ЭВОЛЮЦИЯ ОДНОНАПРАВЛЕННЫХ ОПТИЧЕСКИХ СОЛИТОНОВ В ДВУХУРОВНЕВОЙ СРЕДЕ

А. А. Заболотский*

Институт автоматики и электрометрии Сибирского отделения Российской академии наук 630090, Новосибирск, Россия

Поступила в редакцию 14 июля 2003 г.

В рамках интегрируемой системы эволюционных уравнений изучается явление самоиндуцированной прозрачности в двухуровневой среде для оптических импульсов вне рамок приближения медленных огибающих. Приводится соответствующая модификация аппарата метода обратной задачи рассеяния, с помощью которого найдены солитонные решения модели. Проведено сравнение характеристик оптических солитонов с линейной и круговой поляризаций, в том числе при их эволюции в лазерной среде. Для изучения пределов применимости двухуровневой модели рассматривается влияние дополнительных уровней в адиабатическом приближении. Показано, что для импульсов с длительностью, близкой периоду осцилляций, влияние дополнительных уровней нарушает интегрируемость модели и приводит к потери самоиндуцированной прозрачности среды, которая, однако, восстанавливается при переходе к квазимонохроматическиму пределу. Обсуждается применение полученных результатов.

PACS: 42.50.Md, 42.65.Tg, 02.30.Ik

1. ВВЕДЕНИЕ

Исследование процессов генерации и эволюции фемтосекундных оптических импульсов с характерной длительностью, близкой к периоду осцилляций $2\pi/\omega_0$, где ω_0 — частота энергетического перехода, привлекает постоянное внимание в связи с их приложениями в разных областях физики (см., например, обзоры [1–4]). Условия применимости двухуровневой модели для таких импульсов требуют достаточной большой изоляции рабочего перехода от остальных [5–12]. Эти условия улучшаются, если дипольный момент, отвечающий выбранному рабочему переходу больше, чем дипольные моменты для близлежащих переходов [6].

В ряде публикаций отмечено, что развитие методов теоретического анализа динамики оптических фемтосекундных импульсов отстает от потребностей, диктуемых экспериментальными исследованиями в этой области. В частности, для анализа динамики таких импульсов применяется приближение медленных огибающих с учетом некоторых малых поправок, связанных с отклонением от этого приближения [3]. Циолковский и др. [13] применяли численные методы для решения полуклассических уравнений Максвелла–Блоха (МБ). Этими и рядом других авторов исследован эффект самоиндуцированной прозрачности в двухуровневой среде для линейно поляризованных импульсов. Численные методы, однако, не всегда позволяют достаточно детально и достоверно проанализировать динамику в сложных системах уравнений, к которым относятся уравнения Максвелла–Блоха, описывающие эволюцию фемтосекундных оптических импульсов.

Период оптической волны длиной 780 нм составляет примерно 2.6 фс. В настоящее время титан-сапфировым лазером осуществлена генерация импульсов длительностью 7.5 фс [7], а с применением волоконно-оптического компрессора — с длительностью 4.5 фс [8]. Длительности этих импульсов всего в несколько раз больше периода осцилляций оптической волны. Поэтому при исследовании оптического фемтосекундного диапазона приближение медленно меняющихся амплитуд и фаз световых полей в используемых для этой цели моделях и соответствующие решения в качестве нулевого приближения не применимы. В то же время длительность этих импульсов недостаточно мала, чтобы приме-

^{*}E-mail: zabolotskii@iae.nsk.su

нять упрощающее приближение $\tau_p \ll \pi/\omega_0$, отвечающее предельно коротким импульсам (ПКИ), которое применялось в ряде теоретических работ, например в [9-12], для сведения исходных уравнений Максвелла-Блоха к более простым уравнениям. Как отмечено рядом авторов, это приближение не реалистично в оптическом диапазоне [12]. Поэтому целесообразно вместо условия $au_p \ll \pi/\omega_0$ использовать другие упрощающие приближения. В настоящей работе используется приближение однонаправленного распространения световых импульсов, которое с учетом других условий приводит к интегрируемой редукции уравнений Максвелла-Блоха. Поэтому соответствующие локализованные решения этих эволюционных уравнений будем называть однонаправленными импульсами (ОНИ). Концепция ОНИ получила недавно развитие в работе Молони и соавторов [14], в которой численно исследовалась векторная система уравнений Максвелла без применения приближения медленных огибающих.

Известно, что наиболее детальную аналитическую информацию об эволюции импульсов можно получить в рамках интегрируемых моделей методом обратной задачи рассеяния (МОЗР) [15]. Хорошо изучены интегрируемые модели — системы уравнений МБ, описывающие динамику квазимонохроматических импульсов (см. обзор [4] и работу [16], в которой детально представлено применение аппарата МОЗР к уравнениям МБ для вырожденной двухуровневой среды). Самоиндуцированная прозрачность в невырожденной двухуровневой среде для ОНИ изучалась авторами работы [17], которые показали, что исходная система уравнений приводится к редуцированным уравнениям Максвелла-Блоха (РУМБ), к которым применим МОЗР. В работе [17] при выводе РУМБ вместо приближения медленных огибающих использовалось приближение малой плотности активной среды, что отвечает однонаправленному распространению волн, т.е. эволюции ОНИ. Однако все эти результаты относятся к случаю линейно поляризованного поля и неприменимы для переходов с изменением момента на единицу и круговой поляризации ОНИ. Известное нам исключение — частное солитонное решение уравнений Максвелла-Блоха для ПКИ с круговой поляризацией в двухуровневой невырожденной среде, найденное в работе [11]. В то же время решение начально-краевой задачи для соответствующей системы уравнений, изучение многосолитонной и иной автомодельной динамики ОНИ с круговой поляризацией имеет не меньшую актуальность. Важно отметить, что условия применимости теории ОНИ намного мягче, чем для ПКИ, что особенно существенно в оптическом диапазоне. Более того, используя приведенные ниже результаты, нетрудно показать, что теория ОНИ формально включает в себя теорию ПКИ и теорию квазимонохроматических импульсов как частные случаи.

Основной целью настоящей работы является изучение динамики взаимодействия фемтосекундных однонаправленных импульсов с двухуровневой средой, состоящей из атомов с энергетическим σ -переходом, т. е. с изменением проекции магнитного момента на единицу ($\Delta m = \pm 1$). В этом случае дипольный матричный элемент является комплексным

$$\mathbf{d} = d_x \mathbf{e}_x - i d_y \mathbf{e}_y$$

(см. [18]). Здесь \mathbf{e}_x и \mathbf{e}_y — единичные векторы декартовой системы координат. Импульс поля, взаимодействующий с таким переходом, имеет круговую поляризацию [18].

Подчеркнем, что приближение однонаправленных импульсов, которое применяется в настоящей работе к исходным уравнениям Максвелла-Блоха, приводит в случае циркулярной поляризации поля к эволюционным уравнениям, обладающим качественно новыми свойствами по сравнению с уравнениями, получаемыми после применения приближения медленных огибающих. Как отмечено еще в работе [1], это принципиально отличает рассматриваемую здесь задачу об эволюции импульсов циркулярной поляризации поля от случая линейной поляризации. В последнем случае эволюционные уравнения, получающиеся после применения приближения медленных огибающих и однонаправленного распространения импульсов, связаны простыми преобразованиями. Соответственно, аппарат МОЗР в случае линейной поляризации для этих приближений существенно не отличается. В то же время, как это будет показано ниже, аппарат МОЗР для ОНИ с циркулярной поляризацией принципиально отличен от соответствующего аппарата для уравнений МБ, получаемых после применения приближения медленных огибающих.

Метод решения основан на изучении динамики ОНИ с круговой поляризацией в двухуровневой среде в рамках новой интегрируемой системы уравнений, найденной автором [19]. Для построенных точных решений предполагается провести сравнительный анализ формы ОНИ с круговой и линейной поляризациями, в том числе при их распространении в усиливающей двухуровневой среде с постоянной накачкой верхнего уровня.

Выше отмечено, что использование приближения двухуровневой среды, которое часто применяется для описания эволюции импульсов с длительностью в несколько периодов осцилляций, накладывает достаточно жесткие экспериментальные условия. В частности, энергетическое расстояние до следующих уровней должно быть, по крайней мере, в несколько раз больше спектральной ширины импульсов. Условия применимости двухуровневой модели в такой задаче исследовались численно в работе [20]. Однако полученные этими авторами частные результаты не позволяют детально проанализировать особенности динамики ОНИ в случае учета дополнительных уровней. В настоящей работе учтено влияние на эволюцию ОНИ удаленных дополнительных уровней. В рамках адиабатического приближения показано, что взаимодействие поля с дополнительными уровнями приводит к нарушению интегрируемости модели для достаточно коротких импульсов. Построенная модель позволяет также качественно объяснить ряд известных экспериментальных эффектов.

Структура работы такова. В следующем разделе приводится вывод основной системы эволюционных уравнений, описывающих динамику циркулярно поляризованной волны в невырожденной среде. В разд. 3 получена наиболее общая интегрируемая редукция исходной системы уравнений этой системы и приведен соответствующий аппарат MO3P, с помощью которого находятся солитонные решения. В разд. 4 исследуется динамика усиления импульсов света в лазерной среде. В разделе 5 исследуется вклад взаимодействия импульсов с дополнительными уровнями. Раздел 6 посвящен обсуждению полученных результатов и их применений.

