ОСЦИЛЛЯЦИИ ДЕ ГААЗА – ВАН АЛЬФЕНА В ОРГАНИЧЕСКОМ КВАЗИДВУМЕРНОМ МЕТАЛЛЕ $(ET)_8[Hg_4Cl_{12}(C_6H_5Cl)_2]$

Р. Б. Любовский^{а,b}, С. И. Песоцкий^{а,b,c*}, В. И. Нижанковский^b,
В. Биберахер^c, Р. Н. Любовская^a

^а Институт проблем химической физики Российской академии наук 142432, Черноголовка, Московская обл., Россия

^b Международная лаборатория сильных магнитных полей и низких температур 53-421, Вроцлав, Польша

> ^с Институт Вальтера Майсснера D-85748, Гархинг, Германия

Поступила в редакцию 16 октября 2003 г.

Подробно исследовано поведение осцилляций де Гааза – ван Альфена в квазидвумерном органическом металле (ET)₈ [Hg₄Cl₁₂ (C₆H₅Cl)₂], сечение поверхности Ферми которого представляет собой двумерную сетку магнитопробойных орбит. Обнаружены только две частоты, F_A и F_{MB} , соответствующие разрешенным замкнутым орбитам. Такой результат согласуется с проведенными ранее исследованиями осцилляций Шубникова – де Гааза в этом металле. Причина отсутствия других разрешенных частот остается неясной. Угловые зависимости амплитуды осцилляций F_A и F_{MB} содержат серию «спиновых нулей». Анализ их положения позволил предположить ослабление многочастичных взаимодействий в (ET)₈ [Hg₄Cl₁₂ (C₆H₅Cl)₂].

PACS: 71.18.+y

1. ВВЕДЕНИЕ

Кристаллическая и зонная структуры органического квазидвумерного проводника $(ET)_8[Hg_4Cl_{12}(C_6H_5Cl)_2]$ (ganee (Cl,Cl)), coxpaняющего металлические свойства в интервале температур (0.5-300) K, детально описаны в [1, 2]. Зонные расчеты показали, что исходная поверхность Ферми (FS) в проводящей плоскости этого металла состоит из двух пересекающихся открытых дырочных орбит, характерных для низкоразмерных электронных систем. Гибридизация молекулярных орбиталей, образующих зону проводимости, приводит к формированию итоговой FS в виде двух замкнутых орбит, электронной (Е) и дырочной (H) (см. рис. 1), различных по форме, но с одинаковой площадью — около 13 % площади первой зоны Бриллюэна [2]. Уже первые наблюдения осцилляций Шубникова-де Гааза [3,4] показали

вместо ожидаемой единственной частоты набор из шести частот. Все эти частоты в зависимости от угла θ между направлением поля и нормалью к проводящей плоскости описываются законом $F_i(\theta) = F_i(0) / \cos \theta$, характерным для цилиндрической FS, обычной для квзидвумерных электронных систем. Среди обнаруженных осцилляций явно преобладали по амплитуде осцилляции с частотой $F_A(0) = 245$ Тл, соответствующей приблизительно 11 % площади первой зоны Бриллюэна. Они были отнесены к движению носителей по классическим замкнутым орбитам Е и Н. Анализ температурной и угловой зависимостей амплитуды осцилляций Шубникова-де Гааза с частотой F_A показал, что для дырочной и электронной орбит свойственна не только одинаковая площадь, но и одинаковая масса носителей. Природа остальных частот оставалась неясной в течение ряда лет, прежде всего из-за малых величин соответствующих амплитуд и связанных с этим экспериментальных проблем.

^{*}E-mail: pesot@icp.ac.ru

Рис. 1. Поверхность Ферми и первая зона Бриллюэна в проводящей плоскости органического квазидвумерного металла (ET)₈[Hg₄Cl₁₂(C₆H₅Cl)₂]

Несколько лет назад были синтезированы высококачественные монокристаллы (Cl,Cl) и для их исследования использованы квазиимпульсные поля до 35 Тл. Полученные результаты [5,6] не только включали в себя сообщенные ранее частоты, но и увеличили спектр частот осцилляций Шубникова-де Гааза до пятнадцати при некоторых направлениях поля. Анализ полученных результатов позволил авторам работы [6] сделать следующие выводы.

 В магнитных полях порядка 10 Тл становятся возможными магнитопробойные (MB) переходы p1 и p2 между дырочными и электронными участками FS (см. рис. 1), и это приводит к формированию двумерной сетки MB-орбит.

2) Кроме частоты F_A , соответствующей двум исходным замкнутым орбитам E и H, для всех иных частот одновременно сосуществуют как замкнутые MB-орбиты, так и открытые, связанные MB-переходами и соответствующие эффекту квантовой интерференции [7].

3) Только две из частот, обнаруженных в эксперименте, $F_A(0) = 242$ Тл и $F_{MB}(0) = 633$ Тл, отвечают движению носителей по замкнутым орбитам (F_{MB} соответствует двум равным по площади замкнутым орбитам $H + \delta + H$ и $E + \delta + E$ (см. рис. 1), включающим по четыре MB-перехода). Во всяком случае, в осцилляциях F_{MB} такое движение существенно преобладает.

