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We consider one-loop effects in general relativity that result in quantum long-range corrections to the Newton
law, as well as to the gravitational spin-dependent and velocity-dependent interactions. Some contributions to
these effects can be interpreted as quantum corrections to the Schwarzschild and Kerr metrics.
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1. INTRODUCTION

It has been recognized long ago that quantum ef-
fects in general relativity can generate long-range cor-
rections to the Newton law. Such corrections due to
the photon and massless neutrino contributions to the
graviton polarization operator were calculated in [1-4].
The corresponding quantum correction to the Newton
potential between two bodies with masses m; and ms is

4+ N, k2hm1 ma

Unw = 157 cdrd (1)

where N, is the number of massless two-component
neutrinos and k is the Newton gravitational constant.

The reason why the problem allows a closed solution
is as follows. The Fourier transform of 1/r? is

[ arg, 2)

This singularity in the momentum transfer q implies
that the discussed correction can be generated only by
diagrams with two massless particles in the ¢-channel.
The number of such diagrams of the second order in k
is finite, and their logarithmic part in ¢® can be calcu-
lated unambiguously.

Analogous diagrams with gravitons and ghosts in
the loop, Fig. 1a, b, were considered in Refs. [1,5-T7].
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a b

Fig. 1. Graviton loop

(Here and below, wavy lines refer to quantum fluctua-
tions of metric, double wavy lines denote a background
gravitational field; dashed lines here refer to ghosts.)
Clearly, other diagrams with two gravitons in the t-
channel also contribute to the discussed correction pro-
portional to 1/r3. This was pointed out long ago in [8],
where all relevant diagrams were explicitly indicated.

The problem of quantum corrections to the Newton
law is certainly interesting from the theoretical stand-
point. It was addressed later in [9-15]. Unfortunately,
as demonstrated in [16], none of these attempts was
satisfactory.

The problem was then considered quantitatively in
our previous paper [16]. Therein, all relevant diagrams,
except one (see Fig. 4b below), were calculated cor-

3

rectly. In a recent paper [17], this last diagram is cal-
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Fig.2. Gravitational vertices

culated correctly!), and our results for all other contri-
butions are confirmed.

The content of our present work is as follows. Us-
ing the background field technique [7], we construct
invariant operators that describe quantum power-law
corrections in general relativity. In the limit as one of
the interacting particles is heavy, some of the derived
corrections can be interpreted as quantum corrections
to the Schwarzschild and Kerr metrics. Here our results
differ essentially from those in [18].

We also demonstrate in an elementary way that
to our accuracy, the spin-independent part of the dis-
cussed corrections for spinor particles coincides with
the corrections for scalar particles. In particular, this
implies that the obtained quantum corrections to the
Schwarzschild metric are universal, i.e., independent
of the spin of the central body. For some loop dia-
grams relevant to the problem, the mentioned coinci-
dence of the spin-independent contributions of spinor
particles with the corresponding results for scalar ones
was proved previously in [18] by direct calculation.

With the effective operators constructed, we not
only derive the corrections to the Newton law easily,
but also obtain quantum corrections to other gravita-
tional effects: spin-dependent and velocity-dependent
interactions. In the present paper, we mainly consider
the case of scalar particles. By spin, we therefore mean
the internal angular momentum of a compound particle
with scalar constituents.

We also comment on the problem of the classical
relativistic corrections to the Newton law. Our conclu-
sions here agree completely with the results in [19-21]
(see also the textbook [22, § 106]), but on some point
we disagree essentially with the statements in [17].

1) Both previous results for this contribution, by Donoghue [10]
and by us [16], were incorrect.

2. PROPAGATORS AND VERTICES

Below, we use the units where ¢ = 1 and 7 = 1.
Our metric signature is diag(1, —1, -1, —1).

