СФЕРИЧЕСКИЕ ЭЛЕКТРОН-ИОННЫЕ КОМПЛЕКСЫ В КВАЗИКЛАССИЧЕСКОМ ПРИБЛИЖЕНИИ: АТОМЫ И АТОМНЫЕ КЛАСТЕРЫ

Г. В. Шпатаковская*

Институт математического моделирования Российской академии наук 125047, Москва, Россия

Поступила в редакцию 15 августа 2003 г.

Квазиклассический метод расчета полной энергии и пространственного распределения плотности электронов в сферически-симметричных электрон-ионных системах применяется к атому, объемному и полому атомным кластерам. Учтены обменно-корреляционное взаимодействие и градиентная поправка второго порядка. Обсуждается вклад градиентной поправки четвертого порядка. Предложено общее выражение для осцилляционной поправки к усредненной электронной плотности. Получена формула для равновесного радиуса полого кластера. Исследована зависимость равновесного радиуса от валентности атома, помещенного в центр полого кластера.

PACS: 36.40.Cg, 61.46.+w

1. ВВЕДЕНИЕ

Сферически-симметричный электрон-ионный комплекс с фиксированным распределением ионов может служит моделью для атомов, ионов, нейтральных и заряженных атомных кластеров и т.д. Характеристики таких комплексов рассчитываются в рамках квантовомеханических моделей Хартри, Хартри-Фока или методом Кона-Шэма в теории функционала плотности [1]. Однако с ростом числа частиц в системе трудоемкость таких расчетов значительно возрастает и более эффективным оказывается применение простых и наглядных квазиклассических методов, точность которых возрастает с увеличением числа частиц. В частности, квазиклассическое приближение успешно использовалось для расчета термодинамических свойств вещества [2-5], для аналитического описания оболочечных эффектов в спектрах масс средних и больших атомных кластеров при нулевой и конечной температурах [6-8].

В данной работе на основе усовершенствованной модели Томаса–Ферми (УТФ) и поправок к ней предложен единый алгоритм расчета локальных характеристик (плотности, потенциала) и энергии электронов в сферически-симметричной электрон-ионной системе. Эффективность этого алгоритма продемонстрирована в применении к атомам и атомным кластерам.

Впервые квазиклассическое обобщение модели Томаса–Ферми на основе функционала энергии с учетом обменного взаимодействия и низшей квантовой (градиентной) поправки было использовано для расчета энергии электронной оболочки в свободном атоме в работе [9]. Минимизация функционала энергии осуществлялась на классе простейших пробных функций. Развивая этот метод, авторы работы [10] предложили квантово-статистическую модель, в которой плотность электронов определялась из уравнения Эйлера–Лагранжа. По этой модели в ячеечном приближении было рассчитано уравнение состояния вещества в широком диапазоне плотностей при нулевой температуре. Обобщение на ненулевые температуры было проведено в работе [11].

Квазиклассический функционал энергии на классе пробных функций для плотности применялся также для описания атомных кластеров [12,13]. В работе [13] в выражении для кинетической энергии дополнительно учитывалась поправка четвертого порядка по градиентам. Именно учет последней, как утверждают авторы, ссылаясь также на чис-

^{*}E-mail: shpat@imamod.ru

ленное сравнение, проведенное при расчетах ядер в работе [14], позволяет получить наиболее точную усредненную плотность.

Простейший квазиклассический функционал на основе теории Томаса–Ферми использовался в работе [15] для исследования полого кластера как модели фуллерена С₆₀.

В настоящей работе изучены свойства указанных и других объектов с помощью единой квазиклассической модели УТФ. В разд. 2 выписано общее уравнение этой модели для плотности электронов с учетом обменного и корреляционного взаимодействий и квантовой градиентной поправки второго порядка. Модель описывает усредненные характеристики системы, однако на ее основе возможно описание осцилляционных эффектов — влияния дискретности спектра электронов на распределение их плотности. Осцилляционные эффекты обсуждаются в разд. 3, где выводится выражение для соответствующей поправки к усредненной электронной плотности. В разд. 4 приводятся результаты конкретных расчетов и их обсуждение для атомов, объемных кластеров, полых кластеров и фуллеренов. В Заключении кратко сформулированы основные выводы.

Некоторые предварительные результаты опубликованы в работах [16, 17].

