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DYNAMICAL TUNNELING OF BOUND SYSTEMS THROUGHA POTENTIAL BARRIER: COMPLEX WAY TO THE TOPF. Bezrukov a*, D. Levkov a;b**aInstitute for Nulear Researh, Russian Aademy of Sienes117312, Mosow, RussiabMosow State University, Department of Physis119899, Mosow, RussiaSubmitted 15 January, 2003A semilassial method of omplex trajetories for the alulation of the tunneling exponent in systems withmany degrees of freedom is further developed. It is supplemented with an easily implementable tehnique thatenables one to single out the physially relevant trajetory from the whole set of omplex lassial trajetories.The method is applied to semilassial transitions of a bound system through a potential barrier. We �ndthat the properties of physially relevant omplex trajetories are qualitatively di�erent in the ases of potentialtunneling at low energy and dynamial tunneling at energies exeeding the barrier height. Namely, in the aseof high energies, the physially relevant omplex trajetories desribe tunneling via reation of a state lose tothe top of the barrier. The method is heked against exat solutions of the Shrödinger equation in a quantummehanial system of two degrees of freedom.PACS: 03.65.Sq, 03.65.-w, 03.65.Xp1. INTRODUCTIONSemilassial methods provide a useful tool for thestudy of nonperturbative proesses. Tunneling phe-nomena represent one of the most notable ases wheresemilassial tehniques are used to obtain otherwiseunattainable information on the dynamis of the transi-tion. A standard example of the semilassial tehniqueis the WKB approximation to tunneling in quantummehanis of one degree of freedom. In this ase, solu-tions S(q) of the Hamilton�Jaobi equation are purelyimaginary in the lassially forbidden region. There-fore, the funtion S(q) an be obtained as the ationfuntional on a real trajetory q(�), whih is a solu-tion of the equations of motion in the Eulidean timedomain, t = �i�;with the real Eulidean ationSE = �iS:*E-mail: fedor�ms2.inr.a.ru**E-mail: levkov�ms2.inr.a.ru

This simple piture of tunneling is no longer validfor systems with many degrees of freedom, where solu-tions S(q) of the Hamilton�Jaobi equation are knownto be generially omplex in the lassially forbiddenregion (see Refs. [1, 2℄ for a reent disussion). Thisleads to the onept of �mixed� tunneling, as opposedto �pure� tunneling where S(q) is purely imaginary.�Mixed� tunneling annot be desribed by any realtunneling trajetory. However, it an be related to aomplex trajetory, in whih ase the funtion S(q)(and therefore the exponential part of the wave fun-tion) is alulated as the ation funtional on this om-plex trajetory.A partiularly di�ult situation arises when oneonsiders transitions of a nonseparable system with astrong interation between its degrees of freedom, suhthat the quantum numbers of the system hange on-siderably during the transition. Methods based on theadiabati expansion are not appliable in this situation,while the method of omplex trajetories proves to beextremely useful.The method of omplex trajetories in the formsuitable for the alulation of S-matrix elements was938



ÆÝÒÔ, òîì 125, âûï. 4, 2004 Dynamial tunneling of bound systems : : :formulated and heked by diret numerial alula-tions in Refs. [3, 4, 5℄ (see Ref. [6℄ for a review). Furtherstudies [7�12℄ showed that this method an be general-ized to the alulation of the tunneling wave funtionsand tunneling probabilities, energy splittings in double-well potentials, and deay rates from metastable states.Similar methods were suessful in the study of tun-neling in high-energy ollisions in �eld theory [13�16℄,where one onsiders systems with a de�nite partilenumber (N = 2) in the initial state, and in the studyof hemial reations and atom ionization proesses,where the initial bound systems are in de�nite quan-tum states [6, 17, 18℄, et. The main advantage of themethod of omplex trajetories is that it an be easilygeneralized and numerially implemented in the asesof a large and even in�nite (�eld theory) number of thedegrees of freedom, in ontrast to other methods suhas the Huygens-type onstrution in Refs. [1, 2℄ and theinitial value representation (IVR) in Refs. [3; 19�23℄.In this paper, we develop the method of omplextrajetories further. Namely, we onentrate on the fol-lowing problem. It is known [3℄ that a physially rele-vant omplex trajetory satis�es the lassial equationsof motion with ertain boundary onditions. However,this boundary value problem generially has also anin�nite, although disrete, set of unphysial solutions.In one-dimensional quantum mehanis, all solutionsan easily be lassi�ed. In systems with many degreesof freedom, suh a lassi�ation is extremely di�ult,if at all possible. In the ase of a small number ofthe degrees of freedom (realistially, N = 2), one ansan over all solutions and �nd the solution giving thelargest tunneling probability [3, 9, 10℄, but in systemswith a large or in�nite number of the degrees of free-dom, the problem of hoosing the physially relevantsolution beomes a formidable task.The problem of hoosing the appropriate solutionbeomes even more pronouned when the qualitativeproperties of the relevant omplex trajetory are dif-ferent in di�erent energy regions. This may happenwhen the physially relevant lassial solution �meets�an unphysial one at some energy value E = E1, orin other words, when solutions of the boundary valueproblem, viewed as funtions of the energy, bifurateat E = E1.In this paper, we give an example of this type, whihappears to be fairly generi (see also [11, 12, 24, 15, 16℄).We then develop a method that allows hoosing thephyisially relevant solution automatially, implementit numerially, and hek this method against the nu-merial solution of the full Shrödinger equation.We study inelasti transitions of a bound system

through a potential barrier. To be spei�, we onsidera model with one internal degree of freedom in addi-tion to the enter-of-mass oordinate. We onsider asituation where the spaing between the levels of thebound system is small ompared to the height of thebarrier, and assume a su�iently strong oupling be-tween the degrees of freedom, to make sure that thequantum numbers of the bound system hange onsid-erably during the transition proess. This is preiselythe situation in whih the method of omplex trajeto-ries shows its full strength.Transitions of bound systems involve a partiularenergy sale, the barrier height V0. At energies belowV0, lassial over-barrier transitions are forbidden ener-getially; the orresponding regime is alled �potentialtunneling�. For E > V0, it is energetially allowed forthe system to evolve lassially to the other side of thebarrier. However, over-barrier transitions may be for-bidden dynamially even at E > V0. Indeed, inelastiinterations of a bound system with a potential bar-rier generally lead to the exitation of the internal de-grees of freedom with the simultaneous derease of theenter-of-mass energy, whih may prevent the systemfrom the over-barrier transition. The tunneling regimeat energies exeeding the barrier height is alled �dy-namial tunneling�1).Examples of dynamial tunneling are well-known insattering theory [4℄. This type of tunneling betweenbound states was disovered in Ref. [25℄, and the gen-erality of dynamial tunneling in large moleules wasstressed in Refs. [26, 27℄. Dynamial tunneling is ofprimary interest in our study.We observe a novel phenomenon that dynamialtunneling at E & V0 (more preisely, at E > E1, whereE1 is somewhat larger than V0) ours in the follow-ing way: the system jumps on top of the barrier andrestarts its lassial evolution from the region near thetop. From the physial standpoint, this is not quitewhat is normally meant by �tunneling through a bar-rier�. Yet the transitions remain exponentially sup-pressed, but the reason is di�erent: to jump above thebarrier, the system has to undergo onsiderable rear-rangement, unless the inoming state is hosen in a1) It is lear that the properties of transitions of a bound sys-tem at E > V0 depend on the hoie of the initial state. Namely,there always exists a ertain lass of states transitions from whihare not exponentially suppressed. To onstrut an example, oneplaes the bound system on top of the barrier and evolves itlassially bakwards in time to the region where the interationwith the barrier is negligibly small. On the other hand, even atE > V0, there are states transitions from whih are exponentiallysuppressed (dynamial tunneling).939