The graviton operator h,, describes quantum fluc-
tuations of the metric g,, in the background met-
i 0
rlc g,,Ll/'/

Guv = ggy + shyy, #* =327k =32nl.  (3)

We use the gauge condition

1
i = §hﬁ:v =0 (4)

for hy,, where the indices of h,, are raised with the
background metric ggy, and the covariant derivatives
are taken in the background field g9,. The free gravi-
ton propagator is

= Pul/,ozﬁ

Dyva - =l
nv, ﬁ(q) q2 +1i0 (5)

1
Puv.op = 3 (Ouadys + 6vabus — Ouvdas).
The tensor P,,,qp is conveniently represented as [7]
1
Puv.op = Tyv,op = b} Ouvap »

where 1
Lyv,ep = 5 (5ua5VB + 5va5u6)
is a sort of unit operator with the property
Tyv,aptas = tuw
for any symmetric tensor t,3. We note the useful iden-
tity
PopixPirqs = Top s - (6)

The propagators of scalar and spinor particles are
the usual ones,

D(p) = ! !

RS S 1
T Gl =i

respectively.
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The single-graviton vertex for both scalar and
spinor particles (see Fig. 2a) are related to the energy-
momentum tensor Tpz(p,p’) of the corresponding par-
ticle as

Vag(p,p') = —i g Tas(p.p') - (7)
The explicit expressions for the scalar and spinor par-
ticle vertices are
v ,p) = —ig [Papi+Paps—0as(pp'—m*)]  (8)
and

v/2) —

ny
13 ,
= _T u (p,) [Iuyaﬁpa'Yﬁ_(suu(P_2m)] U(p) (9)
respectively; here, P = p + p'.
The contact interaction of a scalar particle with two
gravitons (see Fig. 2b) is

0 .
VS, =i {Imaafaﬁ,pa (PaDjs + Pops)—

1
- 55#3)\[[)0',0(3 + 5pfrln)\,ozﬁpap23 +

! 2 1
n (pr) (IHW, - iémépgﬂ . (10)

To our accuracy, we can neglect the last term with
(p' —p)? = ¢* in this expression, and rewrite the vertex
conveniently as

o

2\, po

= i I%)\’aglgg’pgTaﬁ—i((5%)\Tp,7+(spgT%>\) . (11)
We use the two-graviton vertices on mass shell only.
Therefore, the terms with the Kronecker § entering the
energy-momentum tensor in the last expression are also
proportional to ¢2, and hence can be neglected.

The contact two-graviton interaction of a spinor
particle (see Fig. 2b) can be written on mass shell as

2

1/2 el
VJ«E)\/F)CT =1 3 {5 (Lex, udpo, s + Lpo, uplien, ga) Pu—
=0 Ipo, pa Py — 6paI}tx\,uaPu] @ (p')y*u(p) =

. 3
=i’ [Z Lxa6l5p, polap —

1
— 1((5,{>\TpCr +6PUT%>\)} . (12)

As regards the 3-graviton vertex (see Fig. 2¢), which
has the most complicated form, we follow [7, 17] in rep-
resenting it as

Vivagys =
. i
-1 b} Z Vpv,a,76>
1

1
Vpv,aB,vs = Papys X

3
X {kukt/"'(k_Q)u(k_Q)v+QMQV_§5Wq2 ,

2”uv,a6,’v5 =

= 2¢..qx\[Lex 0 Lyvyo + Lex o lyv,ap —

— L.yopwre — LevagIigols

VpviaBiys = Getu (BapLavqys +

+ 0y5ev,08) + GeQv (005 Lcpns + 06 Loepap) —
- qz(fsaﬁluv,vé + 5761uv7a6) - (13)
= 0w @oer (60 Iys 5en + Oyslap 5en),

41)“,,,015,75 = 2¢,. X

X [Lex,aplysux(k—=@) p+LexapLys,un (k—q) 0 —

— Lo volapnky — Loxyo Lo unko] +

+@* Inpop Iys v+ Dwas Iysau) +

+ 00 Gen (Tag,seplprys + Iyseplpnas),

Vg = K +(k—q)°]

1
X <I>\M7O¢BI’75,>\V_EfsMVPaB:’Y(S) -

- k25’y6IuV,aﬁ - (k - Q)260151MV1’Y5'

In this vertex, we can also neglect the last structure
svuuﬂgwa to our accuracy.

