordon equation for a harged partile in�eld (1),��i~�� + eA�(x)�2 +m22�	(x) = 0; (4)wherem and e are the partile mass and harge, respe-tively (we assume e < 0, with the eletron in mind),and �� � ��x� ; � = 1; 2; 3; 4;denotes the �rst derivative of a funtion over the four-omponent radius vetor x.The partile quantum motion at t ! �1; whenA�(�) = 0, is well known and has been the subjet ofnumerous studies (see, e.g., [13℄). In the uniform mag-neti �eld, the partile motion is separated into theylotron (x1; x2) and the longitudinal (x3) degrees offreedom. Beause the oordinate x2 is yli in this ase(also in the presene of an EM wave; see (2) and (3)),the ylotron motion is desribed by the set of quantumharateristis of the state {l; p2}, where the number llabels Landau levels (l = 0; 1; 2; : : : ) and p2 is the x2omponent of the generalized momentum. The longi-tudinal motion at t ! �1 is then desribed by thep3 omponent of the partile initial momentum. Con-erning the partile transverse initial state, we assumethat at t ! �1, the partile is in the l = s Landaulevel. Therefore, the wave funtion of the partile at328



ÆÝÒÔ, òîì 126, âûï. 2 (8), 2004 Relativisti quantum theory of ylotron resonane : : :t ! �1 is given by the known formula [13℄ (with thespin interation negleted)	(x)jt!�1 == N exp � i~ (p3x3 �Es(p3)t)��s;p2(x?); (5)where N is the normalization onstant, x? == fx1; x2; 0; 0g, and�s;p2(x?) = exp� i~p2x2�Us �x1 + p2a2=~a � ;a =s ~jejH0 ; (6)is the wave funtion orresponding to the ylotron partof motion. Here, Us are the Hermit funtions and thedispersion law for the partile energy�momentum isE2s (p3) = m24 + 2p23 + 2 jej H0~�s+ 12� : (7)Beause the EM wave �eld depends only on the re-tarded oordinate � , it is more onvenient to pass fromthe spae�time oordinates x3; t to the wave oordi-nates � = t� nx3=; � = t+ nx3=:Then, due to the existene of a ertain diretion of thewave propagation, the variable � beomes yli, andhene the momentum onjugate to the oordinate � isonserved, 12 �Es(p3)� np3� � � = onst: (8)This is the known integral of motion in this proessaording to the lassial eletrodynamis [4℄.The partile wave funtion an then be sought inthe form	(x) == exp�� i~�� � i2~ �Es(p3) + np3� �� f(x?; �); (9)where the unknown funtion f(x?; �) of the variable� is assumed slowly varying ompared with the expo-nential funtion of � in (9). This approximation or-responds to the known eikonal approximation for thepartile wave funtion, in whih one an neglet the se-ond derivative of f(x?; �) with respet to � omparedwith the �rst-order derivative in the equation of mo-tion (4), whih for the funtion f(x?; �) has the form

�~22 (n2 � 1) �2��2+2i~2 eE����i~�?� +eA�(x)�2 ++E2s (p3)2 �m22 � p23� f(x?; �) = 0: (10)Here, �?� = f�1; �2; 0; 0g ; eE = Es(p3)� np3:We note that Eq. (10) is already a Hill-type equa-tion even in the absene of a uniform magneti �eld,and its exat solution is unknown. We therefore ap-ply the �eikonal approximation�, onsidering f(x?; �)a slowly varying funtion of � in Eq. (10) (the term withthe seond derivative of f(x?; �) desribes the quan-tum reoil in the interation of a partile with the EMwave), whih is valid under the ondition����~(n2 � 1)2 eE �2f��2 ����� �����f�� ���� : (11)Suh an approximate solution desribes the mul-tiphoton interation of partiles with EM �elds su�-iently well (for the eletron�strong wave interationin a medium, see [14℄). Under ondition (11), Eq. (10)implies the following equation for the funtion f(x?; �):�2i~2 eE�� � �i~�?� + eA�(x)�2++ E2s (p3)2 �m22 � p23� f = 0: (12)In Eq. (12), the transverse and longitudinal mo-tions are not separated. But after a ertain unitarytransformation, the variables are separated [9℄. Theorresponding unitary transformation operator isbS = expniK�(�) bP?�o ; (13)bP?� = �i~�?� � eA�(x1);K�(�) = fK1(�);K2(�); 0; 0g;where K�(�) is hosen to separate the ylotron andlongitudinal motions and to satisfy initial ondition (5),whih is equivalent to the onditionK1 + iK2 = � exp ��ieeEH0���� �Z�1 e~ eE (A1 (� 0)+iA2 (� 0)) exp �ieeEH0� 0� d� 0: (14)329



