ЭКРАНИРОВАНИЕ И ПЕРЕСТРОЙКА ЭКСИТОННЫХ СОСТОЯНИЙ В ДВУХСЛОЙНЫХ СИСТЕМАХ

Д. В. Кулаковский*

Институт физики твердого тела Российской академии наук 142432, Черноголовка, Московская обл., Россия

Ю. Е. Лозовик**

Институт спектроскопии Российской академии наук 142092, Троицк, Московская обл., Россия

Поступила в редакцию 23 сентября 2003 г.

Рассмотрены эффекты экранирования и перестройка экситонных состояний в двухслойных системах. Рассчитаны изменения энергии связи как прямого экситона в результате экранирования пространственноотделенными электронами, так и пространственно-непрямого экситона. Найдены критические концентрации электронов, при которых эффекты экранирования приводят к скачкообразному уменьшению энергии связи экситона и увеличению его радиуса как функции межслоевого расстояния. Для пространственно-непрямого экситона эта функция имеет максимум, обусловленный конкуренцией двух эффектов с ростом межслоевого расстояния — уменьшением затравочного взаимодействия электрона и дырки и ослаблением эффекта экранирования дырки пространственно-отделенными электронами. Исследован эффект увлечения в двухслойной системе пространственно-разделенных электронов и экситонов с учетом экранирования межслоевого электрон-экситонного взаимодействия в приближении Дебая–Хюккеля.

PACS: 71.35.Cc, 78.66.Fd

1. ВВЕДЕНИЕ

Развитие технологии роста полупроводниковых гетероструктур позволило создавать образцы высокого качества с параллельными двумерными каналами электронов и (или) дырок, расположенными близко друг к другу. Одним из примеров подобных структур являются двойные квантовые ямы, в которых два взаимодействующих электрон-электронных или электрон-дырочных слоя разделены барьером шириной D. Системы двойных квантовых ям привлекают в настоящее время большое внимание исследователей [1-10], в частности, в связи с предсказанной ранее сверхтекучестью в таких системах [11], квазиджозефсоновскими явлениями [11, 12], необычными свойствами в сильных магнитных полях (см. [13] и цитируемую там литературу). Было также предсказано, что межслоевое электрон-электронное взаимодействие сильно влияет на

энергетический спектр электронов в целочисленном и дробном квантовом эффекте Холла [14, 15], приводит к появлению дробей с четными значениями знаменателя [16] и увеличивает стабильность состояния вигнеровского кристалла [17]. Более того, пространственно-разделенные электроны и дырки могут образовывать связанные состояния — непрямые экситоны. Оказалось, что такая система имеет достаточно богатую фазовую диаграмму (см., например, [18]). В определенной области параметров возможен переход экситонов с пространственно-разделенными электронами и дырками в жидкую фазу, а в некоторой промежуточной области более низких концентраций электронов и дырок могла бы осуществляться кристаллизация непрямых экситонов [18]. Соответственно, и спектр коллективных возбуждений двойных квантовых ям модифицируется по сравнению со спектром коллективных возбуждений одиночной квантовой ямы.

Важной особенностью рассматриваемой «двухкомпонентной» системы являются эффекты экрани-

^{*}E-mail: kulakovd@issp.ac.ru

^{**}E-mail: lozovik@isan.troitsk.ru

рования экситонов электронами и (или) дырками, приводящие к уменьшению их энергии связи и увеличению радиуса. Как следует из экспериментальных данных, а также теоретических расчетов, линия экситонной люминесценции резко исчезает при некоторой критической концентрации электронного газа [19, 20]. Поскольку исчезновение экситонной линии наблюдалось и для весьма разреженной экситонной системы, фактически задача сводится к изучению скачкообразного «исчезновения» изолированного экситонного состояния с ростом концентрации электронов (в отличие от перехода Мотта диэлектрик-металл в чисто экситонной системе при увеличении ее плотности). Разделы 2 и 3 данной работы посвящены именно этой задаче.

Системы квазидвумерных экситонов, сосуществующих с электронами в том же самом [19] или пространственно-отделенном слое (см. [2, 6, 7] и цитируемую там литературу), интересны в связи с возможным обнаружением эффектов увлечения. Эти эффекты можно было бы использовать, во-первых, для анализа экситонной системы путем измерения транспортных свойств электронов и, во-вторых, для управления экситонами с помощью транспорта электронов [21]. По этой причине один из вопросов, которые мы рассматриваем в разд. 4, связан с изучением коэффициента взаимной подвижности пространственно-разделенных экситонов и электронов.

2. ПЕРЕСТРОЙКА ПРЯМОГО ЭКСИТОНА В СИСТЕМЕ ПРОСТРАНСТВЕННО-РАЗДЕ-ЛЕННЫХ ЭКСИТОНОВ И ЭЛЕКТРОНОВ

Пусть имеются две квантовые ямы с одинаковыми ширинами l_0 и бесконечно высокими стенками, расположенные на расстоянии D друг от друга. В одной из них находятся экситоны с концентрацией Nexc, а в другой — электронный газ с концентрацией N_s. Туннелированием между квантовыми ямами пренебрегаем. Эффект экранирования электронным газом будем учитывать в приближении хаотических фаз. Рассмотрим случай, когда $N_{exc} \ll N_s$, тогда мы можем сформулировать задачу об экранировании одиночного экситона. Для исследования данного эффекта вычислим энергию связи экситона как функцию концентрации N_s квазидвумерного электронного газа при различных расстояниях между квантовыми ямами. Для этого применим вариационный метод самосогласованного расчета энергии основного состояния экситона в квантовой яме.

