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DYNAMICS OF JUMP-WISE TEMPERATURE PITCH VARIATIONSIN PLANAR CHOLESTERIC LAYERS FOR FINITE STRENGTHOF SURFACE ANCHORINGV. A. Belyakov *a, I. W. Stewart b, M. A. Osipov baLandau Institute for Theoreti
al Physi
s117334, Mos
ow, RussiabDepartment of Mathemati
s, University of Strath
lydeGlasgow G1 1XH, Great BritainSubmitted 15 September 2003The dynami
s of pit
h jumps in 
holesteri
 layers with �nite surfa
e an
horing strength at temperature vari-ations is investigated theoreti
ally. General expressions are presented that 
onne
t the dynami
s of the pit
hjumps with the parameters that determine the pro
ess, su
h as the vis
osity, the spe
i�
 form of the an
horingpotential, and the dimensionless parameter Sd = K22=Wd, where W is the depth of the an
horing potential,K22 is the twist elasti
 modulus, and d is the layer thi
kness. It is found that the shape of the an
horingpotential essentially in�uen
es the temporal behavior of the 
holesteri
 helix in the pro
ess of a pit
h jump.To illustrate this revealed dependen
e of the pit
h jump dynami
s on the shape and strength of the an
horingpotential, the problem was investigated for two di�erent models of the surfa
e an
horing potential for a jumpme
hanism 
onne
ted with the slipping of the dire
tor at the surfa
e over the barrier of the an
horing potential.Cal
ulations for the unwinding (winding) of the helix in the pro
ess of the jump were performed to investigatethe 
ase of in�nitely strong an
horing on one surfa
e and �nite an
horing on the other, whi
h is important inappli
ations. The results show that an experimental investigation of the dynami
s of the pit
h jumps will allowone to distinguish di�erent shapes of the �nite strength an
horing potential, and in parti
ular, will provide ameans for determining whether the well-known Rapini�Papoular an
horing potential is the best suited potentialrelevant to the dynami
s of pit
h jumps in 
holesteri
 layers with �nite surfa
e an
horing strength. The optimal
onditions for the experimental observation of the phenomena dis
ussed here are brie�y 
onsidered.PACS: 61.30.-v, 68.15.+e1. INTRODUCTIONRe
ent investigations of the temperature pit
h vari-ations in planar 
holesteri
 layers and of the in�uen
eof �nite surfa
e an
horing and thermodynami
al �u
-tuations on these variations [1, 2℄ have revealed somenovel e�e
ts that are interesting in the general 
ontextof the physi
s of liquid 
rystals and in the pra
ti
al ap-pli
ations of liquid 
rystals. Similar investigations ofpit
h variation under the in�uen
e of applied external�elds have also been 
arried out [3, 4℄. Some exper-imental and applied aspe
ts of pit
h variations in ex-ternal �elds have been 
onsidered in [5℄. It has beenknown for quite some time that the temperature evolu-*E-mail: bel�landau.a
.ru

tion of a 
holesteri
 liquid 
rystal (CLC) stru
ture [6, 7℄in samples with a �nite surfa
e an
horing energy maybe 
ontinuous in some ranges of the temperature withjump-wise 
hanges at de�nite temperature points, witha strong hysteresis e�e
t o

