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We suggest a new approach for description of the low-energy sector of the spin-1 kagomé Heisenberg antifer-
romagnets (KAFs). We show that a kagomé lattice can be represented as a set of blocks containing 12 spins,
having the form of stars and arranged in a triangular lattice. Each of these stars has two degenerate singlet
ground states that can be considered in terms of pseudospin 1. Using symmetry consideration, we show that
the KAF lower singlet band is made by the inter-star interaction from these degenerate states. We demonstrate
that this band is described by the effective Hamiltonian of a magnet in the external magnetic field. The general
form of this Hamiltonian is established. The Hamiltonian parameters are calculated up to the third order of the
perturbation theory. The ground state energy calculated in the model considered is lower than those evaluated
numerically in the previous finite clusters studies. A way of experimental verification of this picture using neutron
scattering is discussed. It is shown that the approach presented cannot be directly extended to KAFs with larger

spin values.
PACS: 75.10.Jm, 75.30.Kz, 75.40.Gb

1. INTRODUCTION

Unusual low-temperature properties of kagomé an-
tiferromagnets (ICAFs) attracted much attention of
both theorists and experimenters in the last decade.
Apparently the most intriguing features were observed
in specific heat C' measurements of SrCrGaO (spin-%
kagomé material) [1]. A peak at T ~ 5 K has been re-
vealed that is practically independent of the magnetic
field up to 12 T and C appeared to be proportional to
T? at T <5 K.

There is no appropriate theory describing the low-
energy KAF sector. Qualitative understanding of the
low-temperature spin—% KAF physics is based mostly
on results of numerous finite-cluster investigations [2—
6]. They revealed a gap separating the ground state
from the upper triplet levels and a band of nonmag-
netic singlet excitations with a very small or zero gap
inside the spin gap. The number of states in the band
increases with the number of sites N as V. It was
obtained for samples with up to 36 sites that o = 1.15
and 1.18 for even and odd N, respectively [2,5]. It is
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now believed that this wealth of singlets is responsi-
ble for a low-T specific heat peak and explains its field
independence [1,7].

The origin of the singlet band and the nature of
the ground state are still under debate. Previous exact
diagonalization studies of clusters with N < 36 [4, §]
revealed an exponential decay of the spin—spin and
dimer—dimer correlation functions, and therefore the
point of view that KAF is a spin liquid is widely ac-
cepted [2,4-12].

A quantum dimer model (QDM) is now consid-
ered the best candidate for description of low-energy
KAF properties [6,9,13-15]. In QDMs proposed for
the kagomé problem in some recent papers [6,13-16],
the spin Hilbert space is restricted to the states in
which spins are paired into first-neighbor singlets. The
main argument to support this restriction is the co-
incidence of the low-energy spectrum and the number
of lower singlet excitations in samples with up to 36
sites with the exact diagonalization results [13,15, 16].
At the same time, it was noted that further studies
are required to analyze this problem. As was recently
demonstrated in Ref. [15], an effective Hamiltonian de-
scribing the low-energy KAF singlet sector can be writ-
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Fig.1. Kagomé lattice (KL). There is a spin at each

lattice site. The KL can be considered as a set of stars

arranged in a triangular lattice. Each star contains 12

spins. A unit cell is also presented (dark region). There
are four unit cells per star

ten in this approach. Unfortunately, it appears to be
quite cumbersome and allows one to obtain the result
under a number of crude approximations only [14, 15].

In our recent paper [17], we have suggested another
approach for spin-% KAF that differs from the QDMs
discussed above. We proposed to consider a kagomé
lattice as a set of stars with 12 spins arranged in a tri-
angular lattice (see Fig. 1). Numerical diagonalization
has shown that a single star has two degenerate singlet
ground states separated from the upper triplet levels
by a gap. These states form a singlet energy band as a
result of the inter-star interaction. It was assumed that
this band determines the low-energy KAF singlet sec-
tor. We have shown that it is described by the Hamil-
tonian of a magnet in the external magnetic field where
degenerate states of the stars are represented in terms
of two projections of pseudospin 1.