F. Bezrukov, D. Levkov ÆÝÒÔ, òîì 125, âûï. 4, 2004speial way (see footnote 1). This rearrangement ostsan exponentially small probability fator. We note thata similar exponential fator was argued to appear invarious �eld theory proesses with multi-partile �nalstates [28�31℄.We �nd that the new physial behavior of the sys-tem is related to a bifuration of the family of om-plex-time lassial solutions, viewed as funtions of en-ergy. This is preisely the bifuration mentioned above.Our method of dealing with this bifuration is to regu-larize the boundary value problem suh that the bifur-ations disappear altogether (at real energies), and theonly solutions reovered after removing the regulariza-tion are physial ones.This paper is organized as follows. The system tobe disussed in what follows is introdued in Se. 2.1.In Se. 2.2, we formulate the boundary value prob-lem for the alulation of the tunneling exponent. InSe. 2.3, we then examine the lassial over-barrier so-lutions and �nd all initial states that lead to lassiallyallowed transitions. In Se. 2.4, we present a straight-forward appliation of the semilassial tehnique out-lined in Se. 2.2 and �nd that it eases to produe rel-evant omplex trajetories in a ertain region of initialdata, namely, at E > E1. In Se. 3, we introdue ourregularization tehnique and show that it indeed en-ables us to �nd all the relevant omplex trajetories,inluding those with E > E1 (Se. 3.1). We hekour method against the numerial solution of the fullShrödinger equation in Se. 3.2. In Se. 3.3 and Ap-pendix C, we show how our regularization tehniqueis used to smoothly join the �lassially allowed� and�lassially forbidden� families of solutions in the re-spetive ases of two- and one-dimensional quantummehanis.2. SEMICLASSICAL TRANSITIONSTHROUGH A POTENTIAL BARRIER2.1. The modelThe situation disussed in this paper is a transitionthrough a potential barrier of the bound system on-sidered in Refs. [11, 12℄, namely the system made oftwo partiles of idential masses m, moving in one di-mension and bound by a harmoni osillator potentialof frequeny ! (Fig. 1). One of the partiles interatswith a repulsive potential barrier. The potential bar-rier is assumed to be high and wide, while the spaing

0
V Em m! XFig. 1. An osillator hitting a potential barrier, withonly the �dark� partile interating with the barrierbetween the osillator levels is muh smaller than thebarrier height V0. The Hamiltonian of the model isH = p212m + p222m + m!24 (x1 � x2)2 ++ V0 exp�� x212�2� ; (1)where the onditions on the osillator frequeny andpotential barrier are~! � V0;� � ~=pmV0: (2)Beause the variables do not separate, this is ertainlya nontrivial system.We hoose units with ~ = 1; m = 1. It is alsoonvenient to treat the frequeny ! as a dimensionlessparameter, suh that all physial quantities are dimen-sionless. In our subsequent numerial study, we use thevalue ! = 0:5, but keep the notation �!� in formulas.The system is semilassial, i.e., onditions (2) are sat-is�ed, if we hoose � = 1=p2� and V0 = 1=�, where� is a small parameter. At the lassial level, this pa-rameter is irrelevant: after resaling the variables2) asx1 ! x1=p�; x2 ! x2=p�;the small parameter enters only through the overallmultipliative fator 1=� in the Hamiltonian. There-fore, the semilassial tehnique an be developed asan asymptoti expansion in �.The properties of the system are made learer by re-plaing the variables x1 and x2 with the enter-of-massoordinate2) To keep the notation simple, we use the same symbols x1; x2for the resaled variables.940



ÆÝÒÔ, òîì 125, âûï. 4, 2004 Dynamial tunneling of bound systems : : :X � x1 + x2p2and the relative osillator oordinatey � x1 � x2p2 :In terms of these variables, the Hamiltonian beomesH = p2X2 + p2y2 + !22 y2 + 1� exp���(X + y)22 � : (3)The interation potentialUint � 1� exp���(X + y)22 �vanishes in the asymptoti regions X ! �1 and de-sribes a potential barrier between these regions. AtX ! �1, Hamiltonian (3) orresponds to an osilla-tor of the frequeny ! moving along the enter-of-massoordinate X . The osillator asymptoti state is har-aterized by its exitation number N and total energyE = p2X2 + !�N + 12� :We are interested in the transmissions through the po-tential barrier of the osillator with given initial valuesof E and N .2.2. T=� boundary value problemThe probability of tunneling from a state with a�xed initial energy E and osillator exitation numberN from the asymptoti region X ! �1 to any statein the other asymptoti region X ! +1 is given byT (E;N) == limtf�ti!1Xf ���hf j exp��iĤ(tf � ti)� jE;Ni���2 ; (4)where it is impliit that the initial and �nal states havesupport only well outside the range of the potential,with X < 0 and X > 0, respetively. Semilassialmethods are appliable if the initial energy and exita-tion number are parametrially large,E = ~E=�; N = ~N=�;where ~E and ~N are kept onstant as �! 0. The tran-sition probability has the exponential formT = D exp�� 1�F ( ~E; ~N)� ; (5)

Im t
Re tAA0 T=2BC DFig. 2. Contour in the omplex time planewhere D is a pre-exponential fator, whih is not on-sidered in this paper. Our purpose is to alulate theleading semilassial exponent F ( ~E; ~N). The expo-nent for tunneling from the osillator ground state isobtained in [11�13; 32℄ by taking the limit ~N ! 0 inF ( ~E; ~N).In what follows, we resale the variables asX ! X=p�; y ! y=p�and omit the tilde over the resaled quantities ~E and ~N .The exponent F (E;N) is related to a omplex tra-jetory that satis�es a ertain omplexi�ed lassialboundary value problem. We present the derivation ofthis problem in Appendix A. The outome is as follows.There are two Lagrange multipliers T and �, whih arerelated to the parameters E and N haraterizing theinoming state. The boundary value problem is onve-niently formulated on the ontour ABCD in the om-plex time plane (see Fig. 2), with the imaginary partof the initial time equal to T=2. The oordinates X(t)and y(t) must satisfy the omplexi�ed equations of mo-tion in the interior points of the ontour, and must bereal in the asymptoti future (region D):ÆSÆX(t) = ÆSÆy(t) = 0; (6a)Im y(t)! 0;ImX(t)! 0; as t! +1: (6b)In the asymptoti past (region A of the ontour, wheret = t0+ iT=2, t0 is real negative), the interation poten-tial Uint an be negleted and the osillator deouples,y = 1p2! (u exp(�i!t0) + v exp(i!t0)) :The boundary onditions in the asymptoti past,t0 ! �1, are that the enter-of-mass oordinate Xmust be real, while the omplex amplitudes of the de-oupled osillator must be linearly related,ImX ! 0;v ! e�u�; as t0 ! �1: (6)941



F. Bezrukov, D. Levkov ÆÝÒÔ, òîì 125, âûï. 4, 2004Boundary onditions (6b) and (6) in fat make eightreal onditions (beause, e.g., ImX(t0) ! 0 impliesthat both ImX and Im _X tend to zero), and ompletelydetermine the solution, up to the time translation in-variane (see the disussion in Appendix A).It is shown in Appendix A that a solution of thisboundary value problem is an extremum of the fun-tionalF [X; y;X�; y�;T; �℄ = �iS[X; y℄ + iS[X�; y�℄��ET �N� + Boundary Terms: (7)The value of this funtional at the extremum gives theexponent for the transition probability (up to the largeoverall fator 1=�, see Eq. (5)),F (E; N) = 2 ImS0(T; �)�ET �N�; (8)where S0 is the ation of the solution, integrated byparts,S0 = Z dt��12X d2Xdt2 �� 12y d2ydt2 � 12!2y2 � Uint(X; y)� : (9)Here, the integration runs along the ontour ABCD.The values of the Lagrange multipliers T and � are re-lated to the energy and exitation number asE(T; �) = ��T 2 ImS0(T; �); (10)N(T; �) = ���2 ImS0(T; �): (11)Using Eq. (8), it is also straightforward to verify theinverse Legendre transformation formulasT (E; N) = � ��EF (E; N); (12)�(E; N) = � ��N F (E; N): (13)It an also be veri�ed that the right-hand side ofEq. (10) oinides with the energy of the lassial solu-tion and the right-hand side of Eq. (11) is equal to thelassial ounterpart of the oupation number,E = _X22 + !N; N = uv: (14)Therefore, we an either seek the values of T and � thatorrespond to given E and N , or, following a ompu-tationally simpler proedure, solve the boundary valueproblem (6) for given T and � and then �nd the orre-sponding values of E and N from Eq. (14). We note