urring when the dire
tionof the temperature variations is 
hanged [8�10℄. Thisproblem has been re
ently investigated in [1, 2℄. Butonly thermodynami
 equilibrium states of 
holesteri
layers were studied in these theoreti
al papers and theproblem of the dynami
s of jump-wise transitions wasnot 
onsidered. Nevertheless, the dynami
s of liquid
rystals in restri
ted geometries present general phys-i
al interest and is of espe
ially great 
on
ern in liq-uid 
rystal appli
ations [6℄. For example, the swit
hingtime between two bistable states studied experimen-89
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ally [13℄, is di-re
tly 
onne
ted to the liquid 
rystal dynami
s in the
orresponding restri
ted geometry. In this arti
le, thedynami
s of the aforementioned jump-wise transitionsis studied. We begin with the simplest 
ases that re-veal jump-wise transitions, namely, theoreti
al inves-tigations of the dynami
s of the temperature-indu
edjump-wise variations of the 
holesteri
 pit
h and dire
-tor distribution in a planar layer of CLC with in�nitelystrong an
horing at one of its boundary surfa
es andan
horing of a �nite strength at its other boundarysurfa
e. We note that the dynami
s of su
h jump-wisetransitions is dire
tly dependent on both the vis
osityproperties of liquid 
rystals and the 
hara
teristi
s ofthe surfa
e an
horing potential. This is the motiva-tion for introdu
ing and 
onsidering di�erent modelsfor the surfa
e an
horing potential. In addition to thewell-known Rapini�Papoular an
horing potential, an-other possible model for the an
horing potential, theB-potential, is used in the 
al
ulations presented be-low. 2. SOME RESULTS OF EQUILIBRIUMINVESTIGATIONSWe present some results on the temperature behav-ior of the 
holesteri
 helix in a planar 
holesteri
 layerof �nite thi
kness having �nite strength of an
horing atone of its surfa
es and in�nite an
horing at the other, asdepi
ted in Fig. 1. We �rst restri
t the analysis of thetemperature variations of the dire
tor 
on�guration inthe layer by assuming that the pit
h-jump me
hanismis 
onne
ted with over
oming the an
horing barrier bythe dire
tor at the surfa
e and, moreover, that any liq-uid 
rystal (LC) thermal �u
tuations may be negle
ted.Below, we follow the approa
h and investigationsreported earlier [1, 2℄, and 
on
entrate on the transi-tions between N and N + 1 half-turns of the dire
torin the layer, whi
h pro
eed without strong lo
al distur-ban
es of the dire
tor 
on�guration. Su
h a transitionis unique if the �nite an
horing at the se
ond surfa
e
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d ϕ2Fig. 1. The 
ase of nonidenti
al an
horing at the sur-fa
es of a 
holesteri
 layer (for in�nitely strong an
ho-ring at the bottom surfa
e '2 = 0)

is su�
iently weak, i.e., the dimensionless parameterSd = K22=Wd > 1=2�, whereW is the depth of the an-
horing potential, K22 is the twist elasti
 
onstant, andd is the layer thi
kness. The 
ase of small Sd < 1=2�has been studied numeri
ally in [9℄.We start by �nding the temperature behavior of', the angle of deviation of the dire
tor from thealignment dire
tion orientation at the surfa
e of the
holesteri
 layer with �nite an
horing, see Fig. 1. Fol-lowing [6℄, we 
an write the free energy of the layer asF (T ) = Ws(') + 12K22d � 2�pd(T ) � 2�p(T )�2 ; (1)where Ws(') is the surfa
e an
horing potential, K22 isthe elasti
 twist modulus, d is the layer thi
kness, p(T )is the natural pit
h value in an in�nite sample of the
holesteri
 liquid 
rystal, and pd(T ) is the 
orrespond-ing pit
h value in the layer.Be
ause the pit
h value pd(T ) in the layer is deter-mined by the angle ' and the natural pit
h p(T )may beexpressed via the angle '0(T ), the angle of the dire
tordeviation from the alignment dire
tion at the surfa
eswith �nite an
horing in the absen
e of any an
horingfor
es, expression (1) for the free energy is readily rep-resented as a fun
tion of these angles, namely,F (T ) =Ws(') + 12K22d ['� '0(T )℄2 : (2)We note that Eq. (2) is obtained from Eq. (1) using asimple 
hange of variables ' = qd, where q = 2�=p andz = 0 at the surfa
e with in�nite an
horing. The angle' 
an be found from the 
ondition for a minimum ofthe free energy in Eq. (2). Consequently, ' must satisfythe equation �Ws�' + K22d ['� '0(T )℄ = 0: (3)Analysis of Eq. (3) reveals that a smooth 
hange ofthe dire
tor deviation angle ' is possible when ' isless than some 
riti
al angle '
. As ' a
hieves the
riti
al value '
, a jump-like 
hange of the pit
h o
-
urs. For Sd > 1=2�, the transition to the unique new
on�guration of the helix, di�ering by one in the num-ber of half-turns N , o