Далее будем рассматривать квантовые ямы на основе GaAs/AlGaAs. В этом случае в области малых импульсов (именно такие импульсы будут давать основной вклад в исследуемые эффекты) расщепление уровней энергии в квантовой яме, соответствующих легкой и тяжелой дыркам, достаточно большое, поэтому мы можем ограничиться рассмотрением связанного состояния только на тяжелой дырке; при этом дисперсия тяжелой дырки в интересующей нас области малых импульсов квадратична. Связанные состояния электрона на легких дырках лежат существенно выше по энергии, при этом их энергия связи существенно меньше, поэтому в данной работе они нас интересовать не будут. Для расчетов будем использовать значения эффективной массы электрона в плоскости квантовой ямы $m_e = 0.067 m_0$, эффективной массы дырки в плоскости квантовой ямы $m_h = 0.26m_0 \ (m_0 - \text{масса сво-}$ бодного электрона), и статической диэлектрической проницаемости $\epsilon = 12.86$ [22]. Рассмотрим экситон, расположенный в первой квантовой яме. После отделения координат центра тяжести, характеризующих движение вдоль плоскости квантовых ям, гамильтониан приобретает вид

$$H = -\frac{\hbar^2}{2\mu^*} \Delta + U(r, z_e, z_h), \qquad (1)$$

где

$$U(r, z_e, z_h) = -\frac{e^2}{\epsilon \sqrt{r^2 + (z_e - z_h)^2}} + u(z_e, z_h).$$
(2)

Здесь $\mu^* = m_e m_h / (m_e + m_h)$ — приведенная масса экситона, $u(z_e, z_h) = u(z_e) + u(z_h)$, $u(z_i)$ — удерживающий потенциал в квантовой яме:

$$u(z_i) = 0, \quad z_i \le |l_0/2|,$$

 $u(z_i) = \infty, \quad z_i > |l_0/2|.$

Здесь r — координата относительного движения вдоль плоскости квантовых ям, z_e и z_h — координаты движения соответственно электрона и дырки по направлению роста квантовой ямы.

Энергию основного состояния, как указывалось выше, будем искать вариационным методом с пробной волновой функцией (см. также работу [20])

$$\Psi(r, z_e, z_h) = N \cos\left(\frac{\pi z_e}{l_0}\right) \cos\left(\frac{\pi z_h}{l_0}\right) \times \\ \times \exp\left(-\frac{\sqrt{r^2 + \gamma^2 (z_e - z_h)^2}}{r_0}\right), \quad (3)$$

где γ , r_0 — вариационные параметры.

Условие того, что расстояние между экситонными уровнями много меньше характерной энергии $\pi^2 \hbar^2 / 2m_{e(h)} l_0^2$ размерного квантования электрона (дырки) в квантовой яме, является достаточным для применимости адиабатического приближения в данной задаче. Поэтому, усредняя потенциал взаимодействия по направлению роста квантовой ямы, получим эффективный потенциал

$$U_{eff}(r) = \int |\Psi(r, z_e, z_h)|^2 U(r, z_e, z_h) dz_e dz_h.$$
(4)

 Φ урье-образ этого потенциала есть

$$U_{eff}(q) = \iint e^{i\mathbf{q}\cdot\mathbf{r}} U_{eff}(r) \, d\mathbf{r} =$$
$$= 2\pi \int J_0(qr) U_{eff}(r) r \, dr, \quad (5)$$

где $J_0(x)$ — функции Бесселя первого рода. Выражение для экранированного пространственно-отделенными квазидвумерными электронами эффективного потенциала взаимодействия между электроном и дыркой в одном и том же слое в импульсном представлении имеет вид

$$U_{eff}^{scr}(q) = U_{eff}(q) + U_{12}(q) \left(\Pi + \Pi \ U_{22}(q) \ \Pi + \dots \right) U_{12}(q) = U_{eff}(q) + \frac{U_{12}(q) \ \Pi \ U_{12}(q)}{1 - U_{22}(q) \ \Pi}, \quad (6)$$

где $U_{22}(q)$ — фурье-образ¹⁾ потенциала электрон-электронного взаимодействия во втором слое,

$$U_{22}(r) = \left\langle \phi_e(z+D) \left| e^2 / \sqrt{r^2 + (z+D)^2} \right| \phi_e(z+D) \right\rangle,$$

U₁₂(q) — фурье-образ потенциала межслоевого электрон-дырочного взаимодействия,

$$U_{12}(r) = \left\langle \phi_h(z) \left| -e^2 / \sqrt{r^2 + (z+D)^2} \right| \phi_e(z+D) \right\rangle,\,$$

 Π — поляризационный оператор в приближении хаотических фаз при T = 0 [23, 24],

$$\Pi = -\frac{m_e}{\pi\hbar^2} \left[1 - \Theta(q - 2k_F) \sqrt{1 - \frac{(2k_F)^2}{q^2}} \right]$$

 $k_F=\sqrt{2\pi N_s}-$ фермиевский волновой вектор,

$$\phi_e(z) = \phi_h(z) = \sqrt{\frac{2}{l_0}} \cos\left(\frac{\pi z}{l_0}\right)$$

¹⁾ $f(q) = 2\pi \int J_0(qr)f(r)r \, dr$ аналогично выражению (5).

11 ЖЭТФ, вып.6

Рис.1. Зависимость критического параметра r_s^c , при котором происходит коллапс экситонного состояния в квантовой яме GaAs/AlGaAs шириной 300 Å, от расстояния D между квантовыми ямами

— волновые функции свободных электрона и дырки в направлении z. Второй член в формуле (6) описывает изменение эффективного взаимодействия $U_{eff}^{scr}(q)$ за счет статического линхардовского экранирования электронным газом, находящимся во второй квантовой яме. Следует заметить, что при увеличении расстояния между квантовыми ямами потенциал $U_{12}(q)$ стремится к нулю и $U_{eff}^{scr}(q) \rightarrow U_{eff}(q)$.