that initial onditions (6) omplemented by Eqs. (14)are equivalent to the initial onditions in Refs. [3�5℄,the latter being expressed in terms of ation�angle vari-ables. The boundary onditions in the asymptoti fu-ture, Eq. (6b), are di�erent from those in Refs. [3�5℄,beause we onsider inlusive, rather than �xed, �nalstate.We now disuss some subtle points of boundaryvalue problem (6). First, we note that the asymptotireality ondition in (6b) does not always oinide withthe reality ondition at �nite time. Of ourse, if the so-lution approahes the asymptoti region X ! +1 onthe part CD of the ontour, asymptoti reality on-dition (6b) implies that the solution is real at any�nite positive t. Indeed, the osillator deouples asX ! +1, and therefore ondition (6b) means thatits phase and amplitude, as well as X(t), are real ast ! +1. Due to the equations of motion, X(t) andy(t) are real on the entire CD part of the ontour. Thissituation orresponds to the transition diretly to theasymptoti region X ! +1. However, the situationan be drastially di�erent if the solution on the �nalpart of the time ontour remains in the interation re-gion. For example, we an imagine that the solutionapproahes the saddle point of the potential X = 0,y = 0 as t ! +1. Beause one of the perturbationsaround this point is unstable, there may exist solutionsthat approah this point exponentially along the un-stable diretion, i.e.,X(t); y(t) / exp(�onst � t)with possibly omplex prefators. In this ase, the so-lution may be omplex at any �nite time, and beomereal only asymptotially, as t ! +1. Suh a solu-tion orresponds to tunneling to the saddle point ofthe barrier, after whih the system rolls down lassi-ally towards X ! +1 (with probability of the orderof 1, inessential for the tunneling exponent F ). We seein Se. 3.1 that the situation of this sort indeed oursfor some values of the energy and exitation number.Seond, beause the interation potential disap-pears at large negative time (in the asymptoti regionX ! �1), it is straightforward to ontinue the asymp-toti form of the solution to the real time axis. Forsolutions satisfying (6), this givesy(t) = 1p2! �u exp��!T2 � exp(�i!t)++ u� exp�� + !T2 � exp(i!t)� ;ImX(t) = �T2 pX942



ÆÝÒÔ, òîì 125, âûï. 4, 2004 Dynamial tunneling of bound systems : : :at large negative time. We see that the dynamialoordinates on the negative side of the real time axisare generally omplex. For solutions approahing theasymptoti region X ! +1 as t! +1 (suh that Xand y are exatly real at �nite t > 0), this means thatthere should exist a branh point in the omplex timeplane: the ontour A0ABC in Fig. 2 winds around thispoint and annot be deformed to the real time axis.This argument does not work for solutions ending inthe interation region as t ! +1, and hene branhpoints between the AB part of the ontour and the realtime axis may be absent. We see in Se. 3.1 that thisis indeed the ase in our model in a ertain range of Eand N .2.3. Over-barrier transitions: the region oflassially allowed transitions and itsboundary E0(N)Before studying the exponentially suppressed tran-sitions, we onsider the lassially allowed ones. Forthis, we study the lassial evolution (real time, real-valued oordinates) suh that the system is initiallyloated at large negative X and moves with a positiveenter-of-mass veloity towards the asymptoti regionX ! +1. The lassial dynamis of the system isspei�ed by four initial parameters. One of them (e.g.,the initial enter-of-mass oordinate) �xes the invari-ane under time translations, while the other three arethe total energy E, the initial exitation number of they-osillator, de�ned in lassial theory as N � Eos=!,and the initial osillator phase 'i.Any initial quantum state of our system an be fullydetermined by the energy E and the initial osillatorexitation number N ; we an represent eah state bya point in the EN plane. There is, however, one ad-ditional lassially relevant initial parameter, the os-illator phase 'i. An initial state (E;N) leads to un-suppressed transmission if the orresponding lassialover-barrier transitions3) are possible for some value(s)of 'i. These states form some region in the EN plane,whih is to be found in this setion.For given N , at su�iently large E, the system anertainly evolve to the other side of the barrier. Onthe other hand, if E is smaller than the barrier height,the system de�nitely undergoes re�etion. Thus, thereexists some boundary energy E0(N) suh that lassi-al transitions are possible for E > E0(N), while for3) We note that the orresponding lassial solutions obeyboundary onditions (6b) and (6) with T = � = 0, i.e., theyare solutions to boundary value problem (6).

0.20.6
0 0.5 1.5N EES = 1EPI(N)NS

E1(N) E0(N)Fig. 3. The boundary E0(N) of the region of lassiallyallowed transitions, the bifuration line E1(N), and theline of the periodi instantons EPI(N)E < E0(N) they do not our for any initial phase 'i.The line E0(N) represents the boundary of the regionof lassially allowed transitions. We have alulatedE0(N) numerially: the result4) is shown in Fig. 3.An important point of the boundary E0(N) or-responds to the stati unstable lassial solutionX(t) = y(t) = 0. In the �eld theory ontext, suha solution is alled �sphaleron� [33℄, and we keep thisterminology in what follows. This solution is the saddlepoint of the potentialU(X; y) � !2y2=2 + Uint(X; y)and has exatly one unstable diretion, the neg-ative mode (see Fig. 4). The sphaleron energyES = U(0; 0) = 1 determines the minimum value of thefuntion E0(N). Indeed, lassial over-barrier transi-tions with E < ES are impossible, but the over-barriersolution with a slightly higher energy an be obtainedas follows: a momentum along the negative mode isadded at the point X = y = 0, �pushing� the systemtowardsX ! +1. Continuing this solution bakwardsin time shows that the system tends to X ! �1 forlarge negative time and has a ertain osillator exita-tion number. Solutions with the energy loser to thesphaleron energy orrespond to a smaller �push� andthus spend longer time near the sphaleron. In the lim-iting ase where the energy is equal to ES , the solutionspends an in�nite time in the viinity of the sphaleron.This limiting ase has a de�nite initial exitation num-ber NS , suh that E0(NS) = ES (see Fig. 3). The4) We note that the boundary E0(N) of the region of lassi-ally allowed transitions an be extended to N > NS. BeauseE = ES is the absolute minimum of the energy of lassially al-lowed transitions, the funtion E0(N) grows with N at N > NS.In fat, it tends to the asymptotis Eas0 = !N as N ! +1. Inwhat follows, we are not interested in transitions with N > NS,and therefore this part of the boundary E0(N) is not shown inFig. 3.943
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0 y +X0 y �X01
U(X; y)

