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We reexamine the problem of n—# oscillations for ultra-cold neutrons confined within a trap. We show that for
up to 10° collisions with the walls, the process can be described in terms of wave packets. The 7 component
grows linearly with time with the enhancement factor depending on the reflection properties of the walls.
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1. INTRODUCTION

For quite a long time, physics beyond the Standard
Model continues to be an intriguing subject. Several re-
actions that may serve as signatures for the new physics
have been discussed. One of the most elegant propo-
sals is to look for n—7 oscillations [1] (see also [2]).
There are three possible experimental settings aimed
at observation of this process. The first is to establish
a limit on nuclear instability because i produced in-
side a nucleus will blow it up. The second is to use a
neutron beam from a reactor. This beam propagates
a long distance to the target in which the possible n
component would annihilate and thus be detected. The
third option, which we discuss in the present paper, is
to use ultra-cold neutrons (UCN) confined in a trap.
The main question is to what extent generation of the
n component is reduced by the interaction with the
trap walls. This subject was addressed by several au-
thors [3-8]. In our opinion, a thorough investigation of
the problem is still lacking.

First of all, a clear formulation of the problem of
n—n oscillations in a cavity has been hitherto missing.
Two different approaches were used without present-
ing sound arguments in favor of their applicability and
without tracing connections between them.

In the first approach [4, 5], n—n oscillations are
considered in the basis of the discrete eigenstates of
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the trap potential, with the splitting between n and n
levels and 7 annihilation taken into account. The den-
sity of the trap eigenstates, which is proportional to the
macroscopic trap volume, is huge and the states clus-
ter together extremely thickly. But these arguments do
not suffice to discard the discrete-state approach be-
cause the n—n mixing parameter is much smaller than
the distance between adjacent levels (see below). The
true reason due to which the above treatment is of little
physical relevance is as follows. The spectrum of the
neutrons provided to the trap by the source is continu-
ous and certain time is needed for rearrangement of the
initial wave function into standing waves corresponding
to the trap eigenstates. As is shown below, this time
interval appears to be of the order of the S-decay time,
and therefore the standing wave regime, being interest-
ing by itself, can hardly be reached in the real physical
situation.

The second approach [3, 6, 7] treats the neutrons
and antineutrons inside a trap as freely moving parti-
cles that undergo reflections from the trap walls. Col-
lisions with the walls result in a reduction of the n
component compared to the case of the free-space evo-
lution. This suppression is due to two factors. The first
is the annihilation inside the walls. The second factor
is the phase decoherence of the n and 7 components in-
duced by the difference of the wall potentials acting on
n and . Reflections of antineutrons from the trap walls
were first considered in [3]. The purpose of that paper
was to investigate the principal possibility to observe
n—n oscillations in a trap, and the authors estimated
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the reflection coefficient for antineutrons without pay-
ing attention to the decoherence phenomena. Only a
single collision with the trap wall was considered in [3].
A comprehensive study of n—f oscillations in a trap
was presented in [6, 7]. Decoherence and multiple re-
flections and the influence of gravitational and mag-
netic fields were included. The approximate equation
for the annihilation probability after N collisions ob-
tained in [7, Eq. (3.8)] coincides with the exact formula
(59) in the present paper when N > 1. As we show
below, the N-independent asymptotic regime settles at
N = 10.

Derivation of the exact equation for the annihila-
tion probability with an arbitrary number of collisions
is not the only purpose of the present work. We al-
ready mentioned the problem of the relation between
the eigenvalue and the wave-packet approaches. Within
the wave-packet approach, some basic notions such as
the time between successive collisions and the collision
time itself can be defined in a clear and rigorous way.
Another question within the wave-packet formalism is
the independence of the reflection coefficient from the
width of the wave packet and the applicability of the
stationary formalism to calculate reflections from the
trap walls. These and some other principal points are
for the first time considered in detail in the present
paper.

We also mention that an alternative approach to
the evaluation of the reflection coefficients for n and n
was outlined in [8]. It is based on the time-dependent
Hamilton formalism for the interaction of n and n with
the trap walls. This subject remains outside the scope
of the present paper.

