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QUANTUM LONG-RANGE INTERACTIONSIN GENERAL RELATIVITYI. B. Khriplovi
h *, G. G. Kirilin **Budker Institute of Nu
lear Physi
s Russian A
ademy of S
ien
es630090, Novosibirsk, RussiaNovosibirsk University630000, Novosibirsk, RussiaSubmitted 11 February 2004We 
onsider one-loop e�e
ts in general relativity that result in quantum long-range 
orre
tions to the Newtonlaw, as well as to the gravitational spin-dependent and velo
ity-dependent intera
tions. Some 
ontributions tothese e�e
ts 
an be interpreted as quantum 
orre
tions to the S
hwarzs
hild and Kerr metri
s.PACS: 04.60.-m 1. INTRODUCTIONIt has been re
ognized long ago that quantum ef-fe
ts in general relativity 
an generate long-range 
or-re
tions to the Newton law. Su
h 
orre
tions due tothe photon and massless neutrino 
ontributions to thegraviton polarization operator were 
al
ulated in [1�4℄.The 
orresponding quantum 
orre
tion to the Newtonpotential between two bodies with massesm1 andm2 isU
� = �4 +N�15� k2~m1m2
3r3 ; (1)where N� is the number of massless two-
omponentneutrinos and k is the Newton gravitational 
onstant.The reason why the problem allows a 
losed solutionis as follows. The Fourier transform of 1=r3 isZ drexp(�iq � r)r3 = �2� ln q2: (2)This singularity in the momentum transfer q impliesthat the dis
ussed 
orre
tion 
an be generated only bydiagrams with two massless parti
les in the t-
hannel.The number of su
h diagrams of the se
ond order in kis �nite, and their logarithmi
 part in q2 
an be 
al
u-lated unambiguously.Analogous diagrams with gravitons and ghosts inthe loop, Fig. 1a, b, were 
onsidered in Refs. [1; 5�7℄.*E-mail: khriplovi
h�inp.nsk.su**E-mail: g_kirilin�mail.ru

a bFig. 1. Graviton loop(Here and below, wavy lines refer to quantum �u
tua-tions of metri
, double wavy lines denote a ba
kgroundgravitational �eld; dashed lines here refer to ghosts.)Clearly, other diagrams with two gravitons in the t-
hannel also 
ontribute to the dis
ussed 
orre
tion pro-portional to 1=r3. This was pointed out long ago in [8℄,where all relevant diagrams were expli
itly indi
ated.The problem of quantum 
orre
tions to the Newtonlaw is 
ertainly interesting from the theoreti
al stand-point. It was addressed later in [9�15℄. Unfortunately,as demonstrated in [16℄, none of these attempts wassatisfa
tory.The problem was then 
onsidered quantitatively inour previous paper [16℄. Therein, all relevant diagrams,ex
ept one (see Fig. 4b below), were 
al
ulated 
or-re
tly. In a re
ent paper [17℄, this last diagram is 
al-1219
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ulated 
orre
tly1), and our results for all other 
ontri-butions are 
on�rmed.The 
ontent of our present work is as follows. Us-ing the ba
kground �eld te
hnique [7℄, we 
onstru
tinvariant operators that des
ribe quantum power-law
orre
tions in general relativity. In the limit as one ofthe intera
ting parti
les is heavy, some of the derived
orre
tions 
an be interpreted as quantum 
orre
tionsto the S
hwarzs
hild and Kerr metri
s. Here our resultsdi�er essentially from those in [18℄.We also demonstrate in an elementary way thatto our a

ura
y, the spin-independent part of the dis-
ussed 
orre
tions for spinor parti
les 
oin
ides withthe 
orre
tions for s
alar parti
les. In parti
ular, thisimplies that the obtained quantum 
orre
tions to theS
hwarzs
hild metri
 are universal, i.e., independentof the spin of the 
entral body. For some loop dia-grams relevant to the problem, the mentioned 
oin
i-den
e of the spin-independent 
ontributions of spinorparti
les with the 
orresponding results for s
alar oneswas proved previously in [18℄ by dire
t 
al
ulation.With the e�e
tive operators 
onstru
ted, we notonly derive the 
orre
tions to the Newton law easily,but also obtain quantum 
orre
tions to other gravita-tional e�e
ts: spin-dependent and velo
ity-dependentintera
tions. In the present paper, we mainly 
onsiderthe 
ase of s
alar parti
les. By spin, we therefore meanthe internal angular momentum of a 
ompound parti
lewith s
alar 
onstituents.We also 
omment on the problem of the 
lassi
alrelativisti
 
