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NEUTRON�ANTINEUTRON OSCILLATIONSIN A TRAP REVISITEDB. O. Kerbikov *, A. E. Kudryavtsev **, V. A. Lensky ***State Resear
h Center Institute of Theoreti
al and Experimental Physi
s117218, Mos
ow, RussiaSubmitted 9 September 2003We reexamine the problem of n � �n os
illations for ultra-
old neutrons 
on�ned within a trap. We show that forup to 103 
ollisions with the walls, the pro
ess 
an be des
ribed in terms of wave pa
kets. The �n 
omponentgrows linearly with time with the enhan
ement fa
tor depending on the re�e
tion properties of the walls.PACS: 14.20.Dh, 13.90.+i, 28.20.Cz1. INTRODUCTIONFor quite a long time, physi
s beyond the StandardModel 
ontinues to be an intriguing subje
t. Several re-a
tions that may serve as signatures for the new physi
shave been dis
ussed. One of the most elegant propo-sals is to look for n � �n os
illations [1℄ (see also [2℄).There are three possible experimental settings aimedat observation of this pro
ess. The �rst is to establisha limit on nu
lear instability be
ause �n produ
ed in-side a nu
leus will blow it up. The se
ond is to use aneutron beam from a rea
tor. This beam propagatesa long distan
e to the target in whi
h the possible �n
omponent would annihilate and thus be dete
ted. Thethird option, whi
h we dis
uss in the present paper, isto use ultra-
old neutrons (UCN) 
on�ned in a trap.The main question is to what extent generation of the�n 
omponent is redu
ed by the intera
tion with thetrap walls. This subje
t was addressed by several au-thors [3�8℄. In our opinion, a thorough investigation ofthe problem is still la
king.First of all, a 
lear formulation of the problem ofn � �n os
illations in a 
avity has been hitherto missing.Two di�erent approa
hes were used without present-ing sound arguments in favor of their appli
ability andwithout tra
ing 
onne
tions between them.In the �rst approa
h [4, 5℄, n � �n os
illations are
onsidered in the basis of the dis
rete eigenstates of*E-mail: borisk�heron.itep.ru**E-mail: kudryavt�heron.itep.ru***E-mail: lensky�itep.ru

the trap potential, with the splitting between n and �nlevels and �n annihilation taken into a

ount. The den-sity of the trap eigenstates, whi
h is proportional to thema
ros
opi
 trap volume, is huge and the states 
lus-ter together extremely thi
kly. But these arguments donot su�
e to dis
ard the dis
rete-state approa
h be-
ause the n � �n mixing parameter is mu
h smaller thanthe distan
e between adja
ent levels (see below). Thetrue reason due to whi
h the above treatment is of littlephysi
al relevan
e is as follows. The spe
trum of theneutrons provided to the trap by the sour
e is 
ontinu-ous and 
ertain time is needed for rearrangement of theinitial wave fun
tion into standing waves 
orrespondingto the trap eigenstates. As is shown below, this timeinterval appears to be of the order of the �-de
ay time,and therefore the standing wave regime, being interest-ing by itself, 
an hardly be rea
hed in the real physi
alsituation.The se
ond approa
h [3, 6, 7℄ treats the neutronsand antineutrons inside a trap as freely moving parti-
les that undergo re�e
tions from the trap walls. Col-lisions with the walls result in a redu
tion of the �n
omponent 
ompared to the 
ase of the free-spa
e evo-lution. This suppression is due to two fa
tors. The �rstis the annihilation inside the walls. The se
ond fa
toris the phase de
oheren
e of the n and �n 
omponents in-du
ed by the di�eren
e of the wall potentials a
ting onn and �n. Re�e
tions of antineutrons from the trap wallswere �rst 
onsidered in [3℄. The purpose of that paperwas to investigate the prin
ipal possibility to observen � �n os
illations in a trap, and the authors estimated476
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illations in a trap revisitedthe re�e
tion 
oe�
ient for antineutrons without pay-ing attention to the de
oheren
e phenomena. Only asingle 
ollision with the trap wall was 
onsidered in [3℄.A 
omprehensive study of n � �n os
illations in a trapwas presented in [6, 7℄. De
oheren
e and multiple re-�e
tions and the in�uen
e of gravitational and mag-neti
 �elds were in
luded. The approximate equationfor the annihilation probability after N 
ollisions ob-tained in [7, Eq. (3.8)℄ 
oin
ides with the exa
t formula(59) in the present paper when N � 1. As we showbelow, the N -independent asymptoti
 regime settles atN & 10.Derivation of the exa
t equation for the annihila-tion probability with an arbitrary number of 
ollisionsis not the only purpose of the present work. We al-ready mentioned the problem of the relation betweenthe eigenvalue and the wave-pa
ket approa
hes. Withinthe wave-pa
ket approa
h, some basi
 notions su
h asthe time between su