2. ВЫВОД ОСНОВНОЙ СИСТЕМЫ УРАВНЕНИЙ

Полуклассическая теория взаимодействия излучения с двухуровневой средой изучалась, в частности, в работах Фейнмана и др. [21]. Уравнения Гейзенберга для оператора \hat{S} , описывающего двухуровневую среду, имеет вид (см. например, [18])

$$i\hbar\partial_t \widehat{S} = [\widehat{S}, \widehat{\mathcal{H}}],\tag{1}$$

где

$$\widehat{\mathcal{H}} = \frac{1}{2}\omega_0\widehat{\sigma}_3 + (\mathbf{d}_x\cdot\widehat{\mathbf{E}})\widehat{\sigma}_1 + (\mathbf{d}_y\cdot\widehat{\mathbf{E}})\widehat{\sigma}_2.$$
 (2)

Здесь

$$\widehat{d} = d_x \widehat{\sigma}_1 + d_y \widehat{\sigma}_2$$

— оператор дипольного момента, $\hat{\sigma}_n$ (n = 1, 2, 3) — матрицы Паули, $\hat{\mathbf{E}}$ — оператор электрического поля. В случае эллиптически или циркулярно поляризованной волны необходимо учитывать обе части дипольного момента $d_{x,y} \neq 0$.

Циркулярно поляризованное поле вызывает переходы с изменением проекции магнитного момента на единицу. Такие переходы можно наблюдать в двухуровневой среде с оптическим переходом между следующими магнитными подуровнями:

$$J_l = 1/2 \leftrightarrow J_u = 1/2$$

(индекс l отвечает нижнему уровню, а индекс u — верхнему). Например, это может быть переход ${}^2S_{1/2} - {}^2P_{1/2}^0$ в парах натрия [18, 22]. При распространении эллиптически поляризованного поля в такой двухуровневой среде следует в общем случае учитывать переходы с изменением проекции момента $\Delta M = \pm 1$, т. е. переходы

$$\{J_l = 1/2, \ M_l = -1/2\} \leftrightarrow \{J_u = 1/2, \ M_u = 1/2\},\$$

 $\{J_l = 1/2, \ M_l = 1/2\} \leftrightarrow \{J_u = 1/2, \ M_u = -1/2\}.$

Пусть в начальный момент заселенность подуровней $\{J_l = 1/2, M_l = 1/2\}$ и $\{J_u = 1/2, M_u = \pm 1/2\}$ равна нулю и заселенность подуровня $\{J_l = 1/2, M_l = -1/2\}$ выбрана равной суммарной заселенности всех подуровней. Тогда для этих переходов нетрудно показать, что существует линейное устойчивое решение, отвечающее нулевой заселенности подуровней $\{J_l = 1/2, M_l = 1/2\}$ и $\{J_u = 1/2, M_u = -1/2\}$ для произвольного момента времени. В этом случае вкладом перехода

$$\{J_l = 1/2, \ M_l = 1/2\} \leftrightarrow \{J_u = 1/2, \ M_u = -1/2\}$$

можно пренебречь.

Далее ограничимся рассмотрением только взаимодействия перехода

$$\{J_l = 1/2, \ M_l = -1/2\} \leftrightarrow \{J_u = 1/2, \ M_u = 1/2\}$$

с импульсом светового поля длительностью порядка или большей обратной частоты этого перехода. Соответствующая система уравнений Блоха для такой двухуровневой среды имеет известный вид [18]:

$$\frac{\partial S_x}{\partial t} = -\omega_0 S_y + \omega_0 f_y \mathcal{E}_y S_z,\tag{3}$$

$$\frac{\partial S_y}{\partial t} = \omega_0 S_x - \omega_0 f_x \mathcal{E}_x S_z, \qquad (4)$$

$$\frac{\partial S_z}{\partial t} = \omega_0 \left(f_x \mathcal{E}_x S_y - f_y \mathcal{E}_y S_x \right) + W(z).$$
 (5)

Здесь

$$f_{x(y)} = d_{x(y)}\hbar^{-1}\omega_0^{-1},$$

 ω_0 — частота перехода, \mathcal{E}_x и \mathcal{E}_y — соответствующие проекции поляризации вектора электрического поля. В уравнение (5) добавлен член W, описывающий накачку верхнего уровня (см. подробнее в разд. 4). Компоненты вектора Блоха **S** выражаются через элементы матрицы плотности двухуровневой среды $\hat{\rho}$:

$$S_{z} = \frac{1}{2} \left(\rho_{11} - \rho_{22} \right), \quad S_{x} = \frac{1}{2} \left(\rho_{12} + \rho_{21} \right)$$
$$S_{y} = \frac{i}{2} \left(\rho_{12} - \rho_{21} \right),$$

где

$$S_z^2 + S_x^2 + S_y^2 = 1$$

т.е. суммарная заселенность уровней нормирована на единицу:

$$2S_0 = \rho_{11} + \rho_{22} = 1.$$

В отсутствие накачки W = 0 длина вектора S сохраняется:

 $\partial_t S_0 = 0.$

Уравнения Максвелла для компонент поля получаем проектированием на соответствующую ось:

$$\frac{\partial^2 \mathcal{E}_x}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 \mathcal{E}_x}{\partial t^2} = \frac{4\pi d_x n}{c^2} \frac{\partial^2 S_x}{\partial t^2},\tag{6}$$

$$\frac{\partial^2 \mathcal{E}_y}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 \mathcal{E}_y}{\partial t^2} = \frac{4\pi d_y n}{c^2} \frac{\partial^2 S_y}{\partial t^2},\tag{7}$$

где *с* — скорость света в среде с плотностью *n*.

Простейшее солитонное решение системы (3)–(7) найдено в работе [11] для условий, отвечающих ПКИ. Для того чтобы упростить эту систему, воспользуемся известным из гидродинамики приближением однонаправленного распространения волн. В нелинейной оптике оно применялось в работе [17] при выводе редуцированных уравнений Максвелла–Блоха. Суть применения этого приближения в следующем. Часто плотность активных атомов или молекул в реальных средах можно считать малой. Причем малой плотности активных атомов отвечает приближенное формальное равенство

$$\partial_z \approx -c^{-1}\partial_t + O\left(\epsilon\right),$$

где ϵ — малый параметр. Другими словами, нормированная плотность двухуровневых атомов или молекул имеет тот же порядок малости, что и производная $\partial_z + c^{-1}\partial_t$ от компонент поляризации поля. В результате вклад волны, распространяющейся в

противоположном направлении, мал. Полученная в результате система уравнений описывает динамику ОНИ, групповая скорость которых близка к скорости света в среде.

При выполнении условия однонаправленности распространения импульсов светового поля, т. е. для ОНИ, система (3)–(7) приводится к следующему виду

$$\frac{\partial S_x}{\partial \tilde{\tau}} = -S_y + E_y S_z,
\frac{\partial S_y}{\partial \tilde{\tau}} = S_x - E_x S_z,
\frac{\partial S_z}{\partial \tilde{\tau}} = E_x S_y - E_y S_x + h(\chi),$$
(8)
$$\frac{\partial E_x}{\partial \chi} = \frac{\partial S_x}{\partial \tilde{\tau}},
\frac{\partial E_y}{\partial \chi} = r^2 \frac{\partial S_y}{\partial \tilde{\tau}},$$

где

$$r = d_y/d_x, \quad E_{x(y)} = f_{x(y)}\mathcal{E}_{x(y)}, \quad \tilde{\tau} = \omega_0 \left(t - c^{-1}z\right),$$
$$\chi = -z2\pi n d_x^2 (c\hbar)^{-1}, \quad h(\chi) = W\omega_0^{-1}.$$

3. ПРИМЕНЕНИЕ АППАРАТА МОЗР

Система (8) представляет собой интегрируемую систему уравнений, обобщающую на случай произвольной постоянной накачки систему, найденную в работе автора [19]. Ее представление Лакса для произвольного действительного коэффициента *r* имеет следующий вид:

$$\partial_{\tilde{\tau}} \Phi = \frac{1}{2} \times \\ \times \begin{pmatrix} -i \operatorname{cn} \operatorname{dn} & \operatorname{dn} E_x - i \operatorname{cn} E_y \\ -\operatorname{dn} E_x - i \operatorname{cn} E_y & i \operatorname{cn} \operatorname{dn} \end{pmatrix} \Phi, \quad (9)$$

$$\partial_{\chi} \Phi = \frac{1}{2 \operatorname{sn}^2} \times \left(\begin{array}{cc} -i \operatorname{cn} \operatorname{dn} S_z & \operatorname{dn} S_x - i \operatorname{cn} S_y \\ -\operatorname{dn} S_x - i \operatorname{cn} S_y & i \operatorname{cn} \operatorname{dn} S_z \end{array} \right) \Phi, \quad (10)$$

где

$$sn = sn(\zeta, r), \quad cn = cn(\zeta, r) = \sqrt{1 - sn^2}$$
$$dn = dn(\zeta, r) = \sqrt{1 - r^2 sn^2}$$

— эллиптические функции Якоби, ζ — спектральный параметр и r — модуль функций Якоби. Учет

накачки приводит к появлению зависимости спектрального параметра ζ от переменной χ , которая определяется уравнением

$$\frac{\partial\lambda}{\partial\chi} = \frac{-2r^2h(\chi)\,\lambda}{1+r^2-\sqrt{\left(1-r^2\right)^2+4r^2\,\lambda^2}},\tag{11}$$

где

$$\lambda = \operatorname{cn}(\zeta, r) \, \operatorname{dn}(\zeta, r)$$

для любого действительного r. Следует отметить, что для r = 0 выражение (11) справедливо после выполнения предельного перехода $r \to 0$.

