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We present theoretical studies of the temperature and magnetic field dependences of the Coulomb drag tran-
sresistivity between two parallel layers of two-dimensional electron gases in the quantum Hall regime near half
filling of the lowest Landau level. It is shown that Fermi-liquid interactions between the relevant quasiparticles
can significantly affect the transresistivity, providing its independence from the interlayer spacing for spacings
that take values reported in the experiments. The obtained results agree with the experimental evidence.

PACS: 71.27.4a, 73.43.-f

During the last decade, double-layer two-
dimensional (2D) electron gas systems were of
significant interest due to many remarkable phenom-
ena that they exhibit, including the so-called Coulomb
drag. In Coulomb drag experiments, two 2D electron
gases are arranged close to each other, such that
they can interact via Coulomb forces. A current [ is
applied to one layer of the system, and the voltage
Vp in the other nearby layer is measured, with no
current allowed to flow in that layer. The ratio —Vp/I
gives the transresistivity pp, which characterizes the
strength of the effect. The physical interpretation of
the Coulomb drag is that momentum is transferred
from the current-carrying layer to the nearby one due
to interlayer interactions [1-3].

It was shown theoretically [4, 5] and confirmed with
experiments [5] that the transresistivity between two
2D electron gases in the quantum Hall regime at half
filling of the lowest Landau level for both layers is
proportional to T%/3 (where T is the temperature of
the system), which is quite different from the temper-
ature dependence of pp in the absence of the exter-
nal magnetic field applied to 2D electron gases. This
temperature dependence of the drag at v = 1/2 origi-
nates from the ballistic contribution to transresistivity.

*E-mail: nzimbov@physlab.sci.ccny.cuny.edu

The latter reflects the response of the two-layer sys-
tem to the driving disturbance of a finite wave vector
q and finite frequency w in the case where the relevant
scales are smaller than the mean free path [ of electrons
(gl > 1), and times are shorter than their scattering
time 7 (wr > 1)Y.

In further experiments [7], the Coulomb drag was
measured between 2D electron gases where the layer
filling factor was varied around v = 1/2. The transresis-
tivity was reported to be enhanced quadratically with
Av = v —1/2. It was also reported that the curvature
of the enhancement depended on temperature but was
ingensitive to both the sign of Av and the distance d
between the layers. The present work is motivated with
these experiments of [7]. We calculate the transresis-
tivity between two layers of 2D electron gases subject
to a strong magnetic field that provides v close to 1/2
for both layers.

We start from the well-known expression [1, 3] that
relates the Coulomb drag transresistivity to density—
density components of the polarization in the layers

H(l) (q, O.)) and H(?) (q7 w)7

1) When the external driving disturbance applied to one of the

layers is of small q, w (¢l € 1, wr K 1), the transresisitivity is
dominated by the diffusion contribution, and new effects could
emerge (see. e.g., [6] and references therein).
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1 h 1 ¢*dq hdw
D = 2 2 T2 2 2 X
2(2m)2 €2 Tn (2m) sh”(hw/2T)
% |U ()| Im Iy (quw) Im T ) (qw), (1)

where U(q, w) is the screened interlayer Coulomb inter-
action, and electron densities in the layers are supposed
to be equal (ny = ns = n).

Within the usual composite fermion approach [8],
a single layer polarizability describes the part of the
density—current electromagnetic response that is ir-
reducible with respect to the Coulomb interaction.
Adopting the random-phase approximation (RPA) for
simplicity, we obtain the following expression for the
2 x 2 polarizability matrix:

nt=(K""'+0o*n (2)

Here, the matrix K gives the response of noninter-
acting composite fermions and C' is the Chern—Simons
interaction matrix. Assuming the wave vector q to lie
in the z direction for definiteness, we have

0 i1
— 4rh
4rnh

Starting from expression (2), we arrive at the follow-
ing results for the density—density response function

oo (q,w)

HOO(i) (q,w) = H(i) (q,w)

A’(())o(i) (CI-,W)

Kgl(i) (qw) — <

1 imh

Here,

A(z) (qvw) =
- - - 2
= I‘go(i) (q,w)f&?l(i)(qgw) + (Agw) (aw)™. ()

Within the RPA, the response functions included in
Eqs. (4) and (5) are simply related to the components
of the composite fermion conductivity tensor & [§],

1 g 1 1
59(52(q,w) we? Kgo(i)(q,w) I"go(i)(qp) 7
2
&w@m———{hmﬂ >—K&mqﬂ, (6)
2
~ (i ~ (i e .
5 = -2 = )

To proceed, we calculate the components of the
composite fermion conductivity at v slightly away from
1/2. In this case, composite fermions experience a
nonzero effective magnetic field

Beff = B — B1/2.

