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The dynamics of pitch jumps in cholesteric layers with finite surface anchoring strength at temperature vari-
ations is investigated theoretically. General expressions are presented that connect the dynamics of the pitch
jumps with the parameters that determine the process, such as the viscosity, the specific form of the anchoring
potential, and the dimensionless parameter Sq = K32 /W d, where W is the depth of the anchoring potential,
Ky, is the twist elastic modulus, and d is the layer thickness. It is found that the shape of the anchoring
potential essentially influences the temporal behavior of the cholesteric helix in the process of a pitch jump.
To illustrate this revealed dependence of the pitch jump dynamics on the shape and strength of the anchoring
potential, the problem was investigated for two different models of the surface anchoring potential for a jump
mechanism connected with the slipping of the director at the surface over the barrier of the anchoring potential.
Calculations for the unwinding (winding) of the helix in the process of the jump were performed to investigate
the case of infinitely strong anchoring on one surface and finite anchoring on the other, which is important in
applications. The results show that an experimental investigation of the dynamics of the pitch jumps will allow
one to distinguish different shapes of the finite strength anchoring potential, and in particular, will provide a
means for determining whether the well-known Rapini-Papoular anchoring potential is the best suited potential
relevant to the dynamics of pitch jumps in cholesteric layers with finite surface anchoring strength. The optimal

conditions for the experimental observation of the phenomena discussed here are briefly considered.

PACS: 61.30.-v, 68.15.+¢

1. INTRODUCTION

Recent investigations of the temperature pitch vari-
ations in planar cholesteric layers and of the influence
of finite surface anchoring and thermodynamical fluc-
tuations on these variations [1, 2] have revealed some
novel effects that are interesting in the general context
of the physics of liquid crystals and in the practical ap-
plications of liquid crystals. Similar investigations of
pitch variation under the influence of applied external
fields have also been carried out [3, 4]. Some exper-
imental and applied aspects of pitch variations in ex-
ternal fields have been considered in [5]. It has been
known for quite some time that the temperature evolu-
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tion of a cholesteric liquid crystal (CLC) structure [6, 7]
in samples with a finite surface anchoring energy may
be continuous in some ranges of the temperature with
jump-wise changes at definite temperature points, with
a strong hysteresis effect occurring when the direction
of the temperature variations is changed [8-10]. This
problem has been recently investigated in [1, 2]. But
only thermodynamic equilibrium states of cholesteric
layers were studied in these theoretical papers and the
problem of the dynamics of jump-wise transitions was
not considered. Nevertheless, the dynamics of liquid
crystals in restricted geometries present general phys-
ical interest and is of especially great concern in lig-
uid crystal applications [6]. For example, the switching
time between two bistable states studied experimen-
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tally in [11, 12], as was shown theoretically [13], is di-
rectly connected to the liquid crystal dynamics in the
corresponding restricted geometry. In this article, the
dynamics of the aforementioned jump-wise transitions
is studied. We begin with the simplest cases that re-
veal jump-wise transitions, namely, theoretical inves-
tigations of the dynamics of the temperature-induced
jump-wise variations of the cholesteric pitch and direc-
tor distribution in a planar layer of CLC with infinitely
strong anchoring at one of its boundary surfaces and
anchoring of a finite strength at its other boundary
surface. We note that the dynamics of such jump-wise
transitions is directly dependent on both the viscosity
properties of liquid crystals and the characteristics of
the surface anchoring potential. This is the motiva-
tion for introducing and considering different models
for the surface anchoring potential. In addition to the
well-known Rapini-Papoular anchoring potential, an-
other possible model for the anchoring potential, the
B-potential, is used in the calculations presented be-
low.

2. SOME RESULTS OF EQUILIBRIUM
INVESTIGATIONS

We present some results on the temperature behav-
ior of the cholesteric helix in a planar cholesteric layer
of finite thickness having finite strength of anchoring at
one of its surfaces and infinite anchoring at the other, as
depicted in Fig. 1. We first restrict the analysis of the
temperature variations of the director configuration in
the layer by assuming that the pitch-jump mechanism
is connected with overcoming the anchoring barrier by
the director at the surface and, moreover, that any lig-
uid crystal (LC) thermal fluctuations may be neglected.

