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QED CORRECTION TO ASYMMETRY FOR POLARIZEDep-SCATTERING FROM THE METHODOF ELECTRON STRUCTURE FUNCTIONSA. V. Afanasev a, I. Akushevih a, N. P. Merenkov b*a North Carolina Central University,Durham, NC 27707, USA, TJNAF, Newport NewsVA 23606, USAb National Sienti� Center �Kharkov Institute of Physis and Tehnology�61108, Kharkov, UkraineSubmitted 18 August 2003The eletron struture funtion method is applied to alulate model-independent QED radiative orretions tothe asymmetry of eletron�proton sattering. Representations for both spin-independent and spin-dependentparts of the ross setion are derived. Master formulas inlude the leading orretions in all orders and themain ontribution of the seond order and provide auray of the QED orretions at the level of one per mill.Numerial alulations illustrate our analyti results for both elasti and deep inelasti events.PACS: 12.20.-m, 13.40.-f, 13.60.-r, 13.60.Hb, 13.88.+e1. INTRODUCTIONPreise polarization measurements in both inlu-sive [1, 2℄ and elasti [3, 4℄ sattering are ruial forunderstanding the struture and fundamental proper-ties of a nuleon.One important omponent of the preise data anal-ysis is radiative e�ets, whih always aompany theproesses of eletron sattering. The �rst alulation ofradiative orretions to polarized deep inelasti satter-ing was done by Kukhto and Shumeiko [5℄, who appliedthe ovariant method of extration of the infrared di-vergene [6, 7℄ to this proess. The polarization stateswere desribed by 4-vetors, whih were kept in theirgeneral forms during the alulation. This required atedious proedure of tensor integration over photoniphase spae, and, as a result, led to a very ompliatedstruture of the �nal formulas for the radiative orre-tions. The next step was taken in [8℄, where additionalovariant expansion of polarization 4-vetors over a er-tain basis allowed simplifying the alulation and the�nal results. It resulted in produing the Fortran odePOLRAD [9℄ and Monte Carlo generator RADGEN*E-mail: merenkov�kipt.kharkov.ua

[10℄. These tools are widely used in all urrent ex-periments in polarized deep inelasti sattering. Later,the alulation was applied to ollider experiments ondeep inelasti sattering [11, 12℄. We also applied thismethod to elasti proesses in [13, 14℄.But the method of ovariant extration of the in-frared divergene is essentially restrited by the lowestorder radiative orretions. All attempts to go beyondthe lowest order lead to very unwieldy formulas, whihare di�ult to ross hek, or to a simple leading logapproah [15℄. The reent developments are reviewedin Ref. [16℄.The resolution an be found in applying the formal-ism of eletron struture funtions (ESF). Within thisapproah, suh proesses as the eletron�positron an-nihilation into hadrons and the deep inelasti eletron�proton sattering in the one-photon exhange approxi-mation an be onsidered as the Drell�Yan proess [17℄in the annihilation or sattering hannel, respetively.Therefore, the QED radiative orretions to the orre-sponding ross setions an be written as a ontrationof two eletron struture funtions and the hard partof the ross setion, see [18, 19℄. Traditionally, theseradiative orretions inlude e�ets aused by loop or-retions and soft and hard ollinear radiation of pho-462



ÆÝÒÔ, òîì 125, âûï. 3, 2004 QED orretion to asymmetry : : :tons and e+e�-pairs. But it was shown in Ref. [19℄ thatthis method an be improved by also inluding e�etsdue to radiation of one nonollinear photon. The or-responding proedure results in a modi�ation of thehard part of the ross setion, whih takes the lowest-order orretion into aount exatly and allows goingbeyond the leading approximation. We applied this ap-proah to the reoil proton polarization in elasti ele-tron sattering in Ref. [20℄. In the present paper, wealulate radiative orretions to polarized deep inelas-ti and elasti sattering following Ref. [20℄.Setion 2 gives a short introdution to the stru-ture funtion method. We there present two knownforms of the eletron struture funtions, iterative andanalytial, whih resums singular infrared terms in allorders into the exponent. In this setion, we also ob-tain master formulas for observed ross setions. Lead-ing log results are presented in Se. 3. These resultsare valid for both deep inelasti and elasti ases. Wealso use the iterative form of eletron struture fun-tions to extrat the lowest-order orretion, whih anprovide a ross-hek via omparison with the knownresults. In Ses. 4 and 5, we desribe the proedure ofgeneralizing the results to the next-to-leading order inthe deep inelasti and elasti ases. Numerial anal-ysis is presented in Se. 6. We onsider kinematialonditions of urrent polarization experiments at �xedtargets and ollider kinematis. Some onlusions aregiven in Se. 7.2. ELECTRON STRUCTURE FUNCTIONSA straightforward alulation based on the quasirealeletron method [21℄ an be used to write the invariantross setion of the deep inelasti sattering proesse�(k1) + P (p1)! e�(k2) +X(px) (1)as d�(k1; k2)dQ2 dy = 1Zz1m dz1 1Zz2m dz2D(z1; L)�� 1z22D(z2; L)d2�hard(~k1; ~k2)d ~Q2 d~y ; L = ln Q2m2 ; (2)where m is the eletron mass andQ2 = �(k1 � k2)2; y = 2p1(k1 � k2)V ; V = 2p1k1:The redued variables that de�ne the hard rosssetion in the integrand are