essive 
ollisions and the 
ollisiontime itself 
an be de�ned in a 
lear and rigorous way.Another question within the wave-pa
ket formalism isthe independen
e of the re�e
tion 
oe�
ient from thewidth of the wave pa
ket and the appli
ability of thestationary formalism to 
al
ulate re�e
tions from thetrap walls. These and some other prin
ipal points arefor the �rst time 
onsidered in detail in the presentpaper.We also mention that an alternative approa
h tothe evaluation of the re�e
tion 
oe�
ients for n and �nwas outlined in [8℄. It is based on the time-dependentHamilton formalism for the intera
tion of n and �n withthe trap walls. This subje
t remains outside the s
opeof the present paper.The paper is organized as follows. In Se
. 2, we re-
all the basi
 equations des
ribing n � �n os
illations infree spa
e. Se
tion 3 is devoted to the opti
al potentialapproa
h to the intera
tion of n and �n with the trapwalls. In Se
. 4, we analyze the two formalisms pro-posed to treat n � �n os
illations in the 
avity, namelybox eigenstates and wave pa
kets. In Se
. 5, re�e
tionfrom the trap walls is 
onsidered. Se
tion 6 
ontainsthe main result in this work, the time dependen
e ofthe �n 
omponent produ
tion probability. In Se
. 7,
on
lusions are formulated and problems to be solvedoutlined.2. OSCILLATIONS IN FREE SPACEWe start by re
alling the basi
 equations des
ribingn � �n os
illations in free spa
e. The phenomenologi
al

Hamiltonian is a 2� 2 matrix in the basis of the two-
omponent n � �n wave fun
tion (we set ~ = 1),Hjl = �Hj � i��2 � Æjl + �(�x)jl; (1)where j; l = n; �n, Hj = k2=2m��jB, �j is the magneti
moment, B is the external (e.g., the Earth) magneti
�eld, �� is the �-de
ay width, � is the n � �n mixingparameter (see below), and �x is the Pauli matrix. As-suming the n and �n wave fun
tions to be plane waves,we write the two-
omponent wave fun
tion of the n � �nsystem as 	̂(x; t) =   n(t) �n(t)! eikx: (2)Evolution of the time-dependent part of 	̂(x; t) is thendes
ribed by the equationi ��t   n(t) �n(t)! = 0B�En � i��2 �� E�n � i��2 1CA��  n(t) �n(t):! (3)The di�eren
e between En and E�n due to the Earthmagneti
 �eld is! = E�n �En = 2j�njB � 6 � 10�12 eV: (4)Diagonalizing the matrix in (3), we �nd  n(t) and  �n(t)in terms of their values at t = 0, n(t) == � n(0)�
os �t+ i!2� sin �t��  �n(0) i�� sin �t��� exp ��12(i
+ ��)t� ; (5) �n(t) == �� n(0) i�� sin �t+  �n(0)�
os �t� i!2� sin �t���� exp ��12(i
+ ��)t� ; (6)where 
 = En + E�n, � = (!2=4 + �2)1=2, and! = E�n�En. In parti
ular, if  n(0) = 1 and  �n(0) = 0,we havej �n(t)j2 = 4�2!2 + 4�2 exp(���t)�� sin2 �12p!2 + 4�2 t� : (7)477
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ussed in [9℄.Without the magneti
 �eld, i.e., for ! = 0, and fort� ��1, Eq. (7) yieldsj �n(t)j2 � �2t2 exp(���t): (8)This law (for t � ��1� ) has been used to establish thelower limit on the os
illation time � = ��1. A

ordingto the ILL-Grenoble experiment [10℄,� > 0:86 � 108 s: (9)The 
orresponding value of the mixing parameter is� � 10�23 eV. This number is used in obtaining numer-i
al results presented below.The Earth magneti
 �eld leads to a strong suppres-sion of the n � �n os
illations. With the value of ! givenby (4), Eq. (7) leads toj �n(t)j2 � 4�2!2 exp(���t) sin2 t=�B �� 10�23 sin2 t=�B ; (10)where �B = (j�njB)�1 � 2 � 10�4 s. In what follows,we assume that the magneti
 �eld is s
reened.For ! = 0 but for arbitrary initial 
onditions,Eqs. (5) and (6) take the form n(t) = ( n(0) 
os �t� i �n(0) sin �t)�� exp ���iE + ��2 � t� ; (11) �n(t) = (�i n(0) sin �t+  �n(0) 
os �t)�� exp ���iE + ��2 � t� ; (12)where E = En = E�n.3. OPTICAL POTENTIAL MODEL FOR THETRAP WALLWe remind the reader that neutrons with the en-ergy E < 10�7 eV are 
alled ultra-
old. An ex
ellentreview of UCN physi
s was given in [11℄ (see also [12℄).A useful relation 
onne
ting the neutron velo
ity vin 
m/s and E in eV is given byv[
m/s℄ = 102 � �109E[eV℄=5:22�1=2 : (13)For E = 10�7 eV, the velo
ity is v � 4:4 � 102 
m/s.A less formal de�nition of UCN involves the notionof the real part of the opti
al potential 
orresponding