Below, we follow the approach and investigations
reported earlier [1, 2], and concentrate on the transi-
tions between N and N + 1 half-turns of the director
in the layer, which proceed without strong local distur-
bances of the director configuration. Such a transition
is unique if the finite anchoring at the second surface

-
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Fig.1. The case of nonidentical anchoring at the sur-
faces of a cholesteric layer (for infinitely strong ancho-
ring at the bottom surface p2 = 0)
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is sufficiently weak, i.e., the dimensionless parameter
Sq = Koo /Wd > 1/2m, where W is the depth of the an-
choring potential, K»s is the twist elastic constant, and
d is the layer thickness. The case of small S; < 1/27
has been studied numerically in [9].

We start by finding the temperature behavior of
¢, the angle of deviation of the director from the
alignment direction orientation at the surface of the
cholesteric layer with finite anchoring, see Fig. 1. Fol-
lowing [6], we can write the free energy of the layer as

]%} 1)

where W (i) is the surface anchoring potential, Koo is
the elastic twist modulus, d is the layer thickness, p(T)
is the natural pitch value in an infinite sample of the
cholesteric liquid crystal, and pg(T') is the correspond-
ing pitch value in the layer.

Because the pitch value py(T) in the layer is deter-
mined by the angle ¢ and the natural pitch p(T") may be
expressed via the angle po(7'), the angle of the director
deviation from the alignment direction at the surfaces
with finite anchoring in the absence of any anchoring
forces, expression (1) for the free energy is readily rep-
resented as a function of these angles, namely,

1 2
WS(QD) + 5[(22(1 |:—7T —

FT) pal(T)

J L

F(T) 5

= Ws(p) e — o (T)]? (2)
We note that Eq. (2) is obtained from Eq. (1) using a
simple change of variables ¢ = ¢d, where ¢ = 27 /p and
z = 0 at the surface with infinite anchoring. The angle
¢ can be found from the condition for a minimum of
the free energy in Eq. (2). Consequently, ¢ must satisfy

the equation

oW,
Oy

K
+ =2 lp— (1)) = 0.

(3)

Analysis of Eq. (3) reveals that a smooth change of
the director deviation angle ¢ is possible when ¢ is
less than some critical angle .. As ¢ achieves the
critical value ¢., a jump-like change of the pitch oc-
curs. For Sy > 1/27, the transition to the unique new
configuration of the helix, differing by one in the num-
ber of half-turns N, occurs. In this case, it is possi-
ble to restrict the range of values of ¢ to the interval
[—7/2, /2] using the formula ¢ = N7+ ¢, where the
integer N = Int[¢/7] is the number of half-turns within
the layer thickness. In the case where S; > 1/27, all
solutions for ¢’ fit into the interval [-7/2, 7/2]. In the
rest of the paper, we only use the variable @', with the
prime dropped for simplicity. The critical value of the
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director deviation angle ¢, corresponds to the configu-
ration with N director half-turns in the layer when it
is at an instability point.

The pitch in the layer just before the jump and
the corresponding natural pitch are expressed through

@c as

2
N+ /7’

2d

pd(Tc) = W7

p(Tc) (4)
where T, is the jump temperature. The angle o (T¢)
(the natural one at the jump point temperature) is

given by

d {8Ws(so)}
Les N P

The value of ¢ after the jump, denoted by ¢;, which
is basically connected to the pitch pg;(7T7) in the layer
after the jump, is determined by the solution of the
equation

W ()

dyp

wo(Te) = we + (5)

IX’2 2

d [30_ 990(TC) +7T] =0,

(6)
where ¢o(T,) is determined by Eq. (5). As has been
determined previously [1, 2], the variations of the pitch
in the layer and, in particular, the hysteresis are deter-
mined by the dimensionless parameter Sq = Ky /Wd,
where W is the depth of the anchoring potential, and
are rather universal phenomena because they are not
directly dependent on the sample thickness. This
means that for every specific form of the anchoring po-
tential, expressions (3)—(6) can be transformed to forms
that include the parameters of the problem, namely, d,
K55, and W, which only appear in combinations reduc-
ing to the dimensionless parameter Sg.