~k1 = z1k1; ~k2 = k2z2 ;eQ2 = z1z2Q2; ~y = 1� 1� yz1z2 : (3)The eletron struture funtion D(z; L) inludesontributions due to the photon emission and pair pro-dution, D = D +De+e�N +De+e�S ; (4)where D is responsible for the photon radiation andDe+e�N and De+e�S desribe pair prodution in non-singlet (by single photon mehanism) and singlet (bydouble photon mehanism) hannels, respetively.The struture funtions in the right-hand sideof Eq. (4) satisfy the DGLAP equations [22℄ (seealso [18℄). The respetive funtions D(z1; L) andD(z2; L) are responsible for radiation of the initial and�nal eletrons.There exist di�erent representations for the pho-ton ontribution to the struture funtion [18, 23, 24℄,but we here use the form given in [18℄ for D , De+e�N ,and De+e�S ,D(z;Q2) = 12�(1� z)�=2�1 �� �1 + 38� � �248 �13L+ �2 � 478 ��� �4 (1 + z) ++ �232 �� 4(1 + z) ln(1� z)�� 1 + 3z21� z ln z � 5� z� ; � = 2�� (L� 1); (5)De+e�N (z;Q2) == �2�2 " 112(1� z) �1� z � 2m" ��=2�L1 � 53�2 �� �1 + z2 + �6 �L1 � 53��� ��1� z � 2m" � ; (6)De+e�S = �24�2L2 �2(1� z3)3z ++12(1� z) + (1 + z) ln z� ��1� z � 2m" � ; (7)where " is the energy of the parent eletron andL1 = L+ 2 ln(1� z):We note that the above form of the struture funtionDe+e�N inludes e�ets due to the real pair prodution463



A. V. Afanasev, I. Akushevih, N. P. Merenkov ÆÝÒÔ, òîì 125, âûï. 3, 2004only. The orretion aused by the virtual pair is in-luded in D . Terms ontaining a ontribution of theorder �2L3 are aneled in the sum D +De+e�N :Instead of the photon struture funtion given byEqs. (5)�(7), one an use their iterative form [23℄D(z; L) = Æ(1� z) + 1Xk=1 1k! ��L2� �k P1(z)
k; (8)P1(z)
 : : :
 P1(z)| {z }k = P1(z)
k;P1(z)
 P1(z) = 1Zz P1(t)P1 �zt � dtt ;P1(z) = 1 + z21� z �(1� z��)+ Æ(1� z)�2 ln� + 32� ;�� 1:The iterative form (8) ofD does not inlude any e�etsaused by pair prodution. The orresponding nonsin-glet part of the struture due to the real and virtualpair prodution an be inluded into the iterative formof D(z; L) by replaing �L=2� in the right-hand sideof Eq. (8) with the e�etive eletromagneti oupling�L2� ! �eff2� = �32 ln�1� �L3� � ; (9)whih is (within the leading auray) the integral ofthe running eletromagneti onstant.The lower limits of integration with respet to z1and z2 in the master equation (2) an be obtained fromthe ondition for the existene of inelasti hadronievents,(p1+~q)2 > M2th; ~q = ~k1�~k2; Mth =M+m�; (10)where m� is the pion mass. This onstraint an berewritten in terms of dimensionless variables asz1z2 + y � 1� xyz1 � z2zth;x = Q22p1(k1 � k2) ; zth = M2th �M2V ; (11)whih leads toz2m = 1� y + xyz1z1 � zth ; z1m = 1 + zth � y1� xy :The squared matrix element of the onsidered pro-ess in the one-photon exhange approximation isproportional to the ontration of the leptoni andhadroni tensors. Representation (2) re�ets the prop-erties of the leptoni tensor. Therefore, it has the uni-versal nature (beause of the universality of the leptoni