3. UNIVERSALITY OF SPIN-INDEPENDENT
EFFECTS

We first address the lowest-order s- and u-pole dia-
grams for graviton scattering, presented in Fig. 3a, b.

We start with a scalar particle. The terms with the
Kronecker § in single-graviton vertices (8) then can-
cel the s- and wu-pole denominators. It can be easily
demonstrated that in the sum of the two diagrams, the
arising contact contributions combine into

2
.
Vag g = i [ap (o0 +9ps) +

2
KR
035 (pap+Papa)] = i (Bap Ty +0,6T85). (14)

In the course of these transformations, we omit the
terms with extra powers of the graviton momenta be-
cause they do not lead to In¢? after subsequent loop
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Fig.3. Pole diagrams

integration. Combining this induced term with (10),
we obtain the total effective two-graviton vertex for a
scalar particle,

V(O)eff

. 0
age = 15 I%A,aafaﬁ,paTég) =

2

==

- (15)

senas158,p0 PaPp -

For spinor particles, single-graviton vertices (9) also
contain terms with the Kronecker §. Proceeding here
with the s- and u-pole diagrams in the same way as in
the scalar case, we obtain the following correction to
the two-graviton vertex:

2
1/2 . 1/2 1/2
Vi = i T Gas Ty + 55T,

afB,yd — 4 (16)

The total effective two-graviton vertex for a spinor par-
ticle is then given by
v A/2)eff _

3 .
exopo ) 's fxmafaﬁ,paTo(ia/Z) :

(17)

If we are interested in spin-independent effects in
the graviton scattering off a spinor particle, one more
step is possible. The spinor structure of the numera-
tors in the s- and u-pole diagrams can be transformed
as follows:

a(p')y" (L +m)yu(p) = a(p) 179 + 1997 -
— ([ =m)6% + i’ ey, + mogy,|u(p). (18)
The term a(p')(I —m)u(p) in this expression, being av-
eraged over spins, transforms to 12 —m? (here, we again
omit a term proportional to ¢?). After cancelation of
the denominators, the sum of these terms in the s- and
u-pole diagrams reduces to
(1/2)n Es

v, = —< Lo uslps saPulo.

%\, po 8 (]‘9)

Because the spin-averaged energy-momentum tensor
for spinors coincides with the scalar one, which is equal

to P,P,/2, the spin-independent term in the sum of
(17) and (19) reduces to (15). In other words, from
the fermion diagrams, we can single out the sum of
structures that coincides with the effective sea-gull for
a scalar particle after averaging over spins.

Finally, it can be easily demonstrated that after av-
eraging over the spins, all the other terms in the nu-
merators of the s- and u-pole spinor diagrams coincide
with the corresponding terms in scalar diagrams with
the required accuracy.

For the diagram in Fig. 3¢, with the graviton pole in
the t-channel, the coincidence between the scalar and
spin-averaged spinor cases is obvious.

To summarize, the sum of scalar and spin-averaged
spinor tree amplitudes, and hence the sum of the cor-
responding loop diagrams, coincide with the required
accuracy.

4. SPIN-INDEPENDENT EFFECTIVE
AMPLITUDES

We start the discussion of loops with the vacuum
polarization diagrams, see Fig. 1. The covariant effec-
tive Lagrangian corresponding to the sum of these loops
was derived in [7] with dimensional regularization. It
is given by

Lrr = V=9 (42R,,R* + R*), (20)

1
 96072(4 — d)
where, as usual, g is the determinant of the metric ten-
sor, Ry, is the Ricci tensor, and R = Rj.

For our purpose, Lagrangian (20) can be conve-
niently rewritten as [9]

1 ‘
Lrr = ————In|¢’| (2R, R" + R?).