to the trap material (see below). Neutrons with en-ergies less than the height of this potential are 
alledultra-
old. The two de�nitions are essentially equiva-lent be
ause as we see in what follows, the real part ofthe opti
al potential is of the order 10�7 eV for mostmaterials.Our main interest is in strongly absorptive inter-a
tion of the �n 
omponent with the trap walls. Wetherefore ignore very weak absorption of UCN on thewalls [11, 12℄. Due to 
omplete re�e
tion from the trapwalls, UCN 
an be stored for about 103 s (�-de
aytime), as was �rst pointed out in [13℄.To be spe
i�
, we 
onsider UCN with E == 0:8 �10�7 eV, whi
h 
orresponds to v = 3:9 �102 
m/s(see (13)), k = 12:3 eV and de Broglie wave length� � 10�5 
m. In the next se
tion, we des
ribe UCNin terms of wave pa
kets, and hen
e the above valuesmust be attributed to the 
enter of the pa
ket.We treat the intera
tion of n and �n with the trapwalls in terms of an energy-independent opti
al poten-tial. The validity of this approa
h to UCN has beenjusti�ed in a number of papers, see, e.g., [11, 12, 14℄.There is still an open question 
on
erning the dis
rep-an
y between theoreti
al predi
tion and experimentaldata on the UCN absorption. Interesting by itself, thisproblem is outside the s
ope of our work be
ause, asalready mentioned, absorption of neutrons may be ig-nored in the n � �n os
illation pro
ess. The low-energyopti
al potential is given byUjA = 2�m NajA; (14)where j = n; �n; m is the neutron mass,N is the numberof nu
lei in a unit volume, and ajA is the j�A s
atteringlength, whi
h is real for n and 
omplex for �n. For neu-trons, the s
attering lengths anA are a

urately knownfor various materials [12℄. For antineutrons, the situa-tion is di�erent. Experimental data on low-energy �n�Aintera
tion are absent. Only some indire
t informationmay be gained from level shifts in antiprotoni
 atoms,and therefore the values of a�nA used in [3, 6, 8, 15℄ as aninput in the n � �n os
illation problem are similar but notthe same. We 
onsider the set of a�nA 
al
ulated in [16℄within the framework of internu
lear 
as
ade model asmost reliable. Even this parti
ular model leads to sev-eral solutions, and the one that we have 
hosen for 12C(graphite and diamond) may be 
alled �motivated� byRef. [16℄. To estimate the dependen
e on the materialof the walls and to 
ompare our results with those in[3℄, we also performed 
al
ulations for Cu. S
atteringlengths for Cu are not given in [16℄ and we used the478
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illations in a trap revisitedsolution proposed in [3℄. Our 
al
ulations were thusperformed with the �n�A s
attering lengthsa�nC = (3� i1) fm; a�nCu = (5� i0:5) fm: (15)The s
attering lengths for neutrons are [12℄anC = 6:65 fm; anCu = 7:6 fm: (16)The 
on
entrations of atoms N entering (14) are asfollows: NC(graphite) = 1:13 � 10�16 fm�3;NC(diamond) = 1:63 � 10�16 fm�3;NCu = 0:84 � 10�16 fm�3:In a

ordan
e with (14), the opti
al potentials is thengiven by UnC(gr) = 1:95 � 10�7 eV;UnC(diam) = 2:8 � 10�7 eV;UnCu = 1:66 � 10�7 eV; (17)U�nC(gr) = (0:9� i0:3) � 10�7 eV;U�nC(diam) = (1:3� i0:4) � 10�7 eV;U�nCu = (2� i0:2) � 10�7 eV: (18)In this paper, we 
onsider parti
les (n and �n) with ener-gies below the potential barrier formed by the real partof the potential. For �n and 12C, the limiting velo
ity isv = 4:15 � 102 
m/s.4. WAVE PACKET VERSUS STANDINGWAVESIt is 
onvenient to use the short notationUj = Vj � iWjÆj�n (19)for opti
al potentials (17) and (18), where j = n; �n andthe wall material is not indi
ated expli
itly. We 
on-sider the following model for the trap in whi
h n � �nos
illations may possibly be observed. We imagine twowalls of type (19) separated by a distan
e L � 102 
m,i.e., the one-dimensional potential well of the formUj(x) = f�(�x� L) + �(x)g fVj � iWjÆj�ng ; (20)with �(x) being the step fun
tion. Our goal is to followthe time evolution of the �n 
omponent in su
h a trapassuming that the initial state is a pure n one.