3. MODEL ANCHORING POTENTIALS

To obtain some quantitative predictions, we must
assume some specific form of the anchoring potential.
We use the widely known Rapini-Papoular (RP) an-
choring model potential [6, 14]

Wi(p) = - cos” . (7
For this potential, the critical angle ¢. = 7/4 when the
anchoring is identical at both surfaces of the layer. The
analysis in [1, 2] demonstrated that the essential fea-
tures of the director temperature variations are directly
dependent on the particular shape of the anchoring po-
tential. It is therefore quite natural to perform similar
calculations for a potential that differs from the RP
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Fig. 2. Qualitative plots of RP potential (7) and B-po-
tential (8)

model anchoring potential. The second model poten-
tial to be investigated, which we call the B-potential,
is given by the expression (see Fig. 2)

<p< =,

(8)

which is continued periodically for |p| > 7/2 in ac-
cordance with the relation Wy(y) = Ws(p — 7). The
behavior of potential (8) is similar to the case of the
RP potential for small ¢. However, it differs essen-
tially from the RP model when ¢ is close to 7/2. In
particular, for identical anchoring at both surfaces, the
critical angle o, for potential (8) is independent of the
strength of the anchoring (via the parameter Sy) and is
equal to /2. Because there are too many parameters
in the general case for different anchoring at the two
surfaces, we consider a specific case in detail, namely,
the case where there is infinitely strong anchoring on
one surface and finite anchoring on the other surface of
a layer.

4. INFINITELY STRONG ANCHORING AT
ONE SURFACE

We now apply the above general expressions to the
specific case where infinitely strong anchoring is as-
sumed at one of the layer surfaces and finite anchoring,
described by the potential W;(p), at the other, where
W () is either of the two finite anchoring potentials
mentioned above.
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4.1. The Rapini—Papoular potential

For the RP potential (7), the free energy given by
Eq. (2) becomes
F(T)

T =% —c052<p+5d(99—990(T))2 9)

The angle of the director deviation at the surface, ¢, is
determined by

sin(2¢) + 254 (¢ — ¢o(T)) =0,

while the critical angle ¢, is determined by the relation
cos(2¢.) + Sq = 0, that is,

(10)

Ye = %arccos(—Sd). (11)
Equation (11) shows that the critical angle . depends
on the parameter Sy, in contrast to the case where the
anchoring is identical at both surfaces [1, 2]. It changes
from 7/4 at Sq =0 to /2 at Sqg = 1.

The value of the pitch for a bulk sample, or the al-
ternative description involving the free rotation angle
o (Te) corresponding to the jump point, is determined
from Eq. (10) as

+ QLSd sin(2¢.).
The solution of Eq. (11) exists only for 0 < Sy < 1.
This means that for weak anchoring (or thin layers),
jump-wise changes of the director configuration in the
layer may be absent. But it should be mentioned that
because Eq. (11) for the critical angle was obtained for
the RP anchoring model potential, the previous state-
ment is model-dependent. Therefore, experimental in-
vestigations of jump-wise changes of the director con-
figuration in a layer may be used for determining the
shape of the actual anchoring potential and its devi-
ations from the RP anchoring model potential. The
value of ¢;, or its equivalent in terms of the pitch
pa; (T.) in a layer after the jump, is determined by the
solution of

‘}90(Tc) = P (12)

Sin(QQDj) +

sin(2¢..)