Fig. 4. The potential (dotted lines) in the viinity ofthe sphaleron (X = 0; y = 0) (marked by the point),the exited sphaleron (thik line) orresponding to thepoint (E;N) = (1:985; 3:72) at the boundary of the re-gion of lassially allowed transitions, and the trajetoryof the solution that is lose to this exited sphaleron(thin line). The asymptoti regions X ! �1 arealong the diagonalvalue of NS is unique beause there is exatly one neg-ative diretion of the potential in the viinity of thesphaleron.In omplete analogy to the features of the over-barrier lassial solutions near the sphaleron point(ES , NS), we expet that as the values of E and Napproah any other boundary point (E0(N); N), theorresponding over-barrier solutions spend more andmore time in the interation region, where Uint 6= 0.This follows from a ontinuity argument. Namely, we�rst �x the initial and �nal times, ti and tf . If withinthis time interval a solution with the energy E1 evolvesto the other side of the barrier and a solution with theenergy E2 and the same osillator exitation number isre�eted, there exists an intermediate energy at whihthe solution ends up at t = tf in the interation re-gion. Taking the limit as tf ! +1 and E1 �E2 ! 0,we obtain a point at the boundary E0(N) and a solu-tion tending asymptotially to some unstable time-de-pendent solution that spends in�nite time in the inter-ation region. We all the latter solution the exitedsphaleron; it desribes some (in general, nonlinear) os-illations above the sphaleron along the stable dire-tion in the oordinate spae. Therefore, every pointof the boundary (E0(N); N) orresponds to some ex-ited sphaleron. In the phase spae, solutions tendingasymptotially to the exited sphalerons form a sur-fae (separatrix) that separates regions of qualitativelydi�erent lassial motions of the system.In Fig. 4, we display a solution, found numerially in

our model, that tends to an exited sphaleron. We seethat the trajetory of the exited sphaleron is, roughlyspeaking, orthogonal to the unstable diretion at thesaddle point (X = 0; y = 0).2.4. Suppressed transitions: bifurationline E1(N)We now turn to lassially forbidden transitions andonsider the boundary value problem in Eq. (6). It isrelatively straightforward to obtain solutions for � = 0numerially. In this ase, boundary onditions (6b)and (6) take the form of reality onditions in theasymptoti future and past. It an be shown [34℄ thatthe physially relevant solutions with � = 0 are real onthe entire ontour ABCD in Fig. 2 and desribe non-linear osillations in the upside-down potential on theEulidean part BC of the ontour. The period of theosillations is equal to T , and hene the points B andC are two di�erent turning points where _X = _y = 0.These real Eulidean solutions are alled periodi in-stantons. A pratial tehnique for obtaining these so-lutions numerially on the Eulidean part BC onsistsin minimizing the Eulidean ation (for example, withthe method of onjugate gradients, see Ref. [11, 12℄ forthe details). The solutions on the entire ontour arethen obtained by solving the Cauhy problem numeri-ally, forward in time along the line CD and bakwardin time along the line BA. From the solution in theasymptoti past (region A), we then alulate its en-ergy and exitation number (14). The solutions of thisCauhy problem are obviously real, and hene bound-ary onditions (6b) and (6) are indeed satis�ed for� = 0. It is worth noting that solutions with � = 0 aresimilar to the ones in quantum mehanis of one degreeof freedom. The line of periodi instantons in the ENplane in our model is shown in Fig. 3.One the solutions with � = 0 are found, it is nat-ural to try to over the entire region of lassially for-bidden transitions in the EN plane with a deformationproedure, by moving in small steps in � and T . Thesolution of the boundary value problem with (T +�T ,� +��) may be obtained numerially, by applying aniteration tehnique, with the known solution at (T; �)serving as the initial approximation5). If the solutionsend up in the orret asymptoti region at eah step,i.e., X ! +1 on part D of the ontour, the solutionsobtained by this proedure of small deformations arephysially relevant. But the method of small defor-5) In pratie, the Newton�Raphson method is partiularlyonvenient (see Refs. [11, 12, 14, 15℄).944



ÆÝÒÔ, òîì 125, âûï. 4, 2004 Dynamial tunneling of bound systems : : :
�40�20020 �20 �10 0 10 20

ReX
Re tRefletedPhysial

Fig. 5. The dependene of the tunneling oordinate Xon time for two solutions with nearly the same energyand initial exitation number. The physial solutiontunnels to the asymptoti region X ! +1, while theunphysial one is re�eted to X ! �1. The physi-al solution has E = 1:028, N = 0:44, while the un-physial one has E = 1:034, N = 0:44. These twosolutions are lose to the point on the bifuration lineE1(N = 0:44) = 1:031mations fails to produe relevant solution if there arebifuration points in the EN plane, where the physi-al branh of solutions merges to an unphysial branh.Beause there are unphysial solutions lose to physialones in the viinity of bifuration points, the proedureof small deformations annot be used near these points.We have found numerially that in our model, themethod of small deformations produes orret solu-tions of the T=� boundary value problem in a largeregion of the EN plane where E < E1(N). How-ever, at su�iently high energy E > E1(N), whereE1(N) & ES , the deformation proedure generates so-lutions that boune bak from the barrier (see Fig. 5),i.e., have a wrong �topology�. This ours deep insidethe region of lassially forbidden transitions, where thesuppression is large, and one naively expets the semi-lassial tehnique to work well. Clearly, solutions witha wrong topology do not desribe the tunneling transi-tions of interest. Therefore, if the semilassial methodis appliable in the region E1(N) < E < E0(N) at all,there exists another, physial branh of solutions. Inthat ase, the line E1(N) is the bifuration line wherethe physial solutions �meet� the ones with a wrong�topology�. Walking in small steps in � and T is use-less in the viinity of this bifuration line, and a speialtrik is required to �nd the relevant solutions beyondthat line. The bifuration line E1(N) for our quantummehanial problem of two degrees of freedom is shownin Fig. 3.The loss of topology beyond a ertain bifurationline in the EN plane is by no means a property of

our model only. This phenomenon has been observedin �eld theory models, in the ontext of both induedfalse vauum deay [14℄ and baryon-number violatingtransitions in gauge theory [15℄ (in �eld theory models,the parameter N is the number of inoming partiles).In all ases, the loss of topology prevented one fromomputing the semilassial exponent for the transi-tion probability in the interesting region of relativelyhigh energies.Returning to quantum mehanis of two degrees offreedom, we point out that the properties of tunnel-ing solutions with di�erent energies approahing thebifuration line E1(N) from the left of the EN planeare in some sense similar to the properties of tunnel-ing solutions in one-dimensional quantum mehaniswhose energy is lose to the barrier height, see Ap-pendix C. Again by ontinuity, these solutions of ourtwo-dimensional model spend a long time in the inter-ation region; this time tends to in�nity on the lineE1(N). Hene, at any point of this line, there is a so-lution that starts in the asymptoti region left of thebarrier and ends up on an exited sphaleron. Suh be-havior is indeed possible beause of the existene of anunstable diretion near the (exited) sphaleron, evenfor omplex initial data. In the next setion, we sug-gest a trik to deal with this situation � this is ourregularization tehnique.3. REGULARIZATION TECHNIQUEIn this setion, we develop our regularization teh-nique and �nd the physially relevant solutions betweenthe lines E1(N) and E0(N). We see that all solutionsfrom the new branh (and not only on the lines E0(N)and E1(N)) orrespond to tunneling onto the exitedsphaleron (�tunneling on top of the barrier�). Thesesolutions would be very di�ult, if at all possible, to ob-tain diretly, by numerially solving the nonregularizedlassial boundary value problem (6): they are omplexat �nite times and beome real only asymptotially ast ! +1, whereas numerial methods require workingwith �nite time intervals.As an additional advantage, our regularization teh-nique allows obtaining a family of over-barrier solu-tions that overs all the region of the initial data or-responding to lassialy allowed transitions, inludingits boundary. This is of interest in models with a largenumber of the degrees of freedom and in �eld theory,where �nding the boundary E0(N) by diret methodsis di�ult (see e.g., Ref. [35℄ for a disussion of thispoint).16 ÆÝÒÔ, âûï. 4 945



