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LOW-ENERGY SINGLET DYNAMICS OF SPIN-1/2 KAGOMÉHEISENBERG ANTIFERROMAGNETSA. V. Syromyatnikov *, S. V. MaleyevPetersburg Nu
lear Physi
s Institute188300, St. Petersburg, RussiaSubmitted 30 June 2003We suggest a new approa
h for des
ription of the low-energy se
tor of the spin- 12 kagomé Heisenberg antifer-romagnets (KAFs). We show that a kagomé latti
e 
an be represented as a set of blo
ks 
ontaining 12 spins,having the form of stars and arranged in a triangular latti
e. Ea
h of these stars has two degenerate singletground states that 
an be 
onsidered in terms of pseudospin 12 . Using symmetry 
onsideration, we show thatthe KAF lower singlet band is made by the inter-star intera
tion from these degenerate states. We demonstratethat this band is des
ribed by the e�e
tive Hamiltonian of a magnet in the external magneti
 �eld. The generalform of this Hamiltonian is established. The Hamiltonian parameters are 
al
ulated up to the third order of theperturbation theory. The ground state energy 
al
ulated in the model 
onsidered is lower than those evaluatednumeri
ally in the previous �nite 
lusters studies. A way of experimental veri�
ation of this pi
ture using neutrons
attering is dis
ussed. It is shown that the approa
h presented 
annot be dire
tly extended to KAFs with largerspin values.PACS: 75.10.Jm, 75.30.Kz, 75.40.Gb1. INTRODUCTIONUnusual low-temperature properties of kagomé an-tiferromagnets (KAFs) attra
ted mu
h attention ofboth theorists and experimenters in the last de
ade.Apparently the most intriguing features were observedin spe
i�
 heat C measurements of SrCrGaO (spin- 32kagomé material) [1℄. A peak at T � 5 K has been re-vealed that is pra
ti
ally independent of the magneti
�eld up to 12 T and C appeared to be proportional toT 2 at T . 5 K.There is no appropriate theory des
ribing the low-energy KAF se
tor. Qualitative understanding of thelow-temperature spin- 12 KAF physi
s is based mostlyon results of numerous �nite-
luster investigations [2�6℄. They revealed a gap separating the ground statefrom the upper triplet levels and a band of nonmag-neti
 singlet ex
itations with a very small or zero gapinside the spin gap. The number of states in the bandin
reases with the number of sites N as �N . It wasobtained for samples with up to 36 sites that � = 1:15and 1.18 for even and odd N , respe
tively [2; 5℄. It is*E-mail: syromyat�gtn.ru

now believed that this wealth of singlets is responsi-ble for a low-T spe
i�
 heat peak and explains its �eldindependen
e [1; 7℄.The origin of the singlet band and the nature ofthe ground state are still under debate. Previous exa
tdiagonalization studies of 
lusters with N � 36 [4; 8℄revealed an exponential de
ay of the spin�spin anddimer�dimer 
orrelation fun
tions, and therefore thepoint of view that KAF is a spin liquid is widely a
-
epted [2; 4�12℄.A quantum dimer model (QDM) is now 
onsid-ered the best 
andidate for des
ription of low-energyKAF properties [6; 9; 13�15℄. In QDMs proposed forthe kagomé problem in some re
ent papers [6; 13�16℄,the spin Hilbert spa
e is restri
ted to the states inwhi
h spins are paired into �rst-neighbor singlets. Themain argument to support this restri
tion is the 
o-in
iden
e of the low-energy spe
trum and the numberof lower singlet ex
itations in samples with up to 36sites with the exa
t diagonalization results [13; 15; 16℄.At the same time, it was noted that further studiesare required to analyze this problem. As was re
entlydemonstrated in Ref. [15℄, an e�e
tive Hamiltonian de-s
ribing the low-energy KAF singlet se
tor 
an be writ-11 ÆÝÒÔ, âûï. 3 609
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Fig. 1. Kagomé latti
e (KL). There is a spin at ea
hlatti
e site. The KL 
an be 
onsidered as a set of starsarranged in a triangular latti
e. Ea
h star 
ontains 12spins. A unit 
ell is also presented (dark region). Thereare four unit 
ells per starten in this approa
h. Unfortunately, it appears to bequite 
umbersome and allows one to obtain the resultunder a number of 
rude approximations only [14; 15℄.In our re
ent paper [17℄, we have suggested anotherapproa
h for spin- 12 KAF that di�ers from the QDMsdis
ussed above. We proposed to 
onsider a kagomélatti
e as a set of stars with 12 spins arranged in a tri-angular latti
e (see Fig. 1). Numeri
al diagonalizationhas shown that a single star has two degenerate singletground states separated from the upper triplet levelsby a gap. These states form a singlet energy band as aresult of the inter-star intera
tion. It was assumed thatthis band determines the low-energy KAF singlet se
-tor. We have shown that it is des
ribed by the Hamil-tonian of a magnet in the external magneti
 �eld wheredegenerate states of the stars are represented in termsof two proje
tions of pseudospin 12 .This pi
ture possibly re�e
ts only the lowest partof the lower singlet se
tor be
ause the number of statesin the band within our approa
h is 2N=12 � 1:06N [17℄,whereas it is now believed that it should be s
aled bythe 1:15N law obtained numeri
ally for 
lusters withN � 36 [13; 16℄.In the present, more 
omprehensive paper, we de-velop this star 
on
ept. Using symmetry 
onsidera-tions presented in Se
. 2, we prove that the singletband arising from the star ground states does deter-mine the KAF lower singlet se
tor. This band is stud-ied in Se
. 3, where the general form of the e�e
tiveHamiltonian is established. The Hamiltonian parame-ters are 
al
ulated up to the third order of the pertur-