We concentrate on the ballistic contribution to the
transresistivity, and we therefore need asymptotics for
the relevant conductivity components applicable in the
nonlocal (¢l > 1) and high-frequency (w7 > 1) regime.
The corresponding expressions for &;; were obtained in
earlier works [8]. But these results are not appropriate
for our analysis because they do not provide a smooth
passage to the Bep — 0 limit at finite gq. Therefore,
we do not use them in further calculations. To ob-
tain a suitable approximation for the composite fermion
conductivity, we start from the standard solution of
the Boltzmann transport equation for the composite
fermion distribution function. This gives the following
results for the composite fermion conductivity compo-
nents for a single layer [9]:

/dwva

v
xep |~ [ de"| x

0
/d}
—00

m*e2 1

OaB =

’

¥
/Uz(l/)”)dw” +
0

g =0 —ien)| '

x [ vs(¥')exp

21

Here, m* and Q are the composite fermion effective
mass and the cyclotron frequency at the effective mag-
netic field Besr; ¢ is the angular coordinate of the com-
posite fermion cyclotron orbit. We now perform some
formal transformations of this expression (7) follow-
ing the way proposed before [9, 10]. First, we expand
the composite fermion velocity components vz (y)') in a
Fourier series,

= Z’l}kg exp(iklp'). (8)
k

Substituting this expansion (8) in (7), we obtain
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5= %hQ Z w/dwva (1) exp(iky) x

0
X /exp{(ikﬁ—iw+%+iqvm(1p)>€+

0
+zq/ v (Y + Q0") —vz(zp))de']de, (9)
0

where

Y=

a
Then we introduce a new variable 7 related to the vari-
able 0 as

n= <sz —iw+ ! -I-iqvm(z/))) 0+
T

g =

)
+zq/ [0z (¥ + Q8") — v, (¥)]d6’.  (10)
0
The result is
im*e? kaﬁ/e"dnx

) / va (1) exp(iky)
wi/T —kQ — qu, (¢ + Q6)

dyp. (1)

0

Under the conditions of interest, wr > 1, gl > 1,
and also assuming that the filling factor is close to
v = 1/2, and hence qup > Q (where vp is the compo-
site fermions Fermi velocity), the variable 6 is approx-
imately equal to
n7(1 +iql costp + ikQr — iwr) ",

Taking this into account and expanding the last term
in the denominator of (11) in powers of Q, we obtain

quz (Y + Q0) = qua (V) +

+ nQqr(1 +iglcosyp +ikQr — iwt) ™

1 dv,
dy

n? d?v,
-I-q? (1) (14iql cos Y +ikQr—iwt) 2 ——. (12)

dyp?

Moo (q,w) =

Substituting this asymptotic expression in (9), we can
calculate the first terms of the expansions of the rele-
vant components of the composite fermion conductiv-
ity in powers of the small parameter (¢R)™!, where
R = vp/Q is the composite fermion cyclotron radius.
In the «collisionless» limit 1/7 — 0, we have

w5 id

Nl 0
e{ V=0

i (111552)5 2((111%)2 <1_Zﬁ>}’ 1)

Ozx =

Gyy = NUFe {\/1 — 82 +id+

1 7 1 1

o |~ v 00
S L "
Pey =N 2qR[\/1_52+¢(1—52)3]" (15)

where N = m*/27h? is the density of states at the
composite fermion Fermi surface and § = w/qup. Us-
ing these results, we can easily obtain approximations
for the functions Kgﬁ(i) (q,w) (e, 8 = 0.1) and, subse-
quently, the desired density—density response function
given by (4). It was shown in [3] that the integral over
w in the expression (1) for pp is dominated by w ~ T,
and the major contribution to the integral over ¢ in this
expression comes from

q ~ kr(T/To)'/?,

where kr is the Fermi wave vector and the scaling tem-
perature T is defined below. Therefore, we obtain an
estimate for §, namely

5 ~ (T/u)(To/T)'/%,

where p is the chemical potential of a single 2D electron
gas included in the bilayer. For the parameter Ty tak-
ing values of the order of room temperature, ¢ is small
compared to unity at low temperatures (T' ~ 1 K).

Here, we limit ourselves to the case of two identical
layers (TI(;y = M3y = II). For 6 < 1, we obtain the
approximation

q3

dp

<d—"> — 8mihwkp (1 +2(kpR)™!