1
+2854 {goj—i [arccos(—Sq)] — 55,

+7r} = 0. (13)

4.2, The B-potential

When the finite anchoring potential is taken as the
B-potential in Eq. (8), the expression for the free en-
ergy given by Eq. (2) becomes

F(T) 1

= [-2c0s2Z 41 — 0o(T))?
W 5 cos’ 5 + + 84 (¢ — wo(T))

(14)
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Fig.3. The dependence of the post-jump angle ¢; and

the angular width Ay of the jump on the dimensionless
parameter S, for the RP potential

The angle ¢ of the director deviation is determined
from the relation

sinp 4+ 254 (¢ — po(T)) = 0. (15)

The critical angle ¢, for the B-potential is given

by 7/2 for any value of Sy (see Fig. 2), as in the case

for identical anchoring at both surfaces. The value of

the pitch for a bulk sample, or its equivalent in terms

of the free rotation angle ¢o(7.) corresponding to the
jump point, is determined from Eq. (15) as

1
254"

eo(Te) + (16)

]

The value of ¢;, equivalent to the knowledge of the
pitch in a layer after the jump at pg; (%), is determined
by the solution of the equation

+ g) —0. (17

The values given above for the angles of the direc-
tor deviation just before and after the jump, equivalent
to knowing the values of the pitches in the layer and
the corresponding value of the pitch in a bulk sample,
completely determine the initial and final states of the
dynamical problem to be solved. As an example, ¢;
and the angular width of the jump, i.e., Ap = ¢; — ¢,
calculated versus S; and the layer thickness d for the
RP and B-potentials are presented in Figs. 3, 4 and
Figs. 5, 6, respectively.
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Fig.4. The dependence of the post-jump angle ¢; and
the angular width A of the jump on the layer thickness
(in units of the penetration length K5 /W for fixed va-
lues of K2 and W) calculated for the RP potential
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Fig.5. The dependence of the post-jump angle ¢; and
the angular width Ay of the jump on the dimensionless
parameter S; for the B-potential

5. JUMP DYNAMICS

The plane geometry of the problem under consider-
ation, and symmetry arguments, allow us to suppose, in
a first approximation to the problem, that the hydrody-
namical flow during the pitch jump motion in a planar
cholesteric layer is of minor significance. We therefore
initiate a study of the above problem by neglecting the
hydrodynamical flow. Moreover, we also neglect the
fluid and director inertial terms; this approach is usu-
ally adopted in the theory of liquid crystals.

In our approach, the director configuration is speci-
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Fig.6. The dependence of the post-jump angle ¢; and

the angular width A of the jump on the layer thickness
(in units of the penetration length K22 /W for fixed val-
ues of K22 and W) calculated for the B-potential

fied by one time-dependent variable (t), i.e., by the
director orientation at the surface, which, unlike in
the previous sections, is now time-dependent. The dy-
namics of ¢ is in general described by the Landau-
Khalatnikov equation [15]

dp _ OF

’Ydt __%7 (18)

where F' = F(p) is the total free energy and ~ is the
kinetic coefficient. This equation can also be derived
using the general continuum theory of liquid crystals,
which enables one to determine the parameter 7. In
the absence of flow and general external forces, it is
known from the general continuum theory of liquid
crystals [16] that

d

—F=— [ DdQ 19

GF=- [pa, (19)
Q

where D is the Rayleigh dissipation function [17] and

Q) is the volume of the sample.

5.1. Simplified dynamical solutions

For the further simplification of the problem, we
assume that the director distribution in the layer is
quasi-static. This means that the director orientation
angle ¢(t,z) in the bulk of the sample can be easily
related to the above time-dependent orientation angle
©(t) through the equation