H. K. Avetissian, G. F. Mkrthian, M. G. Poghosyan ÆÝÒÔ, òîì 126, âûï. 2 (8), 2004For the transformed wave funtion ef = bSf(x?; �), wethen have the equation(bP 2?� � E2s (p3)2 + p23 +m22�� i2~ eE2 �� � e~2 eE3 F��K� dK�d� ++�e~ F��K� � eA�(�)�2) ef(x?; �) = 0; (15)where F�� is the EM �eld tensor orresponding to theuniform magneti �eld H0. In Eq. (15), the variablesare separated; by means of the inverse transformationf = bS+ ef(x?; �), we then obtain the solution of theinitial equation (4) (taking Eq. (9) into aount),	(x) == N exp24 i~ (p3x3 �Es(p3)t)� i~ �Z�1 Q(� 0)d� 035�� exp �ieH0K2(x1 � ~2K1)����s;p2 (x1 � ~K1; x2 � ~K2); (16)whereQ(�) = 22 eE "�e~ F��K� � eA�(�)�2�� e eE~23 F��K� dK�d� # : (17)The obtained wave funtion (16) is valid underondition (11), whih means that the partile totalenergy/momentum exhange ouring as a result ofthe multiphoton interation with the strong EM waveat the CR in a medium is muh smaller than theinitial energy/momentum of the partile. This en-ergy/momentum exhange is determined by the fullphase of wave funtion (16) with expressions (6), (14),and (17), whih are found and estimated in the nextsetion.3. THE PROBABILITIES OF MULTIPHOTONTRANSITIONS BETWEEN LANDAULEVELSAlthough the partile motion in a uniform magneti�eld is separated into ylotron (x1; x2) and longitudi-nal (x3) degrees of freedom, Eq. (5), these motions arenot separated in the energy sale due to relativisti ef-fets (7). For not very strong magneti �elds, however,

we an separate the energies of longitudinal (Ek) andylotron motions,Es(p3) � Ek + ~
�s+ 12� ; s~
� Ek; (18)
 = jej H0=Ek; Ek =qm24 + 2p23:We now onsider the onrete ase of a irularlypolarized quasimonohromati EM wave with the mainfrequeny ! and the average value A of the slowly vary-ing envelope,A� (�) = ��A sin(!�); gA os(!�); 0; 0	 ; (19)whih is in resonane with the partile, i.e., theDoppler-shifted wave frequeny is lose to the ylotronone, !0 � (1� nv3=)! � g
; (20)where v3 is the partile initial longitudinal veloity.In (19), the respetive values g = �1 orrespond to theright- and left-hand irular polarizations of the wave.After the interation (t ! +1), under resonane on-dition (20), we have from Eq. (14) thatK1 + iK2 = �eAT~ eE exp(ig!�); (21)where T is the oherent interation time (for a quasi-monohromati wave, T ! 1, and for atual laserradiation, T is the pulse duration).The �nal state of the partile after the interationis desribed by the wave funtion	s(x) = N exp� i~ (p3x3 + p2x2 �Es(p3)t)��� Us �x1 + eATeE os(!�)��� exp"�iegH0~ �eAT2~ eE �2 sin(2!�)++ iegA
TEk~ eE �x1 + p2a2~ � sin(!�)# : (22)Expanding wave funtion (22) in terms of the ompletebasis of partile eigenstates (5),	s(x) = Z dp02dp03Xs0 Css0 (p02; p03) s0;p02;p03(x) (23)we �nd the probabilities of multiphoton indued tran-sitions between the Landau levels.330