2. УРАВНЕНИЕ ДЛЯ ЭЛЕКТРОННОЙ ПЛОТНОСТИ

В модели УТФ для системы N_e электронов в объеме V в поле ионов $U_i(\mathbf{r})$ при нулевой температуре функционал энергии от плотности $n = n_e(\mathbf{r})$ имеет вид (в атомных единицах)

$$E_e[n] = \int d\mathbf{r} \times \left\{ t(n) + n \left[U_i(\mathbf{r}) + \frac{1}{2} U_e(\mathbf{r}) \right] + e_{ex}(n) + e_{corr}(n) \right\}.$$
(1)

Здесь t(n) — плотность кинетической энергии, в которой учтена квантовая поправка к модели Томаса-Ферми второго порядка [2]:

$$t(n) = t_{TF}(n) + \delta_2 t(n) =$$

$$= \frac{3}{10} (3\pi^2)^{2/3} n^{5/3} - \frac{1}{72} \frac{(\nabla n)^2}{n}, \quad (2)$$

$$U_e(\mathbf{r}) = \int d\mathbf{r}' \frac{n_e(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

потенциал электронов,

$$\begin{split} e_{ex}(n) &= -\frac{3}{4} \left(\frac{3}{\pi}\right)^{1/3} n^{4/3}, \quad U_{ex} = -\left(\frac{3}{\pi}\right)^{1/3} n^{1/3}, \\ X &= \frac{r_s}{11.4}, \quad r_s = \left(\frac{3}{4\pi n}\right)^{1/3}, \\ e_{corr}(n) &= -0.033n \times \end{split}$$

$$\times \left[(1+X^3) \ln(1+X^{-1}) + \frac{X}{2} - X^2 - \frac{1}{3} \right], \quad (3)$$
$$U_{corr} = -0.033 \ln(1+X^{-1})$$

 плотности обменной и корреляционной [18] энергии и соответствующие потенциалы.

Условие экстремума функционала при сохранении числа частиц $N_e = \int d\mathbf{r} n_e(\mathbf{r})$ приводит к уравнению Эйлера–Лагранжа для плотности:

$$\frac{1}{2}(3\pi^2 n)^{2/3} + \frac{1}{72}\left(\frac{\nabla n}{n}\right)^2 - \frac{1}{36}\frac{\Delta n}{n} + U(\mathbf{r}) - \mu = 0, \quad (4)$$

где множитель Лагранжа μ есть химический потенциал системы, а эффективный потенциал $U(\mathbf{r})$ складывается из внешнего, электростатического, обменного и корреляционного членов:

$$U(\mathbf{r}) = U_i(\mathbf{r}) + U_e(\mathbf{r}) + U_{ex}(\mathbf{r}) + U_{corr}(\mathbf{r})$$

Учет сферической симметрии и переход от радиуса к безразмерной переменной x = r/R (R характерный размер в системе) и от плотности к функции $\nu(x) = x\sqrt{n}$ дают для определения последней и химического потенциала нелинейное интегро-дифференциальное уравнение:

$$\frac{1}{18R^2} \frac{d^2\nu}{dx^2} - \frac{(3\pi^2)^{2/3}}{2} x^{-4/3} \nu^{7/3} + (\mu - U)\nu = 0, \quad (5)$$

$$\nu(0) = \nu(L) = 0, \quad (5)$$

$$N_e = 4\pi R^3 \int_0^L dx' \nu^2(x'), \quad (5)$$

$$U_e(x) = \frac{4\pi R^2}{x} \left(\int_0^L dx' \nu^2(x') - \int_x^L dx' \left(1 - \frac{x}{x'}\right) \nu^2(x') \right),$$

которое решается в области $0 \le x \le L \gg 1$ в конечных разностях методом Ньютона.

На основе модели УТФ можно оценить вклад других, неучтенных в ней эффектов (см. [7]). В частности, вклад в энергию градиентной поправки четвертого порядка, которая имеет вид [9]

$$\Delta_4 E = \frac{1}{540(3\pi^2)^{2/3}} \int d\mathbf{r} \, n^{1/3} \times \left[\left(\frac{\Delta n}{n}\right)^2 - \frac{9}{8} \left(\frac{\nabla n}{n}\right)^2 \frac{\Delta n}{n} + \frac{1}{3} \left(\frac{\nabla n}{n}\right)^4 \right]. \quad (6)$$