bation theory. The ground state energy 
al
ulated inthe model 
onsidered is lower than these energies eva-luated numeri
ally in the previous �nite 
luster studies.A 
omparison between our model and the QDM is 
ar-ried out. We demonstrate that our approa
h 
annotbe dire
tly extended to KAFs with larger spin values.A way of experimental veri�
ation of this pi
ture us-ing neutron s
attering is dis
ussed. We summarize ourresults in Se
. 4.2. SYMMETRY CONSIDERATIONWe start with the Hamiltonian of the spin- 12 kagoméHeisenberg antiferromagnet,H0 = J1Xhi;jiSi � Sj + J2X(i;j)Si � Sj ; (1)where hi; ji and (i; j) denote nearest and next-nearestneighbors on the kagomé latti
e, respe
tively, shownin Fig. 1. The 
ase where jJ2j � J1 is 
onsidered inthis paper. We dis
uss the possibility of both signs ofthe next-nearest-neighbor intera
tions, the ferromag-neti
 and the antiferromagneti
 one. As shown below,although the se
ond term in Eq. (1) is small, it 
an beimportant for the low-energy properties.A kagomé latti
e 
an be represented as a set of starsarranged in a triangular latti
e (see Fig. 1). We �rstnegle
t the intera
tion between stars and put J2 = 0in Eq. (1). A star is a system of 12 spins. We now
onsider its properties in detail.Be
ause Hamiltonian (1) 
ommutes with all the pro-je
tions of the total spin operator, all the star levelsare 
lassi�ed by the values of S, irredu
ible representa-tions (IRs) of its symmetry group, and are degeneratewith respe
t to Sz. The star symmetry group C6v 
on-tains six rotations and re�e
tions with respe
t to sixlines passing through the 
enter. There are four one-dimensional and two two-dimensional IRs, whi
h arepresented in Appendix A. In their basis, the matrix ofthe Hamiltonian has a blo
k stru
ture. Ea
h blo
k hasbeen diagonalized numeri
ally.As a result, it was obtained that the star has a dou-bly degenerate singlet ground state separated from thelower triplet level by a gap � � 0:26J1. Ground statewave fun
tions 
an be represented as	+ = 1p2 + 1=16(�1 + �2); (2)	� = 1p2� 1=16(�1 � �2); (3)610
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Fig. 2. S
hemati
 representation of the two singletground state wave fun
tions �1 and �2 of a star. Thebold line shows the singlet state of two neighboringspins, i.e., (j "iij #ij � j #iij "ij)=p2where fun
tions �1 and �2 are shown s
hemati-
ally in Fig. 2. The bold line there representsthe singlet state of the 
orresponding two spins, i.e.(j "iij #ij � j #iij "ij)=p2.It 
an be shown that �1 and �2 are not orthogonal:their s
alar produ
t is (�1�2) = 1=32. They 
ontain sixsinglets, ea
h having the energy�S(S+1)J1 = �3=4J1.It 
an be shown that the intera
tion between singletsdoes not 
ontribute to the energy of the ground states,whi
h is 
onsequently equal to �4:5J1.The fun
tions �1 and �2 are invariant under rota-tions of the star and transform into ea
h other underre�e
tions. Hen
e, 	+ is invariant under all the sym-metry group transformations. In 
ontrast, the fun
-tion 	� is invariant under rotations, 
hanges sign un-der re�e
tions, and is transformed under representa-tion (A.3). Therefore, the ground state has a