orre
tions to the Newton law. Our 
on
lu-sions here agree 
ompletely with the results in [19�21℄(see also the textbook [22, � 106℄), but on some pointwe disagree essentially with the statements in [17℄.1) Both previous results for this 
ontribution, by Donoghue [10℄and by us [16℄, were in
orre
t.

2. PROPAGATORS AND VERTICESBelow, we use the units where 
 = 1 and ~ = 1.Our metri
 signature is diag(1;�1;�1;�1).The graviton operator h�� des
ribes quantum �u
-tuations of the metri
 g�� in the ba
kground met-ri
 g0�� ,g�� = g0�� + {h�� ; {2 = 32�k = 32�l2p: (3)We use the gauge 
onditionh��;� � 12h��;� = 0 (4)for h�� , where the indi
es of h�� are raised with theba
kground metri
 g0�� , and the 
ovariant derivativesare taken in the ba
kground �eld g0�� . The free gravi-ton propagator isD��;��(q) = i P��;��q2 + i0 ;P��;�� = 12 (Æ��Æ�� + Æ��Æ�� � Æ��Æ��): (5)The tensor P��;�� is 
onveniently represented as [7℄P��;�� = I��;�� � 12 Æ��Æ�� ;where I��;�� = 12 (Æ��Æ�� + Æ��Æ��)is a sort of unit operator with the propertyI��;��t�� = t��for any symmetri
 tensor t�� . We note the useful iden-tity P��;��P��;
Æ = I��;
Æ : (6)The propagators of s
alar and spinor parti
les arethe usual ones,D(p) = i 1p2 �m2 + i0 and G(p) = i 1p̂�m+ i0respe
tively.1220
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tions in general relativityThe single-graviton vertex for both s
alar andspinor parti
les (see Fig. 2a) are related to the energy-momentum tensor T��(p; p0) of the 
orresponding par-ti
le as V��(p; p0) = �i {2 T��(p; p0) : (7)The expli
it expressions for the s
alar and spinor par-ti
le verti
es areV (0)�� (p; p0) = �i{2 �p�p0�+p0�p��Æ��(pp0�m2)� (8)andV (1=2)�� == � i{4 �u (p0) [I����P�
��Æ��(P̂�2m)℄u(p) (9)respe
tively; here, P = p+ p0.The 
onta
t intera
tion of a s
alar parti
le with twogravitons (see Fig. 2b) isV (0){�;�� = i{2 �I��;�ÆIÆ�;��(p�p0� + p0�p�)�� 12Æ��I��;�� + Æ��I��;��p�p0� ++ (p0 � p)24 �I��;�� � 12Æ��Æ���� : (10)To our a

ura
y, we 
an negle
t the last term with(p0�p)2 = q2 in this expression, and rewrite the vertex
onveniently asV (0){�;�� == i{2 �I{�;�ÆIÆ�;��T���14(Æ{�T��+Æ��T{�)� : (11)We use the two-graviton verti
es on mass shell only.Therefore, the terms with the Krone
ker Æ entering theenergy-momentum tensor in the last expression are alsoproportional to q2, and hen
e 
an be negle
ted.The 
onta
t two-graviton intera
tion of a spinorparti
le (see Fig. 2b) 
an be written on mass shell asV (1=2){�; �� = i{28 �32 (I{�; ��I��; �� + I��; ��I{�; ��)P���Æ{�I��; ��P� � Æ��I{�; ��P�� �u (p0)
�u(p) == i{2 �34 I{�;�ÆIÆ�; ��T�� �� 14(Æ{�T�� + Æ��T{�)� : (12)