3. ОБОЛОЧЕЧНЫЕ ОСЦИЛЛЯЦИИ ЭЛЕКТРОННОЙ ПЛОТНОСТИ

Решение уравнения Шредингера с найденным по модели УТ Φ потенциалом U(r) позволяет рассчитать спектр и волновые функции электронов и по ним вычислить электронную плотность с учетом дискретности спектра. Ниже в квазиклассическом приближении эта процедура выполняется аналитически, и выражение для осцилляционной поправки к электронной плотности, полученное в работе [19] для бесконечного атома, обобщается на конечные системы. При этом используется квазиклассическое решение уравнения Шредингера для радиальной волновой функции, условие квантования Бора-Зоммерфельда и формула Пуассона (более подробно см. [2,19]). В результате выражение для осцилляционной поправки приобретает следующий вид:

$$n_{osc}(r) = \frac{1}{2\pi^2 r^2} \int_{U(r)}^{\mu} dE \int_{0}^{p_E^2(r)r^2} d\lambda^2 \times \\ \times \sum_{k,s=-\infty}^{\infty} (-1)^{k+s} \frac{\sin[2\sigma_{E\lambda}(r) + 2s\sigma_{E\lambda}^0 + 2\pi k\lambda]}{p_{E\lambda}(r)}.$$
 (7)

Здесь

$$p_{E\lambda}(r) = \sqrt{p_E^2(r) - \frac{\lambda^2}{r^2}}, \quad p_E^2(r) = 2(E - U(r)),$$
$$\sigma_{E\lambda}(r) = \int_{r}^{R_{E\lambda}} dr' p_{E\lambda}(r')$$

— радиальные импульс и действие, $\sigma_{E\lambda}^0 = \sigma_{E\lambda}(R'_{E\lambda}),$ $R'_{E\lambda}, R_{E\lambda}$ — левая и правая точки поворота, $\lambda = l + 1/2, l$ — орбитальное квантовое число.

Интегрируя по частям по энергии, оставляем главный по параметру квазиклассичности внеинтегральный член на верхнем пределе $E = \mu$ и делаем замену переменных в интеграле по λ^2 :

$$t = \sqrt{1 - \frac{\lambda^2}{p_{\mu}^2(r)r^2}} = \frac{p_{\mu\lambda}(r)}{p_{\mu}(r)}.$$

В результате получаем

$$n_{osc}(r) \simeq -\frac{p_{\mu}(r)}{2\pi^2} \int_0^1 dt \sum_{k,s=-\infty}^{\infty} (-1)^{k+s} \times \frac{\cos\left[2\sigma_{\mu t}(r) + 2s\sigma_{\mu t}^0 + 2\pi k p_{\mu}(r)r\sqrt{1-t^2}\right]}{\tau_{\mu t}(r) + s\tau_{\mu t}^0}.$$
 (8)

Здесь

$$\tau_{\mu t}(r) = \frac{\partial \sigma_{\mu t}(r)}{\partial \mu} = \int_{r}^{R_{\mu t}} \frac{dr'}{p_{\mu t}(r')}, \quad \tau_{\mu t}^{0} = \tau_{\mu t}(R'_{\mu t})$$

— классическое время. Отметим, что точно такой же вид имеет выражение для осцилляционной поправки, если вместо $\sigma_{\mu t}(r)$, $\tau_{\mu t}(r)$ использовать «дополнительные величины»

$$\tilde{\sigma}_{\mu t}(r) = \sigma^0_{\mu t} - \sigma_{\mu t}(r), \quad \tilde{\tau}_{\mu t}(r) = \tau^0_{\mu t} - \tau_{\mu t}(r).$$

Именно такая запись будет применяться ниже для атомов.

Выражение (8) для $n_{osc}(r)$ содержит две суммы и интеграл от осциллирующей функции. Основной вклад в них дают пределы интегрирования и области, в которых аргумент осциллирующей функции мало меняется. Анализ аргумента косинуса в (8) показывает, что при $s \neq k - 1$ для потенциалов притяжения типа атомных ($U(r \rightarrow 0) \rightarrow -Z/r$, Z — заряд ядра) и при $s \neq 2k$ для ангармонических потенциалов притяжения типа кластерных ($U(r \rightarrow 0) \rightarrow U(0) = \text{const} < 0$) аргумент косинуса быстро меняется, в частности, его производная по tстремится к бесконечности при $t \rightarrow 1$ ($\lambda \rightarrow 0$). Поэтому оставляем в сумме по s только члены с s = k - 1в случае атомов и с s = 2k в случае кластеров.

Суммы по к вида

$$\sum_{k=-\infty}^{\infty} (-1)^{ik} \frac{\cos(x+kx^0)}{\alpha+k}$$

вычисляются аналитически (см. [20]). Здесь i = 0 соответствует атому, i = 1 — кластеру. Интегрируя затем по частям и оставляя главный по параметру квазиклассичности внеинтегральный член на верхнем пределе t = 1, в результате получаем выражение для осцилляционной поправки к плотности в атоме:

$$n_{osc}(r) \approx \frac{\sin[2\tilde{\sigma}_{\mu}(r) + \tilde{\alpha}((2n+1)\pi - 2\sigma_{\mu}^{0})]}{4\pi r^{2} p_{\mu}(r) \tau_{\mu}^{0} \,\tilde{\delta}_{\mu}(r) \sin\left(\pi\tilde{\alpha}\right)},\qquad(9)$$