The paper is organized as follows. In Sec. 2, we re-
call the basic equations describing n—n oscillations in
free space. Section 3 is devoted to the optical potential
approach to the interaction of n and n with the trap
walls. In Sec. 4, we analyze the two formalisms pro-
posed to treat n—n oscillations in the cavity, namely
box eigenstates and wave packets. In Sec. 5, reflection
from the trap walls is considered. Section 6 contains
the main result in this work, the time dependence of
the n component production probability. In Sec. 7,
conclusions are formulated and problems to be solved
outlined.

2. OSCILLATIONS IN FREE SPACE

We start by recalling the basic equations describing
n—n oscillations in free space. The phenomenological
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Hamiltonian is a 2 x 2 matrix in the basis of the two-
component n—7 wave function (we set h = 1),
T

Hy = <Hj_l76> 6j1 + €(oz) i, (1)
where j, I = n,fi, H; = k*/2m—p; B, u; is the magnetic
moment, B is the external (e.g., the Earth) magnetic
field, I'g is the p-decay width, € is the n—n mixing
parameter (see below), and o, is the Pauli matrix. As-

suming the n and i wave functions to be plane waves,
we write the two-component wave function of the n—n

system as
(U’n(”) pike
Yn(t)

Evolution of the time-dependent part of ¥(z, ¢) is then
described by the equation

(wn(t>> _
n(t)

The difference between E, and Ej due to the Earth
magnetic field is

A

U(x,t) = (2)

r
E, —i-2

.9 2

"ot

€

Ep =2\un|B~6-107"2 eV. (4)

Diagonalizing the matrix in (3), we find ¢, () and ¢ (t)
in terms of their values at ¢t = 0,

Yn(t)
= <wn(0) <COS vt + % sin I/t> — Y

W:Eﬁ—

(0)%sinut> y
X exp {—%(m + Fg)t} . 5)

Yn(t)
<—¢n(0)% sin vt + 7 (0) <cos vt — % sin ut)) X

where E, + En, v (W?/4 + €)'/2, and
w = En—E,. In particular, if ¢,,(0) = 1 and ¢5(0) = 0,

we have

X exp {—%(m + Fg)t} . (6)

4¢2

= m exp(—th) X

1
X sin? (5\/ w? + 4€? t) . (7
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The use of this equation to test fundamental symme-
tries is discussed in [9].

Without the magnetic field, i.e., for w = 0, and for
t < et Eq. (7) yields

[¥a(t)[* ~ €t exp(~Tst). (8)

This law (for t < Fgl) has been used to establish the
lower limit on the oscillation time 7 = e~!. According
to the ILL-Grenoble experiment [10],

7> 0.86-10° s. (9)

The corresponding value of the mixing parameter is
€ ~ 10723 eV. This number is used in obtaining numer-
ical results presented below.

The Earth magnetic field leads to a strong suppres-
sion of the n—n oscillations. With the value of w given
by (4), Eq. (7) leads to

2
€ .
[Vn (t)]? ~ el exp(—Tst)sint/7p ~

~ 10 #sin’t/tp, (10)
where 75 = (Jjun|B)™" ~ 2 107" s. In what follows,
we assume that the magnetic field is screened.

For w = 0 but for arbitrary initial conditions,
Egs. (5) and (6) take the form

Un(t) = (P (0) cos et — irh, (0) sin et) x
X exp [— (iE+ %) t] . (11)

Galt) = (~ipa(0) sin et + 15, (0) coset) x
X exp [— (iE+ %) t] . (12)

where E = E,, = Ej.

3. OPTICAL POTENTIAL MODEL FOR THE
TRAP WALL

We remind the reader that neutrons with the en-
ergy E < 1077 eV are called ultra-cold. An excellent
review of UCN physics was given in [11] (see also [12]).