96 _

z dy
i 2
T (20)
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a form that is motivated by the well-known twist solu-
tion that occurs in the isothermal situation of cholester-
ics. This is a consequence of assuming that the di-
rector configuration inside the layer at any given time
t is quasi-static, that is, the helical structure within
the layer remains undistorted and corresponds to some
value of the pitch, which is changing with time; in-
finitely strong anchoring at one boundary then justi-
fies the assumption made in Eq. (20). It follows from
Eqs. (18) and (19) that for a sample of unit dimensions
in the z and y directions,

d

d
GF®) = [ 21)
0

With the above assumptions on flow, the dissipation
function in this case is simply (cf. [18, pp. 11-13]

and [19])
96\
D= — 22
(%) (22)
where 71 > 0 is the twist viscosity. Because
dF  dy dF
R 2
dt — dt dy’ (23)

we can use relations (20) and (23) and insert D defined
by Eq. (22) in Eq. (21) to find that

de _

dt (24)

This expression for the dynamics in the layer allows us
to derive the solution for ¢ implicitly by integration
of (24) from time t = 0, where the director deviation
angle at the surface is equal to the critical value, i.e.,
©(0) = e, up to time ¢, where o = ¢(t). The resulting
solution for ¢ is

@

dF\ b
/ (%) e

Pe

d

i = N3 (25)

The solution ¢ must of course lie within the range
v < ¢ < j, that is, between the initial and final
states identified above in Sec. 4. The values of ¢, and
¢; were discussed in Sec. 4 and are clearly dependent on
the specific form of the anchoring potential and may be
dependent on the value of the parameter S;. The com-
plete duration 7 of the pitch jump is found by replacing
the upper limit in the integral in Eq. (25) by ¢;.

The solution in Eq. (25) also allows us to define
the relaxation time for the jump process. For example,
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the relaxation time ¢, may be defined as the derivative
dt/dy evaluated at the middle-during-the-jump-value
of v = (p. + ¢;j)/2. Explicitly, we have from (25) that

dF
dep
We now discuss the solutions for the RP and B-po-
tentials separately.

—1

d

t, = _’Ylg (26)

o=(¢ct¢;)/2

5.2. Rapini—Papoular potential

In the case of the RP potential, the pitch jump only
occurs when 0 < S4 < 1 (sufficiently strong anchor-
ing). The explicit form of the integral appearing in so-
lution (25) can be obtained via Eqs. (2) and (7), with
the result that the solution can be written as

[ stz +

ee
sin(2¢.)\17" -
)| e en

2’}/1 d2
3K,

t=-54

+ 254 <{5—|—7r—cpc—

where the critical angle . is given by Eq. (11). The
maximum possible upper limit of integration is ¢,
which is determined from Eq. (13) for a given value
of Sd.

In the simple special case where Sy = 1/2, p. = /3
and the upper limit ¢; is determined from the equation

™

sin(2¢;) + ¢; + 3

=) (28)

obtained from Eq. (13).

5.3. The B-potential

For the B-potential, the pitch jump occurs for
0 < Sy < oo (i.e., at any strength of anchoring) and
the explicit expression for the implicit solution is given
via Egs. (2), (8), and (25). The solution is given by

2’}/1d2
3K,
7 -1
X / [sin@— 1+25, (93+ g)] dg,
—m/2

t=-5,

X

(29)

where we recall that ¢. is always —n/2 for the B-
potential. The upper limit of integration ¢; is deter-
mined from Eq. (17) for any given value of S;. We note
that in this result, the form of the integrand and inte-
gration limits are given for the director configuration
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after the jump, that is, when N has changed by 1, and,
consequently, po(T,) is replaced by oo(T;) — 7.
As a simple example, we consider the case where

Sq¢ = 1/m. The implicit solution (29) for ¢ is then
given by
¢ i
12y,d° / o~ o P o
=—— 25| do, 30
2L [ lnee2Z] g @)
—7/2

where the upper integration limit in the right-hand side
is formally zero, because, ¢; must be zero at Sq = 1/7
by relation (17). We note that the integral in (30) di-
verges logarithmically as ¢ approaches ¢; = 0, which
indicates formally that the time taken to complete the
jump is infinite. Nevertheless, there are physical mech-
anisms that ensure a cut-off to this limit such that this
divergence does not occur in reality. For example, the
cut-off may be due to thermal fluctuations within the
cholesteric layer and a nonzero upper limit may then
be determined by the temperature.