где

$$\begin{split} \tilde{\sigma}_{\mu}(r) &= \int_{0}^{r} dr' p_{\mu}(r'), \quad \sigma_{\mu}^{0} = \tilde{\sigma}_{\mu}(R_{\mu}) \\ n &\leq \frac{\sigma_{\mu}^{0}}{\pi} \leq n+1, \quad \tilde{\alpha} = \frac{\tilde{\tau}_{\mu}(r)}{\tau_{\mu}^{0}}, \\ \tilde{\tau}_{\mu}(r) &= \int_{0}^{r} \frac{dr'}{p_{\mu}(r')}, \quad \tau_{\mu}^{0} = \tilde{\tau}_{\mu}(R_{\mu}), \end{split}$$

$$\tilde{\delta}_{\mu}(r) = \int_{0}^{r} \frac{dr'}{r'^{2}} \left[\frac{1}{p_{\mu}(r')} - \frac{1}{\sqrt{2Z/r'}} \right] - \frac{2}{\sqrt{2Zr}}.$$

В свободном атоме по модели Томаса–Ферми радиус бесконечен, $\tau_{\mu}^{0} = \infty$, и формула (9) совпадает с выражением, полученным в [19].

Аналогично для осцилляционной поправки к плотности в кластере имеем:

$$n_{osc}(r) \approx -\frac{\sin[2\sigma_{\mu}(r) + \alpha(n\pi - 2\sigma_{\mu}^{0})]}{8\pi r^{2} p_{\mu}(r) \tau_{\mu}^{0} \delta_{\mu}(r) \sin(0.5\pi\alpha)}.$$
 (10)

Здесь

$$n - \frac{1}{2} \le \frac{2\sigma_{\mu}^{0}}{\pi} \le n + \frac{1}{2}, \quad \alpha = \frac{\tau_{\mu}(r)}{\tau_{\mu}^{0}},$$
$$\delta_{\mu}(r) = \int_{r}^{R_{\mu}} \frac{dr'}{r'^{2}p_{\mu}(r')},$$

в $\sigma_{\mu}(r)$ и $\tau_{\mu}(r)$ интегралы по r' берутся в пределах от r до правой точки поворота $R_{\mu}, \sigma_{\mu}^{0} = \sigma_{\mu}(0), \tau_{\mu}^{0} = \tau_{\mu}(0).$

Обсудим область применимости полученных выражений. Интегрирование по частям и ограничение внеинтегральным членом дают правильную оценку интеграла, если производная по t аргумента осциллирующей функции, в данном случае косинуса, в выражении (8) достаточно велика. В нашем случае эта производная (при t = 1) представляет собой произведение $2p_{\mu}^2(r)r^2\tilde{\delta}_{\mu}(r)$ в случае атома и $2p_{\mu}^{2}(r)r^{2}\delta_{\mu}(r)$ для кластера. Соответственно, точки обращения в нуль каждого из сомножителей определяют области, где описанная процедура оценки не законна. Для атома таких точек оказывается три: $r = 0, r = R_{\mu}, r = r_0, \tilde{\delta}_{\mu}(r_0) = 0,$ что существенно сужает область применимости полученного выражения (9): $0 \ll r \ll r_0$. Для кластера таких точек две: $r = 0, r = R_{\mu}, u$, соответственно, область применимости (10) достаточно широка.

4. АТОМЫ, АТОМНЫЕ КЛАСТЕРЫ, ПОЛЫЕ КЛАСТЕРЫ И ФУЛЛЕРЕНЫ

В этом разделе мы применим полученные выше формулы к расчету конкретных сферически-симметричных систем: среднего и тяжелого атомов, объемных кластеров натрия, полых кластеров и полых кластеров с центральными атомами внутри. Обсуждается также возможность использования полого сферического кластера как модели фуллерена C₆₀.

Рис.1. Распределение радиальной электронной плотности $D(r) = 4\pi r^2 n(r)$ в свободном атоме. Линия — модель Томаса-Ферми, значки — модель УТФ: Z = 10 (•), 80 (**A**)

Рис.2. Распределение радиальной электронной плотности в центральной части атома ртути (без учета обменного и корреляционного взаимодействий): пунктирная линия — модель УТФ, жирная линия — модель Хартри, тонкая линия — модель УТФ с осцилляционной поправкой (9)

Рассматриваемые в этом разделе электрон-ионные системы различаются только потенциалами ионов $U_i(\mathbf{r})$.