— 21
192072 (21)

We are interested, in particular, in the situation where
at least one of the particles is considered in the static
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a b
Fig.4. Vertex diagrams
limit. In this case, | ¢?| = q2, and in the coordinate

representation we obtain

Lrr = (42R,, R"™ + R?). (22)

1
3840733
The next set of diagrams, Fig. 4, refers to the vertex
part. The corresponding effective operator is
(3R, T"" —2RT),

Lrr = T=TF (23)

s
Here and below, TH#" is the spin-independent part of
the total energy-momentum tensor of matter.

We finally consider the diagrams in Fig. 5. The first
two of them, the diagrams in Fig. 5a, b, as well as the
diagrams in Figs. 1 and 4, depend only on the momen-
tum transfer ¢t = ¢2. As regards the box diagrams in
Fig. 5¢, d, their contribution is partly reducible to the
same structure as that of diagrams in Fig. 5a, b. The
sum of all these t-dependent effective operators origi-
nating from the diagrams in Fig. 5 is

kz
Lrr = —T°. (24)
r
The irreducible contribution of the s-channel box
diagram 5c¢ is

Bl = m3 — m3)? — amim3]? |
i3l »

1 Jemn/emt) -

In ,
o)) )= )

where m; and my are the particle masses,

M =

my = (my£ms), s=(p1+p2)°,

and p; and ps are the incoming 4-momenta.

The irreducible contribution M, of the wu-channel
diagram in Fig. 5d is obtained from formula (25) by
the substitution

s—>u:(p1—p2—q)2.,

with the corresponding analytic continuation.

The expressions for M, and M, converge in the ul-
traviolet sense, but diverge in the infrared limit, de-
pending logarithmically on the «graviton mass» A. As
usual, such behavior is directly related to the necessity
to cancel the infrared divergence in the Bremsstrahlung
diagrams (evidently, the gravitational Bremsstrahlung
in the present case). The box diagrams in Fig. 5e,
d were considered previously in [23] from a different
standpoint.

As regards the three Lagrangians in Eqs. (22), (23),

and (24), by virtue of the Einstein equations
1
Ru,j = 8nk (Tu)/ - EguuT> ) (26)
they can be conveniently combined into
k.2
Liot = ~50mr3 s (1387, 7" = 31T%) . (27)

The irreducible amplitudes generated by the box di-
agrams in Fig. 5¢, d depend nontrivially on s and w,
respectively (in line with their simple dependence on
In|g?|/|¢?|). Therefore, they cannot be reduced to a
product of energy—momentum tensors.

5. QUANTUM CORRECTIONS TO METRIC

The effects due to Lagrangian (27) can be conve-
niently interpreted as generated by quantum correc-
tions to metric. To obtain these corrections, we split
the total energy-momentum tensor T}, into those of a
static central body and of a light probe particle, T
and t,, respectively. Varying the expression resulting
in this way from (27) with respect to t*¥, we then ob-
tain a tensor that can be interpreted as a quantum cor-
rection h‘(f,,) to the metric created by the central body,

2
@ _ _k
T

It follows immediately from this expression that

107 k2 107 k2M
plo - 220 R o 2V 29
07 15 ar3 07 15 a3 (29)
where M is the mass of the central body.
For the space components hmn of the metric cre-
ated by a heavy body at rest, one might naively expect

from formula (28) that they are given by

(13879, — 316, T°) . (28)

31 kB2M
15 mrd3

31 k2 0
15 3 00 =

But the calculation of hg,% actually requires a modifi-
cation of formula (28). The point is that we work with
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Fig.5. Scattering diagrams

gauge condition (4) for the graviton field. It is only
natural to require that the resulting effective field h;%
should satisfy the same condition, which now simplifies
to

plow %h(q)57” =0.

v, p

The space metric thus obtained is

pla) — kM E -
ar3 | 15

76 mTn r mTn
_E[ 2 +ln<g> (dn =375 )” (30)

Technically, the expression in square brackets
in (29) originates from the terms containing structures
of the type 0,T"”. Generally speaking, they arise
in calculating Lagrangians (23), (24), and (27), but
are omitted there because they vanish on mass shell.
These terms are therefore absent in (28). But they can
be restored by rewriting the net result (27), by means

of Einstein equations (26), as

(138R,, R" — 31R*),  (31)

Liot =

3840733

and then attaching energy-momentum tensors to the
double wavy lines using graviton propagators (5). The
presence of In(r/rg), where ry is some normalization
point, is quite natural here if we recall In|¢?| in the
momentum representation. Fortunately, this term in
the square brackets does not influence physical effects.