Энергия основного состояния квазидвумерного экситона есть минимум функционала

$$F = \left\langle \Psi(r, z_e, z_h) \left| -\frac{\hbar^2}{2\mu} \Delta \right| \Psi(r, z_e, z_h) \right\rangle + \left\langle U_{eff}^{scr}(r) \right\rangle \quad (7)$$

по вариационным параметрам r_0 и γ .

Дальнейшие вычисления энергии основного состояния, а затем и энергии связи экситона проводились численно. В результате для $l_0 = 300$ Å был найден критический параметр r_s^c , при котором энергия связи убывает в *е* раз (аналогично результату работы [20]), для различных расстояний между квантовыми ямами. Данная зависимость представлена на рис. 1. Видно, что при $D \rightarrow 0$, когда двумерный электронный газ находится максимально близко к экситону, пороговая концентрация имеет порядок $2 \cdot 10^{10}$ см⁻², что значительно больше величины, полученной для одиночной квантовой ямы [20]. Существенная разница в пороговых концентрациях связана с тем, что в случае одиночной ямы задача должна решаться с учетом нелинейного отклика системы, а в случае двойной ямы — линейного. Поясним это.

В случае одиночной квантовой ямы взаимодействие между экранирующим квазидвумерным электронным газом и дыркой и взаимодействие между электроном, который образует экситон, и дыркой одинаковы. Из-за этого появляется интегральное уравнение относительно экранированного эффективного потенциала. В случае пространственно-разделенных экситона и электронного газа изменение во взаимодействии между дыркой и электроном, связанным на ней, не приводит к изменению потенциала взаимодействия между экранирующим квазидвумерным электронным газом в одной квантовой яме и дыркой в другой²⁾. Следовательно, в этом случае мы получаем линейную задачу, которая при $D \rightarrow 0$ аналогична рассмотренной в работе [25].

С ростом расстояния между квантовыми ямами, как мы уже указывали выше, эффект экранирования ослабевает и при $D \to \infty$, как и следовало ожидать, исчезает.

Отдельно следует рассмотреть вопрос, связанный с конечностью барьера квантовой ямы. В реальных структурах GaAs/AlGaAs высота барьера составляет примерно 360 мэВ. Эта величина превышает энергию связи экситона на несколько порядков, поэтому этот эффект важен для очень узких квантовых ям, когда размер экситона³⁾ много больше ширины квантовой ямы. В этом случае экситон большую часть времени может находиться вне ямы (см., например, [26]). При этом эффекты экранирования и перестройка связанного состояния должны быть исследованы с учетом проникновения волновой функции под барьер. В случае $l_0 \ge 200$ Å влияние барьера на волновую функцию экситона незначительно и учет конечной высоты барьера приводит к поправкам в энергии менее чем на 5 %, это подтверждает, что рассмотренная нами модель является хорошим приближением для исследований такого рода.

3. ЭФФЕКТЫ ЭКРАНИРОВАНИЯ МЕЖСЛОЕВЫХ ЭКСИТОНОВ

Теперь перейдем к решению задачи о пространственно-непрямом экситоне. Пусть имеются два слоя⁴⁾, расположенные на расстоянии D друг от друга. В одном находится дырочный газ с концентрацией N_h , а в другом — электронный. Туннелированием между слоями пренебрегаем. Рассмотрим случай, когда $N_h \ll N_s$ и $N_h a_B^2 \ll 1$, где a_B — боровский радиус экситона. Для таких условий может быть сформулирована задача об экранировании одиночного пространственно-непрямого экситона. Эффект экранирования электронным газом будем учитывать, как и раньше, в приближении хаотических фаз. Тогда экранированный потенциал взаимодействия в импульсном представлении может быть записан в следующем виде (см., например, [24]):

 $U^{scr}(q) = \frac{U_{12}(q)}{1 - U_{22}(q) \Pi},$

(8)

где

$$U_{22}(q) = \frac{2\pi e^2}{\epsilon q}, \quad U_{12}(q) = -\frac{2\pi e^2}{\epsilon q} e^{-qD}$$

Гамильтониан пространственно-непрямого экситона имеет вид

$$\widehat{H} = -\frac{\hbar^2}{2\mu}\Delta + U^{scr}(r), \qquad (9)$$

где $U^{scr}(r)$ — фурье-образ потенциала $U^{scr}(q)$ (см. сноску 1). Энергию основного состояния пространственно-непрямого экситона найдем, минимизируя функционал энергии на волновой функции

$$\Psi_{ind}(r) = N \exp\left(-\frac{\sqrt{r^2 + \gamma^2 D^2}}{r_0}\right)$$
(10)

по параметрам r_0 и γ .

На рис. 2 представлена энергия связи пространственно-непрямого экситона, рассчитанная для D = 200 Å как функция безразмерного параметра r_s , описывающего среднее расстояние между электронами в газе в единицах боровского радиуса a_B , $r_s = (a_B\sqrt{2\pi N_s})^{-1}$. Из рисунка видно, что происходит перестройка связанного состояния, аналогичная той, которая имела место в одиночной квантовой яме. Стоит отметить, что в данном случае перестройка более плавная. Это связано с чисто двумерной природой потенциала взаимодействия, как и существование связанного состояния при любых концентрациях квазидвумерного электронного газа.

²⁾ Напомним, что мы не учитываем туннелирование в системе.

³⁾ Боровский радиус экситона имеет порядок 100 Å.

⁴⁾ Для упрощения численного расчета будем в этом разделе рассматривать чисто двумерный случай, поскольку для изучаемого эффекта наличие малой толщины слоя не принципиально.