This picture possibly reflects only the lowest part
of the lower singlet sector because the number of states
in the band within our approach is 2V/12 ~ 1.06~ [17],
whereas it is now believed that it should be scaled by
the 1.15" law obtained numerically for clusters with
N < 36 [13,16].

In the present, more comprehensive paper, we de-
velop this star concept. Using symmetry considera-
tions presented in Sec. 2, we prove that the singlet
band arising from the star ground states does deter-
mine the KAF lower singlet sector. This band is stud-
ied in Sec. 3, where the general form of the effective
Hamiltonian is established. The Hamiltonian parame-
ters are calculated up to the third order of the pertur-

bation theory. The ground state energy calculated in
the model considered is lower than these energies eva-
luated numerically in the previous finite cluster studies.
A comparison between our model and the QDM is car-
ried out. We demonstrate that our approach cannot
be directly extended to KAFs with larger spin values.
A way of experimental verification of this picture us-
ing neutron scattering is discussed. We summarize our
results in Sec. 4.

2. SYMMETRY CONSIDERATION

We start with the Hamiltonian of the spin—% kagomé
Heisenberg antiferromagnet,

HOZleSi'Sj+JQZSi'Sj, (].)
(4,4) (4,4)

where (i, j) and (7, j) denote nearest and next-nearest
neighbors on the kagomé lattice, respectively, shown
in Fig. 1. The case where |J2| < J; is considered in
this paper. We discuss the possibility of both signs of
the next-nearest-neighbor interactions, the ferromag-
netic and the antiferromagnetic one. As shown below,
although the second term in Eq. (1) is small, it can be
important for the low-energy properties.

A kagomé lattice can be represented as a set of stars
arranged in a triangular lattice (see Fig. 1). We first
neglect the interaction between stars and put Jo = 0
in Eq. (1). A star is a system of 12 spins. We now
consider its properties in detail.

Because Hamiltonian (1) commutes with all the pro-
jections of the total spin operator, all the star levels
are classified by the values of .S, irreducible representa-
tions (IRs) of its symmetry group, and are degenerate
with respect to S,. The star symmetry group Cg, con-
tains six rotations and reflections with respect to six
lines passing through the center. There are four one-
dimensional and two two-dimensional IRs, which are
presented in Appendix A. In their basis, the matrix of
the Hamiltonian has a block structure. Each block has
been diagonalized numerically.

As a result, it was obtained that the star has a dou-
bly degenerate singlet ground state separated from the
lower triplet level by a gap A & 0.26.J;. Ground state
wave functions can be represented as

1
W+:7F+1/16(¢1+¢2)7 (2)
=L (46—, 3)

V2 1/16
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Fig.2. Schematic representation of the two singlet
ground state wave functions ¢ and ¢2 of a star. The
bold line shows the singlet state of two neighboring

spins, i.e., (| 1), ‘L)j =14l T)l)/ﬁ

where functions ¢; and ¢ are shown schemati-
cally in Fig. 2.  The bold line there represents
the singlet state of the corresponding two spins, i.e.

It can be shown that ¢; and ¢, are not orthogonal:
their scalar product is (¢1¢2) = 1/32. They contain six
singlets, each having the energy —S(S+1).J; = —3/4.J;.
It can be shown that the interaction between singlets
does not contribute to the energy of the ground states,
which is consequently equal to —4.5.7;.

The functions ¢; and ¢- are invariant under rota-
tions of the star and transform into each other under
reflections. Hence, ¥, is invariant under all the sym-
metry group transformations. In contrast, the func-
tion W_ is invariant under rotations, changes sign un-
der reflections, and is transformed under representa-
tion (A.3). Therefore, the ground state has accidental
degeneracy. As shown in the next section, the next-
nearest neighbor interaction, which has the same sym-
metry as the original Hamiltonian, lifts this degeneracy.

The KAF containing A/ noninteracting stars has the
energy spectrum with a large level degeneracy when
N > 1. For example, the ground state degeneracy is
2N and that of the lowest triplet level is 3A2W =1,
Interaction between stars gives rise to an energy band
from every such group of levels, and it is a very difficult
task to follow their evolution. On the other hand, group
theory allows making some conclusions about the KAF
low-energy sector. We now show that the singlet band
stemming from the ground state cannot be overlapped
by those originating from the upper singlet levels.