A useful relation connecting the neutron velocity v
in cm/s and E in eV is given by

vlem/s] = 102 (10°E[ev]/5.22)'° . (13)

For E = 1077 eV, the velocity is v ~ 4.4 - 10 cm/s.
A less formal definition of UCN involves the notion
of the real part of the optical potential corresponding

to the trap material (see below). Neutrons with en-
ergies less than the height of this potential are called
ultra-cold. The two definitions are essentially equiva-
lent because as we see in what follows, the real part of
the optical potential is of the order 10~7 eV for most
materials.

Our main interest is in strongly absorptive inter-
action of the n component with the trap walls. We
therefore ignore very weak absorption of UCN on the
walls [11, 12]. Due to complete reflection from the trap
walls, UCN can be stored for about 10% s (S-decay
time), as was first pointed out in [13].

To be specific, we consider UCN with E =
=0.8:10~7 eV, which corresponds to v = 3.9-10% cm/s
(see (13)), & = 12.3 eV and de Broglie wave length
A~ 107° cm. In the next section, we describe UCN
in terms of wave packets, and hence the above values
must be attributed to the center of the packet.

We treat the interaction of n and n with the trap
walls in terms of an energy-independent optical poten-
tial. The validity of this approach to UCN has been
justified in a number of papers, see, e.g., [11, 12, 14].
There is still an open question concerning the discrep-
ancy between theoretical prediction and experimental
data on the UCN absorption. Interesting by itself, this
problem is outside the scope of our work because, as
already mentioned, absorption of neutrons may be ig-
nored in the n—n oscillation process. The low-energy
optical potential is given by

Uja = —Naja, (14)

where j = n,n; m is the neutron mass, N is the number
of nuclei in a unit volume, and a;, is the j—A scattering
length, which is real for n and complex for 7. For neu-
trons, the scattering lengths a, 4 are accurately known
for various materials [12]. For antineutrons, the situa-
tion is different. Experimental data on low-energy n—A
interaction are absent. Only some indirect information
may be gained from level shifts in antiprotonic atoms,
and therefore the values of a; 4 used in [3, 6, 8, 15] as an
input in the n—n oscillation problem are similar but not
the same. We consider the set of aza calculated in [16]
within the framework of internuclear cascade model as
most reliable. Even this particular model leads to sev-
eral solutions, and the one that we have chosen for '2C
(graphite and diamond) may be called «motivated» by
Ref. [16]. To estimate the dependence on the material
of the walls and to compare our results with those in
[3], we also performed calculations for Cu. Scattering
lengths for Cu are not given in [16] and we used the
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solution proposed in [3]. Our calculations were thus
performed with the n—A scattering lengths

anc = (3 —il) fm, apcy = (5—140.5) fm.  (15)
The scattering lengths for neutrons are [12]
anc = 6.65 fm, apcy = 7.6 fm. (16)

The concentrations of atoms N entering (14) are as
follows:

NC(graphite) =113 10_16 fm_s,
NC(diamond) =1.63-10 16 f111737
New = 0.84 10716 fm =3,

In accordance with (14), the optical potentials is then
given by

Upncar) = 1.95-1077 eV,

UnG(diam) = 2.8 - 1077 eV, (17)
Upcu = 1.66-1077 eV
Unc(er) = (0.9 —i0.3) - 1077 €V,
Unc(diam) = (1.3 —i0.4) - 10~ 7 eV, (18)

Uncu = (2-1i0.2) - 1077 eV,

In this paper, we consider particles (n and i) with ener-
gies below the potential barrier formed by the real part
of the potential. For fi and '2C, the limiting velocity is
v=4.15-10% cm/s.

4. WAVE PACKET VERSUS STANDING
WAVES

It is convenient to use the short notation

Uj =Vj —iW;djn (19)
for optical potentials (17) and (18), where j = n,7 and
the wall material is not indicated explicitly. We con-
sider the following model for the trap in which n—n
oscillations may possibly be observed. We imagine two
walls of type (19) separated by a distance L ~ 10% cm,
i.e., the one-dimensional potential well of the form
Uj(z) ={0(=x — L) + 0(x)} {V; —iW;d;},  (20)
with 6(a) being the step function. Our goal is to follow
the time evolution of the 7 component in such a trap
assuming that the initial state is a pure n one.
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The first question to be answered is how to describe
the wave function of the system. Two different ap-
proaches seem to be feasible and both were discussed
in the literature [4, 6, 8]. The first is to consider oscil-
lations occuring in the wave packet and to investigate
to what extent reflections from the walls distort the
picture compared to the free-space regime. The second
approach is to consider the eigenvalue problem in po-
tential well (20), to find energy levels for n and 72, and
to consider oscillations in this basis. Because of differ-
ent interactions with the walls, the levels of n and 7 are
splitted and the 7 levels acquire annihilation widths.