identaldegenera
y. As shown in the next se
tion, the next-nearest neighbor intera
tion, whi
h has the same sym-metry as the original Hamiltonian, lifts this degenera
y.The KAF 
ontainingN nonintera
ting stars has theenergy spe
trum with a large level degenera
y whenN � 1. For example, the ground state degenera
y is2N and that of the lowest triplet level is 3N2(N�1).Intera
tion between stars gives rise to an energy bandfrom every su
h group of levels, and it is a very di�
ulttask to follow their evolution. On the other hand, grouptheory allows making some 
on
lusions about the KAFlow-energy se
tor. We now show that the singlet bandstemming from the ground state 
annot be overlappedby those originating from the upper singlet levels.We 
onsider a 
luster with seven stars shown inFig. 3a, and we begin with negle
ting the intera
tionbetween them. The symmetry group of the 
lusteris also C6v . The ground state has the degenera
y27 = 128. The 
orresponding wave fun
tions trans-formed under IRs of C6v are 
onstru
ted as linear 
om-

 

‡ ·

Fig. 3. a) A 
luster where the operator of the intera
-tion between stars has the same symmetry group C6vas the whole 
luster; b) the only 
on�guration of threestars giving a nonzero 
ontribution to the third term inthe perturbation expansionbinations of produ
ts 
ontaining 	+ or 	� for ea
hstar. Using the standard pro
edure of 
onstru
tingbases in irredu
ible representations ([18; 19℄ and Ap-pendix A), it is easy to show that there are at least twoground state wave fun
tions of the 
luster dis
ussed,transformed under any given IR.It is important to mention that the operator ofthe inter-star intera
tion in the 
luster has the samesymmetry as the intra-star one, whi
h is a sum of thestar Hamiltonians. The intera
tion between stars then
ommutes with the square of the total spin operator.Therefore, if we in
rease the inter-star intera
tion fromzero, all the levels move by energy, but their 
lassi�
a-tion 
annot be 
hanged. Levels 
an 
ross ea
h other asthe intera
tion rises from 0 to J1, but the 
rossing is for-bidden for levels of the same symmetry. This is a 
onse-quen
e of a symmetry theorem proved in Refs. [18; 19℄.Hen
e, we 
an 
on
lude that the lower singlet se
torof the 
luster is formed by states that stem from theoriginal 128 lower levels.We 
an obtain the same 
on
lusions 
onsidering
lusters of the symmetry C6v with a large number ofstars. We therefore assume in what follows that theKAF low-energy singlet se
tor is formed by the statesoriginating from those in whi
h ea
h star is in one ofthe states 	+ or 	�. Be
ause bands with S 6= 0 
anoverlap the singlet bands under dis
ussion, we have tosuppose that the KAF low-energy properties are deter-mined by the lowest states in this singlet band.Be
ause the intera
tion between stars 
ommuteswith the square of the total spin operator, bands ofdi�erent S 
an be studied independently. The KAFlower singlet se
tor is 
onsidered in detail in the nextse
tion. Investigation of states with S 6= 0 is outsidethe s
ope of this paper.611 11*
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Fig. 4. Intera
tions between two stars: V == J1(S(1)1 �S(2)1 +S(1)3 �S(2)3 ) and ~V = J2(S(1)1 �S(2)2 ++S(1)2 �S(2)1 +S(1)2 �S(2)3 +S(1)3 �S(2)2 ), where the super-s
ripts label the stars. The system is symmetri
 underre�e
tion with respe
t to the dotted line3. SINGLET DYNAMICSIn this se
tion, we derive the general form of the ef-fe
tive Hamiltonian des
ribing the lower singlet se
tor.The inter-star intera
tion is 
onsidered a perturbation.Although it is not small 
ompared to the intra-star in-tera
tion, there are reasons presented below to use theperturbation expansion here.Two-star 
oupling. We begin with 
onsideringthe intera
tion between two nearest stars, still negle
t-ing the se
ond term in Eq. (1). Initially, there are fourfold degenerate ground state with the wave fun
tionsf	(1)n1 	(2)n2 g (where ni = +;� and the supers
ript labelsthe stars) and the energyE(0)n1n2 = E(0)n1 +E(0)n2 = �9J1:As 
an be seen from Fig. 4, the intera
tion has the formV = J1(S(1)1 � S(2)1 + S(1)3 � S(2)3 ): (4)A