Алгебраическая параметризация представления Лакса более проста и поэтому более предпочтительна для применения аппарата МОЗР. Ее удается найти по отдельности для трех областей не перекрывающихся значений r: в изотропном случае, т. е. в точке $r^2 = 1$, в предельно анизотропном случае для r = 0и для остальных значений r: $r^2 \neq 0$, 1.

Отметим, что случай r = 0 для $E_y \equiv 0$ в точности отвечает случаю ОНИ с линейной поляризацией. Если r = 0 и $E_y \equiv \text{const} \neq 0$, то система уравнений (8) также может быть преобразована к системе РУМБ для линейно поляризованного поля распространяющегося в двухуровневой среде. Действительно, вводим новый вектор Блоха $\mathbf{R} = (R_x, R_y, R_z)$ следующим образом:

$$R_x = S_x, \quad R_y = \frac{S_y - E_y S_z}{\nu_0}, \quad R_z = \frac{E_y S_y + S_z}{\nu_0}, \quad (12)$$

где

$$\nu_0 = \sqrt{1 + E_y^2}.$$

Тогда система (8) принимает вид

$$\partial_{\widetilde{\tau}} R_x = -R_y \nu_0, \tag{13}$$

$$\partial_{\tilde{\tau}}R_u = R_x \nu_0 - E_x R_z,\tag{14}$$

$$\partial_{\tilde{\tau}}R_z = E_x R_y + h\nu_0, \tag{15}$$

$$\partial_{\chi} E_x = \nu_0 R_y. \tag{16}$$

Здесь $h\nu_0$ — скорость накачки верхнего уровня эффективной двухуровневой среды с частотой перехода ν_0 . Представление Лакса для системы (13)–(16) с накачкой известно [23, 24]. Далее в этом и следующем разделах полагаем, что $h(\chi) = 0$. Случай $h(\chi) \neq 0$ рассматривается в разд. 4.

В изотропном случае спектральная проблема (9) имеет вид задачи Каупа–Ньюелла [25] со спектральным параметром $\tilde{\lambda} = cn = dn$, а при r = 0 принимает вид задачи Захарова–Шабата [15] со спектральным параметром $\tilde{\lambda} = cn$ и с добавкой к действительному потенциалу $\pm E_x$, имеющей вид $-i\tilde{\lambda}E_y$, где E_y — произвольная действительная функция от переменой $\tilde{\tau}$.

Рассмотрим детальнее случай $r^2 \neq 1, r \neq 0$, в котором возможна замена спектрального параметра ζ на ξ с помощью формулы

$$\operatorname{cn}(\zeta, r) = \sqrt{1 - r^2} \left(\xi - \xi^{-1}\right) (2r)^{-1}.$$

В результате этой замены получаем следующее представление Лакса для системы (8):

$$\partial_{\tau}\Phi = \begin{pmatrix} -i\left(\xi^2 - \frac{1}{\xi^2}\right) & \xi E^* + \frac{1}{\xi}E \\ -\xi E - \frac{1}{\xi}E^* & i\left(\xi^2 - \frac{1}{\xi^2}\right) \end{pmatrix} \Phi, \quad (17)$$

$$\partial_{\chi} \Phi = \frac{2r^{2} (1 - r^{2})^{3/2} \xi^{2}}{4r^{2} - [(1 - r^{2}) \xi^{2} - 1 - r^{2}]^{2}} \times \left(\begin{array}{cc} -i\frac{\kappa}{r} \left(\xi^{2} - \frac{1}{\xi^{2}}\right) S_{z} & \xi S^{*} + \frac{1}{\xi}S \\ -\xi S - \frac{1}{\xi}S^{*} & i\frac{\kappa}{r} \left(\xi^{2} - \frac{1}{\xi^{2}}\right) S_{z} \end{array} \right) \Phi \equiv \\ \equiv \widehat{A} \Phi, \quad (18)$$

где ξ — новый спектральный параметр,

$$\begin{split} \kappa &= \sqrt{1 - r^2/2}, \quad E = rE_x/\kappa + iE_y/\kappa, \\ S &= S_x + iS_y/r, \quad \tau = \kappa^2 \widetilde{\tau}/(2r). \end{split}$$

При фиксированном r спектральная задача (17) для предельных значений спектрального параметра ξ переходит в спектральные задачи, указанные выше. Так, для $\xi \to 0$ ($\xi \to \infty$) спектральная задача (17) переходит в спектральную задачу Каупа-Ньюелла [25], если оставить только члены со степенями ξ^1, ξ^2 (ξ^{-1}, ξ^{-2}). Если представить спектральный параметр в виде $\xi = 1 + \tilde{\xi}$, то для $\tilde{\xi}^2 \ll \tilde{\xi}$ спектральная задача (17) переходит в задачу Захарова-Шабата [15] с указанной выше добавкой $-i\tilde{\xi}E_y$, если ограничиться сохранением членов с нулевой и первой степенями $\tilde{\xi}$.

Спектральная задача (17) содержит лишь степени $\pm 1, \pm 2$ спектрального параметра. Поэтому аппарат МОЗР, ассоциированный с этой задачей, должен иметь общие черты с развитым ранее аппаратом для частично родственных спектральных проблем, связанных с уравнением Тирринга [26], нелинейным дифференциальным уравнением Шредингера [25] и с системой уравнений Максвелла–Блоха, учитывающей нелинейный эффект Штарка [27]. В связи с этим приведем лишь основные элементы аппарата МОЗР для достаточно быстро исчезающего на бесконечностях потенциала E и его производных. Решения (17) обладают следующими свойствами симметрии:

$$\Phi = \widehat{M}\Phi(\xi^*)^*\widehat{M}^{-1},\tag{19}$$

где

$$\widehat{M} = \left(\begin{array}{cc} 0 & 1\\ -1 & 0 \end{array}\right)$$

И

$$\Phi(\xi^*)^* = \Phi(\xi^{-1}). \tag{20}$$

Стандартным способом вводим функции Йоста Φ^{\pm} — решения (17) с асимптотиками

$$\Phi^{\pm} = \exp\left(-i\Lambda\widehat{\sigma}_{3}\tau\right), \quad \tau \to \pm\infty.$$
 (21)

Здесь

$$\Lambda = \xi^2 - \xi^{-2}.$$

$$\Phi^{+}(\tau) = \exp\{-i\widehat{\sigma}_{3}\left[\Lambda\tau + \mu(\tau)\right]\} + \int_{\tau}^{\infty} \left(\begin{array}{c} \left[Q_{1}(\tau,s) + \xi^{-2}Q_{2}(\tau,s)\right] \exp(-i\mu(\tau)) \\ \left[\xi\widetilde{K}_{1}(\tau,s) + \xi^{-1}\widetilde{K}_{2}(\tau,s)\right] \exp(i\mu(\tau)) \end{array} \right)$$

Здесь $\mu(\tau)$ — функция, не зависящая от спектрального параметра, которая будет определена ниже. После подстановки (24) в (17), используя свойства симметрии функций Йоста, находим, что

$$K_{1,2} = K_{1,2}^*$$

Ядра $K_{1,2}$ и $Q_{1,2}$ должны удовлетворять условиям

$$\lim_{s \to \infty} K_{1,2}(\tau, s) = 0,$$
 (25)

$$\lim_{s \to \infty} Q_{1,2}(\tau, s) = 0.$$
 (26)

Подставив выражение (24) в (17), находим соотношения, связывающие потенциал и ядра:

$$E^*(\tau, \chi) = 2K_1(\tau, \tau, \chi) \exp(-2i\mu),$$
 (27)

$$E(\tau, \chi) = 2K_2(\tau, \tau, \chi) \exp\left(-2i\mu\right). \tag{28}$$

Из этих условий связи нетрудно найти $\mu(\chi, \tau)$:

$$\mu(\chi,\tau) = -\frac{i}{4} \ln \frac{K_1(\tau,\tau,\chi)}{K_2^*(\tau,\tau,\chi)}.$$
 (29)

Свойство симметрии (19) отвечает следующей матричной форме функций Йоста

$$\Phi^{\pm} = \begin{pmatrix} \psi_1^{\pm} & -\psi_2^{\pm *} \\ \psi_2^{\pm} & \psi_1^{\pm *} \end{pmatrix}.$$

Эти решения связаны матрицей рассеяния \widehat{T}

$$\Phi^{-} = \Phi^{+} \widehat{T}, \quad \widehat{T} = \begin{pmatrix} a^{*} & b \\ -b^{*} & a \end{pmatrix}.$$
(22)

Зависимость данных рассеяния от χ дается формулой

$$\partial_{\chi}\widehat{T} = -\widehat{T}\exp(-i\widehat{\sigma}_{3}\Lambda\tau)\widehat{A}(\tau = -\infty)\exp(i\widehat{\sigma}_{3}\Lambda\tau) + \\ +\exp(-i\widehat{\sigma}_{3}\Lambda\tau)\widehat{A}(\tau = \infty)\exp(i\widehat{\sigma}_{3}\Lambda\tau)\widehat{T}.$$
 (23)