The �rst question to be answered is how to des
ribethe wave fun
tion of the system. Two di�erent ap-proa
hes seem to be feasible and both were dis
ussedin the literature [4, 6, 8℄. The �rst is to 
onsider os
il-lations o

uring in the wave pa
ket and to investigateto what extent re�e
tions from the walls distort thepi
ture 
ompared to the free-spa
e regime. The se
ondapproa
h is to 
onsider the eigenvalue problem in po-tential well (20), to �nd energy levels for n and �n, andto 
onsider os
illations in this basis. Be
ause of di�er-ent intera
tions with the walls, the levels of n and �n aresplitted and the �n levels a
quire annihilation widths.At �rst glan
e, this approa
h might seem inade-quate be
ause in a trap with L � 102 
m, the den-sity of states is very high, the 
hara
teristi
 quantumnumber 
orresponding to the UCN energy is very large,and the splitting ÆE between adja
ent n-levels (or be-tween the levels of the n and �n spe
tra) is extremelysmall. The values of all these quantities are given be-low, and it follows that ÆE < 10�14 eV. However, thisapproa
h 
annot be dis
arded without further analysisbe
ause the n � �n mixing parameter � � 10�23 eV ismu
h smaller than ÆE.To understand the relation between the two ap-proa
hes, we note that the initial 
onditions 
orrespondto a beam of UCN provided by a sour
e. The momen-tum spe
trum of UCN depends on the spe
i�
 experi-mental 
onditions. In order to stay on general groundsand at the same time to simplify the problem, we as-sume that the UCN beam entering the trap has theform of a Gaussian wave pa
ket. We suppose that att = 0, the 
enter of the wave pa
ket is at x = x0, andhen
e k(x; t = 0) = (�a2)�1=4 �� exp�� (x� x0)22a2 + ikx� ; (21)where a is the width of the wave pa
ket in 
oordinatespa
e. The normalization of wave fun
tion (21) 
or-responds to one parti
le in the entire one-dimensionalspa
e, +1Z�1 dxj k(x; t = 0)j2 = 1: (22)For E = 0:8 � 10�7 eV and the beam resolution�E=E = 10�3, we havek = 12:3 eV; a = 3:2 � 10�3 
m: (23)479
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ket (21) in
reases with time a
-
ording to a0 = a"1 +� tma2�2#1=2 � tma (24)and be
omes 
omparable with the trap size L fort � 103 s. For the wave hitting the wall and there�e
ted wave to be 
learly resolved, the 
ondititona0=v � �L, or a0 � L must be satis�ed, where �L � 1 sis the time between two 
onse
utive 
ollisions with thetrap walls. Re�e
tion of the wave pa
ket from the wallsis 
onsidered in detail in the next se
tion. Here, weshow that t � 103 s is the 
hara
teristi
 time neededfor the rearrangement of the initial wave pa
ket intostationary states of the trapping box.We 
onsider the eigenvalue problem for potentialwell (20). The parameters of potential (20) for neu-trons are Vn � 2 � 10�7 eV and L � 102 
m. Thenumber of levels isM � Lp2mV� � 108� : (25)A

ording to (23), the 
enter of wave pa
ket (21) hasthe momentum k = 12:3 eV, whi
h 
orresponds toa state with the number of nodes j � 2 � 107 andkjL � 6 � 107 � 1. Positions of su
h highly ex
itedlevels in a �nite-depth potential are indistinguishablefrom the spe
trum in a potential box with in�nite walls.Therefore, 'j(x) �r 2L sin!jx; !j = �jL : (26)Wave fun
tions (26) des
ribe semi
lassi
al states withj � 1 in a potential well with sharp edges. The �fre-quen
y� !j is very high 
ompared to the width of thewave pa
ket in momentum spa
e,!j � 6 � 105 
m�1 � � = 1p2a � 2 � 102 
m�1:This implies that the wave pa
ket spans over a largenumber of levels. To determine this number, we notethat the distan
e between adja
ent levels around the
enter of the wave pa
ket isÆE = Ej+1 �Ej � 10�14 eV:The highly ex
ited levels within the energy band�E = 10�3E � 10�10 eV
orresponding to wave pa
ket (21) are to a high a