At first glance, this approach might seem inade-
quate because in a trap with L ~ 102 cm, the den-
sity of states is very high, the characteristic quantum
number corresponding to the UCN energy is very large,
and the splitting E between adjacent n-levels (or be-
tween the levels of the n and @ spectra) is extremely
small. The values of all these quantities are given be-
low, and it follows that 6E < 10~ eV. However, this
approach cannot be discarded without further analysis
because the n—f mixing parameter € ~ 10723 eV is
much smaller than §E.

~

To understand the relation between the two ap-
proaches, we note that the initial conditions correspond
to a beam of UCN provided by a source. The momen-
tum spectrum of UCN depends on the specific experi-
mental conditions. In order to stay on general grounds
and at the same time to simplify the problem, we as-
sume that the UCN beam entering the trap has the
form of a Gaussian wave packet. We suppose that at
t = 0, the center of the wave packet is at x = z¢, and
hence

0) = (ra®)~"/* x

X exp <—

where a is the width of the wave packet in coordinate
space. The normalization of wave function (21) cor-
responds to one particle in the entire one-dimensional

Up(x,t

(x -z

0)?
2a2

+ zkx) . (21)

space,

+oo

/ dr|yy(z,t = 0)]* = 1.

— 00

(22)

For E = 0.8 -10"7 eV and the beam resolution
AE/E =103, we have
a=3.2-10"2 cm.

k=123 eV, (23)
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The width of wave packet (21) increases with time ac-

cording to
571/2
1+ (o5) ]

and becomes comparable with the trap size L for
t ~ 10% s. For the wave hitting the wall and the
reflected wave to be clearly resolved, the condititon
a'/v < Tr, or a' € L must be satisfied, where 77, ~ 1
is the time between two consecutive collisions with the
trap walls. Reflection of the wave packet from the walls
is considered in detail in the next section. Here, we
show that t ~ 10% s is the characteristic time needed
for the rearrangement of the initial wave packet into
stationary states of the trapping box.

We consider the eigenvalue problem for potential
well (20). The parameters of potential (20) for neu-
trons are V,, ~ 21077 ¢V and L ~ 102 cm. The
number of levels is

t

ma?

~

— (24)

!
a =a

10
0

M V2V
™

(25)

According to (23), the center of wave packet (21) has
the momentum k£ = 12.3 eV, which corresponds to
a state with the number of nodes j ~ 2 - 107 and
k;L ~ 6107 >> 1. Positions of such highly excited
levels in a finite-depth potential are indistinguishable
from the spectrum in a potential box with infinite walls.
Therefore,

\/? . T
7 Sinwjz, wj =
Wave functions (26) describe semiclassical states with
j > 1 in a potential well with sharp edges. The «fre-
quency» wj is very high compared to the width of the
wave packet in momentum space,

() (26)

1
—— ~2-10%> em™".
V2a
This implies that the wave packet spans over a large
number of levels. To determine this number, we note
that the distance between adjacent levels around the
center of the wave packet is

wj%6~105cm_1>>uz

SE=Ej1 — Ej ~107" eV.
The highly excited levels within the energy band
AE=10"*E ~ 1070 eV

corresponding to wave packet (21) are to a high accu-
racy equidistant, as they should be in the semiclassical
regime. The number of states within AE is

Aj = AE/SE ~ 10*
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and their density in momentum space is

p(w) =aAj~ L/m~10° eV~!. (27)

We can now answer the question formulated at the
beginning of this section, namely whether the n—n os-
cillations in the trap should be described in terms of
the wave packet or in terms of the stationary eigen-
functions. At ¢ = 0, the wave function has the form
of the wave packet (21) provided by the UCN source.
Due to collisions with the trap walls, transitions from
the initial state (21) into discrete (or quasi-discrete for
1) eigenstates (26) occur.