urs. In this 
ase, it is possi-ble to restri
t the range of values of ' to the interval[��=2; �=2℄ using the formula ' = N�+' 0, where theintegerN = Int['=�℄ is the number of half-turns withinthe layer thi
kness. In the 
ase where Sd > 1=2�, allsolutions for ' 0 �t into the interval [��=2; �=2℄. In therest of the paper, we only use the variable ' 0, with theprime dropped for simpli
ity. The 
riti
al value of the90
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s of jump-wise temperature pit
h variations : : :dire
tor deviation angle '
 
orresponds to the 
on�gu-ration with N dire
tor half-turns in the layer when itis at an instability point.The pit
h in the layer just before the jump andthe 
orresponding natural pit
h are expressed through'
 aspd(T
) = 2dN + '
=� ; p(T
) = 2dN + '0(T
)=� ; (4)where T
 is the jump temperature. The angle '0(T
)(the natural one at the jump point temperature) isgiven by '0(T
) = '
 + dK22 ��Ws(')�' �'='
 : (5)The value of ' after the jump, denoted by 'j , whi
his basi
ally 
onne
ted to the pit
h pdj(T
) in the layerafter the jump, is determined by the solution of theequation�Ws(')�' + K22d ['� '0(T
) + �℄ = 0; (6)where '0(T
) is determined by Eq. (5). As has beendetermined previously [1, 2℄, the variations of the pit
hin the layer and, in parti
ular, the hysteresis are deter-mined by the dimensionless parameter Sd = K22=Wd,where W is the depth of the an
horing potential, andare rather universal phenomena be
ause they are notdire
tly dependent on the sample thi
kness. Thismeans that for every spe
i�
 form of the an
horing po-tential, expressions (3)�(6) 
an be transformed to formsthat in
lude the parameters of the problem, namely, d,K22, andW , whi
h only appear in 
ombinations redu
-ing to the dimensionless parameter Sd.3. MODEL ANCHORING POTENTIALSTo obtain some quantitative predi
tions, we mustassume some spe
i�
 form of the an
horing potential.We use the widely known Rapini�Papoular (RP) an-
horing model potential [6, 14℄Ws(') = �W2 
os2 ': (7)For this potential, the 
riti
al angle '
 = �=4 when thean
horing is identi
al at both surfa
es of the layer. Theanalysis in [1, 2℄ demonstrated that the essential fea-tures of the dire
tor temperature variations are dire
tlydependent on the parti
ular shape of the an
horing po-tential. It is therefore quite natural to perform similar
al
ulations for a potential that di�ers from the RP

2�0:4�0:3�0:2�0:10
�0:5 �1 0 1 3 5�4 �2�3�5 '; rad

0:1
4

B-potential
Potential,arb.
units Rapini�Papoular

Fig. 2. Qualitative plots of RP potential (7) and B-po-tential (8)model an
horing potential. The se
ond model poten-tial to be investigated, whi
h we 
all the B-potential,is given by the expression (see Fig. 2)Ws(') = �W �
os2 '2 � 12� ; ��2 < ' < �2 ; (8)whi
h is 
ontinued periodi
ally for j'j > �=2 in a
-
ordan
e with the relation Ws(') = Ws(' � �). Thebehavior of potential (8) is similar to the 
ase of theRP potential for small '. However, it di�ers essen-tially from the RP model when ' is 
lose to �=2. Inparti
ular, for identi
al an
horing at both surfa
es, the
riti
al angle '
 for potential (8) is independent of thestrength of the an
horing (via the parameter Sd) and isequal to �=2. Be
ause there are too many parametersin the general 
ase for di�erent an
horing at the twosurfa
es, we 
onsider a spe
i�
 
ase in detail, namely,the 
ase where there is in�nitely strong an
horing onone surfa
e and �nite an
horing on the other surfa
e ofa layer.4. INFINITELY STRONG ANCHORING ATONE SURFACEWe now apply the above general expressions to thespe
i�
 
ase where in�nitely strong an
horing is as-sumed at one of the layer surfa
es and �nite an
horing,des
ribed by the potential Ws('), at the other, whereWs(') is either of the two �nite an
horing potentialsmentioned above.91