ording to the standard theory [18℄, the following
onditions should be satis�ed to 
onsider V as a per-turbation:��Cn1n2m1m2 �� = ����� Vn1n2;m1m2E(0)n1n2 �E(0)m1m2 ������ 1; (5)where Vn1n2;m1m2 = h	(1)n1 	(2)n2 jV j	(1)m1	(2)m2i, m1m2denotes ex
ited singlet levels of the two stars, andni = +;�. We have 
al
ulated Cn1n2m1m2 for ni = +;�using wave fun
tions obtained numeri
ally and foundthat all of these 
oe�
ients do not ex
eed 0:09. Con-ditions (5) are therefore satis�ed. Then the maximumvalue of the sumPm1m2 jCn1n2m1m2 j2 is 0:28, whi
h is alsosu�
iently small. Thus, the intera
tion between starsis 
onsidered a perturbation in what follows.

We pro
eed with 
al
ulations of 
orre
tions to theinitial ground state energy of two stars. For this, be-
ause the state is fourfold degenerate, we must solvea se
ular equation [18℄. The 
orresponding matrix el-ements in the third order of perturbation theory aregiven by [18℄Hn1n2;k1k2 = Vn1n2;k1k2 ++ Xm1;m2 Vn1n2;m1m2Vm1m2;k1k2E(0)n1n2 �E(0)m1m2 ++ Xm1;m2 Xq1;q2 Vn1n2;m1m2Vm1m2;q1q2Vq1q2;k1k2(E(0)n1n2 �E(0)m1m2)(E(0)n1n2 � E(0)q1q2) ; (6)where ni; ki = +;�. Obviously, the �rst term in Eq. (6)is zero and the se
ond term 
an be represented asHn1n2;k1k2 = �i 1Z0 dt e�Æt+iE(0)n1n2 t �� h	(1)n1 	(2)n2 jV e�it(H(1)0 +H(2)0 )V j	(1)k1 	(2)k2 i; (7)whereH(i)0 are Hamiltonians of the 
orresponding stars.The third term in Eq. (6) is to be 
onsidered later.Using the symmetry of the fun
tions 	+ and 	� dis-
ussed above and the invarian
e of the system underre�e
tion with respe
t to the dotted line in Fig. 4, it
an be shown that the only nonzero elements belong tothe �rst and the se
ond diagonals (i.e., with n1 = k1,n2 = k2 and with n1 6= k1, n2 6= k2). We have 
al
u-lated them numeri
ally with a very high pre
ision byexpansion of the operator exponent up to the power1501). The results 
an be represented asH++;++ = �a1 + a2 � a3; (8)H+�;+� = �a1 + a3; (9)H�+;�+ = �a1 + a3; (10)H��;�� = �a1 � a2 � a3; (11)where a1 = 0:256J1, a2 = 0:015J1, and a3 == 0:0017J1. The terms of the se
ond diagonalH++;�� = H��;++ = �H+�;�+ = �H�+;+� = a4 == �0:0002J1 are mu
h smaller than a1, a2, and a3.The intera
tion therefore shifts all the levels by thevalue �a1 and lifts their degenera
y. The 
onstants a2,a3, and a4 determine the level splitting. It is seen thatthe splitting is very small 
ompared to the shift.1) Di�eren
e of these results from those obtained by the ex-pansion of the exponent up to the power 149 is of the order10�5%. Therefore, the method gives nearly pre
ise values. Theresults would be the same if the 
al
ulations are done with themore 
ommon expression in Eq. (6) and eigenfun
tions of thestar obtained numeri
ally.612
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s of spin-1/2 : : :Contributions to the parameters of e�e
tive Hamiltonian (13) from the terms V 1, V 2, and V 3 of the perturbation ex-pansion. The intera
tion J2 has been taken into a