The time evolution of the initial wave function (21)
proceeds according to

P(w,t) = /dx'G(x,t;x',O)wk(x',O), (28)

where G(z,t;2',0) is the time-dependent Green'’s func-
tion for potential well (20). Using the spectral repre-
sentation for (G, we can write

Dl t) = 30 Bl (0) / d' g3 (" Yy (2, 0. (29)

In the semiclassical approximation, the distance be-
tween the adjacent levels is 0E = m /7y, and therefore
one may think that at ¢t = 7, i.e., already at the first
collision, the neighboring terms in (29) would cancel
each other. But this is not the case. Indeed,

Yj1(x)exp(—iE;j1t) + ¢j(z) exp(—iE;t) =
_exp(—iE;t)
iv2L

— exp(—iw;x) (1 + exp (

[exp(iwjx) (1 + exp (z%(m — vt))) -

e at)))].

=

L

Therefore, there is a constructive interference at
x = tot either in the first or in the second term re-
spectively. This is true with the whole sum of terms in
(29) taken into account, and hence we can pass from
summation to integration in (29). The overlap of the
wave functions entering (29) can be easily evaluated
provided the center of the wave packet x( is not within
the bandwidth distance @' from the trap walls. The
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overlap is given by the integral

(2\/_La)1/2

_1-0)

Filk-wp)a') =

" v

" x! +x0)
/da: exp( 5,7

At this step, we have omitted the exponential with the
high frequency (k+w;). We next take (2" +x0)/(v/2a)
as a mnew variable and assume that |zg| > a,

— |zo| > a (we recall that xy is negative because
—L < x <0). The result is that

—i(k - wj)x"> . (30)

[ i@, 0)
~i <‘/§a>1/2 exp <—%2(k—wj)2+i(k—wj)xo> . (31)

Corrections to (31) are of the order of a/L. We
now consider frequency summation in (29). This sum-
mation can be replaced by integration over w because
the density of semiclassical states p(w) is very high. We
thus arrive at

1
Y(,t) = 12 X
\/_a< _H—a?)]
1
X | exp | — oz )t2 +
2a2 <1+m2a4>
—z,t
+ exp o(-z 22 ,  (32)
2a2 <1-|— m2a4>
(= x0)?
t) = (z — xg — vot)? — it——2L
a(z,t) = (x —xg —vot)” — i —

k22 2
0 t+2ik0x0 <a2+?> . (33)
m ma

—2ikoa® (x—x9)+i

The second term in Eq. (32) describes the reflected
wave packet (see the next section). According to (21),
(28), and (32), all that happens to the wave packet
in the trap is broadening and reflections. This is true

3 ZKOT®, Beim. 3

during some initial period of its life history at least.
How long does this period last? The answer to this
question may be obtained by estimating the accuracy
of performing frequency integration instead of summa-
tion over discrete states in (29).

To estimate the time scale for the rearrangement of
initial wave packet (21) into trap standing waves (26),
it is convenient to introduce the difference

5¢(337 t) = Ysum (JU, t) — Yint (JU, t)

between the «exact» wave function (29) and the ap-
proximate integral representation (32). Whenever

dw(t) = /dx (Isum® = [ime]*) =

) / de R(bid)) < 1, (34)

we can consider oscillations as proceeding in the wave
packet basis. With

Vra
212

flw) = X
a® w?
X exp (—7(ko—w)2—i%t—l—iw(az—xg)—}—ikxo) ,  (35)
we have the estimate
=3 fwn) - / duop(@) () =
Wn41
— Z / dwp(w
Wn 41

—Z/dam f(w

2 3 P n) s — ). (36)
2

(f(w) = flwn)) =

2

W)@ = wn) =

From (35), we obtain that
fllw) =

g(W)f(w),
g(w) =i(x —xg —vt) — 2

(ko — w)a”. (87)

Because f(w) is a narrow Gaussian peak, we can sub-
stitute g(w) by g(kg) and then (36) results in

p(,t) ~ 5T (1‘ — 2o — vot)Yint(w,1).  (38)

From (34) and (38), we have

+o0
™
3T / dx|x — zo — vot||Vint (2, 1)

a' t t
Co oo (39
T~ mal 103 s’ (39)
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where a' is given by (23).