6. GENERAL RESULTS

We now use solutions (27) and (29) for the RP
and B-potentials, respectively. To simplify the results
and give qualitative plots for data, we introduce the
timescale [6, p. 226]

™ 2 IX’22

t=t
Y1d?

(31)

which is a typical kind of scaling that occurs in liquid
crystal problems [16, 19].

6.1. Rapini—Papoular potential
Solution (27) for the RP potential is given by

%)
- _sm;/ [Sin(2@)+

@

+ 25, (@—l—ﬂ'—cpc—

where, by (11), ¢, = arccos(—Sz)/2 and the relaxation
time is given, via (26), by

2
t, = =Sy 7r2§ [sin(2§0)+

in(20,
+25d<90+7r—<pc—81n;Tf) (33)

—1
b
>:| _pc—T+e;
="
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with ¢; obtained from Eq. (13). Figure 3 shows the
dependence of ¢; on Sy4. It is also possible to define
the switching time. We define the switching time Zs as
the time taken for the orientation angle ¢ to change by
a half of the jump angle width, i.e., to change from ¢,
to (pe — 7+ ¢;)/2. It is given by

pe—mte;
- 2
ts = —Sd 71'2§ / |:Sln(293)+
Pe

Sm(ﬂﬂ o dp. (34)

2S84 | @ — e —
+ 254 (90"'71' Pe 25,

The solution ¢, the relaxation time #,, and dependence
of the switching time #, on Sy for the RP potential are
shown in Figs. 7, 8, and 9.

6.2. The B-potential
Solution (29) for the B-potential is given by

-1
[sin 5-1+25, (¢+g)] a3,

and the relaxation time is

_ 2 aN-1
_ 2 ;

t, = —Sam 3 [sm p—142S5y (4,9-|—§)L;: Y (36)
where ¢, is calculated from Eq. (17). It is also possible
to define a switching time analogous to that for the RP
potential by the relation

ts = _Sdﬂ'2§ X

;w2
/2

X [sin@—1+2sd (¢+ g)]_l 3. (37)

[SIE

The solution ¢ and the relaxation time #, for the B-po-
tential are shown in Figs. 10 and 11, while the depen-
dence of the switching time 5 on Sy is shown in Fig. 12.

We note that at the initial stage of the jump, the
surface viscosity (see, e.g., the introduction of the sur-
face viscosity discussed in [13]) may restrict the veloc-
ity of director rotation at the layer surface. It may be
taken into account by adding the surface viscosity term
vs(dp/dt)? to Eq. (21). The corresponding additional
term may play a role in very thin layers and may in
principle be detected by experiment.
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7. CONCLUSION

The results obtained above reveal the qualitatively
important physical properties of jump dynamics. For
instance, such dynamics have a direct dependence on
the strength and shape of the anchoring potential. Al-
though the specific calculations of the jump dynam-
ics were performed under the simplifying assumptions
mentioned above, there is no doubt that the qualitative
features of jump dynamics remain valid in general for
the phenomenon as a whole. It is therefore interesting
to discuss under which circumstances the solutions de-
scribed above are quantitatively valid, and what mod-
ifications to these solutions would be required under
other conditions in order to obtain a further quantita-
tive description of pitch jump dynamics.

We consider the quasi-static approximation to the
dynamics of the pitch jump. It may work quantitatively
if the time of propagation of the disturbance between
the surfaces of the layer is smaller than the characteris-
tic time of the jump. Estimating the velocity of pertur-
bation propagation in the cholesteric as v, = K22 /v1p,
where p is the cholesteric pitch, we find that the per-
turbation propagation time is p/d, in the de Gennes
units of time used in the calculations (cf. Eq. (31)),
and is therefore small if p/d is small. Examination of
Figs. 7-12 allows us to determine in which range of the
parameter Sy and for which potential the accepted ap-
proximations are valid. In any case, it is clear that in
general, the jump time (or the corresponding relaxation
time) is shorter for the B-potential compared to the RP
potential, and therefore, as the values of Sy decrease,
the approximation becomes invalid for the B-potential
at larger values of S; than for the RP potential. If we
assume that p/d < 0.1, then the calculations presented
above show that the obtained results are of quantitative
meaning for Sy > 0.1.