Рис.2. Энергия связи E_b пространственно-непрямого экситона в двухслойной системе на основе GaAs/AlGaAs с расстоянием между слоями 200 Å как функция безразмерного параметра r_s в приближении хаотических фаз (T = 0 K)

Рис. 3. Зависимость критического параметра r_s^c , при котором происходит коллапс пространственно-непрямого экситонного состояния, от расстояния D между слоями: $r_0 \to a_B = \hbar^2 \epsilon/2\mu e^2$, $\gamma = \text{const}/D$ при $D < r_0$; $r_0 = \text{const} \cdot D$, $\gamma \to 1$ при больших D

С другой стороны, в связи с многочисленными экспериментальными работами, выполненными на структурах с различными межслоевыми расстояниями [1, 2, 6, 7], представляет интерес исследование поведения связанного состояния в зависимости от расстояния D. На рис. 3 представлена зависимость критического параметра r_s^c от расстояния между пространственно-разделенными электронами и дырками. Наблюдается неожиданное и очень любопытное поведение, которое связано с изменением волновой функции пространственно-непрямого экситона даже в неэкранированном случае. Так, например, выражения для вариационных параметров в области малых D ($D < r_0$) при $N_s \to 0$ имеют вид

$$r_0 \to a_B = \frac{\hbar^2 \epsilon}{2\mu e^2}, \quad \gamma = \frac{\text{const}}{D}$$

В отсутствие экранирования энергия связи пространственно-непрямого экситона при $D \rightarrow 0$ стремится к энергии связи двумерного прямого экситона. Тем не менее наличие растущего параметра γ указывает на различие в поведении пространственно-непрямого и двумерного прямого экситонов, что и приводит к существенным различиям в эффективности экранирования данных связанных состояний. В области больших D поведение вариационных параметров носит следующий характер (см. рис. 3):

$$r_0 = \operatorname{const} \cdot D, \quad \gamma \to 1,$$

а максимум зависимости $r_s^c = r_s^c(D)$ находится при $r_0^{scr} \approx D$, где и происходит переход из одной области в другую⁵⁾.

Другой вопрос, который был нами подробно рассмотрен, — влияние конечной толщины слоев в направлении z. Расчеты с использованием численного метода релаксаций (см., например, [27]) показывают, что такое усложнение задачи приводит лишь к перенормировке расстояния между пространственно-разделенными электронами и дырками,

$$D_{eff} = D + \frac{\langle z_e \rangle}{2} + \frac{\langle z_h \rangle}{2},$$

 $(\langle z_{e,h} \rangle$ — координаты электрона и дырки, усредненные по волновой функции) и не дает никаких новых физических эффектов. Однако этот результат важен с точки зрения сравнительной оценки экспериментальных данных относительно энергии связи пространственно-непрямого экситона, а также эффективности непрямого кулоновского взаимодействия.

4. УВЛЕЧЕНИЕ ЭКСИТОНОВ ЭЛЕКТРОНАМИ В ДВУХСЛОЙНОЙ СИСТЕМЕ

В последующих двух разделах мы будем обсуждать эффекты увлечения. Для этого рассмотрим

⁵⁾ Здесь r_0^{scr} – радиус экранированного пространственно-непрямого экситона при концентрации квазидвумерного электронного газа, соответствующей критическому параметру r_s^c при данном D.

двухслойную структуру, в которой в одном из слоев, обозначим его индексом «1», лазером созданы экситоны с неоднородностью плотности (например, за счет применения непроницаемой для лазерного излучения маски, фокусирования и т. п.). В другом слое, обозначим его индексом «2», имеется газ электронов с плотностью n_2 . В рассматриваемой задаче туннелирование учитывать не будем. Наша цель вычислить отклик системы экситонов на внешнее электрическое поле, приложенное к системе электронов.

В двухслойной системе электронов и экситонов поток массы экситонов $\mathbf{i} = m_1 n_1 \mathbf{v}_1$ и поток заряда электронов $\mathbf{j} = -en_2 \mathbf{v}_2$ могут быть выражены через градиент концентрации экситонов ∇n_1 и внешнее электрическое поле \mathbf{E}_2 , приложенное к электронной подсистеме, следующим образом:

$$\mathbf{J} = K\mathbf{S},\tag{11}$$

где

$$\mathbf{J} = \begin{pmatrix} \mathbf{i}_1 \\ \mathbf{j}_2 \end{pmatrix}, \quad \hat{K} = \begin{pmatrix} -m_1 D_{11} & -n_1 m_1 \mu_{12} \\ em_1 D_{21}/m_2 & en_2 \mu_{22} \end{pmatrix},$$
$$\mathbf{S} = \begin{pmatrix} \nabla n_1 \\ \mathbf{E}_2 \end{pmatrix},$$

 D_{11} — коэффициент диффузии экситонов, D_{21} — коэффициент взаимной диффузии экситонов и электронов, μ_{12} — коэффициент взаимной подвижности экситонов и электронов, μ_{22} — коэффициент подвижности электронов.

Отметим, что в рассматриваемой двухслойной системе коэффициенты D_{11} и μ_{22} (так же как D_{21} и μ_{12}) учитывают взаимодействие между электронами и экситонами.

Если $\nabla n_1 = 0$, то для потока экситонов имеем

$$\mathbf{i}_1 = -n_1 m_1 \mu_{12} \mathbf{E}_2. \tag{12}$$

В этом случае скорость экситонов, как следует из (12), есть

$$\mathbf{v}_1 = -\mu_{12} \mathbf{E}_2. \tag{13}$$

Рассчитаем скорость, приобретаемую экситонами при взаимодействии с электронами. Кинетические уравнения в этом случае имеют вид

$$\frac{\partial f_1}{\partial \mathbf{r}_1} \mathbf{v}_1 = I_1 + I_{12},\tag{14}$$

$$\frac{\partial f_2}{\partial \mathbf{r}_2} \mathbf{v}_2 + \frac{\partial f_2}{\partial \mathbf{p}_2} \dot{\mathbf{p}}_2 = I_2 + I_{21}, \tag{15}$$

где I_1 — интеграл столкновений, учитывающий все процессы рассеяния экситонов, исключая рассеяние экситонов на электронах, \mathbf{p}_2 — импульс электронов, а I_{12} — интеграл столкновений, учитывающий рассеяние экситонов на электронах. Поскольку на экситоны не действуют силы макроскопического характера, в уравнении (14) член $(\partial f_1/\partial \mathbf{p}_1)\dot{\mathbf{p}}_1$ равен нулю (\mathbf{p}_1 — импульс экситонов).