ÆÝÒÔ, òîì 126, âûï. 2 (8), 2004 Relativisti quantum theory of ylotron resonane : : :To alulate the expansion oe�ients Css0(p02; p03),we use the result of the integration1Z�1 dz exp(�ikz)Us(a�1z + ab)Us0(a�1z + ab0) == exp fi�+ i(s� s0)�g Iss0 (�); (24)where Iss0 (�) is the Lagger funtion and the harater-isti parameters are determined by� = ka2(b+ b0)2 ; � = tg�1 kb0 � b ;� = a2 k2 + (b� b0)22 :We then obtain the transition amplitudesCss0 (p02; p03) = Æ(p2�p02)Æ(p3�p03�(s�s0)g!n~�1)�� exp�� i~ (Es(p3)�Es0(p03)� (s� s0)g!~) t��� Iss0 [�℄ ; (25)where Æ(p) is the Dira Æ-funtion expressing the mo-mentum onservation law and the argument of the Lag-ger funtion is � = e2A2T 2
Ek2~ eE2 : (26)Aording to (25), the transition of the partile froman initial state {s; p2; p3} to a state {s0; p02; p03} is a-ompanied by emission or absorption of s� s0 photons.Consequently, substituting Eq. (25) in Eq. (23) and in-tegrating over the momentum, we an rewrite the par-tile wave funtion in another form,	s(x) = NXs0 Iss0 (�)�� exp�� i~ (Es(p3)� (s� s0)g!~) t ++ i~(p3 � (s� s0)g!n~�1)x3 + i~p2x2��� Us0 (x1) : (27)The probability of the indued transition s ! s0 bet-ween the Landau levels is ultimately determined fromformula (27): wss0 = I2ss0 "e2A2T 2
Ek2~ eE2 # : (28)Mathing resonane ondition (20) with for-mula (27) shows that in the �eld of a strong EM wave,

the Landau levels are exited at the absorption of thewave quanta if 1�nv3= > 0 and g = 1, orrespondingto the normal Doppler e�et, while in the ase where1 � nv3= < 0 and g = �1, whih is possible in therefrative medium (n > 1), the Landau levels areexited at the emission of the wave quanta due to theanomalous Doppler e�et.We now estimate the average number of emit-ted (absorbed) photons by the eletron at the CR ina medium for high exited Landau levels (s � 1).In aordane with the hosen approximation, themost probable number of photons in the strongEM wave �eld orresponds to the semilassial limit(js� s0j � 1), in whih multiphoton proesses domi-nate and the nature of the interation proess is verylose to the lassial one. In this ase, the argument ofthe Lagger funtion an be represented as� = 14s ��El~! �2 ; �El = eEv?Tj1� nv3=j : (29)Here, �El is the amplitude of the energy hange of thepartile aording to the lassial perturbation theory,E is the amplitude of the eletri �eld strength of theEM wave, and v? � q2~s
=E0kis the partile mean transverse veloity. The Laggerfuntion is maximal at� ! �0 = �ps0 �ps�2 ;exponentially falling beyond �0. For the transitions! s0 with js� s0j � s, we have�0 � (s0 � s)24s :Comparison of this expression with (28) and (29) showsthat the most probable transitions arejs� s0j � �El~! ; (30)in aordane with the orrespondene priniple. UsingEqs. (27) and (30), we an now represent the onditionfor the eikonal approximation in Eq. (11) as�El � 2 ����Es(p3)� np3n2 � 1 ���� :This ondition atually restrits the intensity of theEM wave �eld in aordane with Eq. (29). However,the above ondition is pratially very weak, and thewave funtion obtained in (16) desribes multiphotontransitions at the CR in strong laser �elds with greatauray.331



H. K. Avetissian, G. F. Mkrthian, M. G. Poghosyan ÆÝÒÔ, òîì 126, âûï. 2 (8), 20044. CONCLUSIONIn the sope of relativisti quantum theory, a non-linear (in the �eld) wave funtion of the eikonal typeof a harged partile in the plane EM wave and a uni-form magneti �eld in a medium has been obtainednegleting spin interation and, onsequently, quan-tum reoil of photons (in aordane with the eikonalapproximation applied). The eikonal approximationpratially does not restrit the appliability of suha wave funtion in the atual ases of strong radiation�elds that are laser �elds (with the photon energy muhsmaller than the eletron energy). This wave funtionwell enough desribes the quantum piture of CR ina medium at high intensities of the external radiation�eld, in partiular, multiphoton stimulated transitionsbetween the Landau levels.With this wave funtion, one an treat a largelass of nonlinear quantum eletrodynami proesses instrong EM �elds with the modi�ations that a mediumbrings (e.g., the anomalous Doppler e�et), inludingastrophysial appliations, where CR plays a signi�antrole [15℄. In addition, one of the advantages of CR ina dieletri medium is that for a moderate relativistipartile beam, one an ahieve the CR in the optialregion (lose to the Cherenkov resonane) by urrentlasers and existing uniform magneti �elds (� 104 Gs),while in the vauum, the CR with radio frequenies ispossible at the same parameters. Finally, the obtainedwave funtion is espeially important for the desrip-tion of the radiation proess by a harged partile atthe CR in gaseous media onsisting of a superpositionof Compton, Cherenkov, and synhrotron radiations.We note that radiation of a partile at laser-assistedmultiphoton transitions at the CR between Landau lev-els has already been investigated and will be presentedelsewhere.This work was supported by the InternationalSiene and Tehnology Center (ISTC) (projet
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