4) Остальные частоты разделены на две группы. К первой группе относятся частоты и, в частности, частота, соответствующая 100% площади первой зоны Бриллюэна, преобладающей причиной для которых является эффект квантовой интерференции. Частоты второй группы и, в частности, частота, соответствующая площади δ , заключенной между исходными листами FS, не нашли до сих пор приемлемого объяснения. В принципе, они могут быть описаны в рамках как осциллирующего [8], так и фиксированного [9] электрохимического потенциала, однако экспериментального подтверждения пока не имеет ни одна из таких возможностей.

В настоящей работе предлагаются результаты детального исследования осцилляций де Гааза–ван Альфена в (Cl,Cl), поддерживающие основные версии [5,6].

2. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЯ

В качестве образцов для измерений были использованы высококачественные монокристаллы (Cl,Cl) с массой, достигавшей 110 мкг. Наблюдение осцилляций де Гааза – ван Альфена проводилось по изменению вращающего момента емкостного датчика [10]. Магнитное поле величиной до 14 Тл создавалось сверхпроводящим магнитом. Интервал использованных температур составил (0.45–1.3) К.

В интервале углов $\theta = (-21-80)^{\circ}$ наблюдались осцилляции де Гааза – ван Альфена. Их частоты связаны с углом θ стандартным соотношением: $F_i(\theta) = F_i(0)/\cos\theta$. При любом направлении магнитного поля количество наблюдаемых частот не превы-

Рис.2. Быстрое фурье-преобразование (FFT) осцилляций де Гааза-ван Альфена в органическом металле (ET)₈[Hg₄Cl₁₂(C₆H₅Cl)₂], изображенных на вставке к данному рисунку. Температура T = 0.45 K, полярный угол $\theta = 32.5^{\circ}$

Рис. 3. Зависимости амплитуды осцилляций де Гааза – ван Альфена от полярного угла θ ; a — осцилляции с частотой F_A , δ — осцилляции с частотой F_{MB} , T = 0.45 K

шало трех (см. рис. 2): $F_A(0) \approx 240$ Тл, $2F_A$ — вторая гармоника основной частоты и $F_{MB}(0) = 630$ Тл. Основная частота F_A связана с движением зарядов по классическим орбитам Е и Н. Расчет эффективной массы, относящейся к основной частоте, показал, что обеим орбитам отвечает одинаковая по величине масса, составляющая в проводящей плоскости величину $m_A = (1.18 \pm 0.05) m_0$, где m_0 — масса свободного электрона. Частота F_{MB} обусловлена движением носителей по двум замкнутым MB-орбитам с равными площадями $(H + \delta + H)$ и $E + \delta + E$ (см. рис. 1)). Эффективные массы, связанные с этими орбитами, также равны и составляют величину $m_{MB} = (2.28 \pm 0.05) m_0$ в проводящей плоскости. В соответствии с представлениями эффективной массы в [11] можно ожидать, что масса, связанная с МВ-орбитами, будет удвоенной массой m_A , соответствующей основным замкнутым орбитам. Можно видеть, что в пределах ошибок такое соотношение приемлемо выполняется: $2m_A = 2.36m_0 \sim 2.28m_0 = m_{MB}$.

На рис. 3 представлены угловые зависимости амплитуды осцилляций де Гааза-ван Альфена. Рисунок 3*a* соответствует осцилляциям с частотой *F_A*, рис. 36 - c частотой F_{MB} . Обе зависимости содержат минимумы амплитуды: кривая *a* имеет два минимума при углах 30.1° и 59.5° , кривая *б* имеет три минимума при углах 20.6° , 47.4° и 60.7° . Эти минимумы носят название спиновых нулей и вызваны расщеплением уровней Ландау в магнитном поле [12]. Условие существования таких нулей:

$$\cos(\pi pmg/2m_0) = 0,$$

где p — номер гармоники, g — g-фактор. Наличие двух или более последовательных спиновых нулей и предположение, что эффективная масса зависит от угла по обычному для цилиндрической FS закону, $m(\theta) = m(0) / \cos \theta$, позволяет однозначно вычислить расщепляющий фактор:

$$S = gm(0)/2m_0 = ((2n+1)\cos\theta_n)/2,$$

 $heta_n$ — положение спиновых нулей и где $n = 0, 1, 2, 3, \dots$ Для осцилляций с частотой F_A расщепляющий фактор составляет величину S_A = $= 1.29 \pm 0.04$, для частоты $F_{MB} - S_{MB} = (2.36 \pm 0.04).$ Учитывая, что отношение эффективных масс $m_A/m_{MB} = 0.52$ приблизительно равно отношению расщепляющих факторов, $S_A/S_{MB} = 0.54$, можно полагать, что расщепление уровней Ландау рассмотренных замкнутых орбит идет с одинаковым g-фактором. Такой результат вполне ожидаем, если учитывать способ формирования этих орбит [2]. Незначительное отличие величин расщепляющих факторов от соответствующих приведенных масс (1.29 и 1.18, 2.36 и 2.28) может косвенным образом свидетельствовать в пользу незначительного вклада многочастичных взаимодействий в (Cl,Cl), что отмечалось ранее в некоторых органических металлах [13].