tensor) and an be applied to proesses with di�erent�nal hadroni states. In partiular, we an use theeletron struture funtion method to ompute radia-tive orretions to the elasti and deep inelasti (in-lusive and semi-inlusive) eletron�proton satteringross setions.On the other hand, straightforward alulations inthe �rst order in � [5; 8; 21℄ and the reent alula-tions of the leptoni urrent tensor in the seond or-der [25�28℄ for the longitudinally polarized initial ele-tron demonstrate that in the leading approximation,spin-dependent and spin-independent parts of this ten-sor are the same for the nonsinglet hannel ontribu-tion. The latter orresponds to photon radiation ande+e��pair prodution through the single-photon meh-anism. The di�erene appears in the seond order dueto the possibility of pair prodution in the singlet han-nel by the double-photon mehanism [28℄. Therefore,representation (2), being slightly modi�ed, an be usedfor the alulation of radiative orretions to ross se-tions of di�erent proesses with a longitudinally polar-ized eletron beam.In our reent paper [20℄, we applied the eletronstruture funtion method to ompute radiative or-retions to the ratio of the reoil proton polarizationsmeasured at CEBAF by Je�erson Lab Hall A Collab-oration [3℄. The aim of this high-preision experimentis the measurement of the proton eletri formfatorGE : In the present work, we use this method for alu-lation of the model-independent part of the radiativeorretions to the asymmetry in the sattering of lon-gitudinally polarized eletrons on polarized protons atthe level of per mill auray for elasti and deep in-elasti hadroni events.The ross setion of the sattering of the longitudi-nally polarized eletron by the proton with given lon-gitudinal (k) or transverse (?) polarizations for bothelasti and deep inelasti events an be written as asum of the spin-independent and spin-dependent parts,d�(k1; k2; S)dQ2dy = d�(k1; k2)dQ2dy + � d�k;?(k1; k2; S)dQ2dy ; (12)where S is the 4-vetor of the target proton polariza-tion and � is the produt of the eletron and protonpolarization degrees. Hereafter, we assume � = 1:Master equation (2) desribes the radiative orre-tions to the spin-independent part of the ross setionin the right-hand side of Eq. (12), and the orrespond-ing equation for the spin-dependent part is given by464



ÆÝÒÔ, òîì 125, âûï. 3, 2004 QED orretion to asymmetry : : :d�k;?(k1; k2; S)dQ2 dy = 1Zz1m dz1 1Zz2m dz2D(p)(z1; L)�� 1z22D(z2; L)d2�k;?hard(~k1; ~k2; S)d ~Q2 d~y ; (13)where D(p) = D +De+e�N +De+e�(p)S ;and [28℄De+e�(p)S = �24�2L2�5(1� z)2 + (1 + z) ln z��� ��1� z � 2m" � (14)desribes radiation of the initial polarized eletron.This representation is valid if radiation of ollinearpartiles does not hange the polarizations Sk and S?:Suh stabilized 4-vetors of the proton polarization anbe written as [8℄Sk� = 2M2k1� � V p1�MV ;S?� = up1� + V k2� � [2u� + V (1� y)℄k1�p�uV 2(1� y)� u2M2 ; (15)where u = �Q2; � =M2=V:It an be veri�ed that in the laboratory system,the 4-vetor Sk has the omponents (0;n); where the3-vetor n has the orientation of the initial eletron3-momentum k1: It an also be veri�ed that S?Sk = 0and that in the laboratory system,S? = (0;n?); n2? = 1; n � n? = 0;where the 3-vetor n? belongs to the plane (k1;k2):If the longitudinal diretion L is hosen along the3-momentum k1 � k2 in the laboratory system, whihoinides with the diretion of the 3-vetor q for nonra-diative proess, and the transverse diretionT is hosenin the plane (k1;k2), then we have the relationsd�LdQ2dy = os � d�kdQ2dy + sin � d�?dQ2dy ;d�TdQ2dy = � sin � d�kdQ2dy + os � d�?dQ2dy ;os � = y+2xy�py2+4xy� ; sin � = �2sxy�(1�y�xy�)y2+4xy� ;and the master formula (13) for d�k and d�?:

The asymmetry in elasti sattering and deep in-elasti sattering proesses is de�ned as the ratioAk;? = d�k;?(k1; k2; S)d�(k1; k2) ; (16)and therefore alulating the radiative orretions tothe asymmetry requires knowing radiative orretionsto both spin-independent and spin-dependent parts ofthe ross setion.Radiative orretions to the spin-independent partwere alulated (within the eletron struture funtionapproah) in [19℄. In the present work, we omputethe radiative orretions to the spin-dependent partsfor longitudinal and transverse polarizations of the tar-get proton and longitudinally polarized eletron beam.For ompleteness, we brie�y reall the result for theunpolarized ase.3. THE LEADING APPROXIMATIONWithin the leading auray (with the terms of theorder (�L)n taken into aount), the eletron struturefuntion an be omputed, in priniple, in all ordersof the perturbation theory. In this approximation, wehave to take the Born ross setion as a hard part inthe right-hand sides of Eqs. (2) and (13).We express the Born ross setion in terms of lep-toni and hadroni tensors asd�dQ2 dy = 4��2(Q2)V Q4 LB�� H�� ; (17)where �(Q2) is the running eletromagneti onstant,whih aounts for the e�ets of vauum polarization,andH�� = �F1eg�� + F2p1q ~p1�~p1� �� iM�����q�p1q �(g1 + g2)S� � g2 Sqp1q p1�� ; (18)LB�� = �Q22 g�� + k1�k2� + k1�k2� + i"����q�k1�;eg�� = g�� � q�q�q2 ; ~p1� = p1� � p1qq2 q�:In Eqs. (18), we assume the proton and eletron po-larization degrees equal to 1. The spin-independent(F1; F2) and spin-dependent (g1; g2) proton struturefuntions depend on the two variablesx0 = �q22p1q ; q2 = (px � p1)2:2 ÆÝÒÔ, âûï. 3 465