We consider a cluster with seven stars shown in
Fig. 3a, and we begin with neglecting the interaction
between them. The symmetry group of the cluster
is also Cg,. The ground state has the degeneracy
27 = 128. The corresponding wave functions trans-
formed under IRs of (g, are constructed as linear com-

KX XX XX

Wy XX XX

Fig.3. a) A cluster where the operator of the interac-

tion between stars has the same symmetry group Cé,

as the whole cluster; b) the only configuration of three

stars giving a nonzero contribution to the third term in
the perturbation expansion

binations of products containing ¥, or ¥_ for each
star. Using the standard procedure of constructing
bases in irreducible representations ([18,19] and Ap-
pendix A), it is easy to show that there are at least two
ground state wave functions of the cluster discussed,
transformed under any given IR.

It is important to mention that the operator of
the inter-star interaction in the cluster has the same
symmetry as the intra-star one, which is a sum of the
star Hamiltonians. The interaction between stars then
commutes with the square of the total spin operator.
Therefore, if we increase the inter-star interaction from
zero, all the levels move by energy, but their classifica-
tion cannot be changed. Levels can cross each other as
the interaction rises from 0 to Ji, but the crossing is for-
bidden for levels of the same symmetry. This is a conse-
quence of a symmetry theorem proved in Refs. [18, 19].
Hence, we can conclude that the lower singlet sector
of the cluster is formed by states that stem from the
original 128 lower levels.

We can obtain the same conclusions considering
clusters of the symmetry Cg, with a large number of
stars. We therefore assume in what follows that the
KAF low-energy singlet sector is formed by the states
originating from those in which each star is in one of
the states ¥4 or ¥_. Because bands with S # 0 can
overlap the singlet bands under discussion, we have to
suppose that the KAF low-energy properties are deter-
mined by the lowest states in this singlet band.

Because the interaction between stars commutes
with the square of the total spin operator, bands of
different S can be studied independently. The KAF
lower singlet sector is considered in detail in the next
section. Investigation of states with S # 0 is outside
the scope of this paper.
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Fig. 4. V =
=718V 8 48N .8() and V = (S s<2>
+s.s( 4 8. S(z) +8{".8(*), where the super-
scripts label the stars. The system is symmetric under
reflection with respect to the dotted line

Interactions between two stars:

3. SINGLET DYNAMICS

In this section, we derive the general form of the ef-
fective Hamiltonian describing the lower singlet sector.
The inter-star interaction is considered a perturbation.
Although it is not small compared to the intra-star in-
teraction, there are reasons presented below to use the
perturbation expansion here.

Two-star coupling. We begin with considering
the interaction between two nearest stars, still neglect-
ing the second term in Eq. (1). Initially, there are four
fold de enerate ground state with the wave functions
{\I’n1 nQ)} (where n; = +, — and the superscript labels
the stars) and the energy

EY), =EY +EY) = -9J,.

nins

As can be seen from Fig. 4, the interaction has the form
V=i s +si - s). (4)

According to the standard theory [18], the following
conditions should be satisfied to consider V as a per-
turbation:

Vi no:
‘ nins ‘ _ ninz;mimsa < 1’ (5)
e ET(l(i)nQ - Er(r?zmg
where Vinyimim, = <‘I'n1 n2|V|‘I'M1 mg) mimsz

denotes excited singlet levels of the two stars, and
n; = +,—. We have calculated C71"2  for n; = +, —
using wave functions obtained numerically and found
that all of these coefficients do not exceed 0.09. Con-
ditions (5) are therefore satisfied. Then the maximum

value of the sum 37 |CPin2 12 is 0.28, which is also

sufficiently small. Thus, the interaction between stars
is considered a perturbation in what follows.