F. Bezrukov, D. Levkov ÆÝÒÔ, òîì 125, âûï. 4, 20043.1. Regularized problem: lassially forbiddentransitionsThe main idea of our method is to regularize theequations of motion by adding a term proportional toa small parameter � suh that on�gurations stayingnear the sphaleron for an in�nite time no longer existamong the solutions of the T=� boundary value prob-lem. After performing the regularization, we explore allthe region of lassially forbidden transitions withoutrossing the bifuration line. Taking the limit �! 0,we then reonstrut the orret values of F , E, and N .In formulating the regularization tehnique, itis more onvenient to work with the funtionalF [X; y;X�; y�;T; �℄, Eq. (7), itself rather than withthe equations of motion. We prevent F from beingextremized by on�gurations approahing the ex-ited sphalerons asymptotially. To ahieve this, weadd a new term of the form 2�Tint to the originalfuntional (7), where Tint estimates the time thatthe solution �spends� in the interation region. Theregularization parameter � is the smallest one in theproblem, and hene any regular extremum of thefuntional F (the solution that spends �nite timein the region Uint 6= 0) hanges only slightly afterthe regularization. At the same time, the exitedsphaleron on�guration has Tint = 1, whih leads tothe in�nite value of the regularized funtionalF� � F + 2�Tint:Hene, the exited sphalerons are not stationary pointsof the regularized funtional.For the problem under onsideration, Uint � 1 inthe interation region, and Tint an be de�ned asTint = 12 �Z dtUint(X; y) + Z dtUint(X�; y�)� : (15)We note that Tint is real and that the regularization isequivalent to the multipliation of the interation po-tential with a omplex fator,Uint ! (1� i�)Uint = e�i�Uint +O(�2): (16)This results in the orresponding hange of the lassialequations of motion, while boundary onditions (6b)and (6) remain unaltered.We still have to understand whether solutions with� 6= 0 exist at all. The reason for the existene of suhsolutions is as follows. We onsider a well-de�ned (for� > 0) matrix element

T� = limtf�ti!1Xf ���hf j exp h(�iĤ��Uint)(tf�ti)i �� jE;Ni���2 ;where, as before, jE; Ni denotes the inoming statewith given energy and osillator exitation number.The quantity T� has a well-de�ned limit as �! 0, equalto tunneling probability (4). Beause the saddle pointof the regularized funtional F� gives the semilassialexponent for the quantity T�, we expet that suh asaddle point indeed exists.Therefore, the regularized T=� boundary valueproblem is expeted to have solutions neessarilyspending �nite time in the interation region. By onti-nuity, these solutions do not experiene re�etion fromthe barrier if the proedure of small deformations start-ing from solutions with the orret �topology� is used.The line E1(N) is no longer a bifuration line of theregularized system, and the proedure of small defor-mations therefore enables us to over the entire regionof lassially forbidden transitions. The semilassialsuppression fator of the original problem is reoveredin the limit �! 0.It is worth noting that the interation time is Le-gendre onjugate to �,Tint = 12 ���F�(E;N; �): (17)This equation an be used as a hek of numerial al-ulations.We implemented the regularization proedure nu-merially. To solve the boundary value problem, we usethe omputational methods desribed in Ref. [11, 12℄.To obtain the semilassial tunneling exponent in theregion between the bifuration line E1(N) and theboundary of the region of lassially allowed transitionsE0(N), we began with a solution to the nonregularizedproblem deep in the �forbidden� region of the initialdata (i.e., at E < E1(N)). We then inreased the valueof � from zero to a ertain small positive number, keep-ing T and � �xed. We next hanged T and � in smallsteps, keeping � �nite, and found solutions of the reg-ularized problem in the region E1(N) < E < E0(N).These solutions had the orret �topology�, i.e., theyindeed ended up in the asymptoti region X ! +1.Finally, we lowered � and extrapolated F , E, and N tothe limit �! 0.We now onsider the solutions in the regionE1(N) < E < E0(N), whih we obtain in thelimit � ! 0, more arefully. They belong to a newbranh, and may therefore exhibit new physialproperties. Indeed, we found that as the value of �946
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Fig. 6. Large-time behavior of a solution with � = 0 at(E = 1:05, N = 0:43). The oordinates X and y aredeomposed in the basis of the eigenmodes near thesphaleron. We note that Im + = 0dereases to zero, the solution at any point (E;N)with E1(N) < E < E0(N) spends more and moretime in the interation region. The limiting solutionorresponding to � = 0 has in�nite interation time: inother words, as t! +1, it tends to one of the exitedsphalerons. The resulting physial piture is that at asu�iently large energy (i.e., at E > E1(N)), the sys-tem prefers to tunnel exatly onto an unstable lassialsolution, exited sphaleron, that osillates about thetop of the potential barrier. To demonstrate this, wehave plotted in Fig. 6 the solution x(t) � (X(t); y(t))at large times, after taking the limit �! 0 numerially.To understand this �gure, we reall that the potentialnear the sphaleron point X = y = 0 has one positivemode and one negative mode. Namely, introduingnew oordinates +, � asX = os� + + sin� �;y = � sin� + + os� �;tg 2� = �!22 ;we write, in the viinity of the sphaleron,H = 1 + p2+2 + p2�2 + !2+2 2+ � !2�2 2�;where !2� = ���1 + !22 �+r1 + !44 > 0:Beause the solutions of the T=� boundary value prob-lem are omplex, the oordinates + and � are alsoomplex. In Fig. 6, we show real and imaginary partsof + and � at a large real time t (part CD of the on-tour). We see that while Re + osillates, the unstable

oordinate � asymptotially approahes the sphaleronvalue: � ! 0 as t ! +1. The imaginary part of� is nonzero at any �nite time. This is the reasonfor the failure of straightforward numerial methods inthe region E > E1(N): the solutions from the physialbranh do not satisfy the reality onditions at any largebut �nite �nal time. We have pointed out in Se. 2.2that this an happen only if the solution ends up nearthe sphaleron, whih has a negative mode. This is pre-isely what happens: for � = 0 at asymptotially larget, our solutions are real and osillate near the sphaleron,remaining in the interaton region.3.2. Regularization tehnique versus exatquantum mehanial solutionQuantum mehanis of two degrees of freedom is aonvenient testing ground for heking the semilassi-al methods and, in partiular, our regularization teh-nique. We have found solutions of the full stationaryShrödinger equation and exat tunneling probabilityT by applying the numerial tehnique in Refs. [11, 12℄.Our numerial alulations were performed for severalsmall values of the semilassial parameter �, namely,for � = 0:01�0:1. Transitions through the barrier forthese values of the semilassial parameter are well sup-pressed. In partiular, for � = 0:02, the tunneling prob-ability T is of the order e�14. To hek the semilassi-al result with better preision, we have alulated theexat suppression exponentFQM (�) � �� log T(f. (5)) for � = 0:09; 0:05; 0:03; 0:02 and extrapolatedFQM to � = 0 by polynomials of the third and fourthdegree. The extrapolation results are independent ofthe degree (3 or 4) of polynomials with the preision1%. The extrapolated suppression exponent FQM (0)orresponds to in�nite suppression and must exatlyoinide (up to numerial errors) with the orret semi-lassial result.We performed this hek in the region E > ES = 1,whih is most interesting for our purposes. The resultsof the full quantum mehanial alulation of the sup-pression exponent FQM in the limit � ! 0 are repre-sented by points in Fig. 7. The lines in that �gure rep-resent the values of the semilassial exponent F (E;N)for onstant N , whih we obtain in the limit � ! 0 ofthe regularization proedure. In pratie, instead oftaking the limit � ! 0, we alulate the regularizedfuntional F�(E;N) = F (E;N) +O(�)947 16*
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0.00.1 0.2 0.3 0.4 0.5 0.6 0.7 0.81.01.21.41.6Fig. 7. The tunneling exponent F (E;N) in the regionE > ES = 1. The lines show the semilassial resultsand the dots represent exat ones, obtained by solvingthe Shrödinger equation. The lines aross the plotare the boundary of the region of lassially allowedtransitions E0(N) and the bifuration line E1(N)for su�iently small �. We used the value � = 10�6, andthe value of the suppression exponent was then foundwith the preision of the order 10�5. We see that inthe entire region of lassially forbidden transitions (in-luding the region E > E1(N)), the semilassial resultfor F oinides with the exat one.3.3. Classially allowed transitionsWe now show that our regularization proedure al-lows obtaining a subset of lassial over-barrier solu-tions existing at su�iently high energies. This subsetis interesting beause it extends to the boundary of theregion of lassially allowed transitions, E = E0(N).In priniple, �nding this boundary is purely a problemof lassial mehanis; indeed, in the mehanis of twodegrees of freedom, this boundary an be found numer-ially by solving the Cauhy problem for given E andN and all possible osillator phases, see Se. 2.3. Butif the number of the degrees of freedom is muh larger,this lassial problem beomes quite ompliated, be-ause a high-dimensional spae of Cauhy data has tobe spanned. As an example, a stohasti Monte Carlotehnique was developed in Ref. [35℄ to deal with thisproblem in the �eld theory ontext. The approah be-low is an alternative to the Cauhy methods.We �rst reall that all lassial over-barrier solu-tions with given energy and exitation number satisfythe T=� boundary value problem with T = 0, � = 0.We annot reah the �allowed� region of the EN plane