4.1. Атом

В атоме внешнее поле создает ядро с зарядом Z(в нейтральном атоме $Z = N_e$):

$$U_i(\mathbf{r}) = -Z/r.$$

Результаты расчетов распределения радиальной электронной плотности в атоме по уравнению

E	E_{ex}	E_{corr}	$\delta_2 E$	$\delta_4 E$	$E - E_{corr} + \delta_4 E$	E_{stat}
$-1.9616\cdot10^4$	$-3.3196\cdot10^2$	$-1.0086\cdot10^{1}$	$1.2772\cdot 10^3$	$7.8599\cdot 10^2$	$-1.8820\cdot10^4$	1 9400 104
	$-3.2560\cdot10^2$	$-9.9442\cdot10^{0}$	$1.2770\cdot 10^3$	$7.8632\cdot 10^2$		$-1.8400 \cdot 10$

Таблица 1. Энергия электронной оболочки атома ртути по модели УТФ

(5) приводятся на рис. 1 для неона (Z = 10) и ртути (Z = 80) в сравнении с моделью Томаса-Ферми. В последней, как известно, плотность в нуле расходится: $n_{TF}(r) \propto r^{-3/2}$, соответственно радиальная плотность имеет корневую зависимость: $D(r \rightarrow 0) \propto \sqrt{r}$. В модели УТФ, как и в [10], самосогласованно учитывающей эффекты второго порядка по параметру квазиклассичности, плотность электронов в нуле равна константе и радиальная плотность имеет квадратичную зависимость от радиуса: $D(r \rightarrow 0) \propto r^2$. В используемых единицах кривая по модели Томаса-Ферми универсальна для всех Z. На рисунке видно, что с увеличением атомного номера Z результаты модели УТФ приближаются к этой универсальной кривой (сохраняя, однако, правильное поведение в нуле, ясно различимое на увеличенной части графика). Таким образом хорошо иллюстрируются известные условия применимости квазиклассического описания к атому: $Z^{-1/3} \ll 1, r > 1/Z$.

На рис. 2 приведен результат расчета электронной плотности в центральной части атома ртути по модели УТФ (без обменного и корреляционного членов), с осцилляционной поправкой (9) и без нее, в сравнении с квантовомеханическим расчетом Хартри [21]. В области своей применимости осцилляционная поправка хорошо описывает осцилляции, связанные с группировкой электронов в оболочках K, L и M.

В первой строке табл. 1 представлены результаты самосогласованного расчета полной энергии электронной оболочки атома ртути и некоторых ее составляющих: обменной энергии, корреляционной энергии и градиентной поправки второго порядка. Во второй строке приведены величины обменной и корреляционной энергий, рассчитанные не самосогласованно, а как аддитивные поправки на основе решения уравнения (5) без обменного и корреляционного членов. Как видно, результаты самосогласованного и несамосогласованного расчетов очень близки, что согласуется с утверждением, сформулированным в работе [7], относительно поправки к энергии за счет малых, неучтенных в функционале (1) членов.

Как упоминалось во Введении, при расчетах ядер и кластеров в работах [13,14] самосогласованно учитывалась и градиентная поправка четвертого порядка. Представляет интерес оценить эту поправку и в случае атома, используя формулу (6) с плотностью — решением уравнения (5). Результаты этой оценки в полной модели УТФ и без обменно-корреляционных членов также приведены в табл. 1. Обращает внимание, что, во-первых, поправка четвертого порядка всего в полтора раза меньше поправки второго порядка, что указывает на плохую сходимость ряда. Во-вторых, отдельное использование градиентной поправки четвертого порядка не может быть обосновано, так как ее учет требует одновременного рассмотрения квантовых поправок к обменной энергии, а эта задача еще не нашла своего решения (см. [9,22]). Во-третьих, в атоме самосогласованный учет обменно-корреляционного взаимодействия мало влияет на величину градиентных поправок. Как будет видно ниже, в кластерах это не так

Значение энергии, приведенное в предпоследней колонке табл. 1, получено по модели $YT\Phi$ с последующим вычетом корреляционного члена и с аддитивным учетом градиентной поправки четвертого порядка (6). В последней колонке приведен результат расчета энергии по известной квазиклассической формуле:

$$E_{stat} = -0.768745Z^{7/3} + 0.5Z^2 - 0.2699Z^{5/3}.$$
 (11)

Формула (11) при Z > 4 с точностью до долей процента описывает зависимость энергии электронной оболочки атома от Z в модели Хартри–Фока. Сравнение наших результатов с величиной E_{stat} показывает, что учет поправки $\delta_4 E$ уменьшает абсолютную величину погрешности при расчете энергии с 6.5% до 2.3%.