We proceed with calculations of corrections to the
initial ground state energy of two stars. For this, be-
cause the state is fourfold degenerate, we must solve
a secular equation [18]. The corresponding matrix el-
ements in the third order of perturbation theory are
given by [18]

Hnlnz;klkz = annz;klkz +

nl n2,m1m2 Vm1m2;k1 ko

+ g +
_ E(O)
mi,msa n1n2 mi1msa
n1n2,m1m2Vm1m2;Q1Q2V01Q2;k1k2 6
+ )

n1n2 - Emzmz)(E}’L?)nz - Eé?zm)

mi1,m2 q1,q2

where n;, k; = +, —. Obviously, the first term in Eq. (6)
is zero and the second term can be represented as

o

_ —GtHiEO) ¢
Hn1n21k1k2 = / 2 X
0

xRV VR (7)
where H((]i) are Hamiltonians of the corresponding stars.
The third term in Eq. (6) is to be considered later.
Using the symmetry of the functions ¥, and ¥_ dis-
cussed above and the invariance of the system under
reflection with respect to the dotted line in Fig. 4, it
can be shown that the only nonzero elements belong to
the first and the second diagonals (i.e., with nq = ki,
ny = ko and with ny # ki, na # ko). We have calcu-
lated them numerically with a very high precision by
expansion of the operator exponent up to the power
150Y). The results can be represented as

Hyjipp = —a1 +az —ag, (8)
Hi . =—a +as, 9)
H 4, 4 =-—a+as, (10)
H__.__=—a —ay—as, (11)
where a; = 0.256Jy, as = 0.015J;, and a3 =
= 0.0017J;. The terms of the second diagonal
Hyi =H 4 =-H =-H  =a-=

= —0.0002J; are much smaller than ay, as, and as.
The interaction therefore shifts all the levels by the
value —a; and lifts their degeneracy. The constants as,
asz, and a4 determine the level splitting. It is seen that
the splitting is very small compared to the shift.

1) Difference of these results from those obtained by the ex-
pansion of the exponent up to the power 149 is of the order
1075 %. Therefore, the method gives nearly precise values. The
results would be the same if the calculations are done with the
more common expression in Eq. (6) and eigenfunctions of the
star obtained numerically.
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Contributions to the parameters of effective Hamiltonian (13) from the terms V', V2, and V? of the perturbation ex-
pansion. The interaction Jo has been taken into account in V' and V? terms only. A is the number of stars in the

lattice
V! V2 V3e Totals
two-stars three-stars

T 0 —0.007.J; 4+ 0.002.Jy —0.013.1; 0.010.); —0.010.J; + 0.002.J

Ty 0 —0.001.J; 4+ 0.007 J> —0.001.J; 0.001.J; —0.001.J; 4+ 0.007.J>

Tz 0 0 0.067.J; 0 0.067.J;

h —0.563.Jy —0.092.J; — 0.218.Jy —0.161.J; 0.080.)1 —0.173.J; — 0.781.J,
ACP —0.009Jo —0.768.3N + 1.530 o —0.361J,NV 0.304., N —0.825 3N + 1.521.LbN
@ This term implies the two-star coupling shown in Fig. 4 and the three-star interaction in the configuration presented
in Fig. 3.

b Correction to the value Cop = —4.5J; " for noninteracting stars.

The KAF therefore appears to be a set of two-level
interacting systems, and the low-energy singlet sector
of the Hilbert space can naturally be represented in
terms of pseudospins: | 1) = ¥_ and | |) = ¥ . Tt
follows from Eqs. (8)—(11) that in these terms, the in-
teraction between stars is described by the Hamiltonian
of a ferromagnet in the external magnetic field,

H = Z[jzsfsj —l—jysfs;’]—l—hz(sf—l—ﬁ (12)
(4,5) i

where (i,j) now labels nearest-neighbor pseudospins,
arranged in a triangular lattice formed by the
stars, s is the spin-§ operator, C = —5.268.J;.\,
jz = 4a3 = —0.007(]1., jy = 4a4 = —0.001(]1., and
h = —6ay = —0.092.7;. Here, N'= N/12 is the number
of stars in the lattice. The factor 6 appears in the
expression for h because each star interacts with 6
neighbors. We see that the magnetic field in effective
Hamiltonian (12) is much larger than the exchange.
In this approximation, the stars therefore behave as
almost free spins in the external magnetic field and
the ground state of the KAF has a long-range singlet
order, which settles on the triangular star lattice and
is formed by stars in ¥ _ states.