u-ra
y equidistant, as they should be in the semi
lassi
alregime. The number of states within �E is�j = �E=ÆE � 104

and their density in momentum spa
e is�(!) = a�j � L=� � 106 eV�1: (27)We 
an now answer the question formulated at thebeginning of this se
tion, namely whether the n � �n os-
illations in the trap should be des
ribed in terms ofthe wave pa
ket or in terms of the stationary eigen-fun
tions. At t = 0, the wave fun
tion has the formof the wave pa
ket (21) provided by the UCN sour
e.Due to 
ollisions with the trap walls, transitions fromthe initial state (21) into dis
rete (or quasi-dis
rete for�n) eigenstates (26) o

ur.The time evolution of the initial wave fun
tion (21)pro
eeds a

ording to (x; t) = Z dx0G(x; t;x0; 0) k(x0; 0); (28)where G(x; t;x0; 0) is the time-dependent Green's fun
-tion for potential well (20). Using the spe
tral repre-sentation for G, we 
an write (x; t) =Xj e�iEjt'j(x) Z dx0'�j (x0) k(x0; 0): (29)In the semi
lassi
al approximation, the distan
e be-tween the adja
ent levels is ÆE = �=�L, and thereforeone may think that at t = �L, i.e., already at the �rst
ollision, the neighboring terms in (29) would 
an
elea
h other. But this is not the 
ase. Indeed,'j+1(x) exp(�iEj+1t) + 'j(x) exp(�iEjt) == exp(�iEjt)ip2L hexp(i!jx)�1 + exp�i �L(x� vt)���� exp(�i!jx)�1 + exp��i �L(x+ vt)��i :Therefore, there is a 
onstru
tive interferen
e atx = �vt either in the �rst or in the se
ond term re-spe
tively. This is true with the whole sum of terms in(29) taken into a

ount, and hen
e we 
an pass fromsummation to integration in (29). The overlap of thewave fun
tions entering (29) 
an be easily evaluatedprovided the 
enter of the wave pa
ket x0 is not withinthe bandwidth distan
e a0 from the trap walls. The480
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illations in a trap revisitedoverlap is given by the integralZ dx0'�j (x0) k(x0; 0) � i(2p�La)1=2 �� 0Z�L dx0 exp�� (x0 � x0)22a2 + i(k � !j)x0� == i(2p�La)1=2 �� LZ0 dx00 exp�� (x00 + x0)22a2 � i(k � !j)x00� : (30)At this step, we have omitted the exponential with thehigh frequen
y (k+!j). We next take (x00+x0)=(p2a)as a new variable and assume that jx0j � a,L � jx0j � a (we re
all that x0 is negative be
ause�L < x < 0). The result is thatZ dx0'�j (x0) k(x0; 0) ��i�p�aL �1=2 exp��a22 (k�!j)2+i(k�!j)x0� : (31)Corre
tions to (31) are of the order of a=L. Wenow 
onsider frequen
y summation in (29). This sum-mation 
an be repla
ed by integration over ! be
ausethe density of semi
lassi
al states �(!) is very high. Wethus arrive at (x; t) = 1�p�a�1 + i tma2��1=2 ��0BB�exp2664� �(x; t)2a2�1 + t2m2a4�3775++exp2664� �(�x; t)2a2�1 + t2m2a4�37751CCA ; (32)�(x; t) = (x� x0 � v0t)2 � it (x� x0)2ma2 ��2ik0a2(x�x0)+ik20a2m t+2ik0x0�a2+ t2m2a2� : (33)The se
ond term in Eq. (32) des
ribes the re�e
tedwave pa
ket (see the next se
tion). A

ording to (21),(28), and (32), all that happens to the wave pa
ketin the trap is broadening and re�e
tions. This is true

during some initial period of its life history at least.How long does this period last? The answer to thisquestion may be obtained by estimating the a