Поясним соответствие рассчитанных нами поправок и слагаемых в формуле (11). Первое слагаемое в (11) — это энергия по модели Томаса-Ферми, второе — поправка Скотта, третье — сумма обменной энергии и конечной части градиентной поправки

Рис. 3. Относительное распределение электронной плотности $n_e(r)/n_i$ в кластере Na₅₈. Пунктирная линия — распределение ионов, тонкая сплошная — модель УТФ, жирная линия — модель УТФ с осцилляционной поправкой (10), треугольники — метод Кона-Шэма (данные взяты из обзора [24])

второго порядка. Вычитая для Z = 80 из последнего члена в (11) обменную энергию (вторая колонка в табл. 1), убеждаемся, что конечная часть квантовой поправки второго порядка гораздо меньше рассчитанной нами величины (четвертая колонка). Дело в том, что, как было показано в работе [23], поправка Скотта есть результат суммирования расходимостей квантовых поправок к энергии. Эти расходимости связаны с неприменимостью квазиклассического приближения в центре атома. Таким образом, большая величина поправок $\delta_2 E$ и $\delta_4 E$, рассчитанных по модели УТ Φ , связана с тем, что в них входят вклады и от окрестности ядра, образующие поправку Скотта.

4.2. Атомный кластер

В атомном кластере в модели «желе» однородное распределение N_i ионов по шаровому объему радиуса R создает потенциал (для нейтральных кластеров $N_e = wN_i, w$ — валентность атома):

$$U_i(\mathbf{r}) = \begin{cases} -\frac{N_e}{2R} \left[3 - \left(\frac{r}{R}\right)^2 \right], & r \le R, \\ -\frac{N_e}{R}, & r > R. \end{cases}$$

Радиус кластера связан с числом электронов в нем соотношением: $R = r_s N_e^{1/3}$, где r_s — электронный радиус в твердом теле.

Распределение электронной плотности в кластере Na
58 (для натрия $r_s=3.92, \, R(N=58)=15.17)$

Рис.4. Полная энергия на атом в кластерах натрия в единицах абсолютной величины энергии на атом в металле ($|\varepsilon_{\infty}| = 2.252$ эВ). Сплошная линия — модель УТФ, пунктирная — модель УТФ с аддитивной градиентной поправкой четвертого порядка (6), крестики — расчет с самосогласованным учетом поправки (6) из работы [13]

демонстрирует рис. 3, на котором приведены результаты расчета по модели УТФ плавной части плотности и с учетом осцилляционной поправки (10) в сравнении с результатами метода Кона-Шэма, взятыми из обзора [24]. Выражение (10) хорошо описывает амплитуду и фазу осцилляций за исключением окрестностей точек r = 0 и $r = R_{\mu} = 16.5$, как это и следует из анализа, проведенного в разд. 3.

На рис. 4 по оси ординат отложена полная энергия на атом

$$\frac{E}{N} = \frac{E_e + E_i}{N}$$

в кластерах натрия в сравнении с аналогичной величиной в объемном металле. Энергия ионов при однородном распределении по шаровому объему радиуса R равна $E_i = 0.6 N_e^2/R$. Наши расчеты энергии показывают хорошее согласие (в пределах 1–5%) с результатами квазиклассической модели из работы [13], при этом имеется тенденция сближения с ними при увеличении числа частиц, т. е. при уменьшении параметра квазиклассичности, пропорционального $N_e^{-1/3}$. Из рис. 4 также видно, что аддитивный вклад поправки (6) чрезмерно велик и лучший результат получается без ее учета.

По данным, приведенным в табл. 2 для кластера Na_{100} , можно судить об относительном вкладе обменных, корреляционных и градиентных членов в энергию электронов. Здесь так же, как и в табл. 1, в первой строке приводятся результаты расчетов по полной модели $VT\Phi$, а во второй стро-

E_e	E_{ex}	E_{corr}	$\delta_2 E$	$\delta_4 E$	E_i
-337.71	-11.254	-3.69.59	0.2126	0.36	329.76
	-10.577	-3.5387	0.10552	0.0478	

Таблица 2. Энергия электронов и ионов в кластере Na100

ке — как аддитивных поправок по модели УТФ без обменно-корреляционных членов. Для кластеров во всем диапазоне расчетов аддитивная поправка четвертого порядка (6), рассчитанная по полной модели УТФ, оказывается примерно в 1.5 раза больше, чем вклад поправки второго порядка (первая строка). Если же в уравнении (5) не учитываются обменно-корреляционные члены, обе градиентные поправки оказываются меньше и соотношение между ними меняется (вторая строка), при том что результаты расчета самих обменных и корреляционных членов в обоих этих случаях близки.