without regularization, beause we have to ross theline E0(N) orresponding to the exited sphaleron on-�gurations in the �nal state. But the exited sphaleronsno longer exist among the solutions of the regularizedboundary value problem at any �nite value of �. Thissuggests that the regularization allows entering the re-gion of lassially allowed transitions and, after takingan appropriate limit, obtaining lassial solutions with�nite values of E and N .By de�nition, the lassially allowed transitionshave F = 0. We therefore expet that in the �allowed�region of the initial data, the regularized problem hasthe property thatF�(E;N) = �f(E;N) +O(�2):In view of the inverse Legendre formulas (12) and (13),the values of T and � must be of the order of �,T = ��(E;N); � = �#(E;N);where the quantities � and # are related to the initialenergy and exitation number (see Eqs. (12), (13)) as� = � lim�!0 ��E F�� = �12 ��ETint(E;N); (18)# = � lim�!0 ��N F�� = �12 ��N Tint(E;N); (19)where we have used Eq. (17). We thus expet thatthe region of lassially allowed transitions an be in-vaded by taking a fairly sophistiated limit �! 0 with� � T=� = onst, # � �=� = onst. For the allowedtransitions, the parameters � and # are analogous to Tand �.Solving the regularized T=� boundary value prob-lem allows onstruting a single solution for given Eand N . On the other hand, for � = 0, there are morelassial over-barrier solutions: they form a ontinu-ous family labeled by the initial osillator phase. Thus,taking the limit � ! 0 gives a subset of over-barriersolutions, whih should therefore obey some additionalonstraint. It is almost obvious that this onstraintis that the interation time Tint, Eq. (15), is minimal.This is shown in Appendix B.The subset of lassial over-barrier solutions ob-tained in the �! 0 limit of the regularized T=� proe-dure extends to the boundary of the region of lassiallyallowed transitions. We now onsider what happens asthis boundary is approahed from the �lassially al-lowed� side. At the boundary E0(N), the unregular-ized solutions tend to exited sphalerons, and the inter-ation time Tint is therefore in�nite. This is onsistentwith (18) and (19) only if � and # beome in�nite at the948
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0Fig. 8. The phase of the tunneling oordinate in the omplex time plane at three points of the urve � = 380, # = 130.Figures a, b, and  orrespond to � = �a = 0:01, � = �b = 0:0048, and � = � = 0 respetively. The asymptotis X ! �1and X ! +1 orrespond to argX = � and 0. The ontour in the time plane is plotted with the white lineboundary. Hene, to obtain a point of the boundary,we takes the further limit,�E0(N); N� = lim�=#=onst�!+1 �E(�; #); N(�; #)�:Di�erent values of �=# orrespond to di�erent pointsof the line E0(N). We thus �nd the boundary of theregion of lassially allowed transitions without initi-al-state simulation.We have heked this proedure numerially. Thelimit � ! 0 exists indeed � the values of E and Ntend to the point of the EN plane that orrespondsto the lassially allowed transition. The phase of the

tunneling oordinate X(t) in the omplex time planeis shown in Fig. 8 for the three points (Figs. a, b, and) of the urve � � T=� = 380, # � �=� = 130. Pointa lies deep inside the tunneling region, Ea < E1(Na),point  orresponds to the over-barrier solution withT = 0, � = 0, � = 0, and point b is in the middle of theurve. The branh points of the solution, the uts, andthe ontour are learly seen on these graphs6).It is worth noting that the left branh points movedown as T and � approah zero. Solutions lose enough6) The phase of the tunneling oordinate hanges by � aroundthe branh point. The points where the phase of the tunnelingoordinate hanges by 2� orrespond to zeroes of X(t).949



F. Bezrukov, D. Levkov ÆÝÒÔ, òîì 125, âûï. 4, 2004to the boundary E0(N) have the left branh point inthe lower omplex half-plane, see Fig. 8. Therefore, theorresponding ontour an be ontinuously deformed tothe real time axis. These solutions still satisfy the re-ality onditions asymptotially (see Fig. 6), but shownontrivial omplex behavior at any �nite time.The regularized T=� proedure allows approahingthe boundary of the region of lassially allowed transi-tions from both sides. The points at this boundary areobtained by taking the limits T ! 0; T=� = onst ofthe tunneling solutions and � ! +1, �=# = onst ofthe lassially allowed ones. Beause �� � �=# = T=�by onstrution, the lines �� = onst are ontinuous atthe boundary E0(N), although may have disontinu-ity of the derivatives. The variable �� an be used toparameterize the urve E0(N).4. CONCLUSIONSWe onlude that lassial solutions desribingtransmissions of a bound system through a potentialbarrier with di�erent values of the energy and the ini-tial osillator exitation number form three branhes.These branhes merge at bifuration lines E0(N) andE1(N). Solutions from di�erent branhes desribephysially di�erent transition proesses. Namely, solu-tions at low energies E < E1(N) desribe the onven-tional potential-like tunneling. At E > E0(N), theyorrespond to unsuppressed over-barrier transitions.At intermediate energies, E1(N) < E < E0(N), phys-ially relevant solutions desribe transitions on top ofthe barrier. This branh struture is shown in Fig. 9a,where the period T = �F=�E obtained numeriallyfor solutions from the di�erent branhes is plotted as afuntion of energy for N = 0:1.We note that the qualitative struture of branhesin the model with internal degrees of freedom is similarto the struture of branhes in one-dimensional quan-tum mehanis (see Appendix C). The latter is shownin Fig. 9b. The features of solutions in both ases aresimilar, although the solutions ending up on top of thebarrier are degenerate in energy in the one-dimensionalase, and hene are not physially interesting.In this paper, we introdued the regularizationtehnique that allows smoothly onneting solutionsin di�erent branhes. Its advantage is that it au-tomatially hooses the physially relevant branh.This tehnique is partiularly onvenient in numerialstudies: we have seen that it allows overing the wholeinteresting region of the parameter spae. We appliedthis tehnique to baryon number violating proesses ineletroweak theory [16℄.
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ÆÝÒÔ, òîì 125, âûï. 4, 2004 Dynamial tunneling of bound systems : : :Researh and Development Foundation for Indepen-dent States of FSU (CRDF) award RP1-2364-MO-02,and the DOE grant �US DE-FG02-91ER40676. F. B.is supported by the Swiss Siene Foundation (grant� 7SUPJ062239). APPENDIX AT=� boundary value problemThe semilassial method for alulating the prob-ability of tunneling from a state with a few parameters�xed was developed in [13�15; 32℄ in the ontext of �eldtheory models and in [3�5; 11; 12℄ in quantum mehan-is. Here, we outline the method adapted to our modelof two degrees of freedom.1. Path integral representation of thetransition probabilityWe begin with the path integral representation forthe probability of tunneling from the asymptoti re-gion X ! �1 through a potential barrier. Let theinoming state jE; Ni have �xed energy and osillatorexitation number, and have support only for X � 0,well outside the range of the potential barrier. The in-lusive tunneling probability for states of this type isgiven byT (E;N) = limtf�ti!1( +1Z0 dXf +1Z�1 dyf �� ���hXf ; yf j exp(�iĤ(tf � ti))jE;Ni���2); (A.1)where Ĥ is the Hamiltonian operator. This probabilityan be reexpressed in terms of the transition amplitudesAfi = hXf ; yf j exp(�iĤ(tf � ti))jXi; yii (A.2)and the initial-state matrix elementsBii0 = hXi; yijE; NihE; N jX 0i ; y0ii (A.3)asT (E; N) = limtf�ti!1( +1Z0 dXf 0Z�1 dXi dX 0i �� +1Z�1 dyi dy0i dyf AfiA�i0fBii0): (A.4)