Roughly speaking, the time ¢t ~ 10%s needed for
the neutron wave function to rearrange into the trap
eigenstate is comparable to the neutron life-time, and
the neutron would rather «die» than adjust to the new
boundary conditions. The wave packet formalism is
therefore used in what follows. Some additional sub-
tleties arising from the quantization of levels in the
trapping box are discussed in Sec. 7.

5. REFLECTION FROM THE TRAP WALLS

We return to one-dimensional trap (20). Let the
particle moving from @ = —oo enter the trap at ¢t =0
through the window at x = —L. At ¢t = 7, it reaches
the wall at = 0, the n component is reflected from the
wall and the 7 component is partly reflected and partly
absorbed. The wave packet describing the interaction
with the wall has the form

+o0
U(x, t) :7r_3/4\/g/dkwj(k,x) X

2
X exp <—

a 2, ctos

—(k — Lk — —i— 4

5 (k —ko)® + iL(k — ko) Zka ) ,  (40)
where j = n,n and

(k@) = € + R(k)e=ihe =
= eth? 4 pi(k)e® M emike  (41)

For the n component, p,(k) = 1 because we neglect
very weak absorption of neutrons at the surface. The
integral (40) with the first term in (41) is trivial. To
integrate the second term in (41), we note that due
to the Gaussian form factor with akg ~ 10% > 1, the
dominant contribution to integral (40) comes from a
narrow interval of k& around k¢. Expanding R;(k) at
k — ko and keeping the leading term, we obtain

R;j(k) ~ pj (ko) exp(id; (ko)) x
D (ko)
X |65 ko) (k= ko) + 87 s

~ pj(ko) exp (id;(ko) + i (ko) (k — ko)) . (42)

(k‘—k‘o) ~

The validity of the last step for 7 becomes clear from
the explicit expressions for p (k) and ¢ (k) presented
below.
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Integration in (40) can now be easily performed,
with the result [17]

1
Yj(z,t) = : 1/2 X
1+i1——
{ﬁa ( + chﬂﬂ
x | exp ine (T, ?2 +
2a? <1 + W)
re 7t
+ Rj(ko)exp | — Orefi(@ t2) ,  (43)
2a2 <1 + W)
+ L)?
) — I — 2 _ L _
Qinc (JU, t) (33 + UOt) it ma
E2a2 2
—2ikoa® (x+L)+i ‘;n t4+2iko L <a2—|—m> . (44)
Qrefi(®,t) = Qine(—z + @', t) +
t2
+ 2iko ¢’ <a2 + —m2a2> . (45)

From (43)—(45), we see that the essence of R(k) in
the wave packet formalism is the same as in the ti-
me-independent approach. Therefore, imposing stan-
dard boundary conditions at x = 0, we obtain the re-
flection coefficients

k

—1IKj

R;j(k) = p;j (k) exp(ig;(k)) = REin, (46)
tn = [2m(V; — E)]l/Qa (47)
kn = [2m(Va — iWn — E)Y/? = k! — ik,
_2k"€n —Qkh}l—
A R AT 7 R
4kk!

n=1 pi=1- A . (4

o=l =l e 49
For '2C (graphite), in particular,

p=056, 6=ds—d,=0.72. (50)

The first term in the right-hand side of (45) can be
written as [—2+ L —vg(t — ¢’ /vg)]?. Hence the collision
time or time delay is [17, 18]

¢ (ko)

Tj,coll = =
7: Vo

2m

b (51)
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For neutrons, i.e., for real k,, Eq. (51) gives the
well-known result

Tn,coll = [E(Vn - E)]71/2'

This result is in line with the naive estimate
Tneoll ~ lfvg ~ 1078 s [8], where | < X is the
penetration depth.