The obtained quantum corrections h[()% and hi%) to
the metric are universal, i.e., are the same when created
by a spinless or spinning heavy point-like particle.

Our results (29) and (30) differ from the corres-
ponding ones in [18]. The main reason is that the
contribution of operator (24) to the metric is absent
in [18]. This omission does not look logical to us: on
mass shell, one cannot distinguish this operator from
other ones (see (27), (31)). One more disagreement is
perhaps due to the same inconsistency: the contribu-
tion of operator (23) to the metric, as given in [18], is
two times smaller than ours.

In addition, the Fourier transformation of
(gmqn/a®)Ing? is performed in [18] incorrectly,
which gives a wrong result (rp,r,/r? only) for the
term in the square brackets in (30).

In conclusion of this section, we consider the On
component of tensor (28). It is given by
46 kK2, 46 k> Mv

h(Q) —
5 qr3”0n 5 73

Oon —

; (32)

where v is the velocity of the source.

We are interested in the situation corresponding to
a compound central body rotating with the angular
velocity w, but with its centre of mass being at rest.
The velocity of a separate element of the body is then
given by v = w X p, where p is the coordinate of this
element. In addition, we must shift r — r + p in for-
mula (32). Then, following [22, § 106, Problem 4], we
obtain a quantum correction to the Kerr metric,

(q) _ 69 k2

We emphasize that spin S involved here is in fact the
internal angular momentum of a rotating compound
central body with spinless constituents. We cannot
see any reason why this last quantum correction (33)
should be universal (as distinct from h((]%) and hm). If
instead of a compound body discussed here, we deal
with a particle of spin 1/2, the general structure of h((]zl)
is of course the same, but the numerical coefficient can

be quite different.

The last problem, that of a quantum correction to
the Kerr metric created by a particle of spin 1/2, was
addressed in [18]. However, the treatment of this cor-
rection there raises the same objections: the contribu-
tion of operator (24) to hé‘:l) is missed at all, and the
corresponding effect of operator (23) is not taken into
account properly.
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6. QUANTUM CORRECTIONS TO
GRAVITATIONAL EFFECTS. I

We start with the correction to the Newton law. As
usual, it is generated by the 00 component of metric.
Here, expression (29) gives

) 107 k2Mm
Un) = 30 3

However, in line with (29), we must now take the ir-
reducible contribution of the box diagrams in Fig. 5¢, d
into account, which cannot be reduced to metric. Hav-
ing other applications in mind, we write the sum of the
two amplitudes, retaining in it the terms of not only
the zeroth order in ¢~2, but also the first order,

. (34)

M, + M, = —k*mims In(q® — w?) x

2 524 p1pas — mimso
234+ ——]. (35
8 3 ( + 5 mims > ( )

In the static limit, w — 0, p1ps — mims, expres-
sion (35) reduces to

46
Mg+ M, — -3 E2mims In 2. (36)

Changing the sign (in passing from the amplitude to
the potential) and performing the Fourier transforma-
tion, we obtain [16, 17]

, 23 k2Mm
U?(r) =—— . 37
(n=->"5 (37)
Thus, the net correction to the Newton law is
41 B> Mm
Ulfr) = —— 2 —— 38
) =—15 (38)

This result was also cross-checked and confirmed by
the independent calculation in the standard harmonic
gauge, with the field variables

YH = /=g g™ — 5"
and the gauge condition
O, = 0.