As regards the 3-graviton vertex (see Fig. 2
), whi
hhas the most 
ompli
ated form, we follow [7, 17℄ in rep-resenting it asV��;��;
Æ =� i {2 Xi iv��;��;
Æ;1v��;��;
Æ = P��;
Æ �� �k�k�+(k�q)�(k�q)�+q�q��32Æ��q2� ;2v��;��;
Æ == 2q{q�[I{�;��I��;
Æ + I{�;
ÆI��;�� �� I{�;��I��;
Æ � I{�;��I��;
Æ ℄;3v��;��;
Æ = q{q�(Æ��I{�;
Æ ++ Æ
ÆI{�;��) + q{q�(Æ��I{�;
Æ + Æ
ÆI{�;��)�� q2(Æ��I��;
Æ + Æ
ÆI��;��)�� Æ��q{q�(Æ��I
Æ;{� + Æ
ÆI��;{�);4v��;��;
Æ = 2q{ �� [I{�;��I
Æ;��(k�q)�+I{�;��I
Æ;��(k�q)��� I{�;
ÆI��;��k� � I{�;
ÆI��;��k� ℄ ++q2(I��;��I
Æ;��+I��;��I
Æ;��)++ Æ��q{q�(I��;{�I��;
Æ + I
Æ;{�I��;��);5v��;��;
Æ = [k2+(k�q)2℄���I��;��I
Æ;���12Æ��P��;
Æ��� k2Æ
ÆI��;�� � (k � q)2Æ��I��;
Æ :

(13)

In this vertex, we 
an also negle
t the last stru
ture5v��;��;
Æ to our a

ura
y.3. UNIVERSALITY OF SPIN-INDEPENDENTEFFECTSWe �rst address the lowest-order s- and u-pole dia-grams for graviton s
attering, presented in Fig. 3a, b.We start with a s
alar parti
le. The terms with theKrone
ker Æ in single-graviton verti
es (8) then 
an-
el the s- and u-pole denominators. It 
an be easilydemonstrated that in the sum of the two diagrams, thearising 
onta
t 
ontributions 
ombine intoV (0)0��; 
Æ = i {24 [Æ��(p
p0Æ + p0
pÆ) ++Æ
Æ(p�p0�+p0�p�)℄ = i�24 (Æ��T (0)
Æ +Æ
ÆT (0)�� ): (14)In the 
ourse of these transformations, we omit theterms with extra powers of the graviton momenta be-
ause they do not lead to ln q2 after subsequent loop1221
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cFig. 3. Pole diagramsintegration. Combining this indu
ed term with (10),we obtain the total e�e
tive two-graviton vertex for as
alar parti
le,V (0)eff{�;�� = i{2 I{�;�ÆIÆ�;��T (0)�� == i{22 I{�;�ÆIÆ�;��P�P� : (15)For spinor parti
les, single-graviton verti
es (9) also
ontain terms with the Krone
ker Æ. Pro
eeding herewith the s- and u-pole diagrams in the same way as inthe s
alar 
ase, we obtain the following 
orre
tion tothe two-graviton vertex:V (1=2)0��; 
Æ = i {24 (Æ��T (1=2)
Æ + Æ
ÆT (1=2)�� ): (16)The total e�e
tive two-graviton vertex for a spinor par-ti
le is then given byV (1=2)eff{�;�� = i 34 {2 I{�;�ÆIÆ�;��T (1=2)�� : (17)If we are interested in spin-independent e�e
ts inthe graviton s
attering o� a spinor parti
le, one morestep is possible. The spinor stru
ture of the numera-tors in the s- and u-pole diagrams 
an be transformedas follows:�u(p0)
�(l̂ +m)
!u(p) = �u(p0)[l�
! + l!
� �� (l̂ �m)Æ�! + i
5���!�l�
� +m��! ℄u(p): (18)The term �u(p0)(l̂�m)u(p) in this expression, being av-eraged over spins, transforms to l2�m2 (here, we againomit a term proportional to q2). After 
an
elation ofthe denominators, the sum of these terms in the s- andu-pole diagrams redu
es toV (1=2)00{�; �� = i{28 I{�; ��I��; ��P�P�: (19)Be
ause the spin-averaged energy-momentum tensorfor spinors 
oin
ides with the s
alar one, whi
h is equal