V. A. Belyakov, I. W. Stewart, M. A. Osipov ÆÝÒÔ, òîì 126, âûï. 1 (7), 20044.1. The Rapini�Papoular potentialFor the RP potential (7), the free energy given byEq. (2) be
omesF (T )W = 12 h� 
os2 '+ Sd ('� '0(T ))2i : (9)The angle of the dire
tor deviation at the surfa
e, ', isdetermined bysin(2') + 2Sd ('� '0(T )) = 0; (10)while the 
riti
al angle '
 is determined by the relation
os(2'
) + Sd = 0, that is,'
 = 12 ar

os(�Sd): (11)Equation (11) shows that the 
riti
al angle '
 dependson the parameter Sd, in 
ontrast to the 
ase where thean
horing is identi
al at both surfa
es [1, 2℄. It 
hangesfrom �=4 at Sd = 0 to �=2 at Sd = 1.The value of the pit
h for a bulk sample, or the al-ternative des
ription involving the free rotation angle'0(T
) 
orresponding to the jump point, is determinedfrom Eq. (10) as'0(T
) = '
 + 12Sd sin(2'
): (12)The solution of Eq. (11) exists only for 0 < Sd < 1.This means that for weak an
horing (or thin layers),jump-wise 
hanges of the dire
tor 
on�guration in thelayer may be absent. But it should be mentioned thatbe
ause Eq. (11) for the 
riti
al angle was obtained forthe RP an
horing model potential, the previous state-ment is model-dependent. Therefore, experimental in-vestigations of jump-wise 
hanges of the dire
tor 
on-�guration in a layer may be used for determining theshape of the a
tual an
horing potential and its devi-ations from the RP an
horing model potential. Thevalue of 'j , or its equivalent in terms of the pit
hpdj (T
) in a layer after the jump, is determined by thesolution ofsin(2'j) ++2Sd�'j�12 [ar

os(�Sd)℄� sin(2'
)2Sd +�� = 0: (13)4.2. The B-potentialWhen the �nite an
horing potential is taken as theB-potential in Eq. (8), the expression for the free en-ergy given by Eq. (2) be
omesF (T )W = 12 h�2 
os2 '2 + 1 + Sd ('� '0(T ))2i : (14)

0:8�1:0�0:50:51:0
2:52:01:50�1:5 0:5 0:6 0:7 0:9 1:00:2 0:40:30:1 Sd

3:0 �''j
Angle, rad RP potential

Fig. 3. The dependen
e of the post-jump angle 'j andthe angular width �' of the jump on the dimensionlessparameter Sd for the RP potentialThe angle ' of the dire
tor deviation is determinedfrom the relationsin'+ 2Sd ('� '0(T )) = 0: (15)The 
riti
al angle '
 for the B-potential is givenby �=2 for any value of Sd (see Fig. 2), as in the 
asefor identi
al an
horing at both surfa
es. The value ofthe pit
h for a bulk sample, or its equivalent in termsof the free rotation angle '0(T
) 
orresponding to thejump point, is determined from Eq. (15) as'0(T
) = �2 + 12Sd : (16)The value of 'j , equivalent to the knowledge of thepit
h in a layer after the jump at pdj (T
), is determinedby the solution of the equationsin'j + 2Sd�'j � 12Sd + �2� = 0: (17)The values given above for the angles of the dire
-tor deviation just before and after the jump, equivalentto knowing the values of the pit
hes in the layer andthe 
orresponding value of the pit
h in a bulk sample,
ompletely determine the initial and �nal states of thedynami
al problem to be solved. As an example, 'jand the angular width of the jump, i.e., �' = 'j �'
,
al
ulated versus Sd and the layer thi
kness d for theRP and B-potentials are presented in Figs. 3, 4 andFigs. 5, 6, respe
tively.92
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�''j