A. V. Afanasev, I. Akushevih, N. P. Merenkov ÆÝÒÔ, òîì 125, âûï. 3, 2004In the Born approximation, x0 = x, but these variablesdi�er in the general ase, when radiation of photonsand eletron�positron pairs is allowed.Beause the normalization is hosen, the elastilimit (p2x = M2) an be obtained by simply substi-tutingF1(x0; q2)! 12Æ(1� x0)G2M (q2);F2(x0; q2)! Æ(1� x0)G2E(q2) + �G2M (q2)1 + � ;g1(x0; q2)! 12Æ(1� x0)�GM (q2)GE(q2) ++ �1 + � [GM (q2)�GE(q2)℄GM (q2)	;g2(x0; q2)! �12Æ(1� x0) �1 + � �� [GM (q2)�GE(q2)℄GM (q2) ;� = � q24M2
(19)

in the hadroni tensor, where GM and GE are the mag-neti and eletri proton form fators.A simple alulation gives the spin-independent andspin-dependent parts of the well-known Born ross se-tion in the formd�BdQ2dy = 4��2(Q2)Q4y �� �(1� y � xy�)F2(x;Q2) + xy2F1(x;Q2)� ; (20)d�BkdQ2dy = 8��2(Q2)V 2y �� ��� � 2� y2xy � g1(x;Q2) + 2�y g2(x;Q2)� ; (21)d�B?dQ2dy = �8��2(Q2)V 2y sM2Q2 (1� y � xy�) �� �g1(x;Q2) + 2y g2(x;Q2)� : (22)Thus, within the leading auray, the radiatively or-reted ross setion of proess (1) is de�ned by Eq. (2)(for its spin-independent part) with (20) as the hardpart of the ross setion, and by Eq. (13) (for itsspin-dependent part) with (21) or (22) as the hard part.It is useful to extrat the �rst-order orretion tothe Born approximation, as de�ned by master equation(2). For this purpose, we an use the iterative form ofthe photon struture funtion D with L! L� 1 and�! �1 = 2(�")pV (1� xy)p� + z+;

z+ = y(1� x); 2(�")pV � 1for D(z1; L) and�! �2 = 2(�")pV (1� z+)p� + z+for D(z2; L); where (�") is the minimal energyof a hard ollinear photon in the speial system(k1 � k2 + p1 = 0): Straightforward alulations yieldthe expressiond�(1)(k1; k2)dQ2dy = �(L� 1)2� ���d�(B)(k1; k2)dQ2dy �3 + 2 ln 4(�")2(z+ + �)V (1� z+)(1� xy)�++ z+��Zzth dz � 1 + z21(1� xy)(1� z1) d�(B)(z1k1; k2)dQ2tdyt ++ 1 + z22(1� z+)(1� z2) d�(B)(k1; k2=z2)dQ2sdys �� ; (23)where z = M2x �M2V ; z1 = 1� y + z1� xy ;z2 = 1� z+1� z ; � = 2(�")pV p� + z+;Q2t = �q2t = z1Q2; Q2s = �q2s = Q2z2 ;yt;s = 1� 1� yz1;2 :Similar equations an be derived for the �rst-orderorretion to the spin-dependent part of the ross se-tion for both longitudinal and transverse polarizationsof the target proton.4. DEEP INELASTIC SCATTERING CROSSSECTION BEYOND THE LEADINGACCURACYTo go beyond the leading auray, we have to im-prove the expressions for hard parts of the ross se-tions in master equations (2) and (13) in order to in-lude e�ets aused by radiation of a hard nonollinearphoton. In priniple, we an also improve the expres-sion for the D funtion in order to take ollinear next-to-leading e�ets in the seond order of perturbationtheory into aount. The essential part of these e�etsis inluded in our D funtions due to the replaementL ! L � 1: The rest an be written using the results466



ÆÝÒÔ, òîì 125, âûï. 3, 2004 QED orretion to asymmetry : : :of the orresponding alulations for the double photonemission [27; 30℄, pair prodution [28, 31, 32℄, one-looporreted Compton tensor [25, 26, 33℄, and virtual or-retion [34℄. But we here restrit ourselves to the Dfuntions given above in Eqs. (5), (6), (7), and (14).To ompute the improved hard ross setion, wemust �nd the full �rst-order radiative orretions tothe ross setion of proess (1) and subtrat from it(to avoid double ounting) its leading part de�ned byEq. (23) (for the unpolarized ase). Therefore, the im-proved hard part an be written asd�harddQ2dy = d�BdQ2dy+d�(S+V )dQ2dy + d�HdQ2dy� d�(1)dQ2dy ; (24)where d�(S+V ) is the orretion to the ross setion ofproess (1) due to virtual and soft photon emission andd�H is the ross setion of the radiative proesse�(k1) + P (p1)! e�(k2) + (k) +X(px): (25)The virtual and soft orretions are fatored ina similar way for both polarized and unpolarizedases [19℄ and an be written asd�BdQ2dy + d�(S+V )dQ2dy = d�BdQ2dy �1+ �2� �� �Æ+(L�1)�3+2 ln �2(1�xy)(1�z+)��� ; (26)Æ = �1� �23 � 2f 1� y � xy�(1� xy)(1� z+) � ln2 1� xy1� z+ ;f(x) = xZ0 dtt ln(1� t):To alulate the ross setion of radiative proess(25), we use the orresponding leptoni tensor in theform L�� = �4�2 (LH(un)�� + LH��)d3k! ;LH�� = 2i"����q�(k1�Rt + k2�Rs); (27)Rt = u+ tst � 2m2� 1s2 + 1t2� ;Rs = u+ sst � 2m2 stut2 ; st = �u(u+ V y � V z)u+ V ;where ! is the energy of the radiated photon, LH(un)��is the leptoni tensor for unpolarized partiles, seeRef. [33℄, and we use the notations = 2kk2; t = �2kk1; q2 = u+ s+ t