ura
yof performing frequen
y integration instead of summa-tion over dis
rete states in (29).To estimate the time s
ale for the rearrangement ofinitial wave pa
ket (21) into trap standing waves (26),it is 
onvenient to introdu
e the di�eren
eÆ (x; t) =  sum(x; t) �  int(x; t)between the �exa
t� wave fun
tion (29) and the ap-proximate integral representation (32). WheneverÆw(t) = Z dx �j sumj2 � j intj2� == 2 Z dxR( intÆ )� 1; (34)we 
an 
onsider os
illations as pro
eeding in the wavepa
ket basis. Withf(!) =rp�a2L2 �� exp��a22 (k0�!)2�i !22mt+i!(x�x0)+ikx0� ; (35)we have the estimateÆ (x; t) =Xn f(!n)� Z d!�(!)f(!) == �Xn !n+1Z!n d!�(!)(f(!)� f(!n)) �� �Xn !n+1Z!n d!�(!)f 0(!n)(! � !n) == �12Xn f 0(!n)(!n+1 � !n): (36)From (35), we obtain thatf 0(!) = g(!)f(!);g(!) = i(x� x0 � vt)� (k0 � !)a2: (37)Be
ause f(!) is a narrow Gaussian peak, we 
an sub-stitute g(!) by g(k0), and then (36) results inÆ (x; t) � �2L(x � x0 � v0t) int(x; t): (38)From (34) and (38), we haveÆw � �2L +1Z�1 dxjx � x0 � v0tjj int(x; t)j2 // a0L � tmaL � t103 s ; (39)3 ÆÝÒÔ, âûï. 3 481



B. O. Kerbikov, A. E. Kudryavtsev, V. A. Lensky ÆÝÒÔ, òîì 125, âûï. 3, 2004where a0 is given by (23).Roughly speaking, the time t � 103 s needed forthe neutron wave fun
tion to rearrange into the trapeigenstate is 
omparable to the neutron life-time, andthe neutron would rather �die� than adjust to the newboundary 
onditions. The wave pa
ket formalism istherefore used in what follows. Some additional sub-tleties arising from the quantization of levels in thetrapping box are dis
ussed in Se
. 7.5. REFLECTION FROM THE TRAP WALLSWe return to one-dimensional trap (20). Let theparti
le moving from x = �1 enter the trap at t = 0through the window at x = �L. At t = �L, it rea
hesthe wall at x = 0, the n 
omponent is re�e
ted from thewall and the �n 
omponent is partly re�e
ted and partlyabsorbed. The wave pa
ket des
ribing the intera
tionwith the wall has the form (x; t) = ��3=4ra2 +1Z�1 dk j(k; x)�� exp��a22 (k � k0)2 + iL(k � k0)� i t2mk2� ; (40)where j = n; �n and j(k; x) = eikx +R(k)e�ikx == eikx + �j(k)e�j(k)e�ikx: (41)For the n 
omponent, �n(k) = 1 be
ause we negle
tvery weak absorption of neutrons at the surfa
e. Theintegral (40) with the �rst term in (41) is trivial. Tointegrate the se
ond term in (41), we note that dueto the Gaussian form fa
tor with ak0 � 103 � 1, thedominant 
ontribution to integral (40) 
omes from anarrow interval of k around k0. Expanding Rj(k) atk � k0 and keeping the leading term, we obtainRj(k) � �j(k0) exp(i�j(k0))�� �1 + i�0j(k0)(k � k0) + Æj�n �0j(k0)�j(k0) (k � k0)� �� �j(k0) exp �i�j(k0) + i�0j(k0)(k � k0)� : (42)The validity of the last step for �n be
omes 
lear fromthe expli
it expressions for ��n(k) and ��n(k) presentedbelow.