�1:0�0:50:51:0
3:02:01:50�1:5 81 5 6 7 9 10432
2:5Angle, rad

Thi
kness
RP potential

Fig. 4. The dependen
e of the post-jump angle 'j andthe angular width�' of the jump on the layer thi
kness(in units of the penetration length K22=W for �xed va-lues of K22 and W ) 
al
ulated for the RP potential
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Fig. 5. The dependen
e of the post-jump angle 'j andthe angular width �' of the jump on the dimensionlessparameter Sd for the B-potential5. JUMP DYNAMICSThe plane geometry of the problem under 
onsider-ation, and symmetry arguments, allow us to suppose, ina �rst approximation to the problem, that the hydrody-nami
al �ow during the pit
h jump motion in a planar
holesteri
 layer is of minor signi�
an
e. We thereforeinitiate a study of the above problem by negle
ting thehydrodynami
al �ow. Moreover, we also negle
t the�uid and dire
tor inertial terms; this approa
h is usu-ally adopted in the theory of liquid 
rystals.In our approa
h, the dire
tor 
on�guration is spe
i-

∆ϕ
ϕj

8

−1.0

−0.5

0.5

1.0

2.5

2.0

1.5

0

−1.5
0 1 5 6 7 9 102 43

Angle, rad

Thickness

B-potential

Fig. 6. The dependen
e of the post-jump angle 'j andthe angular width�' of the jump on the layer thi
kness(in units of the penetration lengthK22=W for �xed val-ues of K22 and W ) 
al
ulated for the B-potential�ed by one time-dependent variable '(t), i.e., by thedire
tor orientation at the surfa
e, whi
h, unlike inthe previous se
tions, is now time-dependent. The dy-nami
s of ' is in general des
ribed by the Landau�Khalatnikov equation [15℄
 d'dt = ��F�' ; (18)where F = F (') is the total free energy and 
 is thekineti
 
oe�
ient. This equation 
an also be derivedusing the general 
ontinuum theory of liquid 
rystals,whi
h enables one to determine the parameter 
. Inthe absen
e of �ow and general external for
es, it isknown from the general 
ontinuum theory of liquid
rystals [16℄ that ddtF = � Z
 D d
; (19)where D is the Rayleigh dissipation fun
tion [17℄ and
 is the volume of the sample.5.1. Simpli�ed dynami
al solutionsFor the further simpli�
ation of the problem, weassume that the dire
tor distribution in the layer isquasi-stati
. This means that the dire
tor orientationangle �(t; z) in the bulk of the sample 
an be easilyrelated to the above time-dependent orientation angle'(t) through the equation���t = zd d'dt ; (20)93
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urs in the isothermal situation of 
holester-i
s. This is a 
onsequen
e of assuming that the di-re
tor 
on�guration inside the layer at any given timet is quasi-stati
, that is, the heli
al stru
ture withinthe layer remains undistorted and 
orresponds to somevalue of the pit
h, whi
h is 
hanging with time; in-�nitely strong an
horing at one boundary then justi-�es the assumption made in Eq. (20). It follows fromEqs. (18) and (19) that for a sample of unit dimensionsin the x and y dire
tions,ddtF ('(t)) = � dZ0 D dz; (21)With the above assumptions on �ow, the dissipationfun
tion in this 
ase is simply (
f. [18, pp. 11�13℄and [19℄) D = 
1����t �2 ; (22)where 
1 > 0 is the twist vis
osity. Be
ausedFdt = d'dt dFd' ; (23)we 
an use relations (20) and (23) and insert D de�nedby Eq. (22) in Eq. (21) to �nd thatd'dt = � 1
1 3d dFd' : (24)This expression for the dynami
s in the layer allows usto derive the solution for ' impli
itly by integrationof (24) from time t = 0, where the dire
tor deviationangle at the surfa
e is equal to the 
riti
al value, i.e.,'(0) = '
, up to time t, where ' = '(t). The resultingsolution for ' ist = �
1 d3 'Z'
 �dFdb'��1 db': (25)The solution ' must of 
ourse lie within the range'
 � ' < 'j , that is, between the initial and �nalstates identi�ed above in Se
. 4. The values of '
 and'j were dis
ussed in Se
. 4 and are 
learly dependent onthe spe
i�
 form of the an
horing potential and may bedependent on the value of the parameter Sd. The 
om-plete duration � of the pit
h jump is found by repla
ingthe upper limit in the integral in Eq. (25) by 'j .The solution in Eq. (25) also allows us to de�nethe relaxation time for the jump pro
ess. For example,