We now consider the quantum correction to the in-
teraction of the orbital momentum 1 of a light particle
with its own spin s, i.e., to the gravitational spin—orbit
interaction. It is most easily obtained with the general
expression for the frequency w of the spin precession in
a gravitational field derived in [24]. For a nonrelativis-
tic particle in a weak static centrally symmetric field,
this expression simplifies to

1

Wi = b) Eimn (YmnkVk + Y0n0Vm), (39)

where
1 1
Ymnk = 5(8mhnk - anhmlc)-, Yono = _§anh00

are the Ricci rotation coefficients and v is the particle
velocity (the present sign convention for w is opposite
to that in [24]). A simple calculation results in

UL (r) :_@k_%(l-s). (40)

Finally, with formula (33), we easily derive the
quantum correction to the interaction of the orbital
momentum 1 of a light particle with the internal an-
gular momentum (spin) S of a compound central body,
i.e., to the Lense—Thirring effect,

o
5 mrd

Upr(r) = (I-S). (41)

7. ASIDE ON CLASSICAL RELATIVISTIC
CORRECTIONS

In this section, we first consider the classical
velocity-dependent correction to the Newton law. On
one hand, this is an introduction to the derivation
of quantum velocity-dependent corrections in the next
section. On the other hand, this is necessary for the
discussion of another, velocity-independent relativistic
correction to the Newton law. The derivation of the
classical velocity-independent correction via the dia-
gram technique served in [16, 17] as a check of cal-
culations of quantum corrections to the Newton law.

We consider the Born scattering amplitude with the
graviton exchange in the harmonic gauge,

T T2 — (1/2)Tl}u T2,

— MY v
MB—Sﬂ'k q2_w2

; (42)

where Tl};} are the energy-momentum tensors of parti-
cles with the respective masses m; » and velocities vy ».
To the adopted accuracy, the numerator simplifies to

mims
2

1

3 Too Too — 274, Ts, = (1—4vy-vy).

We then expand the denominator to the first order in
w?/q?, and thus arrive at the expression

4drk 2
L;W(l_m.vﬁb%),
q q

The term of the zeroth order in ¢~2 in this formula,
4rkmyms/q?, is obviously (after the necessary sign re-
versal) the Fourier transform of the Newton potential.
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However, we are interested here in the terms of the first
order in ¢=2. To transform w?/q?, we note that w is
in fact the energy difference between the initial and fi-
nal energies of a particle. The particles can now be
considered nonrelativistic, and this difference therefore

transforms (to the first order in p’ — p) as follows:

e —e=(p'—p)v

2

Therefore, the terms of the first order in ¢~ are rewrit-

ten as

drkmims Ay ve b (a-vi)(gq-va)

q’ q’

The Fourier transform of this expression, taken
with the opposite sign, is the well-known relativis-
tic velocity-dependent correction to the Newton
potential [19, 20, 22]
cl kmlmg
Upp = =, —[Vi-v2 + (n-vi)(n-va)],
! (43)
r
n=—.
r

We here essentially follow the derivation by Iwasa-
ki [21].

At least equally simple is the derivation of the rela-
tivistic velocity-independent correction to the Newton
potential. In the harmonic gauge, the metric created
by a point-like mass m; is

r+ kmy
r—kmy
— (r 4 km1)*(d6* + sin® 8dp?).  (44)

gs2 = TR e

dr® —
r + kmq !

In the expansion in 7, of the classical action —m. [ ds
for a probe particle of mass ms, the second-order term
is —k?m2my/2r?. Now, reversing the sign (to pass from
a Lagrangian to a potential) and restoring the symme-
try between m; and mo, we arrive at the discussed
correction

k2m1m2(m1 + 77’L2)

Uel = o . (45)

The classical correction (45) was found long ago
in [19,20] (see also the textbook [22, §106]), and was
derived later in [21] by calculating the corresponding
parts of the diagrams in Fig. 40, and 5b, ¢, d in the har-
monic gauge. A subtle point of the last calculation [21]
refers to the box diagrams in Fig. 5¢, d. Obviously, the
classical ¢=2 contribution of these diagrams, in particu-
lar, contains the result of iteration of the usual Newton
interaction and the velocity-dependent interaction (43).