Для упрощения уравнений (14) и (15) будем считать, что ток электронов является однородным, а также что интеграл столкновений I_{21} является малой добавкой к I_2 , тогда в уравнении (15) им можно пренебречь. Кроме того, будем интересоваться только скоростью увлечения v_{drag} , считая ее преобладающей над скоростью диффузии v_{diff} . Тогда в уравнении (14) можно опустить член с производной f_1 по координате. С учетом этого получим

$$I_1 + I_{12} = 0, (16)$$

$$\frac{\partial f_2}{\partial \mathbf{p}_2} \dot{\mathbf{p}}_2 = I_2. \tag{17}$$

Как обычно, для линеаризации уравнения (17) подставим f_2 в виде

$$f_2 = f_2^0 + f_2^0 (1 - f_2^0) \psi_2, \tag{18}$$

где f_2^0 — функция Ферми, удовлетворяющая условию нормировки

$$n_2 = 2 \int f_2^0 \frac{d\mathbf{p}_2}{(2\pi\hbar)^2}.$$
 (19)

Используя т-приближение для I_2 , находим

$$\psi_2 = -\frac{\tau_2}{m_2 k_B T} e \mathbf{E}_2 \cdot \mathbf{p}_2. \tag{20}$$

Здесь $\mathbf{E}_2 = \{E_2, 0\}$ — напряженность внешнего электрического поля, τ_2 — время релаксации электронов.

Уравнение (16) напишем более подробно:

$$I_{1} = -\sum_{\sigma_{2},\sigma_{2'}} \int w \{f_{1'}f_{2'}(1+f_{1})(1-f_{2}) - f_{1}f_{2}(1+f_{1'})(1-f_{2'})\} \times \delta(\varepsilon_{1}+\varepsilon_{2}-\varepsilon_{1'}-\varepsilon_{2'})\frac{d\mathbf{p}_{1'}}{(2\pi\hbar)^{2}}\frac{d\mathbf{p}_{2}}{(2\pi\hbar)^{2}}, \quad (21)$$

где $w(\mathbf{p}_1\mathbf{p}_2;\mathbf{p}_{1'}\mathbf{p}_{2'}) = (2\pi/\hbar)|W(q)|^2$ — вероятность рассеяния экситона на электроне в борновском приближении, причем $\mathbf{q} = \mathbf{p}_{2'} - \mathbf{p}_2$, $W(q) - \phi$ урье-образ эффективной энергии взаимодействия экситона и электрона (см. разд. 5). Подставив в уравнение (21) выражение для f_1 в виде

$$f_1 = f_1^0 + f_1^0 (1 + f_1^0) \psi_1, \qquad (22)$$

где $f_1^0 - \phi$ ункция Бозе с химическим потенциалом $\mu = \mu(n_{10}) = \mu_0$, нормированная следующим образом:

$$n_{10} = \int f_1^0 \frac{d\mathbf{p}_1}{(2\pi\hbar)^2},\tag{23}$$

и выражение для f_2 в виде (18), а также $I_1 = -(f_1 - f_1^0)/\tau_1$ (τ_1 — время релаксации экситонов), получим линеаризованное уравнение

$$f_{1}^{0}(1+f_{1}^{0})\psi_{1} =$$

$$= 2\tau_{1} \int w\{f_{1}^{0}f_{2}^{0}(1+f_{1'}^{0})(1-f_{2'}^{0})\}(\psi_{1'}+\psi_{2'}-\psi_{1}-\psi_{2})\times$$

$$\times \delta(\varepsilon_{1}+\varepsilon_{2}-\varepsilon_{1'}-\varepsilon_{2'})\frac{d\mathbf{p}_{1'}}{(2\pi\hbar)^{2}}\frac{d\mathbf{p}_{2}}{(2\pi\hbar)^{2}}.$$
(24)

Используя условие $v_{diff} \ll v_{drag}$, можно пренебречь членами ψ_1 и $\psi_{1'}$ в подынтегральном выражении в (24).

Выражение для скорости увлечения имеет вид

$$v_{drag} = \frac{1}{m_1 n_{10}} \int p_{1x} f_1^0 (1 + f_1^0) \psi_1 \frac{d\mathbf{p}_1}{(2\pi\hbar)^2}.$$
 (25)

Запишем уравнение для v_{drag} (см. формулу (13)) в виде

$$v_{drag} = -\mu_{12} E_2. \tag{26}$$

С учетом равенств (24) и (25) для μ_{12} имеем

$$\mu_{12} = \frac{2e\tau_{1}\tau_{2}}{m_{1}m_{2}n_{10}k_{B}T} \int wf_{1}^{0}f_{2}^{0}(1+f_{1'}^{0})(1-f_{2'}^{0}) \times \\ \times p_{1x}(p_{2'x}-p_{2x})\delta(\varepsilon_{1}+\varepsilon_{2}-\varepsilon_{1'}-\varepsilon_{2'}) \times \\ \times \frac{d\mathbf{p}_{1}}{(2\pi\hbar)^{2}} \frac{d\mathbf{p}_{1'}}{(2\pi\hbar)^{2}} \frac{d\mathbf{p}_{2}}{(2\pi\hbar)^{2}}.$$
 (27)