ount in V 1 and V 2 terms only. N is the number of stars in thelatti
eV 1 V 2 V 3a Totalstwo-stars three-starsJz 0 �0:007J1 + 0:002J2 �0:013J1 0:010J1 �0:010J1 + 0:002J2Jy 0 �0:001J1 + 0:007J2 �0:001J1 0:001J1 �0:001J1 + 0:007J2Jx 0 0 0:067J1 0 0:067J1h �0:563J2 �0:092J1 � 0:218J2 �0:161J1 0:080J1 �0:173J1 � 0:781J2�Cb �0:009J2N �0:768J1N + 1:530J2N �0:361J1N 0:304J1N �0:825J1N + 1:521J2Na This term implies the two-star 
oupling shown in Fig. 4 and the three-star intera
tion in the 
on�guration presentedin Fig. 3b.b Corre
tion to the value C0 = �4:5J1N for nonintera
ting stars.The KAF therefore appears to be a set of two-levelintera
ting systems, and the low-energy singlet se
torof the Hilbert spa
e 
an naturally be represented interms of pseudospins: j "i = 	� and j #i = 	+. Itfollows from Eqs. (8)�(11) that in these terms, the in-tera
tion between stars is des
ribed by the Hamiltonianof a ferromagnet in the external magneti
 �eld,H =Xhi;ji[Jzszi szj + Jysyi syj ℄ + hXi szi + C; (12)where hi; ji now labels nearest-neighbor pseudospins,arranged in a triangular latti
e formed by thestars, s is the spin- 12 operator, C = �5:268J1N ,Jz = 4a3 = �0:007J1, Jy = 4a4 = �0:001J1, andh = �6a2 = �0:092J1. Here, N = N=12 is the numberof stars in the latti
e. The fa
tor 6 appears in theexpression for h be
ause ea
h star intera
ts with 6neighbors. We see that the magneti
 �eld in e�e
tiveHamiltonian (12) is mu
h larger than the ex
hange.In this approximation, the stars therefore behave asalmost free spins in the external magneti
 �eld andthe ground state of the KAF has a long-range singletorder, whi
h settles on the triangular star latti
e andis formed by stars in 	� states.V 3 
orre
tions. The �eld remains the largestterm in the e�e
tive Hamiltonian and the KAF groundstate has the same long-range order if we take the V 3terms in the perturbation series into a

ount. For thetwo-star 
oupling, the V 3 
orre
tions have the formgiven by Eq. (6). The V 3 terms also require analyzingthe three-star intera
tion. Nonzero 
ontributions fromthem are only obtained for the 
on�guration presentedin Fig. 3b. The se
ular matrix for three stars is of thesize 8� 8. We have 
al
ulated the V 3 
orre
tions with

a very high pre
ision using the integral representationsimilar to that in Eq. (7) for the se
ond term in Eq. (6).All the operator exponents were expanded up to thepower 150. As a result, the low-energy properties ofthe KAF are des
ribed by the e�e
tive HamiltonianH =Xhi;ji �Jzszi szj + Jxsxi sxj + Jysyi syj �++ hXi szi + C; (13)where all parameters are given in the Table. It de-s
ribes two-star 
oupling. We omit the three-pseu-dospin terms in Eq. (13) that have the form szi szjszkand szi syj syk and des
ribe the three-star intera
tion.The 
orresponding 
oe�
ients are of the order of10�3J1 and 10�4J1, respe
tively, and are negligiblein 
omparison with those of the retained terms. Westress that within our pre
ision, the Hamiltonian inEq. (13) is an exa
t mapping of the original Heisenbergmodel to the low-energy se
tor (the ex
itation energy! � maxfJz;Jy;Jx; hg � J1).As follows from the study of the V 3 
orre
tions inthe Table, the 
ommon shift given by them remainsmu
h larger than the level splitting in both 
ases ofthe two- and three-star 
oupling. At the same time,the values of the V 3 perturbation terms are approxi-mately two times smaller than those of the V 2 ones.The 
hange in the e�e
tive Hamiltonian from the V 3terms is therefore signi�
ant and analysis of the pertur-bation series 
annot be �nished at this point for 
orre
tdetermination of the e�e
tive Hamiltonian. Unfortu-nately, su
h a work requires great 
omputer 
apa
ity613
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t ourselfwith this pre
ision here.One 
an judge about the appli
ability of the per-turbation series from the values of the ground stateenergy of two intera
ting stars, shown in Fig. 4, ob-tained numeri
ally and using the �rst two orders of theperturbation theory. The ground state energy of twononintera
ting stars is �9J1. That of two intera
tingstars 
al
ulated numeri
ally by the power method [20℄is �9:62J1. On the other hand, the ground state en-ergy obtained using the Table is �9:42J1 (the respe
-tive 
ontributions of the V 2 and V 3 terms are �0:27J1and �0:15J1).E�e
tive Hamiltonian stru
ture. Although theperturbation theory works badly in the star model andmany perturbation terms are to be taken into a