to P�P�=2, the spin-independent term in the sum of(17) and (19) redu
es to (15). In other words, fromthe fermion diagrams, we 
an single out the sum ofstru
tures that 
oin
ides with the e�e
tive sea-gull fora s
alar parti
le after averaging over spins.Finally, it 
an be easily demonstrated that after av-eraging over the spins, all the other terms in the nu-merators of the s- and u-pole spinor diagrams 
oin
idewith the 
orresponding terms in s
alar diagrams withthe required a

ura
y.For the diagram in Fig. 3
, with the graviton pole inthe t-
hannel, the 
oin
iden
e between the s
alar andspin-averaged spinor 
ases is obvious.To summarize, the sum of s
alar and spin-averagedspinor tree amplitudes, and hen
e the sum of the 
or-responding loop diagrams, 
oin
ide with the requireda

ura
y.4. SPIN-INDEPENDENT EFFECTIVEAMPLITUDESWe start the dis
ussion of loops with the va
uumpolarization diagrams, see Fig. 1. The 
ovariant e�e
-tive Lagrangian 
orresponding to the sum of these loopswas derived in [7℄ with dimensional regularization. Itis given byLRR = � 1960�2(4� d) p�g �42R��R�� +R2� ; (20)where, as usual, g is the determinant of the metri
 ten-sor, R�� is the Ri

i tensor, and R = R��.For our purpose, Lagrangian (20) 
an be 
onve-niently rewritten as [9℄LRR = � 11920�2 ln jq2j �42R��R�� +R2� : (21)We are interested, in parti
ular, in the situation whereat least one of the parti
les is 
onsidered in the stati
1222



ÆÝÒÔ, òîì 125, âûï. 6, 2004 Quantum long-range intera
tions in general relativity
a bFig. 4. Vertex diagramslimit. In this 
ase, j q2j ! q2, and in the 
oordinaterepresentation we obtainLRR = 13840�3r3 �42R��R�� +R2� : (22)The next set of diagrams, Fig. 4, refers to the vertexpart. The 
orresponding e�e
tive operator isLRT = � k8�2r3 (3R��T �� � 2RT ) ; T = T �� : (23)Here and below, T �� is the spin-independent part ofthe total energy-momentum tensor of matter.We �nally 
onsider the diagrams in Fig. 5. The �rsttwo of them, the diagrams in Fig. 5a, b, as well as thediagrams in Figs. 1 and 4, depend only on the momen-tum transfer t = q2. As regards the box diagrams inFig. 5
, d, their 
ontribution is partly redu
ible to thesame stru
ture as that of diagrams in Fig. 5a, b. Thesum of all these t-dependent e�e
tive operators origi-nating from the diagrams in Fig. 5 isLTT = k2�r3 T 2: (24)The irredu
ible 
ontribution of the s-
hannel boxdiagram 5
 isMs = k2[(s�m21 �m22)2 � 2m21m22℄2m21m22jq2j ln jq2j�2 �� 1q(s�m2�)(s�m2+) ln q(s�m2�)+q(s�m2+)q(s�m2�)�q(s�m2+) ; (25)where m1 and m2 are the parti
le masses,m� = (m1 �m2); s = (p1 + p2)2;and p1 and p2 are the in
oming 4-momenta.The irredu
ible 
ontribution Mu of the u-
hanneldiagram in Fig. 5d is obtained from formula (25) bythe substitutions! u = (p1 � p2 � q)2;