После некоторых преобразований выражения (27) для коэффициента взаимной подвижности μ_{12} получим

$$\mu_{12} = \frac{1}{8\pi^2} \frac{\tau_1 \tau_2}{m_1 m_2 n_{10} \hbar^2} \frac{e}{k_B T} \times \int_0^\infty dq \int_{-\infty}^\infty d\omega W^2(q) q^3 \frac{\operatorname{Im} \chi^B(q,\omega) \operatorname{Im} \chi^F(q,\omega)}{\operatorname{sh}^2(\hbar\omega/2k_B T)}, \quad (28)$$

где

$$\chi^{B}(q,\omega) = -\int \frac{f^{0}(\varepsilon_{1}) - f^{0}(\varepsilon_{1'})}{\varepsilon_{1} - \varepsilon_{1'} + \hbar\omega + i\delta} \frac{d\mathbf{p}_{1}}{(2\pi\hbar)^{2}}, \quad (29)$$

$$\chi^{F}(q,\omega) = -\int \frac{f^{0}(\varepsilon_{2}) - f^{0}(\varepsilon_{2'})}{\varepsilon_{2} - \varepsilon_{2'} + \hbar\omega + i\delta} \frac{d\mathbf{p}_{2}}{(2\pi\hbar)^{2}}.$$
 (30)

Если параметры системы таковы, что распределение экситонов и электронов является больцмановским (классический случай), то из уравнения (28) вытекает более простое выражение для μ_{12} :

$$\mu_{12} = \frac{\tau_1 \tau_2}{4\sqrt{2\pi}} \frac{en_2}{m_1 m_2} \sqrt{\mu} (k_B T)^{-3/2} \times \\ \times \int_0^\infty W^2(q) q^2 \exp\left(-\frac{q^2 \hbar^2}{8\mu k_B T}\right) dq. \quad (31)$$

5. ЭКРАНИРОВАНИЕ ЭФФЕКТА УВЛЕЧЕНИЯ

Наконец, перейдем к вопросу расчета и экранирования двумерного поляризационного (электрон-дипольного) взаимодействия, за счет которого и происходит увлечение двумерных экситонов пространственно-отделенным электронным газом. Для вычисления эффективной энергии взаимодействия в двухслойной системе будем использовать самосогласованное приближение. Если радиус экситона много меньше расстояния между электроном и экситоном, то выражение для энергии взаимодействия изолированных электрона и экситона имеет вид (см. [21])

$$V_{e-ex}(\mathbf{r}_1 - \mathbf{r}_2, D) = -\frac{\gamma}{\left[(\mathbf{r}_1 - \mathbf{r}_2)^2 + D^2\right]^2},$$

где $\gamma = \alpha e^2/2\epsilon$, α — поляризуемость двумерного экситона в основном состоянии, D — расстояние между слоями, $|\mathbf{r}_1 - \mathbf{r}_2|$ — расстояние между экситоном и электроном вдоль слоев, ϵ — диэлектрическая проницаемость среды. При выводе выражения для эффективной энергии взаимодействия в многочастичной электрон-экситонной системе будем считать, что экситон-экситонное взаимодействие пренебрежимо мало по сравнению с электрон-экситонным, и учитывать его не будем. Поместим пробный заряд — e в электронную подсистему в начало координат. Линеаризованные кинетические уравнения для функций распределения экситонов и электронов имеют вид

$$\frac{\partial f_1}{\partial \mathbf{r}_1} \mathbf{v}_1 + \frac{\partial f_1^0}{\partial \mathbf{p}_1} \dot{\mathbf{p}}_1 = 0, \qquad (32)$$

$$\frac{\partial f_2}{\partial \mathbf{r}_2} \mathbf{v}_2 + \frac{\partial f_2^0}{\partial \mathbf{p}_2} \dot{\mathbf{p}}_2 = 0, \qquad (33)$$

где

$$\dot{\mathbf{p}}_1 = -\frac{\partial}{\partial \mathbf{r}_1} W(\mathbf{r}_1, D), \quad \dot{\mathbf{p}}_2 = -\frac{\partial}{\partial \mathbf{r}_2} W(\mathbf{r}_2, 0).$$

Энергии взаимодействия $W(\mathbf{r}, 0)$ и $W(\mathbf{r}, D)$ подчиняются следующим уравнениям:

$$W(\mathbf{r},0) = \int \frac{e^2 \rho_2(\mathbf{r}')}{\epsilon |\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' - \int \frac{\gamma \rho_1(\mathbf{r}')}{\left[(\mathbf{r} - \mathbf{r}')^2 + D^2\right]^2} d\mathbf{r}' + \frac{e^2}{\epsilon r}, \quad (34)$$

 $W(\mathbf{r}, D) = -\int \frac{\gamma \rho_2(\mathbf{r}')}{\left[(\mathbf{r} - \mathbf{r}')^2 + D^2\right]^2} d\mathbf{r}' - \frac{\gamma}{(r^2 + D^2)^2}, \quad (35)$

где

$$\rho_1(\mathbf{r}) = \int f_1(\mathbf{r}, \mathbf{p}) \frac{d\mathbf{p}}{(2\pi\hbar)^2},$$
$$\rho_2(\mathbf{r}) = 2 \int f_2(\mathbf{r}, \mathbf{p}) \frac{d\mathbf{p}}{(2\pi\hbar)^2}.$$

Переходя в уравнениях (32)–(35) к фурье-компонентам, получим (считаем, что $\mathbf{k} = \{k, 0\}$)

$$f_1(\mathbf{k}, \mathbf{p}) = \frac{1}{v_{1x}} \frac{\partial f_1^0}{\partial p_{1x}} W(\mathbf{k}, D), \qquad (36)$$

$$f_2(\mathbf{k}, \mathbf{p}) = \frac{1}{v_{2x}} \frac{\partial f_2^0}{\partial p_{2x}} W(\mathbf{k}, 0), \qquad (37)$$