for kinemati invariants. The result for the unpolarizedase was derived in [19℄, and we here rewrite it usingstandard notation asd�harddQ2dy = d�BdQ2dy �1 + �2� Æ�+ �V Q2 �� z+Zzth dz( 1� r11� xy P̂tN � 1� r21� z+ P̂sN++ r+Zr� dr 2Wpy2 + 4xy� ++ P r+Zr� dr1� r " 1� P̂tjr � r1j � (1 + r2)N1� xy + (r1 � r)Tt��� 1�P̂sjr�r2j � (1+r2)N1�z+ +(r2�r)Ts�#) �2(rQ2)r2 ; (28)where r = �q2=Q2 and the limits of integration withrespet to r arer�(z) = 12xy(� + z+) �� h2xy(� + z) + (z+ � z)�y �py2 + 4xy� �i :Here, we used the notationN = 2F1(x0; r) + 2x0rxy �1� yxy � ��F2(x0; r);W = 2F1(x0; r) � 2x0�rxy F2(x0; r);Tt = �2x0[1� r(1� y)℄x2y2r F2(x0; r);Ts = �2x0(1� y � r)x2y2r F2(x0; r); (29)r1 = z1; r2 = 1z2 ; x0 = xyrxyr + z :The ation of the operators P̂t and P̂s is de�ned asP̂tf(r; x0) = f(r1; xt); P̂sf(r; x0) = f(r2; xs);xt = xyr1xyr1 + z ; xs = xyr2xyr2 + z :The hard ross setion (29) has neither ollinearnor infrared singularities. The di�erent terms in theright-hand side of Eq. (29) have singularities at r = r1,r = r2, and r = 1: Singularities at �rst two points areollinear and the one at the third point is nonphysial,467 2*



A. V. Afanasev, I. Akushevih, N. P. Merenkov ÆÝÒÔ, òîì 125, âûï. 3, 2004arising at integration. Collinear singularities vanish be-ause of the ation of the operators P̂t and P̂s on theterms ontaining N: The nonphysial singularity an-els beause in the limiting ase r ! 1, we haver2 � rjr2 � rj = 1; r1 � rjr1 � rj = �1; Tt + Ts = 0:To derive the hard ross setion for the polarizedase, we have to use the analogue of Eq. (24) for d�kand d�?: Taking into aount that d�V+S and d�(1)are the same in the polarized and unpolarized asesand using expression (27) for the antisymmetri partof the leptoni tensor to ompute d�H in the polarizedase, we arrive atd�k;?harddQ2dy = d�Bk;?dQ2dy �1 + �2� Æ�+ �Q4Uk;? �� z+Zzth dz8<: 1� r11� xy P̂tNk;?t + 1� r21� z+ P̂sNk;?s ++ P r+Zr� dr1� r " 1� P̂sjr � r2j(1� z+) ���(1 + r2)Nk;?s + 2(r2 � r)r2 T k;?s �� 1� P̂tjr � r1j ��  (1 + r2)Nk;?t1� xy + 2r(r1 � r)T k;?t !#++ r+Zr� dr 2W k;?py2 + 4xy�9=; x0�2(Q2r)r3 ; (30)where Uk = 1; U? =sM2Q2 (1� y � xy�)�1;W k = 4y�W; W? = 2y2(1 + 2x�)W;W = (1 + r)xg1 + x0g2;Nkt = 2[2r � z � xy(r + 2�)℄g1 � 8x0�g2;Nks = 2[2� z � xyr(1 + 2�)℄g1 � 8x0�g2;N?t = 2[1� y � z + r � xy(r + 2�)℄(xyg1 + 2x0g2);N?s = 2 �1� y + 1� zr � xy(1 + 2�)� (xyrg1 + 2x0g2);T kt = 2rg1 � 4x0�g2; T ks = 2(z � 1)(g1 � 2x0�g2);T?t = 2xyrg1 + 2x0(1� y + r � 2xy�)g2;T?s = 2(z � 1)�xyg1 + x0(1� y + 1=r � 2xy�)g2�:

The polarized hard ross setion de�ned by Eq. (30)is also free from ollinear singularities due to the ationof the operators 1 � P̂t and 1 � P̂s: The nonphysialsingularity at r = 1 in the right-hand side of Eq. (30)anels beause Ttk;? = 1z � 1Tsk;?in this limit. We note that radiation of a photon atlarge angles by the initial and �nal eletrons inreasesthe range of r in (28) and (30), beause r1 < r < r2 forollinear radiation, and now r� < r1 and r+ > r2. Thismay be important if the hadron struture funtions arelarge in these additional regions.5. HARD CROSS SECTION FOR ELASTICHADRONIC EVENTSTo desribe the hard ross setion for elastihadroni events, we use the replaement de�ned by (19)in Eqs. (28) and (30). We refer to Eqs. (21)�(23) forthe Born ross setions that enter these equations. Thefuntion Æ(1 � x0) is used to integrate with respet tothe inelastiity z,Z dzÆ(1� x0) = xyr: (31)The �nal result for the unpolarized ase is given by (wedo not introdue speial notation for the elasti rosssetion)d�harddQ2dy = d�BdQ2dy �1 + �2� Æ�+ �V 2 ��8<: 1�r11�xy P̂tN� 1�r21�z+ P̂sN+ r+Zr� dr 2Wpy2+4xy�++ P r+Zr� dr1� r " 1� P̂tjr � r1j � 1 + r21� xyN + (r1 � r)Tt��� 1�P̂sjr�r2j � 1+r21�z+N+(r2�r)Ts�#9=; �2(Q2r)r ; (32)whereN = G2M + 2xyr �1� yxy � �� G2E + �G2M1 + � ;W = G2M � 2�xyr G2E + �G2M1 + � ;Tt = � 2x2y2r [1� r(1� y)℄G2E + �G2M1 + � ;468



ÆÝÒÔ, òîì 125, âûï. 3, 2004 QED orretion to asymmetry : : :Ts = � 2x2y2r (1� r � y)G2E + �G2M1 + � :The Born ross setion in the right-hand side of Eq. (32)is de�ned asd�BdQ2dy = 4��2(Q2)V 2 ���12G2M+[1�y(1+�)℄G2E+�G2My2(1+�) � Æ�y�Q2V � : (33)In writing this last equation, we took into aount thatÆ(1� x) = yÆ�y � Q2V � :The spin-dependent hard ross setion for elastihadroni events an be written in the form very similarto (32),d�k;?harddQ2dy = d�Bk;?dQ2dy �1 + �2� Æ�+ �V Uk;? ��( 1� r11� xy P̂tNk;?t + 1� r21� z+ P̂sNk;?s ++ r+Zr� dr W k;?py2 + 4xy� + P r+Zr� dr1� r "� 1� P̂tjr � r1j ��� 1 + r21� xyNk;?t + 2r(r1 � r)T k;?t �++ 1� P̂sjr � r2j(1� z+) �� �(1 + r2)Nk;?s + 2(r2 � r)r2 T k;?s �#)�� �2(Q2r)(4M2 +Q2r)r2 ; (34)where W k = 4y�W; W? = 2y2(1 + 2x�)W;W = r[x(1 + r)� 1℄G2M + �r + 4�y (1 + r)�GMGE ;Nkt = r(2�+r)(2�xy)G2M+8� �r� 1xy�1����GMGE ;Nks = r(2�+1)(2�xyr)G2M+8� � 1xy�r(1+�)�GMGE ;N?t = [1� y + r � xy(r + 2�)℄�� [�r(2� xy)G2M + 2(r + 2�)GMGE ℄;

N?s = �1� y + 1r � xy(1 + 2�)��� [�r(2� xyr)G2M + 2r(1 + 2�)GMGE ℄;T kt = r �(r + 2�)G2M + 2� � 2xy � 1�GMGE� ;T ks = �r(1 + 2�)G2M � 2� � 2xy � r�GMGE ;T?t = r��[r(1� xy) + 1� y � 2xy�)℄G2M ++ [1� y � 2xy� + r + 4� ℄GMGE	;T?s = r �1r � xy(1 + 2�) + 1� y�G2M �� �2�(2� xyr) + 1 + r(1� y)�GMGE :We note that the argument of the eletromagneti formfators in Eqs. (32) and (34) is �Q2r:The Born ross setions in the right-hand side ofEq. (34) are given byd�BkdQ2dy = 4��2(Q2)V (4M2 +Q2) �4� �1 + � � 1y�GMGE�� (1 + 2�)�1� y2�G2M� Æ�y � Q2V � ; (35)for the longitudinal polarization of the target protonand byd�B?dQ2dy = 8��2(Q2)V (4M2 +Q2)sM2Q2 [1� y(1 + �)℄�� h�1�y2�G2M�(1+2�)GMGEi Æ�y�Q2V � ; (36)for the transverse one. The argument of the form fa-tors in (35) and (36) is �Q2:The results in this setion an be generalized to elas-ti eletron�deuteron sattering in both polarized andunpolarized ases in a very simple way beause the re-spetive deuteron tensors Hd�� are onneted with theproton ones Hp�� by the relationsHd(un)�� = 4� + xyr4� Hp(un)�� ���G2M ! 23G(d)2M ; G2E ! G2C + 8x2y2r29(4�)2 G2Q� ;Hd(k;?)�� = �4� + xyr8� Hp(k;?)�� �� �GM ! G(d)M ; GE ! 2GC + xyr6� GQ� ;where G(d)M , GC , and GQ are the magneti, harged,and quadrupole deuteron form fators respetively.469