with the 
orresponding analyti
 
ontinuation.The expressions for Ms and Mu 
onverge in the ul-traviolet sense, but diverge in the infrared limit, de-pending logarithmi
ally on the �graviton mass� �. Asusual, su
h behavior is dire
tly related to the ne
essityto 
an
el the infrared divergen
e in the Bremsstrahlungdiagrams (evidently, the gravitational Bremsstrahlungin the present 
ase). The box diagrams in Fig. 5
,d were 
onsidered previously in [23℄ from a di�erentstandpoint.As regards the three Lagrangians in Eqs. (22), (23),and (24), by virtue of the Einstein equationsR�� = 8�k�T�� � 12g��T� ; (26)they 
an be 
onveniently 
ombined intoLtot = � k260�r3 �138T��T�� � 31T 2� : (27)The irredu
ible amplitudes generated by the box di-agrams in Fig. 5
, d depend nontrivially on s and u,respe
tively (in line with their simple dependen
e onln jq2j=jq2j). Therefore, they 
annot be redu
ed to aprodu
t of energy�momentum tensors.5. QUANTUM CORRECTIONS TO METRICThe e�e
ts due to Lagrangian (27) 
an be 
onve-niently interpreted as generated by quantum 
orre
-tions to metri
. To obtain these 
orre
tions, we splitthe total energy�momentum tensor T�� into those of astati
 
entral body and of a light probe parti
le, T 0��and t�� respe
tively. Varying the expression resultingin this way from (27) with respe
t to t�� , we then ob-tain a tensor that 
an be interpreted as a quantum 
or-re
tion h(q)�� to the metri
 
reated by the 
entral body,h(q)�� = k215�r3 �138T 0�� � 31Æ��T 0� : (28)It follows immediately from this expression thath(q)00 = 10715 k2�r3 T 000 = 10715 k2M�r3 ; (29)where M is the mass of the 
entral body.For the spa
e 
omponents h(q)mn of the metri
 
re-ated by a heavy body at rest, one might naively expe
tfrom formula (28) that they are given by3115 k2�r3 ÆmnT 000 = 3115 k2M�r3 Æmn:But the 
al
ulation of h(q)mn a
tually requires a modi�-
ation of formula (28). The point is that we work with1223
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a b c dFig. 5. S
attering diagramsgauge 
ondition (4) for the graviton �eld. It is onlynatural to require that the resulting e�e
tive �eld h(q)mnshould satisfy the same 
ondition, whi
h now simpli�esto h(q)��;� � 12h(q)��;� = 0:The spa
e metri
 thus obtained ish(q)mn = k2M�r3 �3115 Æmn�� 7615 �rmrnr2 + ln� rr0��Æmn � 3 rmrnr2 ��� : (30)Te
hni
ally, the expression in square bra
ketsin (29) originates from the terms 
ontaining stru
turesof the type ��T�� . Generally speaking, they arisein 
al
ulating Lagrangians (23), (24), and (27), butare omitted there be
ause they vanish on mass shell.These terms are therefore absent in (28). But they 
anbe restored by rewriting the net result (27), by meansof Einstein equations (26), asLtot = � 13840�3r3 �138R��R�� � 31R2� ; (31)and then atta
hing energy-momentum tensors to thedouble wavy lines using graviton propagators (5). Thepresen
e of ln(r=r0), where r0 is some normalizationpoint, is quite natural here if we re
all ln jq2j in themomentum representation. Fortunately, this term inthe square bra
kets does not in�uen
e physi
al e�e
ts.The obtained quantum 
orre
tions h(q)00 and h(q)mn tothe metri
 are universal, i.e., are the same when 
reatedby a spinless or spinning heavy point-like parti
le.Our results (29) and (30) di�er from the 
orres-ponding ones in [18℄. The main reason is that the
ontribution of operator (24) to the metri
 is absentin [18℄. This omission does not look logi
al to us: onmass shell, one 
annot distinguish this operator fromother ones (see (27), (31)). One more disagreement isperhaps due to the same in
onsisten
y: the 
ontribu-tion of operator (23) to the metri
, as given in [18℄, istwo times smaller than ours.