Следует остановиться еще на одном факте. Эффективная масса, соответствующая частоте F_A , $m_A = 1.18m_0$, полученная из осцилляций де Гааза-ван Альфена, хорошо согласуется с аналогичной массой из магниторезистивных измерений: $m_A = 1.17m_0$ [6]. В то же время эффективные массы для MB-орбит заметно расходятся: $m_{MB} = 2.28m_0$ для осцилляций де Гааза-ван Альфена и $m_{MB} = 1.95m_0$ для осцилляций Шубникова-де Гааза [6]. Такое расхождение может быть вызвано тем обстоятельством, что, согласно [6], помимо MB-частоты F_{MB} , существует интерферометр с частотой, численно равной F_{MB} , но с существенно меньшей массой. В осциляции де Гааза-ван Альфена такой интерферометр вклада не дает, но в резистивные осцилляции его вклад может быть заметным и приводить к заниженной оценке величины эффективной массы.

Остается проблемой отсутствие в наблюдаемом спектре осцилляций де Гааза-ван Альфена других частот, для которых существуют замкнутые MB-орбиты. Некоторую ясность могут дать совместные наблюдения осцилляций магнитосопротивления и намагниченности в более сильных магнитных полях.

3. ЗАКЛЮЧЕНИЕ

Только две частоты (исключая гармоники) осцилляций де Гааза-ван Альфена наблюдаются в органическом металле $(ET)_8[Hg_4Cl_{12}(C_6H_5Cl)_2]$, по крайней мере, в полях до 14 Тл. Одна из них соответствует двум классическим замкнутым орбитам, охватывающим равные площади, другая — двум магнитопробойным замкнутым орбитам, также охватывающим одинаковые площади. Поведение амплитуды этих осцилляций и соответствующих им эффективных масс находится в разумном согласии со способом построения поверхности Φ ерми в $(ET)_8[Hg_4Cl_{12}(C_6H_5Cl)_2]$, как результата гибридизации орбиталей, образующих зону проводимости. Полученные результаты находятся в хорошем согласии с результатами исследования осцилляций Шубникова-де Гааза в импульсных и стационарных полях. Причина отсутствия иных частот, связанных с разрешенными замкнутыми магнитопробойными орбитами, не ясна и требует дополнительных исследований.

Работа выполнена при финансовой поддержке РФФИ (грант № 03-02-16606) и в рамках Государственного контракта № 40.020.1.1.1166.

ЛИТЕРАТУРА

- R. N. Lyubovskaya, O. N. Dyachenko, V. V. Gritsenko, Sh. G. Mkoyan, L. O. Atovmyan, R. B. Lyubovskii, V. N. Laukhin, A. V. Zvarykina, and A. G. Khomenko, Synth. Metals 41, 1907 (1991).
- L. F. Vieros and E. Cannadell, J.Phys. I France 4, 939 (1994).
- R. B. Lyubovskii, S. I. Pesotskii, A. Gilevski, and R. N. Lyubovskaya, J. Phys. I France 6, 1809 (1995).
- Р. Б. Любовский, С. И. Песоцкий, А. Гилевский, Р. Н. Любовская, ЖЭТФ 107, 1698 (1995).
- R. B. Lyubovskii, S. I. Pesotskii, C. Proust, A. Audouard, L. Brossard, V. I. Nizhankovskii, and R. N. Lyubovskaya, Synth. Metals 113, 227 (2000).
- C. Proust, A. Audouard, L. Brossard, S. I. Pesotskii, R. B. Lyubovskii, and R. N. Lyubovskaya, Phys. Rev. B 65, 155106 (2002).
- R. W. Stark and C. B. Friedberg, J. Low Temp. Phys. 1, 111 (1974).
- J. Y. Fortin and T. Ziman, Phys. Rev. Lett. 80, 3117 (1998).
- 9. V. M. Gvozdikov, Yu. V. Pershin, E. Steep, A. G. M. Jansen, and P. Wyder, Phys. Rev. B 65, 165102 (2002).
- P. Christ, W. Biberacher, H. Muller, and K. Andres, Sol. St. Comm. 91, 451 (1994).
- L. M. Falicov and H. Stachowiak, Phys. Rev. 147505 (1966).
- 12. Д. Шенберг, Магнитные осцилляции в металлах, Мир, Москва (1986).
- С. И. Песоцкий, Р. Б. Любовский, В. Биберахер, М. В. Карцовник, В. И. Нижанковский, Н. Д. Куш, Х. Кобаяши, А. Кобаяши, ЖЭТФ 121, 504 (2002).