Таким образом, обмен и корреляции для кластеров играют гораздо большую роль, чем в свободном атоме, и сильно влияют на величину градиентных членов, а учет градиентной поправки четвертого порядка в этом случае дает неудовлетворительные результаты. Поскольку и теоретическое обоснование использования этой поправки отсутствует (см. разд. 4.1), следует признать хорошие результаты, полученные в работах [13, 14] при самосогласованном учете градиентной поправки четвертого порядка, достаточно случайными и связанными, видимо, с выходом на более адекватный класс пробных функций.

В завершение этого раздела отметим, что вклад оболочечных осцилляций в энергию электронов кластера может быть рассчитан по методу, описанному в работе [7].

4.3. Полый кластер и фуллерен

Представляет интерес расчет характеристик полого кластера, предложенного в работе [15] для описания фуллерена С₆₀. В полом кластере заряд N_i ионов равномерно «размазан» по сферической оболочке радиуса R. Такое распределение ионов создает потенциал

$$U_i(\mathbf{r}) = \begin{cases} -\frac{N_e}{R}, & r \le R, \\ -\frac{N_e}{r}, & r > R, \end{cases}$$

Рис.5. Распределение радиальной электронной плотности: в полом кластере, Z = 0 (сплошная линия), в полом кластере с центральным атомом валентности Z = 3 (пунктирная) ($N_e - Z = 60$)

в котором движутся взаимодействующие друг с другом валентные электроны ($N_e = wN_i$, для фуллерена C_{60} w = 1, $N_e = N_i = 60$). Энергия однородно распределенных по сфере ионов равна $E_i = 0.5 N_e^2/R$. Как показали авторы [15], в модели Томаса–Ферми не существует конечного значения равновесного радиуса R_0 полого кластера. Конечное значение $R_0 = 7.36$, близкое к экспериментальному $R_0^{(exp)} = 6.75$ для фуллерена C_{60} , было получено в [15] при использовании ионной энергии

$$E_i = 0.4311 \frac{N_e^2}{R},$$
 (12)

соответствующей реальному расположению ионов молекулы C₆₀ в вершинах усеченного икосаэдра радиуса *R*.

Наши расчеты полого кластера показали, что в модели УТФ равновесный радиус R_0 конечен. Для его определения исследовалась зависимость полной энергии кластера, $E = E_e + E_i$, от его радиуса *R* и находился минимум соответствующей кривой. В результате получена естественная корневая зависимость расчетного равновесного радиуса от числа частиц: $R_0 = \alpha N_e^{1/2}$ с коэффициентом $\alpha = 3.743$. Применение этой формулы к фуллерену дает слишком большой результат: $R_0 = 29$, что связано с сильным завышением энергии ионов при замене реального расположения ионов сферической оболочкой. Соответствующее распределение радиальной электронной плотности изображено на рис. 5. Расчет с реальной, но не согласованной ионной энергией (12) дает в модели УТ $\Phi R_0 = 5$ [16].

Изучение сферических полых кластеров в согла-

сованной модели представляет самостоятельный интерес, позволяя, например, проанализировать зависимость равновесного радиуса R_0 от валентности атома Z, помещенного в центр кластера. Реальный объект, соответствующий такой системе — это высокосимметричный фуллерен с центральным атомом внутри, например LaC₆₀. В этом случае потенциал, создаваемый ионами, и их энергия имеют вид

$$U_i(\mathbf{r}) = -\frac{Z}{r} - \begin{cases} \frac{N_e - Z}{R}, & r \le R, \\\\ \frac{N_e - Z}{r}, & r > R, \end{cases}$$
$$E_i = \frac{N_e^2 - Z^2}{2R},$$

где Z — заряд центрального иона, а в число электронов N_e включены и Z валентных электронов центрального атома. Расчеты проведены для $N_e - Z = 60$ электронов в сферической оболочке с Z = 0, 1, 2, 3. Полученная монотонно убывающая зависимость хорошо аппроксимируется выражением

$$R_0(Z) = R_0(0) \exp(-0.04Z^2), \quad R_0(0) = 29.$$

На рис. 5 приводится рассчитанное при соответствующих равновесных значениях радиуса кластера распределение радиальной плотности электронов $D(r) = 4\pi r^2 n_e(r)$ для «пустого» полого кластера (Z = 0) и полого кластера с трехвалентным атомом в центре (Z = 3).