V3 corrections. The field remains the largest
term in the effective Hamiltonian and the KAF ground
state has the same long-range order if we take the V3
terms in the perturbation series into account. For the
two-star coupling, the V3 corrections have the form
given by Eq. (6). The V3 terms also require analyzing
the three-star interaction. Nonzero contributions from
them are only obtained for the configuration presented
in Fig. 3b. The secular matrix for three stars is of the
size 8 x 8. We have calculated the V? corrections with

a very high precision using the integral representation
similar to that in Eq. (7) for the second term in Eq. (6).
All the operator exponents were expanded up to the
power 150. As a result, the low-energy properties of
the KAF are described by the effective Hamiltonian

H = Z [jzsfsj + T8 85 + jysi?’s?] +
(,4)
+hY si+C, (13)

where all parameters are given in the Table. It de-
scribes two-star coupling. We omit the three-pseu-
dospin terms in Eq. (13) that have the form s}s?sj
and sisis] and describe the three-star interaction.
The corresponding coefficients are of the order of
1073.J; and 10=%J;, respectively, and are negligible
in comparison with those of the retained terms. We
stress that within our precision, the Hamiltonian in
Eq. (13) is an exact mapping of the original Heisenberg
model to the low-energy sector (the excitation energy
w ~ max{J., Jy, Tz, h} < J1).

As follows from the study of the V? corrections in
the Table, the common shift given by them remains
much larger than the level splitting in both cases of
the two- and three-star coupling. At the same time,
the values of the V3 perturbation terms are approxi-
mately two times smaller than those of the V2 ones.
The change in the effective Hamiltonian from the V3
terms is therefore significant and analysis of the pertur-
bation series cannot be finished at this point for correct
determination of the effective Hamiltonian. Unfortu-
nately, such a work requires great computer capacity
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that is not at our disposal. We have to restrict ourself
with this precision here.

One can judge about the applicability of the per-
turbation series from the values of the ground state
energy of two interacting stars, shown in Fig. 4, ob-
tained numerically and using the first two orders of the
perturbation theory. The ground state energy of two
noninteracting stars is —9./;. That of two interacting
stars calculated numerically by the power method [20]
is —9.62.J;. On the other hand, the ground state en-
ergy obtained using the Table is —9.42.J; (the respec-
tive contributions of the V2 and V3 terms are —0.27.J;
and —015J1)

Effective Hamiltonian structure. Although the
perturbation theory works badly in the star model and
many perturbation terms are to be taken into account,
we can now show that Eq. (13) is the most general
form of the effective Hamiltonian assuming that n-
pseudospin couplings with n > 2 are small, as this was
in the case of n = 3 discussed above. We consider pos-

sible terms of the form s?s7, sis7, si, and 57 . In these

cases, the numbers of funczcions \iq_ and ¥_ to the right
of the corresponding matrix elements differ from those
to the left by unity. As has been pointed out above, a
kagomé lattice contains lines of symmetry reflections,
and the star Hamiltonian and the inter-star interaction
are invariant under these reflections. Because ¥, are
invariant and ¥_ change sign under these transforma-
tions, the matrix elements are equal to themselves with
the opposite sign and must therefore be zero. Another
possible term

cannot appear in the effective Hamiltonian because the
corresponding matrix elements should be imaginary.

Ground state. As is clear from the Table, 7,
and h are the largest parameters of Hamiltonian (13)
in our approximation. Therefore, the KAF behaves
as the Ising antiferromagnet in the perpendicular mag-
netic field. In this case, the classical value of the field at
which spin flip occurs is hs—fy = J,, which is approx-
imately 2.6 times smaller than h. The ground state
must therefore remain ordered with all the stars in the
W_ state.

The ground state energy and that of the upper edge
of the singlet band calculated using the Table are

(=4.5J; + AC + h/2 + 37T, /4N = —0.452J, N

and

(=4.5J1 + AC — h/2+ 3T./4)N = —0.437J, N,

614

respectively. Corrections from 7, to these values in
the first nonzero order of the perturbation theory are
given by (3/16)N 72 /h and are negligible. At the same
time, the ground state energy of the largest cluster with
N = 36 that has previously been considered numeri-
cally is —0.438J; N [5]. Hence, we believe that clusters
used in the previous studies were too small to reflect the
Heisenberg KAF low-energy sector at Jo = 0 properly.