Представим функцию Йоста в виде

$$-\left[\xi K_1(\tau,s) + \xi^{-1} K_2(\tau,s)\right] \exp(-i\mu(\tau)) \\ \left[Q_1^*(\tau,s) + \xi^{-2} Q_2^*(\tau,s)\right] \exp(i\mu(\tau)) \\ \times \exp(-i\widehat{\sigma}_3\Lambda s) \, ds. \quad (24)$$

Подставляем значения компонент матричной функции Φ в (22) и интегрируем полученные выражения по ξ с весами $\xi^m \exp(i\Lambda \tau)$, m = 0, -1, -2, вдоль контура Γ , показанного на рис. 1. В итоге, используя равенства

$$\int_{\Gamma} \xi^{m} \exp(i\Lambda\tau) \, d\xi = 4\pi\delta(\tau) \,, \quad m = 1, -3, \tag{30}$$
$$\int_{\Gamma} \xi^{2m} \exp(i\Lambda\tau) \, d\xi = 0, \quad m = -1/2, 0, \pm 1, \pm 2, \tag{31}$$

находим уравнения Марченко:

$$K_{1}(\tau, y) = F_{0}(\tau + y) + \int_{\tau}^{\infty} [Q_{1}(\tau, s)F_{0}(s + y) + Q_{2}(\tau, s)F_{-1}(s + y)] ds, \quad (32)$$

$$K_{2}(\tau, y) = F_{-1}(\tau + y) + \int_{\tau}^{\infty} [Q_{1}(\tau, s)F_{-1}(s + y) + Q_{2}(\tau, s)F_{-2}(s + y)] ds, \quad (33)$$

Рис. 1. Контур интегрирования Г. Контур включает пути по осям вдоль направлений, указанных стрелками, и проходит выше (ниже) всех полюсов в I (III) квадранте против часовой стрелки

$$Q_{1}(\tau, y) = -\int_{\tau}^{\infty} [K_{1}(\tau, s)F_{1}^{*}(s+y) + K_{2}(\tau, s)F_{0}^{*}(s+y)] ds, \quad (34)$$
$$Q_{2}(\tau, y) = -\int_{\tau}^{\infty} [K_{1}(\tau, s)F_{0}^{*}(s+y) + K_{2}(\tau, s)F_{-1}^{*}(s+y)] ds, \quad (35)$$

здесь $y \ge \tau$. Ядро F имеет вид

$$F_m(y,\chi) = \int_{-\infty}^{\infty} \frac{b(\chi)}{a(\chi)} \frac{\xi^{2m} \exp(-i\Lambda y)}{2\pi} d\xi - i\sum_k \frac{\xi_k^{2m} b(\chi,\xi_k) \exp(-i\Lambda_k y)}{a'(\chi,\xi_k)}, \quad (36)$$

где

$$\Lambda_k = \xi_k^2 - \xi_k^{-2}, \quad a'(\xi_k, \chi) = \left. \frac{da(\xi, \chi)}{d\xi} \right|_{\xi = \xi_k}.$$

Далее будем рассматривать только солитонный спектр задачи, состоящий из изолированных невырожденных полюсов ξ_k в плоскости ξ . Форма ядра (36) не учитывает симметрию задачи. Свойства симметрии (19) и (20) могут быть учтены, если полюсы ξ_k входят в ядро F_m парами: { ξ_k , 1/ ξ_k^* }. На единичном круге эти полюсы, очевидно, совпадают. При учете этих свойств симметрии солитонная часть \mathcal{F}_m ядра F_m принимает следующий вид

$$\mathcal{F}_{m}(y) = \sum_{k} \exp(\eta_{k} y) \times \left[\xi_{k}^{2m+1} C_{k}(y, \chi, \xi_{k}) - \xi_{k}^{*-2m-1} C_{k}^{*}(y, \chi, \xi_{k})\right].$$
 (37)

Эволюция однонаправленных оптических солитонов

Здесь

$$C_k(y, \chi, \xi_k) = \frac{-i b_k(\chi, \xi_k)}{\xi_k a'(\chi, \xi_k)} \exp(i\zeta_k y)$$
$$\eta_k = \operatorname{Im} \Lambda_k, \quad \zeta_k = -\operatorname{Re} \Lambda_k.$$

Из выражения (37) находим

$$\mathcal{F}_0(y) = -\mathcal{F}^*_{-1}(y), \quad \mathcal{F}_1(y) = -\mathcal{F}^*_{-2}(y).$$
 (38)

Простейшее солитонное решение отвечает единственному полюсу ξ_1 , лежащему в первом (третьем) квадранте. Асимптотические условия отвечают следующим устойчивым состояниям:

$$E(\pm\infty,\chi) = 0, \quad S_z(\pm\infty,\chi) = -1$$

Ввиду свойства симметрии (20) единственный полюс ξ_1 ограничен условием $|\xi_1| = 1$. Положим

$$\xi_1^2 = \exp(i\phi_1), \quad \phi_1 \in \mathbb{R}$$

Однополюсное решение, которое находим, решая систему уравнений (23), (32)–(36), имеет вид

$$E(\tau,\chi) = \frac{-2|\sin\phi_1|\exp[i\gamma_1 - i\phi_1/2]}{|\mathrm{ch}\,[4\sin\phi_1\theta + \gamma_2 - i\phi_1/2]|},\tag{39}$$

где

$$\theta = \tau + \frac{\kappa \chi}{2\sqrt{r^2 \cos^2(\phi_1/2) + \sin^2(\phi_1/2)}}$$
$$\gamma_1 = \arg \frac{-ic_1}{2a'(\xi_1)}, \quad \gamma_2 = \ln \left| \frac{c_1}{2a'(\xi_1)} \right|.$$

Условия связи между ядрами, вытекающие из (28) и (27), приводят также к ограничению на фазу: $\phi_1 = 0, \pi$. Форма и положение солитона в зависимости от значений фазы ϕ_1 показаны на рис. 2.

Отметим, что для двухполюсного решения, отвечающего паре значений спектрального параметра ξ_1 , $1/\xi_1^*$, ограничения на область значений ξ_1 не возникают. Найдем солитонное решение, отвечающее этой паре полюсов. Для этого представим ядра в виде

$$K_{1,2}(x,y) = h_{1,2}^+(x) \exp(\eta y + i\zeta y) + h_{1,2}^-(x) \times \exp(\eta y - i\zeta y),$$
(40)

$$Q_{1,2}(x,y) = g_{1,2}^+(x) \exp(\eta y + i\zeta y) + g_{1,2}^-(x) \times \exp(\eta y - i\zeta y).$$
(41)

Здесь

$$\eta = \operatorname{Im} \Lambda_1, \quad \zeta = -\operatorname{Re} \Lambda_1.$$

 2^{*}

Рис.2. Зависимость интенсивности $I = |E|^2$ солитона (39) от τ для $\phi_1 = \pi/4$ — жирная линия, $\phi_1 = \pi/2$ — штриховая линия, $\phi_1 = 3\pi/4$ — тонкая линия

Решаем систему уравнений (32)–(35), учитывая зависимость коэффициента C_1 от χ . В итоге находим выражение для ядра

$$K_{2}(\chi,\chi,\tau) = \frac{c_{1}\xi_{1}^{-1}X\exp(\theta + i\theta_{1}) - c_{1}^{*}\xi_{1}^{*}X^{*}\exp(\theta - i\theta_{1})}{D}, \quad (42)$$

где

$$\begin{split} X(\tau,\chi,\xi_1) &= 1 + A - \widetilde{Z} + \frac{\widetilde{\beta}\left(|\xi_1|^4 + 1\right)}{|\xi_1|^4 \eta} \left(\widetilde{\beta}\mu^* - \beta\mu\right) \\ D &= 1 + A^2 - Z^2 - \widetilde{Z}^2, \quad \theta = \eta\tau + \operatorname{Im}\Omega_1\chi, \\ \theta_1 &= \zeta\tau + \operatorname{Re}\Omega_1\chi, \\ A &= \frac{\beta(\theta)\widetilde{\beta}(\theta)(1 + |\xi_1|^4)^2}{(2\eta|\xi_1|^2)^2}, \quad Z = 2\mu(\theta_1)\beta(\theta), \\ \widetilde{Z} &= 2\mu(\theta_1)\widetilde{\beta}(\theta), \\ \beta(\theta) &= \exp(2\eta\theta)c_1\xi_1^{-1}, \quad \widetilde{\beta}(\theta) = \exp(2\eta\theta)c_1^*\xi_1^*, \\ C_1(\chi,\xi_1) &= c_1(\xi_1)\exp(-2i\Omega_1\chi), \\ \mu(\theta_1) &= \frac{\exp(2i\theta_1)}{2(\eta+i\zeta)}, \\ \Omega_1 &= \frac{r(1 - r^2)^2(\xi_1^4 - 1)S_3(-\infty, 0)}{4r^2 - \left[(1 - r^2)\xi_1^2 - 1 - r^2\right]^2}. \end{split}$$

Находим также аналогичное выражение для $K_1(\chi,\chi,\tau)$

$$K_{1}(\chi, \chi, \tau) = \frac{c_{1}\xi_{1}X \exp(\theta + i\theta_{1}) - c_{1}^{*}\xi_{1}^{*-1}X^{*} \exp(\theta - i\theta_{1})}{D}.$$
 (43)

Используя (29), (42), (43) находим выражение для поля

$$E(\chi, \tau) = -2i \times \\ \times \frac{c_1 \xi_1 X \exp(\theta_1) - c_1^* {\xi_1^*}^{-1} X^* \exp(-\theta_1)}{\sqrt{DD^*}} \exp(\theta). \quad (44)$$

Солитонное решение (44) содержит внутреннюю степень свободы, приводящую к осцилляциям, аналогичным осцилляциям бризерного решения уравнения синус-Гордон. С другой стороны, это решение может иметь произвольную амплитуду, так же как и решение, приведенное выше, при конечном значении ξ_1 . В этом состоит качественное отличие полученного решения от решений уравнений Максвелла–Блоха для линейной поляризации поля.