5. ЗАКЛЮЧЕНИЕ

На основе усовершенствованной квазиклассической модели предложен единый эффективный алгоритм расчета свойств сферически-симметричного многочастичного электрон-ионного комплекса. Из условия минимума квазиклассического функционала энергии, в котором учтены обменно-корреляционное взаимодействие и градиентные члены второго порядка, получено уравнение Эйлера–Лагранжа для плотности. Это уравнение применяется к расчету усредненных характеристик различных физических систем: атомов, объемных и полых атомных кластеров.

Предложенная модель позволяет вычислять полную энергию электронов и их локальные характеристики: плотность и потенциал. Из аналитического квазиклассического решения радиального уравнения Шредингера с этим потенциалом получено выражение для осцилляционной поправки к плотности в конечной системе и рассчитано пространственное распределение плотности в атоме и в атомном кластере с учетом дискретности спектра электронов. На основе усредненной плотности оценен вклад в энергию градиентной поправки четвертого порядка для этих объектов и сделан вывод о необоснованности учета этой поправки в расчетах.

Исследованы свойства сферического полого кластера, в котором ионы равномерно «размазаны» по поверхности сферы. В частности, рассчитано пространственное распределение плотности валентных электронов, вычислена полная энергия полого кластера и определена ее зависимость от радиуса для заданного числа атомов в кластере. Выяснено, что соответствующая кривая имеет минимум при конечном (равновесном) значении радиуса. Получена естественная корневая зависимость равновесного радиуса от числа атомов в кластере. Изучена зависимость равновесного радиуса полого кластера от валентности атома, помещенного в его центр. Обсуждается также возможность моделирования фуллеренов C₆₀ и LaC₆₀ такими полыми кластерами и показано, что количественное адекватное описание невозможно из-за сильного завышения ионной энергии при замене реального расположения ионов в молекуле фуллерена сферической оболочкой.

Работа выполнена при частичной поддержке РФФИ (гранты № 03-01-00-438, 02-01-00185) и Министерства промышленности и науки РФ (грант НШ-2060.2003.2).

ЛИТЕРАТУРА

- Theory of the Inhomogeneous Electron Gas, ed. by N. H. March and S. Ludquist, Plenum, New York (1983).
- **2**. Д. А. Киржниц, Ю. Е. Лозовик, Г. В. Шпатаковская, УФН **111**, 3 (1975).
- 3. Г. В. Шпатаковская, ТВТ 23, 42 (1985).
- E. A. Kuz'menkov and G. V. Shpatakovskaya, Int. J. Thermophys. 13, 315 (1992).
- Д. А. Киржниц, Г. В. Шпатаковская, Препринт № 33, ФИ РАН, Москва (1998).
- 6. Г. В. Шпатаковская, Письма в ЖЭТФ 70, 333 (1999); E-prints archive, cond-mat/0001116.
- 7. Г. В. Шпатаковская, ЖЭТФ 118, 87 (2000).
- 8. Г. В. Шпатаковская, Письма в ЖЭТФ 73, 306 (2001).

- 9. Д. А. Киржниц, ЖЭТФ 32, 115 (1957).
- **10**. Н. Н. Калиткин, Л. В. Кузьмина, ФТТ **13**, 2314 (1971).
- 11. F. Perro, Phys. Rev. A 30, 586 (1979).
- M. Membrado, A. F. Pacheco, and J. Sanũdo, Phys. Rev. B 41, 5643 (1990).
- 13. C. Yannouleas and U. Landman, Phys. Rev. B 48, 8376 (1993).
- 14. M. Brack and P. Quentin, Nucl. Phys. A 361, 35 (1981).
- 15. D. P. Clougherty and X. Zhu, Phys. Rev. A 56, 632 (1997).
- **16**. В. Я. Карпов, Г. В. Шпатаковская, Электрон. ж. «Исследовано в России» **191**, 2118 (2002), http://zhurnal.ape.relarn.ru/article/2002/191.pdf.

- 17. Г. В. Шпатаковская, в сб. Физика экстремальных состояний, под ред. В. Е. Фортова и др., ИПХФ РАН, Черноголовка (2003), с. 119.
- 18. L. Hedin and B. I. Lundqvist, J. Phys. C 4, 2064 (1971).
- **19**. Д. А. Киржниц, Г. В. Шпатаковская, ЖЭТФ **62**, 2082 (1972).
- 20. И. С. Градштейн, И. М. Рыжик, Таблицы интегралов, сумм, рядов и произведений, Физматгиз, Москва (1962).
- D. R. Hartree and W. Hartree, Proc. Roy. Soc. London 149, 210 (1935).
- 22. Д. А. Киржниц, ЖЭТФ 34, 1625 (1958).
- 23. Д. А. Киржниц, Г. В. Шпатаковская, ЖЭТФ 108, 1238 (1995).
- 24. M. Brack, Rev. Mod. Phys. 65, 677 (1993).