the relaxation time tr may be de�ned as the derivativedt=d' evaluated at the middle-during-the-jump-valueof ' = ('
 + 'j)=2. Expli
itly, we have from (25) thattr = �
1 d3 �dFd'��1'=('
+'j)=2 : (26)We now dis
uss the solutions for the RP and B-po-tentials separately.5.2. Rapini�Papoular potentialIn the 
ase of the RP potential, the pit
h jump onlyo

urs when 0 < Sd < 1 (su�
iently strong an
hor-ing). The expli
it form of the integral appearing in so-lution (25) 
an be obtained via Eqs. (2) and (7), withthe result that the solution 
an be written ast = �Sd 2
1d23K22 'Z'
 � sin(2b') ++ 2Sd�b'+ � � '
 � sin(2'
)2Sd ���1 db'; (27)where the 
riti
al angle '
 is given by Eq. (11). Themaximum possible upper limit of integration is 'j ,whi
h is determined from Eq. (13) for a given valueof Sd.In the simple spe
ial 
ase where Sd = 1=2, '
 = �=3and the upper limit 'j is determined from the equationsin(2'j) + 'j + �3 = 0; (28)obtained from Eq. (13).5.3. The B-potentialFor the B-potential, the pit
h jump o

urs for0 < Sd < 1 (i.e., at any strength of an
horing) andthe expli
it expression for the impli
it solution is givenvia Eqs. (2), (8), and (25). The solution is given byt = �Sd 2
1d23K22 �� 'Z��=2 hsin b'� 1 + 2Sd �b'+ �2�i�1 db'; (29)where we re
all that '
 is always ��=2 for the B-potential. The upper limit of integration 'j is deter-mined from Eq. (17) for any given value of Sd. We notethat in this result, the form of the integrand and inte-gration limits are given for the dire
tor 
on�guration94
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s of jump-wise temperature pit
h variations : : :after the jump, that is, when N has 
hanged by 1, and,
onsequently, '0(T
) is repla
ed by '0(T
)� �.As a simple example, we 
onsider the 
ase whereSd = 1=�. The impli
it solution (29) for ' is thengiven byt = � 1� 2
1d23K22 'Z��=2 �sin b'+ 2 b'� ��1 db' ; (30)where the upper integration limit in the right-hand sideis formally zero, be
ause, 'j must be zero at Sd = 1=�by relation (17). We note that the integral in (30) di-verges logarithmi
ally as ' approa
hes 'j = 0, whi
hindi
ates formally that the time taken to 
omplete thejump is in�nite. Nevertheless, there are physi
al me
h-anisms that ensure a 
ut-o� to this limit su
h that thisdivergen
e does not o

ur in reality. For example, the
ut-o� may be due to thermal �u
tuations within the
holesteri
 layer and a nonzero upper limit may thenbe determined by the temperature.6. GENERAL RESULTSWe now use solutions (27) and (29) for the RPand B-potentials, respe
tively. To simplify the resultsand give qualitative plots for data, we introdu
e thetimes
ale [6, p. 226℄ t = t�2K22
1d2 ; (31)whi
h is a typi
al kind of s
aling that o

urs in liquid
rystal problems [16, 19℄.6.1. Rapini�Papoular potentialSolution (27) for the RP potential is given byt = �Sd �2 23 'Z'
 � sin(2b')++ 2Sd�b'+ � � '
 � sin(2'
)2Sd ���1 db'; (32)where, by (11), '
 = ar

os(�Sd)=2 and the relaxationtime is given, via (26), bytr = �Sd �2 23 � sin(2')++ 2Sd�'+ � � '
 � sin(2'
)2Sd ���1'='
��+'j2 ; (33)