A. V. Afanasev, I. Akushevih, N. P. Merenkov ÆÝÒÔ, òîì 125, âûï. 3, 20046. NUMERICAL ESTIMATIONSThe formulas obtained in the last setion inludesome operators that emphasize the physial meaningof the transformations performed. But they are notonvenient in numerial analysis. Here, we present auni�ed version of the formulas without any operators.For example, the symbol P is expliitly treated asP r+Zr� d r1� rF (r) == r+Zr� d r1� r �F (r) � F (1)�+ F (1) ln 1� r�r+ � 1 :Therefore, all ross setions given by Eqs. (28), (30),(32), and (34) an be written by means of the uni�edformulad�iharddQ2dy = d�BidQ2dy �1 + �2� Æ�+ �Ui �� z+Zzth dz�nLi1Ni(r1) + Li2Ni(r2)o++ r+Zr� dr�Wi + Ti + 11� r�Ni(r1)�Ni(r2) ++ 1� r1jr � r1jhNi(r) �Ni(r1)i++ 1� r2jr � r2jhNi(r)�Ni(r2)i��� ; (37)whereLi1;2 = �bi (1� r1;2)21 + r21;2 �ln 1� r�r+ � 1 ; bu = �1; bl;t = 1:The index i runs over all polarization states (i = u; l; t).The funtions Ni(r) and Ti are given byNi(r) = 1 + r2z+ � zNi x0�2r3 ;Ti = 8><>: � Ti11� r x0�2r3 ; r < r1; r > r2;Ti2x0�2r3 ; r1 < r < r2:The pole at r = 1 an be reahed only in the regionr1 < r < r2, and hene there is no singularity in theterms involving Ti1. For Ti2, this pole anels expliitly,Tu2 = 2(2� y)F2x2y2 ; Tl2 = �4(1 + r)g1 + 8x0�g2;