The transition amplitude and its omplex onjugatehave the familiar path integral representationAfi = Z [dx℄����� x(ti)=xix(tf )=xf exp(iS[x℄);A�i0f = Z [dx0℄����� x0(ti)=x0ix0(tf )=xf exp(�iS[x0℄); (A.5)where x = (X; y) and S is the ation of the model.To obtain a similar representation for the initial-statematrix elements, we rewrite Bii0 asBii0 = hXi; yijP̂E P̂N jX 0i ; y0ii; (A.6)where P̂N and P̂E denote the projetors onto the re-spetive states with the osillator exitation number Nand the total energy E. It is onvenient to use the o-herent state formalism for the y-osillator and hoosethe momentum basis for the X-oordinate. In this rep-resentation, the kernel of the projetor operator P̂E P̂Nbeomeshq; bjP̂E P̂N jp; ai = 1(2�)2 Z d� d� �� exp��iE��iN�+ i2p2�+exp(i!�+i�)�ba� Æ(q�p);where jp; ai is the eigenstate with the respetive eigen-values p and a of the enter-of-mass momentum p̂X andthe y-osillator annihilation operator â. It is straight-forward to express this matrix element in the oordi-nate representation using the formulashyjai = 4r!� exp��12a2 +p2!ay � 12!y2� ;hX jpi = 1p2� exp(ipX):Evaluating the Gaussian integrals over a, b, p, and q,we obtainBii0 = Z d� d� exp��iE� � iN� � i2 (Xi �X 0i)2� ++ !1� exp(�2i!� � 2i�) �� �y2i + y02i2 (1 + exp(�2i!� � 2i�)) �� 2yiy0i exp(�i!� � i�)��; (A.7)where we omit the pre-exponential fator depending on� and �. For the subsequent formulation of the bound-ary value problem, it is onvenient to introdue thenotation T = �i�; � = �i�:951



F. Bezrukov, D. Levkov ÆÝÒÔ, òîì 125, âûï. 4, 2004Then, ombining integral representations (A.7)and (A.5) and resaling the oordinates, energy,and exitation number as x ! x=p�, E ! E=�,N ! N=�, we �nally obtainT (E; N) = limtf�ti!1( +i1Z�i1 dT d� Z [dx dx0℄�� exp�� 1�F [x; x0; T; �℄�); (A.8)whereF [x; x0; T; �℄ = �iS[X; y℄ + iS[X 0; y0℄��ET �N� +Bi(xi;x0i;T; �): (A.9)Here, the nontrivial initial term Bi isBi = (Xi �X 0i)22T � !1� exp(2!T + 2�) �� �12(y2i + y0i2)(1 + exp(2!T + 2�))�� 2yiy0i exp(!T + �)�: (A.10)In (A.8), x and x0 are independent integration vari-ables, while x0f � xf , see Eq. (A.5).2. The boundary value problemFor small �, path integral (A.8) is dominated by astationary point of the funtional F . Therefore, to al-ulate the tunneling probability exponent, we extrem-ize this funtional with respet to all the integrationvariables X(t), y(t), X 0(t), y0(t), T , and �. We notethat beause of the limit tf � ti ! +1, the varia-tion with respet to the initial and �nal values of theoordinates leads to boundary onditions imposed atasymptoti t ! �1, rather than at �nite times ti; tf .We also note that the stationary points may be om-plex.Variation of funtional (A.9) with respet to theoordinates at intermediate times gives seond-orderequations of motion, in general omplexi�ed,ÆSÆX(t) = ÆSÆy(t) = ÆS0ÆX 0(t) = ÆS0Æy0(t) = 0: (A.11a)The boundary onditions at the �nal time tf ! +1are obtained by extremization of F with respet toXf � X 0f and yf � y0f . These are_Xf = _X 0f ; _yf = _y0f : (A.11b)

It is onvenient to write the onditions at the initialtime (obtained by varying Xi, yi, X 0i , and y0i) in termsof the asymptoti quantities. At the initial time instantti ! �1, the system moves in the region X ! �1,well outside the range of the potential barrier. Equa-tions (A.11a) in this region desribe free motion of de-oupled osillators, and the general solution takes theform X(t) = Xi + pi(t� ti);y(t) = 1p2! [a exp(�i!(t� ti)) + �a exp(i!(t� ti))℄ ;and similarly for X 0(t) and y0(t). For the moment,a and �a are independent variables. In terms of theasymptoti variables Xi, pi, a, �a, the initial boundaryonditions beomepi = p0i =� Xi �X 0iiT ;a0 + �a0 =a exp(!T + �) + �a exp(�!T � �);a+ �a =a0 exp(�!T � �) + �a0 exp(!T + �): (A.11)Variation with respet to the Lagrange multipliers Tand � gives the relation between the values of E, N , andthe initial asymptoti variables (where we use bound-ary onditions (A.11)),E = p2i2 + !N;N = a�a: (A.11d)Equations (A.11a)�(A.11d) onstitute the omplete setof saddle-point equations for the funtional F .The variables X 0 and y0 originate from the onju-gate amplitude A�i0f (see Eq. (A.5)), whih suggeststhat they are omplex onjugate to X and y. Indeed,the ansatz X 0(t) = X�(t), y0(t) = y�(t) is ompatiblewith boundary value problem (A.11). The Lagrangemultipliers T and � are then real, and problem (A.11)may be onveniently formulated on the ontour ABCDin the omplex time plane (see Fig. 2).We now have only two independent omplex vari-ables X(t) and y(t), whih have to satisfy the lassialequations of motion in the interior of the ontour,ÆSÆX(t) = ÆSÆy(t) = 0: (A.12a)The �nal boundary onditions (see Eq. (A.11b)) be-ome the reality onditions for the variables X(t) andy(t) at the asymptoti part D of the ontour,ImXf = 0; Im yf = 0;Im _Xf = 0; Im _yf = 0; t! +1: (A.12b)952



ÆÝÒÔ, òîì 125, âûï. 4, 2004 Dynamial tunneling of bound systems : : :Seemingly ompliated initial onditions (A.11) sim-plify when written in terms of the time oordinatet0 = t+iT=2 running along the part AB of the ontour.We again write the asymptoti form of a solution, butnow along the initial part AB of the ontour,X = X0 + p0(t0 � ti);y = 1p2! [u exp(�i!(t0 � ti)) + v exp(i!(t0 � ti))℄ :In terms of X0, y0, u, and v, boundary ondi-tions (A.11) beomeImX0 = 0; Im p0 = 0; (A.12)v = u�e�:Finally, we write Eqs. (A.11d) in terms of the asymp-toti variables along the initial part of the ontour,E = p202 + !N;N = !uv: (A.13)These equations determine the Lagrange multipliers Tand � in terms of E and N . Alternatively, we an solveproblem (A.12) for given values of T and � and �ndthe values of E and N from Eqs. (A.13), whih is moreonvenient omputationally.Given a solution to problem (A.12), the exponentF is the value of funtional (A.9) at this saddle point.We thus obtain expression (8) for the tunneling expo-nent. The exponent F is now expressed in terms of S0in Eq. (9), the ation of the system integrated by parts.The nontrivial boundary term Bi, Eq. (A.10), is an-eled by the boundary term oming from integration byparts. We note that we did not use onstraints (A.13)to obtain formula (8), and we therefore still have toextremize (8) with respet to T and � (see disussionin Se. 2.2).Classial problem (A.12) is onveniently alledthe T=� boundary value problem. Equations (A.12b)and (A.12) imply eight real boundary onditionsfor two omplex seond-order di�erential equa-tions (A.12a). However, one of these real onditions isredundant: Eq. (A.12b) implies that the (onserved)energy is real, and therefore the ondition Im p0 ! 0is automatially satis�ed (we note that the osillatorenergy Eos = !uv = !e�uu� is real). On the otherhand, system (A.12) is invariant under time trans-lations along the real axis. This invariane is �xed,e.g., by requiring that ReX takes a presribed valueat a presribed large negative time t00 (we note thatother ways may be used instead; in partiular, for