+ g(qR)_2>
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where dn/dpu is the compressibility of the v = 1/2 state,
which is defined as [3]

dn 3m*
— =11 ; = . 1
du OO(q — 07 w — 0) g ( 7)

This differs from the compressibility of the noninter-
acting 2D electron gas in the absence of the external
magnetic field (the latter is equal to V). The difference
in the compressibility values is a manifestation of the
Chern—Simons interaction in strong magnetic fields.
In the following calculations, we adopt the expres-
sion used in [3] for the screened interlayer potential

U(q.w),

U( w) = 1 Vi + Uy _
O = S Ty (qw) (Vs + Uy)

1 Vi — Uy

- . (18

2 T Tilqo) v Ty (¥

where
2re? 2re? _
Vi(q) = et Up(q) = . ad

are the respective Fourier components of the bare
Coulomb potentials for intralayer and interlayer inter-
actions and € is the dielectric constant. Substitung (18)
in (1) and using our result (16) for I(q,w), we can
present the transresistvity in the «ballistic» regime as

pD = ppo + 0pp, (19)

where the first term ppg is the transresistivity at
v = 1/2 when the effective magnetic field is zero and
the second term gives a correction arising in a nonzero
effective magnetic field (away from v = 1/2). As was
to be expected, our expression for ppgy coincides with
the already known result [3],

h T(7/3)¢(4/3) (T \**
= R 2
PDo P 3v3 T, g (20)
where )
T, = 71'eend(1 +a),
and
1 2re’d dn

The leading term of the correction dpp at low temper-
atures,
T/T, <« 1,

can be writen as

2

where the dimensionless positive constant a® can be

approximated as

T [ 1
a? = / <y - >d . 23
24/3 ) sh>y  y%/3ch’y Y (23)

We have to remark that our result (23) cannot be
used in the limit as 7" — 0. Actually, this expression
provides a good asymptotic form for the coefficient a?
when (Tkrl/p)'/? > 1.5. Assuming that the mean free
path is of the order 1.0um as in the experiments [11] on
dc magnetotransport in a single modulated 2D electron
gas at v close to 1/2, and using the estimate in [7] for
the electron density n = 1.4-10'® m~2, we obtain that
expression (23) gives good approximation for a? when
T/ is not less than 1072

It follows from our results (19) and (22) that the
transresistivity pp enhances nearly quadratically with
Av when the filling factor deviates from v = 1/2. The
term linear in Awv is also present in the expression for
dpp. This causes an asymmetric shape of the plot of
Eq. (22) with respect to Av = 0. But this asymmetry
is not very significant because the linear term is smaller
than the last term in the right-hand side of (22). This
difference in magnitudes is due to different temperature
dependences of the terms considered. The first term,
including the correction linear in (krR)~!, is propor-
tional to (T/Ty)*/?, whereas the second one is propor-
tional to (T/Ty)?/? and predominates at low tempera-
tures. Therefore, the magnetic field dependence of the
transresistivity near v = 1/2 matches that observed in
the experiments (see Fig. 1).

Keeping only the greatest term in (22), we can rep-
resent the ratio pD/ng as

PO 45(AV)? +1 (24)
PDo

with the coefficient

3B 21\
*= e ()
This coefficient is proportional to the curvature of the

plot of Eq. (22) assuming that the first term is ne-
glected. The curvature reveales a strong dependence

(25)
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Fig.1. Scaled drag resistivity versus Av at T = 0.6 K;

lowest dashed curve is the plot of Eq. (22) at

m* = 4my; Ao = 15, and remaining curves represent
the experimental data in [7]

on temperature; its character also agrees with experi-
ments of [7], as shown in Fig. 2.

A striking feature of the experimental results is that
they appear to be insensitive to the distance between
the 2D electron gases. Sets of data corresponding to
samples with different interlayer spacings d4 = 10 nm
and dp = 22.5 nm fall on the same curve. This con-
cerns both magnetic field dependence of the transresis-
tivity and temperature dependence of the parameter 3.
The results of the present analysis provide a possible
explanation for this feature. It follows from (20)—(25)
that the dependence of pp on the interlayer spacing is
completely included in the characteristic temperature
To, which is defined with Eq. (21). The above quan-
tity is nearly independent of the interlayer separation
d when the parameter o takes values larger that unity.
Estimating the parameter a given by Eq. (21), we ob-
tain that the condition a > 1 could be satisfied for
small values of the compressibility of the v = 1/2 state.
But within the RPA, the effective mass of composite
fermions coincides with the single electron band mass
my, which takes the value my ~ 0.07m. for GaAs wells
(me is the mass of a free electron). Using this value
to estimate the compressibility introduced by Eq. (17),
we obtain a & 0.44. This is too small to provide insen-
sitivity of the coefficient § determined by Eq. (25) to