For '2C (graphite), Eq. (51) yields

Tocotl = 0.7-107% s, 7 .on =1.1-10"% 5. (52)

Equations (43)—(45) supplemented by the above in-
equality allow following the time evolution of the beam
inside the trap. We imagine an observer placed at the
bandwidth distance from the wall, i.e., at x = —a. Ac-
cording to (43)—(45), such an observer concludes that
the incident wave (the first term in (43)) dominates at
times t < 71, — 7., while the reflected wave prevails
at t > 711, + 7,. With this splitting of the time inter-
val around N7z, N = 1,2,..., we use the notation
(N77,—) and (N77,+) for the moments before and after
the Ny, collision. Thus, we can calculate the n produc-
tion rate because we have rigorous definitions of the
collision time and the time interval between the two
subsequent collisions.

6. ANNIHILATION RATE IN A TRAP

We can now inquire into the problem of time-
dependence of the n production probability. In free
space, it is given by |¢n (t)|? = €22 (see (2)), while in
a trap with the complete annihilation or total loss of
coherence at each collision, it has a linear time depen-
dence |95 (t)|* = 211t [8].

To avoid cumbersome equations and because we
consider the time interval ¢ < I‘gl., we omit exp(—I'st)
factors. Production of i during the collision can also be
neglected [8]. The difference in collision times (52) for
n and 7 may also be ignored. In the previous section,
we have seen that the interaction of the wave packet
with the wall is described in terms of reflection coeffi-
cients (46) 1.

We assume that at ¢ = 0, a pure-n beam enters
the trap at @ = —L. After crossing the trap, i.e., at

1) An alternative description using time-evolution operators
was proposed in [8].

t = (1, —), the time-dependent parts of the wave func-
tions are given by (12)%,

(11, —) = cos(err,) exp(—iETr),

Ya(rr,—) = sin(err,) exp[—i(ETr, + 7/2)]. (53)
After the first reflection at ¢t = (77,+), we have
Yn(Tr+) = cos(err) exp[—i(ETr—¢n)], (54)

Yr(tr+) = prsin(ery) exp[—i (BT, —¢n+7/2)].

Evolution from ¢ = (17.+) to t = (277, —) again proceeds
in accordance with (12),

Ya = %sin(QerL) (14 pe') x
x exp[~i(2ET1 — ¢n +7/2)] &
~ erp (14 pe’) exp[=i(2ET, — ¢n + 7/2)],  (55)

where 6 = ¢7 — ¢, is the decoherence phase and p = p5.
The answer for ¢/ (N7, —) now seems evident:

1 — pNeiNo
’(pﬁ(NTL—) = ETLl_pT X

x exp[—i(NE1, — ¢, + 7/2)].  (56)

This conjecture is easy to verify by induction. For
t = (27—), the result was derived explicitly in (55).
Evolving (56) through one reflection at ¢ = N7z and
free propagation from ¢t = (N7p+) tot = (N+1)1,—),
we arrive at (56) with (N + 1) instead of N. This com-
pletes the proof.

Therefore, the admixture of 71 before the N** colli-
sion, i.e., at t = N7 — is

14 p*N —2pN cos N8
C(N7p—)? = €272
(N =)l = €'rp 1+ p? —2pcosh

(57)

The annihilation probability at the jth collision is
Pa(j) = (1= p*) (=) (58)

The total annihilation probability after IV collisions is
therefore given by

N
Py(N) = (1=p) Y [alkre)* =
k=1

_ eni=p) [y, r0=p)
14 p2 —2pcosb 1 - p?
cose—p—pN[cos<N+1>9+9605N9]) (59)

-2
p 1+ p?—2pcosh

2) We state this although the Gaussian form factor in (43) also
depends on time, the corresponding terms in the time-dependent
Schrodinger equation are of the order of 1/ako compared to the
derivative of the exponent exp(—iEt); we also note that the form
factors are the same for n and @ up to a constant multiplier.
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After several collisions, the terms proportional to p",

p*N, and pNt! may be dropped because p ~ 0.5 (see
(50)). Then (59) takes the form
272

P,(N) ——————————
a(N) 1+p2—2pcost9><

1— p2)2

N—p)+1-—L=P) ) (g
><< (1=p)+ 1+ p? —2pcosf (60)
Three different regimes may be inferred from (60).