In addition, the Fourier transformation of(qmqn=q2) lnq2 is performed in [18℄ in
orre
tly,whi
h gives a wrong result ( rmrn=r2 only) for theterm in the square bra
kets in (30).In 
on
lusion of this se
tion, we 
onsider the 0n
omponent of tensor (28). It is given byh(q)0n = 465 k2�r3 T 00n = �465 k2Mv�r3 ; (32)where v is the velo
ity of the sour
e.We are interested in the situation 
orresponding toa 
ompound 
entral body rotating with the angularvelo
ity !, but with its 
entre of mass being at rest.The velo
ity of a separate element of the body is thengiven by v = ! � �, where � is the 
oordinate of thiselement. In addition, we must shift r ! r + � in for-mula (32). Then, following [22, � 106, Problem 4℄, weobtain a quantum 
orre
tion to the Kerr metri
,h(q)0n = 695 k2�r5 [S� r℄: (33)We emphasize that spin S involved here is in fa
t theinternal angular momentum of a rotating 
ompound
entral body with spinless 
onstituents. We 
annotsee any reason why this last quantum 
orre
tion (33)should be universal (as distin
t from h(q)00 and h(q)mn). Ifinstead of a 
ompound body dis
ussed here, we dealwith a parti
le of spin 1=2, the general stru
ture of h(q)0nis of 
ourse the same, but the numeri
al 
oe�
ient 
anbe quite di�erent.The last problem, that of a quantum 
orre
tion tothe Kerr metri
 
reated by a parti
le of spin 1=2, wasaddressed in [18℄. However, the treatment of this 
or-re
tion there raises the same obje
tions: the 
ontribu-tion of operator (24) to h(q)0n is missed at all, and the
orresponding e�e
t of operator (23) is not taken intoa

ount properly.1224



ÆÝÒÔ, òîì 125, âûï. 6, 2004 Quantum long-range intera
tions in general relativity6. QUANTUM CORRECTIONS TOGRAVITATIONAL EFFECTS. IWe start with the 
orre
tion to the Newton law. Asusual, it is generated by the 00 
omponent of metri
.Here, expression (29) givesU qr(r) = 10730 k2Mm�r3 : (34)However, in line with (29), we must now take the ir-redu
ible 
ontribution of the box diagrams in Fig. 5
, dinto a

ount, whi
h 
annot be redu
ed to metri
. Hav-ing other appli
ations in mind, we write the sum of thetwo amplitudes, retaining in it the terms of not onlythe zeroth order in 
�2, but also the �rst order,Ms +Mu = �k2m1m2 ln(q2 � !2)�� 23 �23 + 5245 p1p2 �m1m2m1m2 � : (35)In the stati
 limit, ! ! 0, p1p2 ! m1m2, expres-sion (35) redu
es toMs +Mu ! �463 k2m1m2 lnq2: (36)Changing the sign (in passing from the amplitude tothe potential) and performing the Fourier transforma-tion, we obtain [16, 17℄Uqi(r) = �233 k2Mm�r3 : (37)Thus, the net 
orre
tion to the Newton law isU q(r) = �4110 k2Mm�r3 : (38)This result was also 
ross-
he
ked and 
on�rmed bythe independent 
al
ulation in the standard harmoni
gauge, with the �eld variables �� = p�g g�� � Æ��and the gauge 
ondition�� �� = 0:We now 
onsider the quantum 
orre
tion to the in-tera
tion of the orbital momentum l of a light parti
lewith its own spin s, i.e., to the gravitational spin�orbitintera
tion. It is most easily obtained with the generalexpression for the frequen
y ! of the spin pre
ession ina gravitational �eld derived in [24℄. For a nonrelativis-ti
 parti
le in a weak stati
 
entrally symmetri
 �eld,this expression simpli�es to!i = 12 "imn(
mnkvk + 
0n0vm); (39)

where
mnk = 12(�mhnk � �nhmk); 
0n0 = �12�nh00are the Ri

i rotation 
oe�
ients and v is the parti
levelo
ity (the present sign 
onvention for ! is oppositeto that in [24℄). A simple 
al
ulation results inUqls(r) = �16920 k2�r5 Mm (l � s): (40)Finally, with formula (33), we easily derive thequantum 
orre
tion to the intera
tion of the orbitalmomentum l of a light parti
le with the internal an-gular momentum (spin) S of a 
ompound 
entral body,i.e., to the Lense�Thirring e�e
t,U q;rLT (r) = �695 k2�r5 (l � S): (41)7. ASIDE ON CLASSICAL RELATIVISTICCORRECTIONSIn this se
tion, we �rst 
onsider the 
lassi
alvelo
ity-dependent 
orre
tion to the Newton law. Onone hand, this is an introdu
tion to the derivationof quantum velo
ity-dependent 
orre
tions in the nextse
tion. On the other hand, this is ne
essary for thedis
ussion of another, velo
ity-independent relativisti