with 'j obtained from Eq. (13). Figure 3 shows thedependen
e of 'j on Sd. It is also possible to de�nethe swit
hing time. We de�ne the swit
hing time ts asthe time taken for the orientation angle ' to 
hange bya half of the jump angle width, i.e., to 
hange from '
to ('
 � � + 'j)=2. It is given byts = �Sd �2 23 '
��+'j2Z'
 � sin(2b')++ 2Sd�b'+ � � '
 � sin(2'
)2Sd ���1 db': (34)The solution ', the relaxation time tr, and dependen
eof the swit
hing time ts on Sd for the RP potential areshown in Figs. 7, 8, and 9.6.2. The B-potentialSolution (29) for the B-potential is given byt = �Sd �2 23 'Z��2 hsin b'�1+2Sd �b'+�2�i�1 db'; (35)and the relaxation time istr = �Sd�2 23 hsin'�1+2Sd �'+�2�i�1'='j��=22 ; (36)where 'j is 
al
ulated from Eq. (17). It is also possibleto de�ne a swit
hing time analogous to that for the RPpotential by the relationts = �Sd�2 23 �� 'j��=22Z��2 hsin b'� 1 + 2Sd �b'+ �2�i�1 db': (37)The solution ' and the relaxation time tr for the B-po-tential are shown in Figs. 10 and 11, while the depen-den
e of the swit
hing time ts on Sd is shown in Fig. 12.We note that at the initial stage of the jump, thesurfa
e vis
osity (see, e.g., the introdu
tion of the sur-fa
e vis
osity dis
ussed in [13℄) may restri
t the velo
-ity of dire
tor rotation at the layer surfa
e. It may betaken into a

ount by adding the surfa
e vis
osity term
s(d'=dt)2 to Eq. (21). The 
orresponding additionalterm may play a role in very thin layers and may inprin
iple be dete
ted by experiment.95



V. A. Belyakov, I. W. Stewart, M. A. Osipov ÆÝÒÔ, òîì 126, âûï. 1 (7), 20047. CONCLUSIONThe results obtained above reveal the qualitativelyimportant physi
al properties of jump dynami
s. Forinstan
e, su
h dynami
s have a dire
t dependen
e onthe strength and shape of the an
horing potential. Al-though the spe
i�
 
al
ulations of the jump dynam-i
s were performed under the simplifying assumptionsmentioned above, there is no doubt that the qualitativefeatures of jump dynami
s remain valid in general forthe phenomenon as a whole. It is therefore interestingto dis
uss under whi
h 
ir
umstan
es the solutions de-s
ribed above are quantitatively valid, and what mod-i�
ations to these solutions would be required underother 
onditions in order to obtain a further quantita-tive des
ription of pit
h jump dynami
s.We 
onsider the quasi-stati
 approximation to thedynami
s of the pit
h jump. It may work quantitativelyif the time of propagation of the disturban
e betweenthe surfa
es of the layer is smaller than the 
hara
teris-ti
 time of the jump. Estimating the velo
ity of pertur-bation propagation in the 
holesteri
 as vp = K22=
1p,where p is the 
holesteri
 pit
h, we �nd that the per-turbation propagation time is p=d, in the de Gennesunits of time used in the 
al
ulations (
f. Eq. (31)),and is therefore small if p=d is small. Examination ofFigs. 7�12 allows us to determine in whi
h range of theparameter Sd and for whi
h potential the a

epted ap-proximations are valid. In any 
ase, it is 
lear that ingeneral, the jump time (or the 
orresponding relaxationtime) is shorter for the B-potential 
ompared to the RPpotential, and therefore, as the values of Sd de
rease,the approximation be
omes invalid for the B-potentialat larger values of Sd than for the RP potential. If weassume that p=d � 0:1, then the 
al
ulations presentedabove show that the obtained results are of quantitativemeaning for Sd > 0:1.As a �rst step in over
oming the quasi-stati
 ap-proximation made here, we may regard solutions ofthe equations in the previous se
tion with a time-dependent spa
e s
ale and limit the integration inEq. (19) to the time t by the distan
e relation d(t) = vptif d(t) < d. Within this approa
h, a quantitative de-s
ription of the pit
h jump dynami
s may be obtainedfor values of the parameter Sd not limited by the 
on-dition Sd > 0:1 above. However, one has to bear inmind that other me
hanisms of the pit
h jumps maybe at work for smaller values of Sd. This is 
onne
tedwith the fa
t that for values of Sd smaller than its 
rit-i
al value 1=2� [1℄, along with the jumps 
orrespond-ing to a 
hange in the number N of half-turns at thelayer thi
kness by one (whi
h 
orrespond to the transi-
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Fig. 7. Temporal behavior of the dire
tor orientationangle ' at the surfa
e during a jump for the RP poten-tial at the indi
ated values of Sd
406080
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0:1 0:50 0:2 0:3 0:4 0:6 0:7 Sd0:8 0:9 1:0020
120140tr RP potential