As a first step in overcoming the quasi-static ap-
proximation made here, we may regard solutions of
the equations in the previous section with a time-
dependent space scale and limit the integration in
Eq. (19) to the time ¢ by the distance relation d(t) = v,t
if d(t) < d. Within this approach, a quantitative de-
scription of the pitch jump dynamics may be obtained
for values of the parameter Sy not limited by the con-
dition S; > 0.1 above. However, one has to bear in
mind that other mechanisms of the pitch jumps may
be at work for smaller values of S;. This is connected
with the fact that for values of S; smaller than its crit-
ical value 1/27 [1], along with the jumps correspond-
ing to a change in the number N of half-turns at the
layer thickness by one (which correspond to the transi-
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Fig. 7. Temporal behavior of the director orientation
angle ¢ at the surface during a jump for the RP poten-
tial at the indicated values of S;
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Fig.8. The dependence of the relaxation time #, de-
fined by (33) on Sy for the RP potential

tions of the director configuration not currently in the
ground state), jumps greater than the increment of one
to the value of N are possible. The calculated results
for Sq < 1/2m therefore require a special discussion to
determine the range of applicability to the pitch jump
dynamics in the framework of the mechanism accepted
here.

The comparison of Figs. 7-12 (see also Fig. 3 and
Fig. 5) shows that experimental measurements allow
one to obtain a qualitative conclusion about the ap-
plicability of the RP potential to describing jumps (at
Sa > 1, the jumps are absent at all for RP potential). It
is commonly accepted that for small angular deviations
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Fig.10. Temporal behavior of the director orientation
angle ¢ at the surface during a jump for the B-potential
at the indicated values of S,

of the director from the alignment direction, the surface
anchoring potential is quadratic in the deviation angle,
as is the case with the RP potential. But for large de-
viation angles (which are essential for the occurrence of
pitch jumps), the question about the shape of the as-
sociated anchoring potential remains open. Therefore,
the results presented above show that experimental in-
vestigations of the pitch jump dynamics give a unique
opportunity to study the actual shape of the anchor-
ing potential at large angular deviations of the director
from the alignment direction. Other approaches em-
ployed so far in this area (see, e.g., [20, 21]) mainly
enable one to determine the anchoring strength that
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Fig.12. The dependence of the switching time ¢, de-
fined by (37) on Sy calculated for the B-potential

characterizes the anchoring energy at small deviations
from the alignment direction.

Concerning the experimental observation of the dy-
namics of pitch jumps, it should be kept in mind that
without special precautions, it is quite improbable that
the pitch jump in a cell occurs in the whole cell si-
multaneously, and that it most probably occurs in lim-
ited areas of its surface, whereas the formulas presented
above assume that the jump process occurs throughout
the whole cell simultaneously. To ensure that the pro-
cess occurs in the whole cell, it is possible to perform
an experiment stabilizing the director configuration in
the layer by applying a rather weak external field and
turning the field off just as the director at the surface
achieves the critical angle. This approach seems to be
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very similar to the one applied for studying the dynam-
ics of the Frederiks transition [6, 22]. The same effect
of a jump in a whole cell may be achieved by mechan-
ical rotation of the layer surface by a small angle in
the director configuration state of the layer close to the
jump.

When the homogeneity of the jump over the
surface of the cell is ensured, the dynamics of the
jump may be followed by the conventional approach
of measuring the time-dependent transmission [8],
reflection spectra [23] or rotation of the plane of light
polarization [10].

The authors are grateful for the UK EPSRC Grant
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