4. ПЕРЕХОД К ИЗОТРОПНОМУ ВЗАИМОДЕЙСТВИЮ

Выше отмечено, что при $\xi \to \infty$ возможен переход к изотропному случаю, указанному выше. Рассмотрим формальный предельный переход $r \to 1$, $\xi \to \infty$, при котором

$$\sqrt{1-r^2} \left(\xi - \xi^{-1}\right) (2r)^{-1} \to \lambda,$$
$$\xi E^* + \xi^{-1} E \to \lambda (E_x - iE_y).$$

При этом в представлении Лакса (9),(10) следует заменить

$$\mathrm{dn} \to \lambda, \quad \mathrm{cn} \to \lambda, \quad \mathrm{sn}^2 \to 1 - \lambda^2,$$

где λ — спектральный параметр. Как нетрудно убедиться, в этом пределе свойство симметрии (20) не справедливо. Уравнения Марченко могут быть получены из приведенных выше также предельным переходом.

В то же время представление Лакса и уравнения аппарата MO3P могут быть найдены непосредственно для системы (8), в которой положено $r^2 = 1$, для произвольных значений спектрального параметра. Эти уравнения формально совпадают с известными из работы Каупа и Ньюела [25], посвященной нелинейному дифференциальному уравнению Шредингера. Отличие уравнений аппарата MO3P для системы (8) от соответствующих уравнений, приведенных в работе [25], состоит в иной зависимости данных рассеяния от переменной χ и от спектрального параметра $\lambda = cn(\zeta, 1)$. В частности, интегральные уравнения Марченко имеют вид

$$\mathcal{K}_1^*(\tau, y) = \mathcal{F}_0(\tau + y) + \int_{\tau}^{\infty} \mathcal{Q}_1(\tau, s) \mathcal{F}_0(s + y) \, ds, \quad (45)$$

$$\mathcal{Q}_1^*(\tau, y) = -\int_{\tau}^{\infty} \mathcal{K}_1(\tau, s) \mathcal{F}_1(s+y) \, ds, \tag{46}$$

где $y \ge \tau$. Ядро \mathcal{F}_m имеет вид

$$\mathcal{F}_m(y,\chi) = \int_{-\infty}^{\infty} \frac{b(\chi)}{a(\chi)} \frac{\lambda^{2m} \exp(-i\xi^2 y)}{2\pi} d\xi - i\sum_k \frac{\lambda_k^{2m} c_k(\chi) \exp(-i\lambda_k^2 y)}{a'(\lambda_k,\chi)}.$$
 (47)

При переходе от уравнений Марченко (32)–(35) к (45) и (46) возникают следующие связи между ядрами:

$$\begin{aligned}
K_1(r \to 1) \to \mathcal{K}_1, \quad Q_1(r \to 1) \to \mathcal{Q}_1, \\
K_2(Q_2)(r \to 1) \to 0.
\end{aligned}$$
(48)

Вместо условий связи (27), (28) возникают следующие соотношения между диагональными значениями ядер и потенциалом \tilde{E} :

$$\partial_{\tau}\mu(\tau,\chi) = 2|\mathcal{K}_1(\tau,\tau,\chi)|^2, \qquad (49)$$

$$E^*(\tau, \chi) = -2\mathcal{K}_1^*(\tau, \tau, \chi) \exp\left(-2i\mu\right), \qquad (50)$$

где

$$\widetilde{E}^* = E_x - iE_y.$$

Односолитонное решение (8) для |r| = 1, отвечающее одному собственному значению $\lambda_1 = |\lambda_1| \exp(i\alpha_1)$, лежащему в первом (третьем) квадранте плоскости λ , имеет вид

$$E_{c}(\tau,\chi) = \frac{-2\operatorname{Im}\lambda_{1}^{2}\exp\left\{\left[i\left(\operatorname{Re}\lambda_{1}^{2}\tau - W\chi + \gamma_{1} - \alpha_{1} - 2\mu\right)\right]\right\}}{|\lambda_{1}|\operatorname{ch}\left[\theta_{1} + \beta_{1} + i\alpha_{1}\right]},$$
(51)

где

$$\begin{aligned} \theta_1 &= \operatorname{Im} \lambda_1^2 \left(\tau + \chi / V \right), \quad V &= \left(1 - \operatorname{Re} \lambda_1^2 \right)^2 + \left(\operatorname{Im} \lambda_1^2 \right)^2, \\ W &= \left[\operatorname{Re} \lambda_1^2 \left(1 - \operatorname{Re} \lambda_1^2 \right) - \left(\operatorname{Im} \lambda_1^2 \right)^2 \right] V^{-1}, \\ \beta_1 &= \ln \left| \left(\lambda_1 c_1 \right) / \left(4 \operatorname{Im} \lambda_1^2 a'(\lambda_1) \right) \right|, \end{aligned}$$

Рис. 3. Зависимость интенсивности $I = |E|^2$ солитонов (51) (сплошная линия) и (52) (штриховая линия) от τ для $\lambda_1 = (0.5 + i)/\sqrt{1.25}$

$$\begin{split} \mu &= - \arctan\left\{ \operatorname{ctg} \alpha_1 \operatorname{cth} \left[\operatorname{Im} \lambda_1^2 \left(\tau - \frac{\chi}{V} \right) + \beta_1 \right] \right\} \times \\ & \times \frac{2 \operatorname{Im} \lambda_1^2}{|\lambda_1^2| \sin(2\alpha_1)}. \end{split}$$

Представляет практический интерес сравнение эффективности применения импульсов с линейной и круговой поляризациями для создания мощных коротких импульсов света. Для этого сравним полученное солитонное решение для циркулярно поляризованной волны (51) с известным решением для аналогичного солитона линейно поляризованной электромагнитной волны, распространяющегося в двухуровневой среде. Такое солитонное решение РУМБ, найденное во многих работах, например в [17], имеет вид

$$\widetilde{E}_l(\tau, z) = \frac{2 \operatorname{Im} \eta_1}{\operatorname{ch} \left[\operatorname{Im} \eta_1 \left(\tau - \tau_0 - z/V_0 \right) \right]}, \qquad (52)$$

где $(\text{Im }\eta_1)^{-1}$ — длительность солитона, $(c^{-1} + V_0^{-1})^{-1}$ — его групповая скорость, τ_0 положение солитона в начальный момент. Выберем для сравнения равные длительности солитонов (51) и (52). Пусть

$$\eta_1 = \lambda_1^2, \quad |\lambda_1| = 1.$$

Анализ полученного решения показал, что в случае Im $\lambda_1^2 \ll \text{Re} \, \lambda_1^2$ амплитуды солитонов близки. Это предел малых амплитуд ($\propto \text{Im} \, \lambda_1^2$) и относительно больших частот ($\propto \text{Re} \, \lambda_1^2$). В то же время этот предел отвечает квазимонохроматическим импульсам, т.е. ОНИ с медленно меняющейся амплитудой. При Im $\lambda_1^2 = \text{Re} \, \lambda_1^2$ максимальная интенсивность I_c солитона (51) в два раза больше максимальной интенсивности I_l солитона (52). При Im $\lambda_1^2 \gg \text{Re} \, \lambda_1^2$ найдено,

что $I_c \gg I_l$, см. рис. 3. Последний факт связан с тем, что решение (51) может иметь лоренцевскую форму и становится сингулярным при специальном подборе начальных условий. Например, для

$$\lambda_1 = |\lambda_1| \exp(i\alpha_1)$$

в окрестности нуля

$$\theta_1 + \beta_1 = y \ll 1, \quad \alpha_1 = \pi/2 + \phi_1, \quad \phi_1 \ll \pi,$$

находим следующую форму солитона:

$$E_l(y) = \frac{|\lambda_1| \exp(2i\alpha_1)}{y^2 + \phi_1^2}.$$
 (53)

В реальной физической системе наличие сингулярности означает, что необходимо принимать во внимание дисперсионные эффекты, которые были отброшены при выводе модели (8). С другой стороны, условия применимости двухуровневого приближения также накладывают ограничения на нормированную амплитуду поля: $E_l \leq 1$. Эти же условия, строго говоря, ограничивают диапазон начальных данных, которые могут быть использованы в рамках изучаемой модели.

5. ВЛИЯНИЕ НАКАЧКИ НА ПАРАМЕТРЫ СОЛИТОНОВ

При распространении ОНИ в однопроходовой лазерной среде возможно его усиление, которое сопровождается увеличением его амплитуды и уменьшением длительности. Такие эффекты описаны в рамках интегрируемых моделей, точнее, интегрируемых деформаций [28], для квазимонохроматических импульсов [28] и для ОНИ с линейной поляризацией [24]. Поскольку решения уравнений МБ для ОНИ циркулярной и линейной поляризаций имеют качественные различия, следует ожидать, что поведение этих импульсов в лазерной среде также будет различным. В настоящем разделе будут исследованы особенности усиления ОНИ в рамках интегрируемой деформации модели (8).