Interaction Js. We now show that in spite of
its smallness, the next-nearest neighbor interaction can
play an important role for low-energy properties. We
have calculated Js corrections to the parameters of ef-
fective Hamiltonian (13) for the first and the second
terms in Eq. (6) only. There are 12 intrinsic .J» interac-
tions in each star, which splits the doubly degenerate
ground state and, as is seen from the Table, gives a con-
tribution to the magnetic field h and to the constant C.

Ag is clear from Fig. 4, the two-star coupling is now
given by the operator

V=78 8048l 8P4l 8P sl s,

Corrections proportional to Jo were calculated in the
same way as above and are also presented in the Ta-
ble. Tt is seen that the contribution of the next-nearest
interactions to the magnetic field becomes significant
if |Jo] ~ 0.1J;. If J» < O (ferromagnetic interaction),
they can even change the sign of h.

The effect of the next-nearest ferromagnetic cou-
pling for KAF properties was previously studied in
Ref. [2] numerically on finite clusters with N < 27 in
a wide range of the values of J>. It was shown there
that at |J2|/J; ~ 1, the ground state has the V3 x V3
magnetic structure. At |J2|/J; < 1, the ground state
is disordered and there is a band of singlet excitations
ingide the triplet gap. As we demonstrated above, this
band is a result of the star ground state degeneracy in
our approach.

T? specific heat behavior. There have been
many speculations on the low-temperature dependence
of the KAF specific heat C o« T2 observed experi-
mentally for S = 3/2 (see Refs. [7,21] and references
therein). As we obtained above, low-T" properties are
described by effective Hamiltonian (13) of a magnet,
which has the spectrum of the form eq = /(cq)? + A'?
at ¢ € 1 and can be in the ordered or disordered
phases depending on particular values of the parame-
ters. Small A’ here implies the proximity to the quan-
tum critical point at which C' oc T%. Such a situation
arises in the singlet dynamics of the model of interac-
tive plaquets [21]. We do not present the correspond-
ing analysis here because parameters of the effective
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Hamiltonian could be changed in the next orders of
the perturbation theory.

Experimental verification. In both cases of the
ordered and disordered ground state, the approach pre-
sented in this paper can be checked by inelastic neutron
scattering: the corresponding intensity for the singlet—
triplet transitions should have the periodicity in the
reciprocal space corresponding to the star lattice. This
picture is similar to that observed in the dimerized spin-
Pairls compound CuGeOj [22]. In this case, inelastic
magnetic scattering has a periodicity that corresponds
to the dimerized lattice.

Comparison with QDMs. We point out that
states in which all the stars are in the W_ or ¥, state
can be presented as linear combinations of some first-
neighbor dimer states proposed in Refs. [15, 16] for the
QDM. But our approach to the kagomé problem is not
equivalent to the QDM. In particular, we take all the
intermediate states into account in considering the star
interaction via perturbation theory in Eq. (6), whereas
the QDM is restricted to the first-neighbor dimer sub-
space as regards the dimer dynamics.

Unfortunately, we cannot carry out a complete com-
parison between the QDM and the star approach at
the present stage. The effective Hamiltonian derived
in Ref. [15] was analyzed under crude approximations
only. At the same time, the model presented here also
requires further studies of the perturbation theory ap-
plicability for description of the inter-star interaction.
We also note that some present-day results obtained
within these two approaches contradict each other. For
example, our model gives the ordered ground state,
whereas the authors of Ref. [15] suggest that it is not
ordered.

Cases of S > 1/2. We finally note that our con-
sideration of the S = 1/2 KAF cannot be extended
directly to the cases of larger spins. Although func-
tions presented in Fig. 2, where the bold line shows
the singlet state of the corresponding two spins, re-
main eigenfunctions of the Hamiltonian for S > 1/2,
we have found numerically that they are not ground
states of the star with S =1 and S = 3/2. All details
of calculations are presented in Appendix B. Another
approach to KAFs with S > 1/2 should therefore be
proposed.