где $f_1^0 - ф$ ункция Бозе, а $f_2^0 - ф$ ункция Ферми,

$$W(\mathbf{k},0) = \frac{4\pi e^2}{\epsilon k} \int f_2(\mathbf{k},\mathbf{p}) \frac{d\mathbf{p}}{(2\pi\hbar)^2} - \gamma F(\mathbf{k},D) \int f_1(\mathbf{k},\mathbf{p}) \frac{d\mathbf{p}}{(2\pi\hbar)^2} + \frac{2\pi e^2}{\epsilon k}, \quad (38)$$

$$W(\mathbf{k}, D) =$$

= $-2\gamma F(\mathbf{k}, D) \int f_2(\mathbf{k}, \mathbf{p}) \frac{d\mathbf{p}}{(2\pi\hbar)^2} - \gamma F(\mathbf{k}, D), \quad (39)$

функция $F(\mathbf{k}, D) = (\pi k/D)K_1(kD)$, а $K_1(z) - функ-$ ция Макдональда.

Из уравнений (36)—(39) получаем систему двух алгебраических уравнений для определения W(k, 0) и W(k, D):

$$W(k,0) = \frac{2\pi e^2}{\epsilon k} \beta_2 W(k,0) - -\gamma \beta_1 F(k,d) W(k,D) + \frac{2\pi e^2}{\epsilon k}, \quad (40)$$

$$W(k,D) = -\gamma\beta_2 F(k,D)W(k,0) - \gamma F(k,D), \quad (41)$$

где

$$\beta_1 = \int \frac{\partial f_1^0}{\partial p_x} \frac{1}{v_x} \frac{d\mathbf{p}}{(2\pi\hbar)^2},$$

$$\beta_2 = 2 \int \frac{\partial f_2^0}{\partial p_x} \frac{1}{v_x} \frac{d\mathbf{p}}{(2\pi\hbar)^2}.$$
(42)

Если f_1^0
и f_2^0 — распределения Больцмана, то

$$\beta_1 = -\frac{n_{10}}{k_B T}, \quad \beta_2 = -\frac{n_2}{k_B T},$$
(43)

если f_2^0 — фермиевская ступенька, то

$$\beta_2 = -\frac{m_2}{\pi\hbar^2}.\tag{44}$$

В результате выражение для эффективной энергии взаимодействия в многочастичной электрон-экситонной системе приобретает вид

$$W(k,D) = -\frac{\gamma F(k,D)}{1 - 2\pi e^2 \beta_2 / \epsilon k - \gamma^2 \beta_1 \beta_2 F^2}.$$
 (45)

Для двухкомпонентной системы взаимодействующих электронов и экситонов при условии низкой плотности последних $(N_{exc}a_B^2 \ll 1)$ эффективное взаимодействие имеет вид

$$W(k,D) = -\frac{\gamma F(k,D)}{1 - 2\pi e^2 \Pi_{DH} / \epsilon k},$$
(46)

где П_{DH} = β_2 — поляризационный оператор в классическом приближении Дебая–Хюккеля при $T \sim E_F$ [28, 29]. Для параметра $\gamma = \alpha e^2/2\epsilon$ в (46) с учетом выражения для поляризуемости двумерного экситона в основном состоянии,

$$\alpha = \frac{21}{16}a_B^3$$

(см., например [18, 21]), получим

$$\gamma = \frac{21}{32} \frac{e^2 a_B^3}{\epsilon}.$$
 (47)

Теперь перейдем к исследованию влияния эффекта экранирования на коэффициент увлечения µ12. Для этого сначала зафиксируем температуру системы (T = 10 K) и построим зависимость величины $\mu_{12}^{scr}/\mu_{12}^0$ от концентрации двумерного электронного газа (рис. 4), где μ_{12}^{scr} — экранированный коэффициент увлечения, рассчитанный по формуле (31) с потенциалом (46), а μ_{12}^0 — коэффициент увлечения для системы невзаимодействующих электронов и экситонов. Видно, что величина коэффициента взаимной подвижности экситонов и электронов уменьшается экспоненциальным образом при увеличении n_2 . Следовательно, эффект увлечения в сильнокоррелированной электрон-экситонной системе будет менее ярко выражен, чем эффект увлечения в разреженной электрон-экситонной или электрон-электронной системе. Это обстоятельство приводит к сложности экспериментального обнаружения этого эффекта в

Рис. 4. Величина $\mu_{12}^{scr}/\mu_{12}^0$ (μ_{12} — взаимная подвижность при увлечении экситонов электронами) как функция концентрации N_s квазидвумерного электронного газа в квантовой яме GaAs/AlGaAs при T = 10 K для различных межслоевых расстояний: D = 150 Å (сплошная линия), D = 250 Å (штриховая линия), D = 500 Å (штрихпунктирная линия). На вставке показана величина $\mu_{12}^{scr}/\mu_{12}^0$ в зависимости от N_s для D = 250 Å при T = 10 K (1), 20 K (2), 30 K (3)

системе пространственно-разделенных электронов и экситонов. С другой стороны, при увеличении температуры эффективность экранирования двумерным электронным газом уменьшается и наблюдается увеличение коэффициента взаимной подвижности экситонов и электронов для одного и того же межслоевого расстояния (см. вставку к рис. 3). Поэтому можно надеяться, что данный эффект будет обнаружен в структурах высокого качества при низких концентрациях электронного газа.