Лазерная среда нередко моделируется двухуровневой средой с не зависящей от времени накачкой верхнего уровня [29]. В случае модели (8) такая накачка проявляется в появлении дополнительного члена h в правой части третьего уравнения в системе (8). Важно отметить, что при наличии накачки изменяется «фоновое» решение, поскольку «деформируются» не только солитоны, но и возникает нетривиальное радиационное решение, определяе-

Рис. 4. Усиление солитонов в лазерной среде для различных r. Зависимость максимума солитонов от χ при h = 1 для r = 0.1 — штриховая линия, r = 0.5 — пунктирная линия и r = 0.99 — сплошная линия. Единицы произвольны

мое непрерывным спектром задачи. Последнее в случае уравнений МБ для линейной поляризации является решением пятого уравнения Пенлеве [30]. Таким образом, включение накачки, пропорциональной h, в общем случае приводит к изменению аналитических свойств функций Йоста и соответствующей модификации аппарата МОЗР. Этот вопрос подробно исследуется численно и аналитически в работе автора [24], в которой показано, что в некоторой области параметров изменения в фоновом решении и, следовательно, в аппарате МОЗР можно не учитывать. Это можно делать, если нижний уровень совпадает с основным и его начальная заселенность достаточно велика, при достаточно малой скорости накачки h и малых временах. В связи с этим будем считать, что фоновое решение остается тривиальным:

$$E_x = E_y = 0.$$

В соответствии с зависимостью спектрального параметра λ от координаты χ , определяемой уравнением (11) и возникающей как дополнение к представлению Лакса (9), (10) из-за учета накачки, изменяются параметры солитона. Для односолитонных решений модели (8) важными характеристиками являются высота и обратная длина солитона. Известно, что с ростом χ амплитуда солитона (52) под действием положительной накачки растет [23]. В то же время для решений системы (8) возможна качественно иная динамика под действием накачки. Например, при $r \rightarrow 0$ амплитуда солитона (39) имеет максимум, равный четырем для произвольной скорости накачки. Зависимость его максимальной интенсивной ин

ности от длины усиления показана на рис. 4. Этот солитон не имеет аналога в изотропном случае r = 1. Таким аналогом солитона (52) для случая $r^2 \neq 0, 1$ является решение, отвечающее паре полюсов $\zeta_1^2 = \eta$, $\zeta_2^2 = \eta^{-1}$, которое может иметь произвольную амплитуду, являющуюся функцией η .

Выберем для солитона (39)

$$\xi_1 = \exp(i\phi_0)$$

и для солитона (51)

$$\lambda_1 = |\lambda_1| \exp(i\phi_0).$$

Тогда для этих солитонов максимальная интенсивность определяется выражением

$$A(\chi, r)^{2} = 16|\lambda_{1}(\chi)|\sin^{2}(\phi_{0}(\chi)), \qquad (54)$$

где для солитона (39) $|\lambda_1| = 1$. Для случая линейной поляризации ($r = 0, E_y \equiv 0$) амплитуда солитона

$$A(r=0) = 2 \operatorname{Im} \lambda_1(\chi).$$

На рис. 4 показана зависимость максимальной интенсивности солитонов от длины усиления для разных r и малых начальных амплитуд. Из рисунка видно, что для малых χ более эффективно усиливается солитон поля с почти циркулярной поляризацией (для $r^2 = 0.99$), в то же время для больших χ амплитуды импульсов поля с почти линейной поляризацией (r = 0.1) растут быстрее с ростом χ . Как отмечено выше, для ОНИ с круговой поляризацией существует сингулярное решение (53), однако оно не возникает при усилении в лазерной среде солитона с малой начальной амплитудой.

Поведение длительностей ОНИ с линейной и круговой поляризациями в лазерной среде также существенно различается. На рис. 5 приведены графики зависимостей обратной длительности солитонов Im λ_1 от χ для разных r. Наблюдается качественное различие изменения длительности солитона с ростом длины усиления при наличии накачки для почти линейно (r = 0.1) и почти циркулярно (r = 0.99) поляризованных волн. Во втором случае уменьшению длительности солитона с ростом накачки препятствует рост нелинейной связи между компонентами поля, т.е. фазы поля E. Это явление аналогично нелинейной фазовой модуляции импульса поля в случае квазимонохроматических полей.

6. ВЛИЯНИЕ ДОПОЛНИТЕЛЬНОГО УРОВНЯ

В настоящей работе в качестве физического примера рассматриваются импульсы с длительностью,

Рис.5. Зависимость обратной длительности солитонов от χ при h = 1 для r = 0.1 — штриховая линия, r = 0.5 — пунктирная линия и r = 0.99 — сплошная линия. Единицы произвольны

в несколько раз большей обратной частоты перехода. В реальной среде при описании эволюции таких импульсов и тем более импульсов с длительностью $\lesssim \omega_0^{-1}$ в эффективной двухуровневой среде необходимо оценивать вклад взаимодействия импульса с дополнительными уровнями. С этой целью рассмотрим влияние удаленного дополнительного уровня на динамику ОНИ круговой и линейной поляризаций. Рассмотрим трехуровневую схему каскадных переходов, состоящую из трех уровней $1 \leftrightarrow 2 \leftrightarrow 3$, в которой уровень 2(3) лежит выше уровня 1(2) и уровень 3 является дополнительным. Пусть ω_0 и Ω частоты переходов 1 \leftrightarrow 2 и 2 \leftrightarrow 3, причем $\Omega \gg \omega_0$. Обобщение результатов этого раздела на произвольное число переходов между уровнями 1 и 2 и дополнительными уровнями без учета переходов между дополнительными уровнями достаточно очевидно.

Выберем условия, при которых можно применить адиабатическое исключение дополнительного уровня. Считаем, что длительность импульса поля

$$\mathcal{E} = \mathcal{E}_x + i\mathcal{E}_y$$

близка или больше $\pi \omega_0^{-1}$ и много больше $\pi \Omega^{-1}$. Напомним, что для линейной поляризации $\mathcal{E}_y \equiv 0$.

Уравнения Шредингера для амплитуд заселенностей ψ_k уровней k=1,2,3имеют вид

$$\partial_t \psi_1 = i d_{12} \mathcal{E} \hbar^{-1} \psi_2, \tag{55}$$

$$\partial_t \psi_2 = i\omega_0 \psi_2 + i d_{12}^* \mathcal{E}^* \hbar^{-1} \psi_1 + i d_{23} \mathcal{E} \hbar^{-1} \psi_3, \quad (56)$$

$$\partial_t \psi_3 = i\Omega \psi_3 + i d_{23}^* \mathcal{E}^* \hbar^{-1} \psi_2, \tag{57}$$

где d_{1k} — дипольные моменты переходов 1 \leftrightarrow k. Условия на длительность импульсов позволяют адиабатически устранить ψ_3 . В этом приближении получаем следующие уравнения Блоха для эффективной двухуровневой среды:

$$\frac{\partial S}{\partial \tilde{\tau}} = iS \left(1 - gUU^*\right) - iUS_3,$$

$$\frac{\partial S_3}{\partial \tilde{\tau}} = 2i \left(US^* - U^*S\right),$$
(58)

где

$$g = \frac{|d_{23}|^2 \omega_0}{|d_{12}|^2 \Omega}, \quad U = \frac{d_{23}\mathcal{E}}{\omega_0 \hbar},$$

$$S = \psi_2 \psi_1^*, \quad S_3 = |\psi_2|^2 - |\psi_1|^2,$$

 $\tilde{\tau}$ — то же, что выше. В рамках приближения однонаправленного распространения волн вместо уравнений Максвелла (6), (7) получаем

$$\frac{\partial U}{\partial \chi} = \frac{\partial}{\partial \tilde{\tau}} \left(S - \nu_0 U - g_1 U S_3 \right), \tag{59}$$

где

$$\nu_0 = S_0 g_1, \quad S_0(\chi) = |\psi_2|^2 + |\psi_1|^2, \quad g_1 = \frac{d_{23}\omega_0}{2d_{12}\Omega}.$$

Уравнения (58), (59) для циркулярно поляризованного ОНИ справедливы при предположении, что $r^2 = 1$, т. е. $d_x = d_y = d_{12}$. Последнее условие выполняется достаточно часто (см. физические примеры в [18]). Для перехода к случаю линейной поляризации ОНИ следует формально положить в системе (58), (59) Im $U \equiv 0$ и не учитывать уравнение Максвелла для этой компоненты. Система уравнений (58), (59) не имеет представления Лакса для $g \neq 0$ и (или) $g_1 \neq 0$ и поэтому не может быть решена в рамках МОЗР. Поскольку $\Omega \gg \omega_0$, члены, нарушающие интегрируемость системы (58), (59), могут трактоваться как возмущение. В то же время число дополнительных уровней может быть велико (порядка 10–100). Если учитывать только переходы между уровнем 2 и дополнительными уровнями, то в рамках адиабатического приближения вклады этих переходов суммируются. В результате они могут дать вклад в динамику ОНИ, сопоставимый с вкладом других членов. В этом случае солитонные решения не взаимодействуют упруго и при эволюции ОНИ теряет энергию на излучение. Поскольку нелинейные возмущающие члены растут с ростом амплитуды солитона, следует ожидать уменьшения амплитуды импульса под действием возмущения. Покажем, что при достаточно малой амплитуде и достаточно большой длительности импульса, т.е. при переходе к квазимонохроматическому пределу, система уравнений (58), (59) для ОНИ становится интегрируемой и при учете влияния дополнительных уровней.