orre
tion to the Newton law. The derivation of the
lassi
al velo
ity-independent 
orre
tion via the dia-gram te
hnique served in [16, 17℄ as a 
he
k of 
al-
ulations of quantum 
orre
tions to the Newton law.We 
onsider the Born s
attering amplitude with thegraviton ex
hange in the harmoni
 gauge,MB = 8�k T 1�� T 2�� � (1=2)T 1�� T 2��q2 � !2 ; (42)where T 1;2�� are the energy-momentum tensors of parti-
les with the respe
tive massesm1;2 and velo
ities v1;2.To the adopted a

ura
y, the numerator simpli�es to12 T 100 T 200 � 2T 10n T 20n = m1m22 (1� 4v1 � v2):We then expand the denominator to the �rst order in!2=q2, and thus arrive at the expression4�km1m2q2 �1� 4v1 � v2 + !2q2� :The term of the zeroth order in 
�2 in this formula,4�km1m2=q2, is obviously (after the ne
essary sign re-versal) the Fourier transform of the Newton potential.1225



I. B. Khriplovi
h, G. G. Kirilin ÆÝÒÔ, òîì 125, âûï. 6, 2004However, we are interested here in the terms of the �rstorder in 
�2. To transform !2=q2, we note that ! isin fa
t the energy di�eren
e between the initial and �-nal energies of a parti
le. The parti
les 
an now be
onsidered nonrelativisti
, and this di�eren
e thereforetransforms (to the �rst order in p0 � p) as follows:"0 � " = (p0 � p) � v:Therefore, the terms of the �rst order in 
�2 are rewrit-ten as 4�km1m2q2 ��4v1 � v2 + (q � v1)(q � v2)q2 � :The Fourier transform of this expression, takenwith the opposite sign, is the well-known relativis-ti
 velo
ity-dependent 
orre
tion to the Newtonpotential [19, 20, 22℄U 
lvv = km1m22r [7v1 � v2 + (n � v1)(n � v2)℄;n = rr : (43)We here essentially follow the derivation by Iwasa-ki [21℄.At least equally simple is the derivation of the rela-tivisti
 velo
ity-independent 
orre
tion to the Newtonpotential. In the harmoni
 gauge, the metri
 
reatedby a point-like mass m1 isds2 = r � km1r + km1 dt2 � r + km1r � km1 dr2 �� (r + km1)2(d�2 + sin2 �d�2): (44)In the expansion in rg of the 
lassi
al a
tion �m2 R dsfor a probe parti
le of mass m2, the se
ond-order termis �k2m21m2=2r2. Now, reversing the sign (to pass froma Lagrangian to a potential) and restoring the symme-try between m1 and m2, we arrive at the dis
ussed
orre
tion U
l = k2m1m2(m1 +m2)2r2 : (45)The 
lassi
al 
orre
tion (45) was found long agoin [19; 20℄ (see also the textbook [22, � 106℄), and wasderived later in [21℄ by 
al
ulating the 
orrespondingparts of the diagrams in Fig. 4b, and 5b, 
, d in the har-moni
 gauge. A subtle point of the last 
al
ulation [21℄refers to the box diagrams in Fig. 5
, d. Obviously, the
lassi
al 
�2 
ontribution of these diagrams, in parti
u-lar, 
ontains the result of iteration of the usual Newtonintera
tion and the velo
ity-dependent intera
tion (43).