4. CONCLUSION

In this paper, we present a model of the low-energy
physics of spin-% kagomé Heisenberg antiferromagnets
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(KAFs). The spin lattice can be represented as a set
of stars that are arranged in a triangular lattice and
contain 12 spins (see Fig. 1). Each star has two de-
generate singlet ground states with a different symme-
try, which can be described in terms of pseudospin. It
is shown that the interaction between the stars leads
to the band of singlet excitations that determines the
low-energy KAF properties. The low-energy dynam-
ics is described by the Hamiltonian of a spin-1 mag-
net in the external magnetic field given by Eq. (13).
The Hamiltonian parameters are calculated in the first
three orders of perturbation theory and are summa-
rized in the Table. Within our precision, the KAF has
an ordered singlet ground state with all the stars in
the state given by Eq. (3). The ground state energy is
lower than that calculated in the previous finite cluster
studies. We show that our model cannot be extended
directly to KAFs with S > 1/2.

The approach discussed in this paper can be veri-
fied experimentally on inelastic neutron scattering: the
corresponding intensities for singlet—triplet transitions
should have the periodicity in the reciprocal space
corresponding to the star lattice.
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Goskontrakt Grant 40.012.1.1.1149, and Russian State
Programs «Quantum Macrophysics», «Collective and
Quantum Effects in Condensed Matter», and «Neutron
Research of Solidsy.

APPENDIX A

Irreducible representations of the group Ceg,

The symmetry group Cg, contains six rotations C*
by the angles 27k/6 (k = 0,1,...,5) and six reflec-
tions, which can be written as C*Fuq, where u is the
operator of a reflection. One-dimensional irreducible
representations can be presented as follows [18, 19]:

ok~ 1, up ~ 1, (A1)
CF ~ (=1)k, up ~ 1, (A.2)
ok~ 1, uyp ~ —1, (A.3)
CF ~ (=1)k, up ~ —1. (A.4)
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For two-dimensional representations, we have [18,19]

& el 0
O ~ ( e_i%k )7
U1N< )’

where two inequivalent representations are given by
l=1and [ =2.

2n1
&k

0
(A.5)
0 1

10

APPENDIX B
Star with S =1 and S = 3/2

In this Appendix, we give the details of numerical
calculations showing that functions presented in Fig. 2,
where the bold line shows the singlet state of the cor-
responding two spins, are not ground states of the star
with S =1 and S = 3/2, as this was for S = 1/2.

A simple numerical method for determination of the
eigenvalue of a Hermitian operator H of the maximum
modulus (power method [20]) was used. It is based on
the following statement. We consider a state of the
system f = ). c;jt);, where the sum may not include
all the H eigenfunctions. For a given f, the eigenvalue
Ee¢ytr of the maximum modulus is determined by

i LIS
nte (fTHf)

This becomes evident by noting that (f|H"|f)
=3 leil*Ep.

Equation (B.1) can be used in numerical calcula-
tions as follows. The corresponding expression is cal-
culated for n = 1,2,... ,nyqe.. Convergence can there-
fore be controled by comparing results with different n.
Studying a full set of vectors f and taking nmq. large
enough to match the necessary precision, one can find
the eigenvalue of H with the largest modulus.

In the case of the star, the maximum eigenvalue of
the Hamiltonian is F,,,, = 18S2.J; (this energy has
the state in which all the spins are along the same
direction) and the energy of singlet states shown in
Fig. 2 is Eqs = —6S(S + 1)J;. Because Epaz > |Essl
for S > 1/2, we have to take H = Ho — W1 to in-
vestigate the lower H, levels, where H, is the star
Hamiltonian given by Eq. (1), I is the unit matrix, and
W = (Epmaz + Ess)/2+ J1. Eigenvalues of H are there-
fore shifted down relative to those of Hy by the same
value W such that the H eigenvalue with the largest

== Ee.’mh“ (Bl)
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modulus becomes equal to the Hy ground state energy
minus W.

We have not found the ground state energy for the
star with S = 1 and S = 3/2 by this method be-
cause the full set of vectors f should be examined for
that. This operation requires much computer time.
But studying a number of vectors f, we have obtained
that there are states lower than those discussed above
by the energy 1.8J; at least. The method has given
FEeyir with the prescribed precision to the second deci-
mal position at 7,,,, = 100-300 depending on f and S.
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