ount,we 
an now show that Eq. (13) is the most generalform of the e�e
tive Hamiltonian assuming that n-pseudospin 
ouplings with n > 2 are small, as this wasin the 
ase of n = 3 dis
ussed above. We 
onsider pos-sible terms of the form szi s+j , szi s�j , s+i , and s�i . In these
ases, the numbers of fun
tions 	+ and 	� to the rightof the 
orresponding matrix elements di�er from thoseto the left by unity. As has been pointed out above, akagomé latti
e 
ontains lines of symmetry re�e
tions,and the star Hamiltonian and the inter-star intera
tionare invariant under these re�e
tions. Be
ause 	+ areinvariant and 	� 
hange sign under these transforma-tions, the matrix elements are equal to themselves withthe opposite sign and must therefore be zero. Anotherpossible termsxi syj = � i4(s+i s+j � s�i s�j + s�i s+j � s+i s�j )
annot appear in the e�e
tive Hamiltonian be
ause the
orresponding matrix elements should be imaginary.Ground state. As is 
lear from the Table, Jxand h are the largest parameters of Hamiltonian (13)in our approximation. Therefore, the KAF behavesas the Ising antiferromagnet in the perpendi
ular mag-neti
 �eld. In this 
ase, the 
lassi
al value of the �eld atwhi
h spin �ip o

urs is hs�f = Jx, whi
h is approx-imately 2.6 times smaller than h. The ground statemust therefore remain ordered with all the stars in the	� state.The ground state energy and that of the upper edgeof the singlet band 
al
ulated using the Table are(�4:5J1 +�C + h=2 + 3Jz=4)N = �0:452J1Nand(�4:5J1 +�C � h=2 + 3Jz=4)N = �0:437J1N;

respe
tively. Corre
tions from Jx to these values inthe �rst nonzero order of the perturbation theory aregiven by (3=16)NJ 2x =h and are negligible. At the sametime, the ground state energy of the largest 
luster withN = 36 that has previously been 
onsidered numeri-
ally is �0:438J1N [5℄. Hen
e, we believe that 
lustersused in the previous studies were too small to re�e
t theHeisenberg KAF low-energy se
tor at J2 = 0 properly.Intera
tion J2. We now show that in spite ofits smallness, the next-nearest neighbor intera
tion 
anplay an important role for low-energy properties. Wehave 
al
ulated J2 
orre
tions to the parameters of ef-fe
tive Hamiltonian (13) for the �rst and the se
ondterms in Eq. (6) only. There are 12 intrinsi
 J2 intera
-tions in ea
h star, whi
h splits the doubly degenerateground state and, as is seen from the Table, gives a 
on-tribution to the magneti
 �eld h and to the 
onstant C.As is 
lear from Fig. 4, the two-star 
oupling is nowgiven by the operator~V = J2(S(1)1 � S(2)2 +S(1)2 � S(2)1 +S(1)2 � S(2)3 +S(1)3 � S(2)2 ):Corre
tions proportional to J2 were 
al
ulated in thesame way as above and are also presented in the Ta-ble. It is seen that the 
ontribution of the next-nearestintera
tions to the magneti
 �eld be
omes signi�
antif jJ2j � 0:1J1. If J2 < 0 (ferromagneti
 intera
tion),they 
an even 
hange the sign of h.The e�e
t of the next-nearest ferromagneti
 