Tt2 = �4(1+r)xyg1�4x0�r+1r+2�y�2xy�� g2:In the unpolarized ase, Nu = rN=x0 with N from (28).In other ases, they areNl = 2 ��1�r+y(1+2x�)[1�z+r(1�xy)℄2�y � g1++ 8x0�g2;Nt = �4[1� z + r(1� xy)℄r(2� y) [xyr(1� y � xy�)g1++x0(1� y + z + r(1� y + xy))g2℄+4x0y(1+2x�)g2;Tu1 = �2(1 + r)F2x2y ;Tl1 = 4y(1 + r2)(1 + 2x�)2� y g1 + 8x0(1 + r)�g2;Tt1 = 4�1 + r22� y ��2xy(1� y � xy�)g1 ++ (y � 2z + yr(1� 2x))x0r g2�++ x0y(1 + 2x�)(1 + r)g2� ;andWu = 2Wpy2 + 4xy� �2r2 ; Wl;t = 2W k;?py2 + 4xy� x�2r3 ;Uu = 1V Q2 Ul;t = eUk;?Q4 :The same formulas an be used in the elasti ase.Only Eqs. (19) and (31) are needed here. In the elastiase, we must therefore substituteZ dz ! xyr;set x0 = 1 and z = 0, and replae the proton struturefuntions in aordane with (19).It is believed that the formulas obtained within thepresented formalism are not onvenient for numerialanalysis. There are two reasons for suh an opinion.First, the eletron struture funtion in form (5), (6)has a very sharp peak as z tends to unity. Seond, be-ause absolute values appear in denominators, the inte-grand annot be a ontinuous funtion of the integra-tion variables. This produes obstales for numerialanalysis if it is arried out in the traditional style basedon adaptive methods of numerial integration, whih470
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Æt Æt ÆtÆi Æi Æi0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5Fig. 1. Radiative orretion to unpolarized and po-larized (both longitudinal and transverse) parts of theross setion for kinematis lose to JLab experiments,V = 10 GeV2, x = 0:5is used in suh programs as TERAD/HECTOR [36℄or POLRAD [9℄. But it is possible to perform nu-merial analysis if Monte Carlo integration is used in-stead of adaptive integration and the regions with sharppeaks are extrated into separate integration subre-gions. Based on these ideas, we developed Fortran odeESFRAD1) that allows performing the numerial anal-ysis without any serious di�ulties.We onsidered two radiative proesses. In the �rstase, the ontinuum of hadrons is produed, while inthe seond ase, the proton remains in the ground state.Both of the e�ets onsidered ontribute to the experi-mentally observed ross setion2) of deep inelasti sat-tering. They are usually alled the radiative tails fromthe ontinuous spetrum and the elasti peak, or sim-ply the inelasti and elasti radiative tails. Below, westudy the ontributions of the tails numerially withinkinematial onditions of the urrent experiments ondeep inelasti sattering.We take three typial values of V equal to 10, 50and 105 GeV2. They orrespond to JLab, HERMES,and HERA measurements. Figures 1, 2, and 3 givethe radiative orretion fator for all polarization states(unpolarized, longitudinal or transverse)1) Eletron Struture Funtion method for RADiative orre-tions.2) Here and below, we mean double di�erential ross setion� = d�=dy dQ2.
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Fig. 2. Radiative orretion to unpolarized and po-larized (both longitudinal and transverse) parts of theross setion for kinematis lose to HERMES experi-ment, V = 50 GeV2, x = 0:1, �Æt = �ÆtÆi;t = �obs�B : (38)The observed double di�erential ross setion is givenby the master formulas (2) and (13), and the Born rosssetion is alulated via (20), (21), and (22). Both elas-ti and inelasti ontributions must be taken for �hard.In this ase, we obtain the total radiative orretionfator (Æt). The subsripts i and t orrespond to theases where the elasti radiative tail is inluded intothe total orretion (Æt) or the inelasti radiative tailontributes only (Æi). The elasti radiative tail mayoptionally not be inluded beause there sometimes ex-ist experimental methods to separate this ontribution.We note that for the HERA kinematis, we do not in-lude it beause it is usually separated experimentally.Also we an extrat a one-loop ontribution in orderto study the e�et of higher-order orretions. The ob-served ross setion in this ase is given by the sum ofthe ross setions in Eqs. (23) and (37). We note thatthis an provide an additional ross hek by ompari-son with POLRAD.We use rather simple models for spin-averaged andspin-dependent struture funtions. It allows us notto mix the pure radiative e�ets, whih are of inter-est, with the e�ets due to hadron struture funtions.Spei�ally, we use the so-alled D8 model for thespin-average struture funtion [35℄ (see also disussionin [9℄), and A1(x) = x0:725 suggested in [37℄; we setg2 = 0 (the de�nition of A1(x) is given below).471
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yFig. 3. One-loop and total radiative orretions (dashed and solid lines) for ollider kinematis (HERA); V = 105 GeV2.Lines from top to bottom orrespond to di�erent values of x = 0:001, 0:01, and 0:1From these plots, we an see that the total radia-tive orretion is basially determined by the one-looporretion with some important e�et around kinemat-ial boundaries. The sign and value of the higher-ordere�ets are in agreement with the leading log estima-tions and alulations of the orretion to the elastiradiative tail in Refs. [38, 39℄. Two regions requirespeial onsideration, the region of higher y for theHERMES and JLab kinematis and the region nearthe pion threshold at JLab.We de�ne the polarization asymmetries in the stan-dard way, AL = �k� ; AT = �?� : (39)We an also de�ne the spin asymmetry A1 asAL = DA1 (for the hosen model where g2 = 0), whereD is the kinematial depolarization fator dependingon the ratio R of the longitudinal and transversephotoabsorption ross setions,D = y(2� y)(1 + 2y=2)y2(1 + 2) + 2(1� y � 2y2=4)(1 +R) ;R = �L�T = M(Q2 + �2)Q2� F2F1 � 1;where � = yV=2M and 2 = Q2=�2. For �xed x, A1is a onstant within our model, and it is therefore very

onvenient for graphial presentation and analysis ofdi�erent radiative e�ets. Figure 4 gives the asymme-tries A1 and AT for the kinematis of HERMES andJLab up to y = 0:95. In�uene of higher-order andelasti radiative e�ets an be seen. Figure 5 gives thetotal orretions to the ross setions and asymmetriesfor the threshold region of JLab.7. CONCLUSIONWe have onsidered model-independent QED radia-tive orretion to the polarized deep inelasti and elas-ti eletron�proton sattering. Together with the ana-lyti expression for the radiative orretions, we give itsnumerial values for di�erent experimental situations.Our analyti alulations are based on the eletronstruture funtion method, whih allows us to writeboth the spin-independent and spin-dependent parts ofthe ross setion with the radiative orretions to theleptoni part of interation taken into aount in theform of the well-known Drell�Yan representation. Theorresponding radiative orretions expliitly inludesthe �rst-order orretion as well as the leading-log on-tribution in all orders of the perturbation theory andthe main part of the seond-order next-to-leading-logontribution. Moreover, any model-dependent radia-472
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between these results for the one-loop orretion withthe previous results in [8℄, whih provides the most im-portant test of the total orretion.On the basis of the analyti results, we onstrutedthe Fortran ode ESFRAD3). Beause of several knownreasons disussed in Se. 6, results obtained by the ele-tron struture funtion method are usually not veryonvenient for preise numerial analysis. But we be-lieve that our numerial proedure based on MonteCarlo integration allows us to overome the obstales.Using the ESFRAD ode, we performed numerialanalysis for kinematial onditions of the urrentand future polarization experiments. We found twokinematial regions where the higher-order radiative3) Fortran ode ESFRAD is available athttp://www.jlab.org/�aku/RC.473
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