ПОЛЯРИЗАЦИЯ ЭЛЕКТРОН-ПОЗИТРОННОГО ВАКУУМА СИЛЬНЫМ МАГНИТНЫМ ПОЛЕМ С УЧЕТОМ АНОМАЛЬНОГО МАГНИТНОГО МОМЕНТА ЧАСТИЦ

В. Н. Родионов*

Московский государственный геологоразведочный университет 118873, Москва, Россия

Поступила в редакцию 10 июня 2003 г.

При наличии аномального магнитного момента электронов и позитронов в однопетлевом приближении вычислена точная лагранжева функция интенсивного постоянного магнитного поля, заменяющая собой лагранжиан Гейзенберга–Эйлера в традиционной КЭД. Установлено, что найденное обобщение лагранжевой функции вещественно при произвольных значениях магнитного поля. В слабом поле вычисленный лагранжиан совпадает с известной формулой Гейзенберга–Эйлера. При экстремально сильных полях зависимость лагранжиана от поля полностью исчезает, и в этой области он стремится к константе, определяемой значением аномальных магнитных моментов частиц.

PACS: 12.20.-m

1. ВВЕДЕНИЕ

В 1936 г. Гейзенбергом и Эйлером [1] были впервые вычислены квантовые поправки к максвелловской лагранжевой функции постоянного электромагнитного поля. Изучение радиационных поправок, отвечающих поляризации электрон-позитронного вакуума внешними электромагнитными полями, с диаграммами, содержащими различное число электронных петель, до сих пор остается в центре внимания [2-4]. Проведенные оценки свидетельствуют о том, что лишь в экспоненциально сильных электромагнитных полях¹⁾ $(F_c \sim \exp(3\pi/\alpha)H_c)$ квантовые (радиационные) поправки могли бы достигнуть величины максвелловской плотности энергии электромагнитного поля [5]. Как известно, вычисления Гейзенберга и Эйлера не содержат приближений по интенсивности внешних электромагнитных полей, а полученные ими результаты были многократно подтверждены расчетами, проведенными в рамках иных подходов.

На этом основании в ряде работ величина поля F_c отождествлялась с границей применимости общепринятой КЭД. Однако очевидно, что хотя подобные оценки чрезмерно завышены, так как отвечающие им характерные длины оказываются на много порядков меньше не только масштаба проявления слабых взаимодействий, но и «планковской» длины, в принципиальном плане задача выявления пределов справедливости традиционной КЭД весьма актуальна. Говоря о физике сверхмалых расстояний, нельзя не сказать о глубокой аналогии²⁾, существующей между явлениями, возникающими при больших переданных импульсах, и процессами, идущими в интенсивных электромагнитных полях [2-17]. Пересечение, казалось бы, совершенно различных областей физики на самом деле не случайно и подсказывается простыми соображениями размерности.

Как известно, важную роль при изучении квантовых эффектов взаимодействия заряженных частиц с электромагнитным полем играет учет интенсивности электромагнитного поля, опирающийся на точную интегрируемость уравнений движения. В част-

^{*}E-mail: physics@msgpa.ru

¹⁾ Здесь использована система единиц $\hbar = c = 1$, $H_c = m^2/|e| = 4.41 \cdot 10^{13}$ Гс — характерный масштаб напряженности электромагнитных полей в КЭД, e и m — заряд и масса электрона, $\alpha = e^2 = 1/137$ — постоянная тонкой структуры.

²⁾ На эту аналогию впервые обратили внимание Мигдал [6] и Ритус [2].

ности, известная швингеровская поправка к магнетону Бора

$$\mu_0 = \frac{e}{2m},$$

называемая аномальным магнитным моментом частицы,

$$\Delta \mu = \mu_0 \frac{\alpha}{2\pi},$$

проявляется лишь в нерелятивистском пределе в случае слабых квазистатических полей [7]. Действительно, при точном учете влияния интенсивного внешнего поля аномальный магнитный момент частицы, вычисленный в рамках КЭД как однопетлевая радиационная поправка, убывает с ростом интенсивности поля и увеличением энергии движущихся частиц от швингеровского значения до нуля. В частности, в области магнитных полей $H \sim H_c$ аномальный магнитный момент электрона описывается асимптотической формулой [7,10]

$$\Delta\mu(H) = \mu_0 \frac{\alpha}{2\pi} \frac{H_c}{H} \ln \frac{2H}{H_c}.$$
 (1)

Из (1) следует, что $\Delta \mu(H)$, убывая с ростом поля, только в одной точке обращается в нуль. Аналогичное выражение для величины аномального магнитного момента электрона в интенсивном постоянном скрещенном поле $\mathbf{E} \perp \mathbf{H}$ (E = H) при $Hp_{\perp} \gg mH_c$, где p_{\perp} — компонента импульса электрона перпендикулярная $\mathbf{E} \times \mathbf{H}$, представимо в виде [11]

$$\Delta\mu(E) = \mu_0 \frac{\alpha\Gamma(1/3)}{9\sqrt{3}} \left(\frac{3p_{\perp}H}{mH_c}\right)^{-2/3}.$$
 (2)

Обратим внимание на то, что $\Delta \mu(E) \neq 0$ во всей области изменения параметров.

В этой связи отметим, что многочисленные расчеты лагранжевой функции электромагнитного поля (см., например, [1–3, 5–7, 11]) выполнялись в предположении, что магнитный момент электронов в точности равен магнетону Бора³⁾, т.е. при $\Delta \mu = 0$. Однако для выяснения внутренней замкнутости КЭД существенно, к каким следствиям приведет учет аномальных магнитных моментов электронов и позитронов при вычислении поляризации электрон-позитронного вакуума интенсивными электромагнитными полями.