ou-pling for KAF properties was previously studied inRef. [2℄ numeri
ally on �nite 
lusters with N � 27 ina wide range of the values of J2. It was shown therethat at jJ2j=J1 � 1, the ground state has the p3�p3magneti
 stru
ture. At jJ2j=J1 � 1, the ground stateis disordered and there is a band of singlet ex
itationsinside the triplet gap. As we demonstrated above, thisband is a result of the star ground state degenera
y inour approa
h.T 2 spe
i�
 heat behavior. There have beenmany spe
ulations on the low-temperature dependen
eof the KAF spe
i�
 heat C / T 2 observed experi-mentally for S = 3=2 (see Refs. [7; 21℄ and referen
estherein). As we obtained above, low-T properties aredes
ribed by e�e
tive Hamiltonian (13) of a magnet,whi
h has the spe
trum of the form �q =p(
q)2 +�02at q � 1 and 
an be in the ordered or disorderedphases depending on parti
ular values of the parame-ters. Small �0 here implies the proximity to the quan-tum 
riti
al point at whi
h C / T 2. Su
h a situationarises in the singlet dynami
s of the model of intera
-tive plaquets [21℄. We do not present the 
orrespond-ing analysis here be
ause parameters of the e�e
tive614
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s of spin-1/2 : : :Hamiltonian 
ould be 
hanged in the next orders ofthe perturbation theory.Experimental veri�
ation. In both 
ases of theordered and disordered ground state, the approa
h pre-sented in this paper 
an be 
he
ked by inelasti
 neutrons
attering: the 
orresponding intensity for the singlet�triplet transitions should have the periodi
ity in there
ipro
al spa
e 
orresponding to the star latti
e. Thispi
ture is similar to that observed in the dimerized spin-Pairls 
ompound CuGeO3 [22℄. In this 
ase, inelasti
magneti
 s
attering has a periodi
ity that 
orrespondsto the dimerized latti
e.Comparison with QDMs. We point out thatstates in whi
h all the stars are in the 	� or 	+ state
an be presented as linear 
ombinations of some �rst-neighbor dimer states proposed in Refs. [15; 16℄ for theQDM. But our approa
h to the kagomé problem is notequivalent to the QDM. In parti
ular, we take all theintermediate states into a

ount in 
onsidering the starintera
tion via perturbation theory in Eq. (6), whereasthe QDM is restri
ted to the �rst-neighbor dimer sub-spa
e as regards the dimer dynami
s.Unfortunately, we 
annot 
arry out a 
omplete 
om-parison between the QDM and the star approa
h atthe present stage. The e�e
tive Hamiltonian derivedin Ref. [15℄ was analyzed under 
rude approximationsonly. At the same time, the model presented here alsorequires further studies of the perturbation theory ap-pli
ability for des
ription of the inter-star intera
tion.We also note that some present-day results obtainedwithin these two approa
hes 
ontradi
t ea
h other. Forexample, our model gives the ordered ground state,whereas the authors of Ref. [15℄ suggest that it is notordered.Cases of S > 1=2. We �nally note that our 
on-sideration of the S = 1=2 KAF 
annot be extendeddire
tly to the 
ases of larger spins. Although fun
-tions presented in Fig. 2, where the bold line showsthe singlet state of the 
orresponding two spins, re-main eigenfun
tions of the Hamiltonian for S > 1=2,we have found numeri
ally that they are not groundstates of the star with S = 1 and S = 3=2. All detailsof 
al
ulations are presented in Appendix B. Anotherapproa
h to KAFs with S > 1=2 should therefore beproposed. 4. CONCLUSIONIn this paper, we present a model of the low-energyphysi
s of spin- 12 kagomé Heisenberg antiferromagnets