Integration in (40) 
an now be easily performed,with the result [17℄ j(x; t) = 1�p�a�1 + i tma2��1=2 ��0BB�exp2664� �in
(x; t)2a2�1 + t2m2a4�3775++ Rj(k0) exp2664� �refl(x; t)2a2�1 + t2m2a4�37751CCA ; (43)�in
(x; t) = (x+ L� v0t)2 � it (x+ L)2ma2 ��2ik0a2(x+L)+ik20a2m t+2ik0L�a2+ t2m2a2� ; (44)�refl(x; t) = �in
(�x+ �0; t) ++ 2ik0�0�a2 + t2m2a2� : (45)From (43)�(45), we see that the essen
e of R(k) inthe wave pa
ket formalism is the same as in the ti-me-independent approa
h. Therefore, imposing stan-dard boundary 
onditions at x = 0, we obtain the re-�e
tion 
oe�
ientsRj(k) = �j(k) exp(i�j(k)) = k � i�jk + i�j ; (46)�n = [2m(Vn �E)℄1=2;��n = [2m(V�n � iW�n �E)℄1=2 = �0�n � i�00�n; (47)tg�n = �2k�nk2 � �2n ; tg ��n = �2k�0�nk2 � (�0�n)2 � (�00�n)2 ; (48)�n = 1; �2�n = 1� 4k�00�n(k + �00�n)2 + (�0�n)2 : (49)For 12C (graphite), in parti
ular,� = 0:56; � � ��n � �n = 0:72: (50)The �rst term in the right-hand side of (45) 
an bewritten as [�x+L�v0(t��0=v0)℄2. Hen
e the 
ollisiontime or time delay is [17, 18℄�j;
oll = �0j(k0)v0 = Re 2mk�j : (51)482
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illations in a trap revisitedFor neutrons, i.e., for real �n, Eq. (51) gives thewell-known result�n;
oll = [E(Vn �E)℄�1=2:This result is in line with the naive estimate�n;
oll � l=v0 � 10�8 s [8℄, where l . � is thepenetration depth.For 12C (graphite), Eq. (51) yields�n;
oll = 0:7 � 10�8 s; ��n;
oll = 1:1 � 10�8 s: (52)Equations (43)�(45) supplemented by the above in-equality allow following the time evolution of the beaminside the trap. We imagine an observer pla
ed at thebandwidth distan
e from the wall, i.e., at x = �a. A
-
ording to (43)�(45), su
h an observer 
on
ludes thatthe in
ident wave (the �rst term in (43)) dominates attimes t � �L � �a, while the re�e
ted wave prevailsat t � �L + �a. With this splitting of the time inter-val around N�L; N = 1; 2; : : : , we use the notation(N�L�) and (N�L+) for the moments before and afterthe Nth 
ollision. Thus, we 
an 
al
ulate the �n produ
-tion rate be
ause we have rigorous de�nitions of the
ollision time and the time interval between the twosubsequent 
ollisions.6. ANNIHILATION RATE IN A TRAPWe 
an now inquire into the problem of time-dependen
e of the �n produ
tion probability. In freespa
e, it is given by j �n(t)j2 = �2t2 (see (2)), while ina trap with the 
omplete annihilation or total loss of
oheren
e at ea
h 
ollision, it has a linear time depen-den
e j �n(t)j2 = �2�Lt [8℄.To avoid 
umbersome equations and be
ause we
onsider the time interval t� ��1� , we omit exp(���t)fa
tors. Produ
tion of �n during the 
ollision 
an also benegle
ted [8℄. The di�eren
e in 
ollision times (52) forn and �n may also be ignored. In the previous se
tion,we have seen that the intera
tion of the wave pa
ketwith the wall is des
ribed in terms of re�e
tion 
oe�-
ients (46) 1).We assume that at t = 0, a pure-n beam entersthe trap at x = �L. After 
rossing the trap, i.e., at1) An alternative des
ription using time-evolution operatorswas proposed in [8℄.

t = (�L�), the time-dependent parts of the wave fun
-tions are given by (12)2), n(�L�) = 
os(��L) exp(�iE�L); �n(�L�) = sin(��L) exp[�i(E�L + �=2)℄: (53)After the �rst re�e
tion at t = (�L+), we have n(�L+) = 
os(��L) exp[�i(E�L��n)℄; �n(�L+) = ��n sin(��L) exp[�i(E�L���n+�=2)℄: (54)Evolution from t = (�L+) to t = (2�L�) again pro
eedsin a

ordan
e with (12), �n = 12 sin(2��L) �1 + �ei���� exp[�i(2E�L � ��n + �=2)℄ �� ��L �1 + �ei�� exp[�i(2E�L � ��n + �=2)℄; (55)where � = ��n��n is the de
oheren
e phase and � � ��n.The answer for  (N�L�) now seems evident: �n(N�L�) = ��L 1� �NeiN�1� �ei� �� exp[�i(NE�L � �n + �=2)℄: (56)This 
onje
ture is easy to verify by indu
tion. Fort = (2�L�), the result was derived expli
itly in (55).Evolving (56) through one re�e
tion at t = N�L andfree propagation from t = (N�L+) to t = ((N+1)�L�),we arrive at (56) with (N +1) instead of N . This 
om-pletes the proof.Therefore, the admixture of �n before the N th 
olli-sion, i.e., at t = N�L� isj �n(N�L�)j2 = �2�2L 1 + �2N � 2�N 
osN�1 + �2 � 2� 
os � : (57)The annihilation probability at the jth 
ollision isPa(j) = (1� �2)j �n(j�L�)j2: (58)The total annihilation probability after N 
ollisions istherefore given byPa(N) = (1� �2) NXk=1 j �n(k�L)j2 == �2�2L(1� �2)1 + �2 � 2� 
os � �N + �2(1� �2N )1� �2 ��2�
os � � �� �N [
os(N + 1)� + � 
osN�℄1 + �2 � 2� 
os � � : (59)2) We state this although the Gaussian form fa
tor in (43) alsodepends on time, the 
orresponding terms in the time-dependentS
hrödinger equation are of the order of 1=ak0 
ompared to thederivative of the exponent exp(�iEt); we also note that the formfa
tors are the same for n and �n up to a 
onstant multiplier.483 3*