ﬁ_l
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Fig.2. Temperature dependence of the coefficient 37!

for interlayer distances d = 10 nm (upper curve) and

d = 22.5 nm (lower curve) compared to the summary
of experimental curvature at both spacings [7]

the interlayer distance for interlayer spacings reported
in the experiments [3]. The above discrepancy could
be removed by taking Fermi liquid interactions among
quasiparticles (composite fermions) into account. To
include Fermi liquid effects into consideration, we write
the renormalized polarizability II* as [8]

o t=0'+ F(o) + F(l), (26)

where II is the polarizability of noninteracting com-
posite fermions defined with Eq. (2), and the remain-
ing terms represent contributions arising due to the
Fermi liquid interaction in the composite fermion sys-
tem. Only contributions from the first and greatest
two terms in the expansion of the Fermi liquid inter-
action function in Legendre polynomials (fy and fi,
respectively) are kept in Eq. (26) to avoid too lengthy
calculations. Matrix elements of the 2 x 2 matrices F{g)
and F(q are equal to

fo O
F<o>=< 0 o0 )

m* —my w_2 (27)

Within the Fermi liquid theory, the effective mass

* is related to the «bare» mass my as

m
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11 A

my, m* 2mh®~ m*

_ 1+ 4

. (28)

Using expressions (26)—(28) and performing calcula-
tions within the relevant limit 6 < 1, we obtain that the
expression for the density—density response function for
a single layer preserves the form given by Eq. (16),
where the compressibility dn/du is replaced with the
quantity dn*/du renormalized due to the Fermi liquid
interaction,

dnt 3wt (L 3t N
du — 8mh? srn2’’) T

= <1 + z—Zfo) - (29)

For strongly correlated quasiparticles, this renor-
malization may significantly reduce the compressibil-
ity of the composite fermion liquid, and, consequently,
increase the value of the parameter a. It is usually
assumed [3, 8] that the Fermi liquid renormalization
of the effective mass significantly changes its value:
m* ~ (5-10)my. This gives the values of the order
10 for the Fermi liguid coefficient A;. Using this es-
timate and substituting our renormalized compress-
ibility (29) in expression (21), we arrive at the con-
clusion that dn*/dp is low enough for the condition
a > 1 to be satisfied when the Fermi liquid parameter
Ay = fo/2mh? takes values of the order 10-100. This
conclusion does not seem unrealistic because it is rea-
sonable to expect Ay to be of the order of or greater
than the next Fermi liquid parameter A;. We obtain
a reasonably good agreement between the plot of our
Eq. (22) and the experimental results using Ay = 15
and A; =3 (m* = 4my) (Fig. 1).

Our results for the temperature dependence of 57!
also agree with the results of experiments [7]. The
upper curve in Fig. 2 corresponds to the double-layer
system with smaller interlayer spacing d4 = 10 nm,
which gives T, = 487 K, and the lower curve exhibits
the temperature dependence of 37! for greater spacing
dp = 22.5 nm (Tg = 587 K). The curves do not coin-
cide, but they are arranged rather close to each other.

Finally, the results of the present analysis enable
us to qualitatively describe all important features ob-
served in the experiments in [7] on the Coulomb drag
slightly away from half filling of the lowest Landau
levels of both interacting 2D electron gases. They also
give us grounds to treat these experimental results as
one more evidence of a strong Fermi liquid interaction
in the composite fermion system near half filling
of the lowest Landau level. The above interaction
provides a significant reduction of the compressibility

of the composite fermion liquid and a consequent
enhancement in the screening length in single layers.
Essentially, the parameter « characterizes the ratio
of the Thomas—Fermi screening length in a single 2D
electron gas at v = 1/2 and the separation between
the layers [3]. When a > 1, intralayer interactions
predominate those between the layers, which could be
the reason for low sensitivity of the bilayer to changes
in the interlayer spacing. It is likely that here is
an explanation for the reported nearly-independence
of the drag from the interlayer separation [7]. We
believe that at larger distances between the layers,
the dependence of the transresistivity on d could
be revealed in the experiments. At the same time,
the results in [7] give us a valuable opportunity
to estimate the strength of Fermi-liquid interac-
tions between quasiparticles at the v = 1/2 state,
which is important for further studies of such systems.

The author thanks K. L. Haglin and G. M. Zim-
bovsky for help with the manuscript.
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