Пусть для компонент поля

$$E_{x(y)} = A_{x(y)} \exp(i\omega\tau - ik\chi) + \text{c.c.}$$

характерные временные и пространственные масштабы изменения комплексных амплитуд $A_{x(y)}$ много больше ω^{-1} и k^{-1} , соответственно. Рассмотрим каскадную трехуровневую среду, описанную выше, с частотой перехода ω_0 , близкой ω , и с разностной частотой $\nu = \Omega - \omega > 0$, много большей спектральной ширины импульса. Перейдем к квазимонохроматическому пределу в исходных системах уравнений (3)–(7) для $r^2 = 1$ с учетом влияния дополнительного уровня. Тогда, аналогичным образом исключая в адиабатическом приближении волновую функцию, отвечающую верхнему уровню, получаем аналогичные найденным выше уравнения Блоха:

$$\frac{\partial \widetilde{S}}{\partial \tau'} = i\widetilde{S}\left(1 - \widetilde{g}\widetilde{A}\widetilde{A}^*\right) - i\widetilde{A}S_3,$$

$$\frac{\partial S_3}{\partial \tau'} = 2i\left(\widetilde{A}\widetilde{S}^* - \widetilde{A}^*\widetilde{S}\right),$$
(60)

где

$$\widetilde{g} = \frac{|d_{23}|^2 \nu_0}{|d_{12}|^2 \nu}, \quad \nu_0 = \omega_0 - \omega, \quad \tau' = \nu_0 (t - c^{-1} z),$$
$$\widetilde{A} = \frac{A d_{12}}{\nu_0 \hbar}, \quad S = \widetilde{S} \exp(i\omega\tau - ik\chi) + \text{c.c.}$$

Уравнения Максвелла (6), (7) приводятся к виду

$$\frac{\partial A}{\partial \chi} = -2i\left(\tilde{S} - \tilde{\nu}_0 A - \tilde{g}_1 A S_3\right),\tag{61}$$

где

$$\nu_0 = S_0 \widetilde{g}_1, \quad \widetilde{g}_1 = \frac{d_{23}\omega_0}{2d_{12}\nu}.$$

Заметим, что эту же систему уравнений (с точностью до коэффициента 2 в уравнении Максвелла) получаем в квазимонохроматическом пределе, применяя это приближение к системе уравнений (58), (59) и учитывая в уравнении (59) нелинейную добавку ig_1US_z , связанную с влиянием дополнительного уровня, но пренебрегая производными от нее.

Полученная система уравнений МБ (58), (59) сводится к интегрируемой системе уравнений МБ для квазимонохроматического поля. Действительно, при этих условиях система (58), (59) простыми линейными преобразованиями приводится к системе уравнений МБ, описывающей взаимодействие мощного квазимонохроматического электромагнитного поля с двухуровневой средой с учетом нелинейного эффекта Штарка и нелинейностью, пропорциональной US_z , в редуцированном уравнении Максвелла. Последняя нелинейность возникает при сохранении первого члена разложения, пропорционального $\partial_t P/\omega_0$, где P — поляризуемость среды, а ω_0 — частота перехода этой среды. Представление Лакса для этой системы найдено автором ранее [31]. Эта система обладает солитонными решениями, которые упруго взаимодействуют между собой, и другими атрибутами интегрируемых систем [27].

7. ВЫВОДЫ И ПРИМЕНЕНИЕ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

В работе дано описание явления самоиндуцированной прозрачности в двухуровневой среде для циркулярно поляризованных импульсов с длительностью, близкой или большей обратной частоты перехода. Изучение особенностей поведения решений уравнений МБ важно для понимания процессов формирования ОНИ и явления самоиндуцированной прозрачности в двухуровневых средах. Условия наблюдения ОНИ, накладываемые, например, на интенсивности импульсов, по меньшей мере на два порядка слабее, чем те, что требуются для наблюдения динамики ПКИ [9-11]. Из-за более узкого спектра ОНИ требования на применимость приближения двухуровневой среды также значительно мягче, чем для ПКИ. Формально область применимости модели эволюции ОНИ в двухуровневой среде (8) включает весь спектр частот от $\tau_1^{-1} \ll \omega_0$ до $\tau_1^{-1} \gg \omega_0$, где τ_1 — длительность солитона. Однако для светового диапазона необходимо ограничиться условием $\tau_1^{-1} \lesssim \omega_0$.

Из найденных в работе решений видно, что динамика ОНИ с круговой поляризацией качественно отличается от динамики ОНИ с линейной поляризацией и от поведения 2*π*-импульсов в теории Маккола-Хана [4]. Например, теорема Маколла-Хана неприменима для ОНИ с длительностью порядка обратной частоты перехода. Поэтому перенос результатов теории самоиндуцированной прозрачности, развитой для квазимонохроматических импульсов, в область значений длительностей импульсов $\tau_1 \sim \omega^{-1}$ неправомерен. В большей степени это относится к импульсам с круговой поляризацией, для которых следует учитывать нелинейные эффекты, связанные с взаимодействием компонент поля. В работе обнаружено, что применение σ -переходов и электромагнитных импульсов с круговой поляризацией позволяет генерировать импульсы с намного большей интенсивностью по сравнению со случаем линейной поляризации при их одинаковой длительности. Справедливо и обратное: импульсы с круговой поляризацией имеют меньшую длительность, чем импульсы с линейной поляризацией при равных максимальных амплитудах. Для получения импульсов с такими характеристиками необходимо подбирать фазу начального импульса, близкую к $\alpha_1 \approx \pi/2$. Требуемые параметры инжектируемого в среду импульса можно найти, решая задачу (17).

Анализ усиления ОНИ в однопроходовом лазерном усилителе, модель которого включает накачку верхнего уровня, показал, что эффективность усиления линейно поляризованных импульсов выше, как это видно на рис. 4. Сравнение формы импульсов с учетом усиления показало, что динамика усиления импульсов для случаев циркулярной и линейной поляризаций различна из-за наличия в первом случае нелинейной связи в редуцированных уравнениях Максвелла.

В то же время существует аналогия между генерацией солитонов ОНИ с круговой и линейной поляризациями. Однополюсное (для полюса η_1 с нулевой действительной частью) солитонное решение (51) отвечает «одногорбовой» форме интенсивности импульса. Если действительная часть полюса η_1 не равна нулю, то простейшее решение отвечает паре полюсов η_1 и $-\eta_1^*$. Нетрудно показать, что это решение в более общем случае отвечает двугорбой интенсивности импульса для солитона как линейной, так и круговой поляризаций для r = 1.

При выводе уравнений Максвелла-Блоха, отвечающих эволюции циркулярно поляризованных ОНИ, для некоторых значений параметров обнаружилась частичная аналогия этих уравнений с интегрируемыми уравнениями для квазимонохроматических волн, найденными автором ранее [31] для другой оптической системы. Эти уравнения описывают взаимодействие линейно поляризованных оптических импульсов с двухуровневой невырожденной средой с учетом квадратичного эффекта Штарка и (или) нелинейных членов, связанных с первой производной от поляризуемости среды по временной переменной. Эта аналогия позволяет использовать ряд результатов, полученных ранее [27]. Специфика уравнений Максвелла-Блоха, описывающих эволюцию ОНИ с циркулярной поляризацией, должна проявиться при описании солитонной оптической бистабильности импульсов. В частности, если поместить достаточно протяженную нелинейную среду, эволюция поля в которой описывается уравнениями (8), в кольцевой резонатор с подкачкой полем с постоянной амплитудой, то в такой системе возникает солитонная оптическая мультистабильность. Параметры

импульса, такие как амплитуда и длительность для некоторых областей значений амплитуды подкачки, неоднозначно зависят от этой амплитуды и от начальных условий. Можно показать, что в аналогичных условиях мультистабильная динамика для линейно поляризованных ОНИ не существует.

Учет взаимодействия с дополнительным уровнем или набором уровней приводит в адиабатическим пределе к появлению дополнительных нелинейных членов в уравнениях Максвелла-Блоха, которые нарушают интегрируемость модели для достаточно коротких импульсов, но не нарушают ее в квазимонохроматическом пределе. Таким образом, мерой такого нарушения является отклонение от квазимонохроматичности импульсов. Однонаправленные импульсы с длительностью порядка ω_0^{-1} будут терять энергию на излучение из-за влияния дополнительных уровней (в отличие от квазимонохроматических импульсов). Используя полученные выше решения, можно показать, что для линейной поляризации в квазимонохроматическом пределе и для циркулярной поляризации в интегрируемых и не интегрируемых случаях адиабатический учет дополнительных уровней приводит к зависимости фазы поля от интенсивности импульса. Эта зависимость (или нелинейный «чирп») проявляется в изменении спектра импульса и его формы. Односолитонное решение для квазимнохроматических ОНИ с учетом чирпа для $r^2 = 1$ формально совпадает с решением (52) с точностью до переобозначений.