(KAFs). The spin latti
e 
an be represented as a setof stars that are arranged in a triangular latti
e and
ontain 12 spins (see Fig. 1). Ea
h star has two de-generate singlet ground states with a di�erent symme-try, whi
h 
an be des
ribed in terms of pseudospin. Itis shown that the intera
tion between the stars leadsto the band of singlet ex
itations that determines thelow-energy KAF properties. The low-energy dynam-i
s is des
ribed by the Hamiltonian of a spin- 12 mag-net in the external magneti
 �eld given by Eq. (13).The Hamiltonian parameters are 
al
ulated in the �rstthree orders of perturbation theory and are summa-rized in the Table. Within our pre
ision, the KAF hasan ordered singlet ground state with all the stars inthe state given by Eq. (3). The ground state energy islower than that 
al
ulated in the previous �nite 
lusterstudies. We show that our model 
annot be extendeddire
tly to KAFs with S > 1=2.The approa
h dis
ussed in this paper 
an be veri-�ed experimentally on inelasti
 neutron s
attering: the
orresponding intensities for singlet�triplet transitionsshould have the periodi
ity in the re
ipro
al spa
e
orresponding to the star latti
e.We are grateful to D. N. Aristov andA. G. Yashenkin for interesting dis
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h of Solids�.APPENDIX AIrredu
ible representations of the group C6vThe symmetry group C6v 
ontains six rotations Ckby the angles 2�k=6 (k = 0; 1; : : : ; 5) and six re�e
-tions, whi
h 
an be written as Cku1, where u1 is theoperator of a re�e
tion. One-dimensional irredu
iblerepresentations 
an be presented as follows [18; 19℄:Ck � 1; u1 � 1; (A.1)Ck � (�1)k; u1 � 1; (A.2)Ck � 1; u1 � �1; (A.3)Ck � (�1)k; u1 � �1: (A.4)615



A. V. Syromyatnikov, S. V. Maleyev ÆÝÒÔ, òîì 125, âûï. 3, 2004For two-dimensional representations, we have [18; 19℄Ck �  ei 2�l6 k 00 e�i 2�l6 k ! ;u1 �  0 11 0 ! ; (A.5)where two inequivalent representations are given byl = 1 and l = 2. APPENDIX BStar with S = 1 and S = 3=2In this Appendix, we give the details of numeri
al
al
ulations showing that fun
tions presented in Fig. 2,where the bold line shows the singlet state of the 
or-responding two spins, are not ground states of the starwith S = 1 and S = 3=2, as this was for S = 1=2.A simple numeri
al method for determination of theeigenvalue of a Hermitian operator H of the maximummodulus (power method [20℄) was used. It is based onthe following statement. We 
onsider a state of thesystem f = Pi 
i i, where the sum may not in
ludeall the H eigenfun
tions. For a given f , the eigenvalueEextr of the maximum modulus is determined bylimn!1 hf jHn+1jfihf jHnjfi = Eextr: (B.1)This be
omes evident by noting that hf jHnjfi ==Pi j
ij2Eni .Equation (B.1) 
an be used in numeri
al 
al
ula-tions as follows. The 
orresponding expression is 
al-
ulated for n = 1; 2; : : : ; nmax. Convergen
e 
an there-fore be 
ontroled by 
omparing results with di�erent n.Studying a full set of ve
tors f and taking nmax largeenough to mat
h the ne
essary pre
ision, one 
an �ndthe eigenvalue of H with the largest modulus.In the 
ase of the star, the maximum eigenvalue ofthe Hamiltonian is Emax = 18S2J1 (this energy hasthe state in whi
h all the spins are along the samedire
tion) and the energy of singlet states shown inFig. 2 is Ess = �6S(S + 1)J1. Be
ause Emax > jEssjfor S > 1=2, we have to take H = H0 � WI to in-vestigate the lower H0 levels, where H0 is the starHamiltonian given by Eq. (1), I is the unit matrix, andW = (Emax+Ess)=2+J1. Eigenvalues of H are there-fore shifted down relative to those of H0 by the samevalue W su
h that the H eigenvalue with the largest

modulus be
omes equal to the H0 ground state energyminus W .We have not found the ground state energy for thestar with S = 1 and S = 3=2 by this method be-
ause the full set of ve
tors f should be examined forthat. This operation requires mu
h 
omputer time.But studying a number of ve
tors f , we have obtainedthat there are states lower than those dis
ussed aboveby the energy 1:8J1 at least. The method has givenEextr with the pres
ribed pre
ision to the se
ond de
i-mal position at nmax = 100�300 depending on f and S.REFERENCES1. A. P. Ramirez, B. Hessen, and M. Win
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