For a very strong annihilation, i.e., p < 1,
P,(N) = 1} N = *1t. (61)

For the complete decoherence at each collision, i.e., for
0=m,

1—p  p(2-p) 1—p
P,(N)=€*r2 (N ~ 2ot (62
()= TL( o (14p)? T+p" " (62)
For the (unrealistic) situation where § = 0,
I+p  p(2+p) 1+p
P,(N)=¢é1] | N—=— ~ >r1t. (63
o(N) ”L< = (op2) T, (6

For the values of p and 6 corresponding to optical
potentials (17) and (18), the quantity

Qa(N) = (€217 N)™! = (21.t) ' Py (N)

calculated in accordance with the exact equation (59)
is displayed in Fig. 1. This figure shows that the lin-
ear time dependence settles after about 10 collisions
with the trap walls. The asymptotic value of Q,(N),
which may be called the enhancement factor, is 1.5-2
depending on the wall material.

Proposals have been discussed in the literature [6,
19] to compensate the decoherence phase 6 by applying
the external magnetic field. Assuming the ideal situa-
tion that the regime § = 0 may be achieved in such a
way and also assuming that the reflection coefficient p
can be varied in the whole range by varying the trap
material, we plot the quantity Ngs(p) defined as

Py(N) = €77 Neg (p) (64)

in Fig. 2. Thus defined, Ngsr(p) obviously depends also
on the number of collisions V; the results for N = 10
and N = 50 are presented in Fig. 2. This figure shows
what can be expected from the trap experiments in the
most favorable, although hardly realistic scenario.

7. CONCLUDING REMARKS

We have reexamined the problem of n—n oscilla-
tions for UCN in a trap. Our aim was to present a

Fig.1. Plot of the Q.(N) = (e*r1t)"'P.(N) depen-

dence versus N. The solid line corresponds to '2C

(graphite), the dashed one to '2C (diamond), and the
dotted one to Cu

Neyy

800

600

400

200

0 0.2

Fig.2. Plot of the N dependence versus p at § = 0.
The solid line is for the number of collisions N = 50,
the dashed line corresponds to N = 10

clear formulation of the problem, to calculate the am-
plitude of the i component for an arbitrary observa-
tion time and for any given reflection properties of the
trap walls. We have shown that for the physically re-
levant observation time (i.e., for the time interval less
than the 3-decay time), the process of n— oscillations
is described in terms of wave packets, while the stan-
ding-wave regime may settle only at later times. By
calculating the difference between the n and 7 collision
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times, the new light has been shed on the decoherence
phenomena. For the first time, an exact equation has
been derived for the annihilation probability for an ar-
bitrary number of collisions with the trap walls. In
line with the conclusions of the previous authors on
the subject, this probability grows linearly with time.
We have calculated the enhancement factor entering
this linear time dependence and found this factor to be
1.5-2 depending on the reflection properties of the wall
material.

Despite the extensive investigations reviewed in
this article and the results of the present paper, the list
of problems for further work is large. The central and
most difficult task is to obtain reliable parameters of
the optical potential for antineutrons. The beam of n
with the energy in the range of 107 eV will be hardly
accessible in the near future. Therefore, work has to
be continued along the two lines mentioned above: to
deduce the parameters of the optical potential from
the level shifts in antiprotonic atoms and to construct
reliable optical models that can be confronted with the
available experimental data on n—nuclear interaction
at higher energies. In a forthcoming publication,
we plan to present numerical calculation of the time
evolution of a wave packet into standing waves and
to discuss some features of n—n oscillations in the
eigenfunction basis, which were not discussed in
Ref. [4]. Another task is to perform calculation
for the specific geometry of the trap and a realis-
tic spectrum of the neutron beam. This requires an
input corresponding to a specific experimental setting.
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