Полученные в работе решения могут быть использованы для качественной интерпретации некоторых известных экспериментальных результатов. В работе [32] проведено экспериментальное исследование влияния начальной фазовой отстройки ϕ_0 импульса с длительностью в несколько периодов в нелинейной оптической полупроводниковой среде. В работе исследовалась схема уровней, для анализа которой применялось двухуровневое приближение. Поскольку спектр импульсов света, применяемых в экспериментах, был достаточно широк, требовался учет влияния дополнительных уровней. Влияние уровней с большей энергией учитывалось при моделировании эксперимента соответствующей модификацией диэлектрической постоянной. В то же время в работе [32] экспериментально были обнаружены качественные отклонения от предсказаний такой двухуровневой модели. Например, было обнаружено, что энергия импульса существенно зависит от начальной фазы ϕ_0 и что эффективная нелинейная фаза импульса является функцией интенсивности импульса, что не объяснялось предложенной

моделью. Полученные в настоящей работе результаты могут быть использованы для интерпретации наблюдаемых в работе [32] эффектов, связанных с фазовой отстройкой ϕ_0 и поляризацией импульсов, наблюдаемых в квазидвухровневых средах вне рамок теории возмущений и квазимонохроматического приближения. Поведение импульсов света, обнаруженное в экспериментах [32], близко к поведению ОНИ с круговой поляризацией или линейно поляризованных ОНИ в двухуровневой среде с учетом влияния дополнительных уровней, исследованному выше в рамках адиабатического приближения. Как было показано выше, учет влияния дополнительных уровней приводит к появлению зависимости фазы импульса от его интенсивности и зависимости амплитуды импульса от начальной фазы α_1 .

В работе [33] экспериментально исследовалось расщепление Раби под действием импульса длительностью, близкой к частоте эффективной двухуровневой среды. Теория, основанная на подходе авторов работы [33], предсказывает увеличение рабиевского расщепления с ростом интенсивности импульса. Однако в эксперименте [33] было обнаружено намного меньшее расщепление, чем предсказано теорией. В рамках полученных в работе решений системы уравнений (58) можно качественно объяснить наблюдаемое в работе [33] уменьшение рабиевского расщепления влиянием дополнительных уровней. Поскольку число дополнительных уровней в исследованной в работе [33] оптической системе около пятидесяти, их влияние может быть существенным. Зафиксируем момент времени, отвечающий максимуму интенсивности импульса $I_0 = |U|^2$. Тогда «мгновенная» частота Раби находится из системы (58) и имеет вид

$$\Omega_R = \sqrt{\left(1 - \kappa_0 I_0\right)^2 + I_0}.$$
 (62)

Зависимость Ω_R от I_0 достигает минимума в точке

$$I_0 = 3/2g$$
,

который равен

$$\min \Omega_R = \frac{\sqrt{g+6}}{2\sqrt{g}}.$$

При g > 2 с ростом I_0 вначале происходит уменьшение рабиевского расщепления, а после прохождения минимума расщепление растет. Поскольку число дополнительных уровней велико, величина g может быть больше двух, тогда их влияние может приводить к уменьшению рабиевского расщепления, обнаруженному в эксперименте, выполненном в работе [33]. Заметим, что минимум в зависимости $\Omega_R(I_0)$ возникает, если учитывать переходы между дополнительными уровнями и верхним уровнем 2. В случае, если учитываются только переходы между дополнительными уровнями и нижним уровнем 1, в рамках адиабатического приближения нетрудно показать, что $\Omega_R(I_0)$ монотонно растет с ростом I_0 .

Интегрируемая модель (8) и предложенный выше аппарат MO3P после некоторой модификации могут быть использованы для описания поперечных акустических волн в парамагнитном кристалле с примесными ионами со спином 1/2, а также при описании динамики импульсов поперечного магнитного поля в кристаллическом магнетике с малой плотностью спинов и с ромбической симметрией.

Представляет интерес применение полученных в работе результатов для описания эволюции ультракоротких (пикосекундных и фемтосекундных) однонаправленных импульсов с круговой поляризацией в двумерном фотонном кристалле или в одномерном кристалле с учетом поляризационных эффектов. Известно, что локализованные солитоноподобные решения существуют внутри запрещенных зон фотонного кристалла [34]. В двумерном кристалле структура солитоноподобных импульсов существенно усложняется [35]. Учет специфики эволюции ОНИ в многоуровневой среде и нелинейной связи между компонентами циркулярно поляризованного поля должен проявиться в структуре импульсов, возникающей при эволюции в фотонном кристалле с имплантированными резонансными атомами [36]. Следует ожидать качественно новых эффектов, связанных с бистабильным поведением, сжатием импульсов [37] с циркулярной поляризацией в фотонном кристалле с композитной средой, включающей резонансную среду, по сравнению с динамикой линейно поляризованных импульсов с длительностью, близкой обратной частоте перехода.

Автор благодарен Х. Штойделю (H. Steudel) за ценные комментарии отдельных результатов этой работы и К. Эйлбеку (J. C. Eilbeck) за информацию о работах на близкую тему. Работа выполнена при частичной финансовой поддержке РФФИ (грант № 03-02-16297), Междисциплинарного интеграционного проекта фундаментальных исследований СО РАН № 84 и Программы фундаментальных исследований Президиума РАН (грант № 8-2).

ЛИТЕРАТУРА

- R. K. Bullough, P. M. Jack, P. W. Kitchenside, and R. Saunders, Physica Scripta 20, 364 (1979).
- A. I. Maimistov, A. M. Basharov, S. O. Elyutin, and Yu. S. Sklyarov, Phys. Rep. 191, 1594 (1990).
- T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
- **4**. А. И. Маймистов, КЭ **30**, 287 (2000).
- D. You, D. R. Dykaar, and P. H. Bucksbaum, Opt. Lett. 18, 290 (1993).
- M. Wittmann, A. Nazarkin, and G. Korn, Opt. Lett. 26, 5 (2001).
- L. Xu, C. Spielmann, and F. Krausz, Opt. Lett. 21, 1259 (1996).
- A. Baltuska, Z. Wei, M. S. Pshenichnikov, and D. A. Wiersma, Opt. Lett. 22, 102 (1997).
- Э. М. Беленов, П. Г. Крюков, А. В. Назаркин и др., Письма в ЖЭТФ 47, 523 (1988).
- Э. М. Беленов, А. В. Назаркин, В. А. Ущаповский, ЖЭТФ 100, 762 (1991).
- S. V. Sazonov and E. V. Trifonov, J. Phys. A: Math. Gen. 27, L7 (1994).
- А. Ю. Пархоменко, С. В. Сазонов, ЖЭТФ 114, 1393 (1998).
- R. W. Ziolkowski, J. M. Arnold, and D. M. Gogny, Phys. Rev. A 52, 3082 (1995); S. Hughes, Phys. Rev. Lett. 81, 3363 (1998); S. Hughes, Phys. Rev. A 62, 055401 (2000).
- 14. M. Kolesik, J. V. Moloney, and M. Mlejnek, Phys. Rev. Lett. 89, 283902 (2002).
- 15. В. Е. Захаров, С. В. Манаков, С. П. Новиков, Л. П. Питаевский, *Теория солитонов*, Наука, Москва (1980).
- 16. А. М. Башаров, А. И. Маймистов, ЖЭТФ 87, 1594 (1984).
- 17. J. D. Gibbon, P. J. Coudrey, J. K. Eilbeck, and R. K. Bullough, J. Phys. A: Math. Gen. 6, 1237 (1973).
- L. Alen and J. H. Eberly, Optical Resonances and Two-Level Atoms, New York, Wiley & Sons (1975).
- 19. А. А. Заболотский, Письма в ЖЭТФ 77, 558 (2003).
- 20. J. Cheng and J. Zhou, Phys. Rev. A 67, 041404(R) (2003).

- 21. R. P. Feynman, F. L. Vernon, and R. W. Hellwarth, J. Appl. Phys. 28, 49 (1957).
- 22. R. E. Slusher and H. M. Gibbs, Phys. Rev. 5, 1656 (1972).
- 23. S. P. Burtsev and I. R. Gabitov, Phys. Rev. A 49, 2065 (1994).
- **24**. А. А. Заболотский, ЖЭТФ **121**, 1012 (2002).
- 25. D. J. Kaup and A. C. Newell, J. Math Phys. 19, 798 (1978).
- **26**. Е. А. Кузнецов, А. В. Михайлов, ТМФ **30**, 303 (1977).
- 27. А. А. Заболотский, ЖЭТФ 107, 1100 (1995).
- 28. С. П. Бурцев, А. В. Михайлов, В. Е. Захаров, ТМФ
 70, 323 (1987).
- 29. О. Звелто, Физика лазеров, Мир, Москва (1979).

- 30. Painlevé Transcendents. Their Asymptotics and Physical Applications, ed. by P. Winternitz and D. Levi, Plenum, New York (1992); NATO ASI Ser., Ser. B: Phys., Vol. 278.
- 31. A. A. Zabolotskii, Phys. Lett. A 124, 500 (1987).
- 32. O. D. Mücke, T. Tritschler, and M. Wegener et al., Phys. Rev. Lett. 89, 127401 (2002).
- 33. O. D. Mücke, T. Tritschler, and M. Wegener et al., Phys. Rev. Lett. 87, 057401 (2001).
- 34. S. John and N. Aközbek, Phys. Rev. Lett. 71, 1168 (1993).
- 35. N. Aközbek and S. John, Phys. Rev. E 57, 2287 (1998).
- 36. N. Aközbek and S. John, Phys. Rev. E 58, 3876 (1998).
- 37. R. A. Vlasov and A. G. Smirnov, Phys. Rev. E 60, 5808 (2000).