E < E1(N), it is onvenient to impose the onstraintRe _X(t = 0) = 0). Together with the latter require-ment, we have exatly eight real boundary onditionsfor the system of two omplexi�ed (i.e., four real)seond-order equations.APPENDIX BA property of solutions of the T=� problem inthe ase of over-barrier transitionsFor given E and N , there is only one over-barrierlassial solution, whih is obtained in the limit � ! 0of the regularized T=� proedure. To see what singlesout this solution, we analyze the regularized funtionalF�[q℄ = F [q℄ + 2�Tint[q℄; (B.1)where q denotes the variables x(t); x0(t) and T; � to-gether. The unregularized funtional F has a valley ofextrema qe(') orresponding to di�erent values of theinitial osillator phase '. Clearly, at small �, the ex-tremum of F� is lose to a point in this valley with thephase extremizing Tint[qe(')℄,dd'Tint[qe(')℄ = 0: (B.2)Hene, the solution qe� of the regularized T=� boundaryvalue problem tends to the over-barrier lassial solu-tion, with Tint extremized with respet to the initialosillator phase.Beause Uint(x) > 0, Tint is a positive quantitywith at least one minimum. In normal situation, thereis only one saddle point of F�, and hene solving theT=� boundary value problem gives the lassial solutionwith the time of interation minimized.APPENDIX CClassially allowed transitions: aone-dimensional exampleThe di�ulties with bifurations of lassial solu-tions emerge in quite a general lass of quantum me-hanial models. To illustrate this statement, we on-sider one-dimensional quantum mehanis, where theresult is given by the well-known WKB formula. Weshow that the origin of the above di�ulties an alsobe seen in one-dimensional model. Implementationof the regularization tehnique is expliit in the one-dimensional ase. This makes it easy to see how ourtehnique allows us to smoothly join the lassial solu-tions relevant to the tunneling and allowed transitions.953



F. Bezrukov, D. Levkov ÆÝÒÔ, òîì 125, âûï. 4, 2004Quantum mehanis of one degree of freedom in-volves only one variable X(t) that desribes motion ofa partile with mass m = 1 through a potential barrierU(X). The motion is free in the asymptoti regionsX ! �1. The semilassial alulation of the tun-neling exponent is performed by solving the lassialequation of motion ÆSÆX(t) = 0on the ontour ABCD in the omplex time plane, withthe ondition that the solution is real in the asymptotipast (region A) and asymptoti future (region D). Therelevant solutions tend to X ! �1 and X ! +1 inregions A and D, respetively. The auxiliary param-eter T is related to the energy of the inoming stateby the requirement that the energy of the lassial so-lution equals to E. The exponent for the transitionprobability is F = 2 ImS �ET: (C.1)We note that these boundary onditions resemblethe ones on the tunneling oordinate X in the two-dimensional system.In quantum mehanis of one degree of freedom, theontour ABCD may be hosen suh that the points Band C are the turning points of the solution. Thenthe solution is also real at the part BC of the ontour.Indeed, a real solution at the part BC of the ontourosillates in the upside-down potential, T=2 is equal tothe half-period of osillations, and the points B and Care the two di�erent turning points, _X = 0. Continua-tion of this solution from the point C to the positive realtimes in aordane with the equation of motion orre-sponds to real-time motion, with zero initial veloity,towards X ! +1; the oordinate X(t) stays real onthe part CD of the ontour. Likewise, the ontinuationbak in time from the point B leads to a real solutionin the part AB of the ontour. The reality onditionsare thus satis�ed at A and D. The only ontribution toF omes from the Eulidean part of the ontour, andit an be heked that expression (C.1) redues toF (E) = 2 XCZXB p2(U(X)�E) dX; (C.2)whih is the standard WKB result.The solutions appropriate for the lassially forbid-den and lassially allowed transitions apparently be-long to di�erent branhes. As the energy approahesthe height of the barrier U0 from below, the ampli-tude of the osillations in the upside-down potential

dereases, while the period T tends to a �nite value de-termined by the urvature of the potential at its max-imum. On the other hand, the solutions for E > U0always run along the real time axis, and hene the pa-rameter T is always zero. Therefore, the relevant so-lutions do not merge at E = U0, and T (E) has a dis-ontinuity at E = U0. The regularization tehnique ofSe. 3.1 removes this disontinuity and allows smoothtransitions through the point E = U0. The only dif-ferene with quantum mehanis of multiple degrees offreedom is that in the latter ase, bifuration points ex-ist not only at the boundary of the region of lassiallyallowed transitions, but also well inside the region oflassially forbidden transitions (but still at E > ES ,see the Introdution and Se. 2.3).To illustrate the situation, we onsider an exatlysolvable model withU(X) = 1h2X :We implement our regularization tehnique by formallyhanging the potentialU(X)! e�i�U(X); (C.3)whih leads to the orresponding hange of the lassi-al equations of motion. Here, � is a real regularizationparameter, the smallest parameter in the model. Atthe end of the alulations, we take the limit �! 0.We do not hange the boundary onditions in ourregularized lassial problem, i.e., we still require X(t)to be real in the asymptoti future on the real timeaxis and X(t0) to be real as t0 ! �1 on part A of theontour ABCD. Then the onserved energy is real.The sphaleron solution X(t) = 0 now has a omplexenergy (beause the potential is omplex). Hene, thesolutions of our lassial boundary value problem ne-essarily avoid the sphaleron, and we an expet thatthe solutions behave smoothly in energy.The general solution of the regularized problem isr Ee�i� �E shX = � h�p2E(t� t0)� ;where t0 is the integration onstant. The value of Im t0is �xed by the requirement that ImX = 0 at positivetime t! +1,Im t0 = T2 � 12p2E arg[e�i� �E℄:The residual parameter Re t0 represents the real-timetranslational invariane present in the problem. Theondition that the oordinate X is real on the initial954



ÆÝÒÔ, òîì 125, âûï. 4, 2004 Dynamial tunneling of bound systems : : :part AB of the ontour gives the relation between Tand E, T2 = 1p2E �� + arg �e�i� �E�	 : (C.4)For � = 0 and E < 1, the original unregularized resultT=2 = �=p2E is reprodued.We now analyze what happens in the regularizedase in the viinity of the would-be speial value of en-ergy, E = ES � 1. It is lear from Eq. (C.4) that Tis now a smooth funtion of E. Away from E = 1,Eq. (C.4) an be written asT2 == 8>><>>: �p2E ; forbidden region, 1�E � ��p2E(E � 1) ; allowed region, E�1� �: (C.5)Deep enough in the region of forbidden transitions,where 1� E � �, the argument in Eq. (C.4) is nearlyzero and we return to the original tunneling solution.When E rosses the region of size of the order of �around E = 1, the argument rapidly hanges from O(�)to ��, and hene T=2 hanges from �=p2 to nearlyzero. Thus, at E > 1, we obtain a solution that isvery lose to the lassial over-barrier transition, andthe ontour is also very lose to the real axis. Thisis shown in Fig. 9. We onlude that at small but �-nite �, the lassially allowed and lassially forbiddentransitions merge smoothly.For E < 1, the limit � ! 0 is straightforward. ForE > 1, a somewhat more areful analysis of the limit�! 0 is needed. It follows from Eq. (C.5) that thelimit �! 0 with a onstant �nite T < �p2 leads tosolutions with E = 1. Classial over-barrier solutionsof the original problem with E > ES � 1 are obtainedin the limit �! 0 if T also tends to zero while � = T=�is kept �nite. Di�erent energies orrespond to di�er-ent values of � . This is what one expets � lassialover-barrier transitions are desribed by the solutionson the ontour with T � 0.REFERENCES1. Z. Huang, T. Feuhtwang, P. Cutler, and E. Kazes,Phys. Rev. A 41, 32 (1990).2. S. Takada and H. Nakamura, J. Chem. Phys. 100, 98(1994).
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