B. O. Kerbikov, A. E. Kudryavtsev, V. A. Lensky ÆÝÒÔ, òîì 125, âûï. 3, 2004After several 
ollisions, the terms proportional to �N ,�2N , and �N+1 may be dropped be
ause � � 0:5 (see(50)). Then (59) takes the formPa(N) � �2�2L1 + �2 � 2� 
os � ���N(1� �2) + 1� (1� �2)21 + �2 � 2� 
os �� : (60)Three di�erent regimes may be inferred from (60).For a very strong annihilation, i.e., �� 1,Pa(N) = �2�2LN = �2�Lt: (61)For the 
omplete de
oheren
e at ea
h 
ollision, i.e., for� = �,Pa(N) = �2�2L�N 1��1+�+�(2��)(1+�)2� � 1��1+��2�Lt: (62)For the (unrealisti
) situation where � = 0,Pa(N) = �2�2L�N 1+�1����(2+�)(1��)2� � 1+�1���2�Lt: (63)For the values of � and � 
orresponding to opti
alpotentials (17) and (18), the quantityQa(N) = (�2�2LN)�1 = (�2�Lt)�1Pa(N)
al
ulated in a

ordan
e with the exa
t equation (59)is displayed in Fig. 1. This �gure shows that the lin-ear time dependen
e settles after about 10 
ollisionswith the trap walls. The asymptoti
 value of Qa(N),whi
h may be 
alled the enhan
ement fa
tor, is 1.5�2depending on the wall material.Proposals have been dis
ussed in the literature [6,19℄ to 
ompensate the de
oheren
e phase � by applyingthe external magneti
 �eld. Assuming the ideal situa-tion that the regime � = 0 may be a
hieved in su
h away and also assuming that the re�e
tion 
oe�
ient �
an be varied in the whole range by varying the trapmaterial, we plot the quantity Neff (�) de�ned asPa(N) = �2�2LNeff (�) (64)in Fig. 2. Thus de�ned, Neff (�) obviously depends alsoon the number of 
ollisions N ; the results for N = 10and N = 50 are presented in Fig. 2. This �gure showswhat 
an be expe
ted from the trap experiments in themost favorable, although hardly realisti
 s
enario.7. CONCLUDING REMARKSWe have reexamined the problem of n � �n os
illa-tions for UCN in a trap. Our aim was to present a
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NFig. 1. Plot of the Qa(N) = (�2�Lt)�1Pa(N) depen-den
e versus N . The solid line 
orresponds to 12C(graphite), the dashed one to 12C (diamond), and thedotted one to Cu
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Fig. 2. Plot of the Neff dependen
e versus � at � = 0.The solid line is for the number of 
ollisions N = 50,the dashed line 
orresponds to N = 10
lear formulation of the problem, to 
al
ulate the am-plitude of the �n 
omponent for an arbitrary observa-tion time and for any given re�e
tion properties of thetrap walls. We have shown that for the physi
ally re-levant observation time (i.e., for the time interval lessthan the �-de
ay time), the pro
ess of n � �n os
illationsis des
ribed in terms of wave pa
kets, while the stan-ding-wave regime may settle only at later times. By
al
ulating the di�eren
e between the n and �n 
ollision484
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illations in a trap revisitedtimes, the new light has been shed on the de
oheren
ephenomena. For the �rst time, an exa
t equation hasbeen derived for the annihilation probability for an ar-bitrary number of 
ollisions with the trap walls. Inline with the 
on
lusions of the previous authors onthe subje
t, this probability grows linearly with time.We have 
al
ulated the enhan
ement fa
tor enteringthis linear time dependen
e and found this fa
tor to be1.5�2 depending on the re�e
tion properties of the wallmaterial.Despite the extensive investigations reviewed inthis arti
le and the results of the present paper, the listof problems for further work is large. The 
entral andmost di�
ult task is to obtain reliable parameters ofthe opti
al potential for antineutrons. The beam of �nwith the energy in the range of 10�7 eV will be hardlya

essible in the near future. Therefore, work has tobe 
ontinued along the two lines mentioned above: todedu
e the parameters of the opti
al potential fromthe level shifts in antiprotoni
 atoms and to 
onstru
treliable opti
al models that 
an be 
onfronted with theavailable experimental data on �n�nu
lear intera
tionat higher energies. In a forth
oming publi
ation,we plan to present numeri
al 
al
ulation of the timeevolution of a wave pa
ket into standing waves andto dis
uss some features of n � �n os
illations in theeigenfun
tion basis, whi
h were not dis
ussed inRef. [4℄. Another task is to perform 
al
ulationfor the spe
i�
 geometry of the trap and a realis-ti
 spe
trum of the neutron beam. This requires aninput 
orresponding to a spe
i�
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