Therefore, the result of this iteration should be sub-
tracted from the sum of the contributions of the dia-
grams in Figs. 4b, and Figs. 5b, ¢, d. This has been
done properly by Iwasaki [21]).

However, Bjerrum-Bohr, Donoghue, and Holstein
argue (see sec. 2.1 in [17]) that in the scattering prob-
lem, as distinct from the bound state one, this subtrac-
tion is unnecessary. They claim that there is a differ-
ence between what they call «the lowest-order scatter-
ing potentialy without this subtraction, and the clas-
sical correction U, which they call the bound state
potential. For our part, we do not see any differ-
ence of principle between the bound state problem and
the scattering one?), and therefore believe that it is
just (45) which should be considered as the relativistic
correction to the Newton law, both in the scattering
and bound state problems.

8. QUANTUM CORRECTIONS TO
GRAVITATIONAL EFFECTS. II

We now address the quantum correction to the clas-
sical velocity-dependent gravitational interaction (43).
We start with the amplitude (27) written in the mo-
mentum representation,

k2
Liot = 0 In|q?| (138 T, T"" — 3177). (46)
Unlike with the previous quantum corrections, we here

go beyond the static approximation, and in the spirit
of the previous section, expand

In|¢’| = In(q” — w?)

to the first order in w?. Following the same lines of rea-
soning further, we easily obtain the quantum velocity-
dependent correction

k2myima
q.r - _
Uiy (x) 6073
x [445(vy - v2) +321(n-vi)(n-v2)], n= ; (47)

With formula (47), we can derive (in the spirit
of [22, §106, Problem 4]) the quantum correction to
the spin—spin interaction of compound bodies 1 and 2
rotating with the angular velocities w; and ws, but with
their centres of masses at rest. The velocity of a sepa-
rate element of the body i is then given by v; = w; X p;,
where p; is the coordinate of this element counted off
the center of mass of this body. In formula (47), where
r =r{ —ro, we then shift

2) For instance, the second Born approximation to a scattering
amplitude is as legitimate a notion as the second-order correction
to a bound state energy.
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r—r-+ p1— pPa.
Again following [22], we thus obtain

_ 09 K2
T 10 wrd
r

r’

U (r) [3(S1+82)=5(n-Si)(n-S,)],
(48)

n—

where S; are the internal angular momenta (spins) of
the rotating compound central bodies.
We note that quantum correction (41) to the Lense—
Thirring effect can also be derived in the same way.
We finally consider the corresponding corrections
induced by irreducible amplitude (35), which is now
conveniently rewritten as
M, + M, = —k*>mims In(q® — w?) x
2 524

x3 <23— —=Vi -v2> . (49)

This amplitude also generates quantum corrections to
the velocity-dependent, Lense—Thirring, and spin—spin
interactions. The calculations are practically identical
with the previous ones, and give the respective correc-
tions

U&L" (r) =
s vy o va) 4 115 v ) (vl (50)
107”43 Vi1 Vo n-vy)n-vy)l,
262 k2
UET (r) = 5 b 1-8), (51)
Ugr(r) =
131 k2
== [3(81-82) —=5(n-Sq)(n-Sy)]. (52)

Now, combining these contributions with those orig-
inating from quantum corrections to the metric, we fi-
nally obtain

Uty (x) = Ug (x) + UL (x) =

- %[mml ‘va) +369(n - vi)(n-vy)], (53)
UL () = U + U300 = 2 ), (o)

U8 (1) = US"(2) + U 77 (x) =
= 198 R sy 80) — 5(m-S1)(n 8] (5))
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Note added in proofs. After submitting our
manuscript to the journal, we became aware that the
problem of long-range quantum corrections in gravi-
ty was also addressed by D. Dalvit and F. D. Mazzi-
telli (Phys. Rev. D 56, 7779 (1997); E-print archives
hep-th/9708102). In particular, they found the contri-
bution of the vacuum polarization diagrams la, b to
the metric and to the Newton law.
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