Therefore, the result of this iteration should be sub-tra
ted from the sum of the 
ontributions of the dia-grams in Figs. 4b, and Figs. 5b, 
, d. This has beendone properly by Iwasaki [21℄).However, Bjerrum-Bohr, Donoghue, and Holsteinargue (see se
. 2.1 in [17℄) that in the s
attering prob-lem, as distin
t from the bound state one, this subtra
-tion is unne
essary. They 
laim that there is a di�er-en
e between what they 
all �the lowest-order s
atter-ing potential� without this subtra
tion, and the 
las-si
al 
orre
tion U 
l, whi
h they 
all the bound statepotential. For our part, we do not see any di�er-en
e of prin
iple between the bound state problem andthe s
attering one2), and therefore believe that it isjust (45) whi
h should be 
onsidered as the relativisti

orre
tion to the Newton law, both in the s
atteringand bound state problems.8. QUANTUM CORRECTIONS TOGRAVITATIONAL EFFECTS. IIWe now address the quantum 
orre
tion to the 
las-si
al velo
ity-dependent gravitational intera
tion (43).We start with the amplitude (27) written in the mo-mentum representation,Ltot = k230 ln jq2j �138T��T�� � 31T 2� : (46)Unlike with the previous quantum 
orre
tions, we herego beyond the stati
 approximation, and in the spiritof the previous se
tion, expandln jq2j = ln(q2 � !2)to the �rst order in !2. Following the same lines of rea-soning further, we easily obtain the quantum velo
ity-dependent 
orre
tionUq;rvv (r) = �k2m1m260�r3 �� [445(v1 � v2) + 321(n � v1)(n � v2)℄; n = rr : (47)With formula (47), we 
an derive (in the spiritof [22, � 106, Problem 4℄) the quantum 
orre
tion tothe spin�spin intera
tion of 
ompound bodies 1 and 2rotating with the angular velo
ities!1 and!2, but withtheir 
entres of masses at rest. The velo
ity of a sepa-rate element of the body i is then given by vi = !i��i,where �i is the 
oordinate of this element 
ounted o�the 
enter of mass of this body. In formula (47), wherer = r1 � r2, we then shift2) For instan
e, the se
ond Born approximation to a s
atteringamplitude is as legitimate a notion as the se
ond-order 
orre
tionto a bound state energy.1226
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tions in general relativityr! r+ �1 � �2:Again following [22℄, we thus obtainUq;rss (r) = 6910 k2�r5 [3(S1 � S2)�5(n � S1)(n � S2)℄;n = rr ; (48)where Si are the internal angular momenta (spins) ofthe rotating 
ompound 
entral bodies.We note that quantum 
orre
tion (41) to the Lense�Thirring e�e
t 
an also be derived in the same way.We �nally 
onsider the 
orresponding 
orre
tionsindu
ed by irredu
ible amplitude (35), whi
h is now
onveniently rewritten asMs +Mu = �k2m1m2 ln(q2 � !2)�� 23 �23� 5245 v1 � v2� : (49)This amplitude also generates quantum 
orre
tions tothe velo
ity-dependent, Lense�Thirring, and spin�spinintera
tions. The 
al
ulations are pra
ti
ally identi
alwith the previous ones, and give the respe
tive 
orre
-tionsUq; irrvv (r) == k2m1m210�r3 [311(v1 � v2) + 115(n � v1)(n � v2)℄; (50)U q; irrLT (r) = 2625 k2�r5 (l � S); (51)Uq; irrss (r) == �1315 k2�r5 [3(S1 � S2)� 5(n � S1)(n � S2)℄: (52)Now, 
ombining these 
ontributions with those orig-inating from quantum 
orre
tions to the metri
, we �-nally obtainUqvv(r) = U q;rvv (r) + U q; irrvv (r) == k2m1m260�r3 [1421(v1 � v2) + 369(n � v1)(n � v2)℄; (53)UqLT (r) = U q;rLT (r) + U q; irrLT (r) = 1935 k2�r5 (l � S); (54)Uqss(r) = U q;rss (r) + U q; irrss (r) == �19310 k2�r5 [3(S1 � S2)� 5(n � S1)(n � S2)℄: (55)We are grateful to N. G. Ural'tsev and A. I. Vain-shtein for useful dis
ussions. This paper was supportedby the RFBR (grant � 03-02-17612).
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