6. ЗАКЛЮЧЕНИЕ

В данной работе решены две задачи для двухслойных систем. В первой рассмотрена система с пространственно-разделенными экситонами и электронами, изучены эффекты пространственно-непрямого экранирования, получена зависимость критического параметра r_s^c от расстояния D между квантовыми ямами. Оказалось, что в такой системе решение находится в приближении линейного отклика. В пределе $D \rightarrow 0$ полученные результаты находятся в согласии с результатами Клейнмана [25], который рассматривал одиночную квантовую яму в таком приближении. Во второй задаче рассмотрено экранирование пространственно-непрямого экситона. Получена зависимость от концентрации квазидвумерного электронного газа, демонстрирующая перестройку связанного состояния, а также построена зависимость критического параметра r_s^c от расстояния D между слоями. С помощью этой зависимости продемонстрировано, как данное связанное состояние модифицируется при изменении D и как это изменение влияет на эффективность экранирующих свойств квазидвумерного электронного газа. Показано, что учет толщины слоев приводит к перенормировке расстояния между пространственно-разделенными электроном и дыркой. Установлено, что кулоновское взаимодействие в таких системах с расстоянием между слоями порядка 50-300 Å оказывается существенным. Помимо эффекта перестройки экситонного состояния в данной работе исследован эффект увлечения в системе пространственно-разделенных экситонов и электронов. Показано, что величина коэффициента взаимной подвижности за счет экранирования пространственно-отделенными электронами уменьшается экспоненциальным образом при увеличении их концентрации, а с другой стороны, при увеличении температуры системы эффективность экранирования уменьшается и наблюдается увеличение коэффициента увлечения µ12. Таким образом, мы можем резюмировать, что

энергии связи пространственно-непрямого экситона

коллективные эффекты, которые обсуждались в данной работе и для которых взаимодействие между электронами и дырками из разных слоев играет главную роль (кристаллизация, сверхтекучесть, эффекты увлечения и квазиджозефсоновские явления), могут быть исследованы экспериментально.

Работа поддержана грантами РФФИ и INTAS.

ЛИТЕРАТУРА

- С. В. Товстоног, И. В. Кукушкин, Л. В. Кулик, В. Е. Кирпичев, Письма в ЖЭТФ 76, 592 (2002).
- J. P. Cheng, J. Kono, B. D. McCombe et al., Phys. Rev. Lett. 74, 450 (1995).
- G. R. Aizin, B. Laikhtman, and G. Gumbs, Phys. Rev. B 64, 125317 (2001).
- J. Kolorenc, L. Smrcka, and P. Streda, Phys. Rev. B 66, 085301 (2002).
- Yu. E. Lozovik, O. L. Berman, and M. Willander, J. Phys. C 14, 12457 (2002).
- Yu. B. Vasilyev, V. A. Solov'ev, B. Ya. Mel'ster et al., Sol. St. Comm. 124, 323 (2002).
- А. В. Ларионов, В. Б. Тимофеев, И. Хвам, К. Соеренсен, Письма в ЖЭТФ 75, 233 (2002).
- D. W. Snoke, Phys. Stat. Sol. (b) 238, 389 (2003); Science 298, 1368 (2002).
- D. W. Snoke, S. Denev, Y. Liu et al., Nature 418, 754 (2002).
- V. V. Krivolapchuk, E. S. Moskalenko, and A. L. Zhmodikov, Phys. Rev. B 64, 045313 (2001).
- 11. Ю. Е. Лозовик, В. И. Юдсон, Письма в ЖЭТФ 22, 26 (1975); ЖЭТФ 71, 738 (1976); Л. В. Келдыш, Ю. В. Копаев, ФТТ 6, 2791 (1964); Л. В. Келдыш, А. Н. Козлов, ЖЭТФ 54, 978 (1968).

- А. В. Ключник, Ю. Е. Лозовик, ЖЭТФ 76, 670 (1979); Ю. Е. Лозовик, В. И. Юдсон, Письма в ЖЭТФ 25, 18 (1977); Yu. E. Lozovik and M. Willander, Appl. Phys. A 71, 379 (2000).
- **13**. Ю. Е. Лозовик, А. М. Рувинский, ЖЭТФ **112**, 1791 (1997).
- 14. K. von Klizing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
- D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).
- Y. W. Suen, H. C. Manoharan, X. Ying et al., Phys. Rev. Lett. 72, 3405 (1994).
- 17. H. C. A. Oji, A. H. MacDonald, and S. M. Girvin, Phys. Rev. Lett. 58, 824 (1987).
- 18. Ю. Е. Лозовик, О. Л. Берман, ЖЭТФ 111, 1879 (1997); ФТТ 40, 1350 (1998).
- 19. С. И. Губарев, И. В. Кукушкин, С. В. Товстоног и др., Письма в ЖЭТФ 72, 469 (2000).
- 20. Д. В. Кулаковский, С. И. Губарев, Ю. Е. Лозовик, Письма в ЖЭТФ 74, 123 (2001); ЖЭТФ 121, 915 (2002).
- **21.** Ю. Е. Лозовик, М. В. Никитков, ЖЭТФ **116**, 1440 (1999); ЖЭТФ **84**, 612 (1997).
- 22. М. Ю. Акимов, И. В. Кукушкин, С. И. Губарев и др., Письма в ЖЭТФ 72, 662 (2000).
- 23. F. Stern, Phys. Rev. Lett. 18, 546 (1967).
- 24. Lian Zheng and A. H. MacDonald, Phys. Rev. B 49, 5522 (1994).
- 25. D. A. Kleinman, Phys. Rev. B 32, 3766 (1985).
- 26. A. V. Filinov, M. Bonitz, Yu. E. Lozovik, submitted to Phys. Stat. Sol. (b).
- 27. С. И. Губарев, О. В. Волков, В. А. Ковальский и др., Письма в ЖЭТФ 76, 673 (2002).
- 28. A. L. Fetter, Phys. Rev. B 10, 3739 (1974).
- 29. Дж. Займан, Принципы теории твердого тела, Мир, Москва (1974).