Fig. 8. The dependen
e of the relaxation time tr de-�ned by (33) on Sd for the RP potentialtions of the dire
tor 
on�guration not 
urrently in theground state), jumps greater than the in
rement of oneto the value of N are possible. The 
al
ulated resultsfor Sd < 1=2� therefore require a spe
ial dis
ussion todetermine the range of appli
ability to the pit
h jumpdynami
s in the framework of the me
hanism a

eptedhere.The 
omparison of Figs. 7�12 (see also Fig. 3 andFig. 5) shows that experimental measurements allowone to obtain a qualitative 
on
lusion about the ap-pli
ability of the RP potential to des
ribing jumps (atSd > 1, the jumps are absent at all for RP potential). Itis 
ommonly a

epted that for small angular deviations96
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s of jump-wise temperature pit
h variations : : :
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Fig. 9. The dependen
e of the swit
hing time ts de-�ned by (34) on Sd 
al
ulated for the RP potential
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−1.5Fig. 10. Temporal behavior of the dire
tor orientationangle ' at the surfa
e during a jump for the B-potentialat the indi
ated values of Sdof the dire
tor from the alignment dire
tion, the surfa
ean
horing potential is quadrati
 in the deviation angle,as is the 
ase with the RP potential. But for large de-viation angles (whi
h are essential for the o

urren
e ofpit
h jumps), the question about the shape of the as-so
iated an
horing potential remains open. Therefore,the results presented above show that experimental in-vestigations of the pit
h jump dynami
s give a uniqueopportunity to study the a
tual shape of the an
hor-ing potential at large angular deviations of the dire
torfrom the alignment dire
tion. Other approa
hes em-ployed so far in this area (see, e.g., [20, 21℄) mainlyenable one to determine the an
horing strength that
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Fig. 11. The dependen
e of the relaxation time tr de-�ned by (33) on Sd for the B-potential
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Fig. 12. The dependen
e of the swit
hing time ts de-�ned by (37) on Sd 
al
ulated for the B-potential
hara
terizes the an
horing energy at small deviationsfrom the alignment dire
tion.Con
erning the experimental observation of the dy-nami
s of pit
h jumps, it should be kept in mind thatwithout spe
ial pre
autions, it is quite improbable thatthe pit
h jump in a 
ell o

urs in the whole 
ell si-multaneously, and that it most probably o

urs in lim-ited areas of its surfa
e, whereas the formulas presentedabove assume that the jump pro
ess o

urs throughoutthe whole 
ell simultaneously. To ensure that the pro-
ess o

urs in the whole 
ell, it is possible to performan experiment stabilizing the dire
tor 
on�guration inthe layer by applying a rather weak external �eld andturning the �eld o� just as the dire
tor at the surfa
ea
hieves the 
riti
al angle. This approa
h seems to be7 ÆÝÒÔ, âûï. 1 (7) 97
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s of the Frederiks transition [6, 22℄. The same e�e
tof a jump in a whole 
ell may be a
hieved by me
han-i
al rotation of the layer surfa
e by a small angle inthe dire
tor 
on�guration state of the layer 
lose to thejump.When the homogeneity of the jump over thesurfa
e of the 
ell is ensured, the dynami
s of thejump may be followed by the 
onventional approa
hof measuring the time-dependent transmission [8℄,re�e
tion spe
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