Таким образом, представляет интерес сравнить радиационные поправки к максвелловской лагранжевой функции постоянного поля, вычисленные традиционным образом, с результатами, которые можно получить из аналогичных расчетов при учете аномальных магнитных моментов частиц, отличных от нуля. Серьезного внимания заслуживает и то, что вычисления лагранжиана, заменяющего собой лагранжиан Гейзенберга–Эйлера с ненулевыми значениями аномальных магнитных моментов, можно провести, сохранив метод точных решений уравнения Дирака в электромагнитных полях произвольной интенсивности. В развиваемом подходе предлагаемое теоретическое обобщение изначально не содержит ограничений на интенсивности электромагнитных полей.

Следует отметить, что ненулевые значения аномальных магнитных моментов появляются и в некоторых модифицированных квантовых теориях поля, описывающих также и электромагнитные взаимодействия. В частности, это имеет место в варианте обобщения традиционной квантовой теории поля, известном как теория с «фундаментальной массой» (см., [12,13] и цитируемые там работы). Отправным пунктом этой теории является условие ограниченности спектра масс элементарных частиц, представимое в виде

$$m \le M,\tag{3}$$

где новый универсальный параметр *M* носит название фундаментальной массы. Соотношение (3) используется как некий дополнительный фундаментальный физический принцип, который и положен в основу новой квантовой теории поля. Существенным отличием от традиционных расчетов является то, что в «КЭД с фундаментальной массой» заряженные лептоны обладают магнитными моментами, не равными магнетону Бора. Это обусловлено тем, что в новом лагранжиане электромагнитного взаимодействия, помимо традиционного «минимального» члена, присутствуют «неминимальные» слагаемые. Тем самым в модифицированной КЭД электрон изначально обладает аномальным магнитным моментом, который равен

$$\Delta \mu = \mu - \mu_0 = \mu_0 \left(\sqrt{1 + \frac{m^2}{M^2}} - 1 \right).$$
 (4)

Важным аспектом рассматриваемой проблемы является то, что современный уровень развития лазерной физики [14] позволяет приступить к постановке ряда оптических экспериментов для непосредственного измерения величин вкладов, обусловленных нелинейными вакуумными эффектами, предсказываемыми различными обобщениями электро-

³⁾ Отметим, что в работе [4] учет аномальных магнитных моментов частиц проводился при анализе равновесных процессов в вырожденном электрон-нуклонном газе в сильном магнитным поле.

динамики Максвелла [15]. В этой связи следует подчеркнуть, что экспериментальная проверка нелинейных эффектов в вакууме, проводимая с высокой точностью в присутствии сравнительно слабых электромагнитных полей, может дать также ценную информацию и о правильности предсказаний КЭД на малых расстояниях [16,17]. Отметим попутно, что в том же смысле актуальны прецизионные измерения различных величин (например, аномальных магнитных моментов электрона и мюона), проводимые в нерелятивистской области энергий, наряду с изучением взаимодействия частиц при высоких энергиях.

2. ПОПРАВКА К ЛАГРАНЖЕВОЙ ФУНКЦИИ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ С УЧЕТОМ АНОМАЛЬНЫХ МАГНИТНЫХ МОМЕНТОВ ЧАСТИЦ

Рассмотрим с этой точки зрения поправку к лагранжевой функции электромагнитного поля, обусловленную поляризацией электрон-позитронного вакуума в присутствии сколь угодно сильного постоянного магнитного поля с учетом отличных от нуля аномальных магнитных моментов частиц. Для решения этой задачи, так же как и в известном подходе [5], удобно представить электрон-позитронный вакуум как систему электронов, заполняющих уровни с «отрицательной» энергией. Заметим, что для случая постоянного и однородного магнитного поля уравнение Дирака-Паули, содержащее взаимодействие заряженного лептона с полем (включая и аномальный магнитный момент частицы), имеет точное решение [18]. При этом собственные значения энергии явным образом зависят от ориентации спина по отношению к оси симметрии, задаваемой направлением магнитного поля. Таким образом, спектр энергии электрона, движущегося в постоянном однородном магнитном поле произвольной интенсивности, имеет вид

$$E_n(p, H, \xi) = m \left[\frac{p^2}{m^2} + \left(\sqrt{\left| \frac{H}{H_c} \right| (1 + 2n + \xi) + 1} + \xi \frac{\mu - \mu_0}{2\mu_0} \frac{H}{H_c} \right)^2 \right]^{1/2}, \quad (5)$$

где p — проекция импульса электрона на направление внешнего поля **H**, $n = 0, 1, 2, \ldots$ — квантовое число, нумерующее уровни Ландау, величина $\xi = \pm 1$ характеризует проекцию спина электрона на направление магнитного поля.

Замечая, что радиационная добавка к классической плотности функции Лагранжа совпадает с точностью до знака с полной плотностью энергии электрон-позитронного вакуума при наличии внешнего поля [5],

$$\mathcal{L}' = -W^H,$$

рассчитаем W^H в постоянном магнитном поле с учетом аномального магнитного момента электрона. Не останавливаясь на деталях стандартных расчетов, представим W^H в виде

$$W^{H} = -\frac{|eH|}{(2\pi)^{2}} \times \int_{-\infty}^{\infty} dp \left[-\varepsilon_{0}^{+}(p) + \sum_{n=0}^{\infty} \left[\varepsilon_{n}^{-}(p) + \varepsilon_{n}^{+}(p) \right] \right], \quad (6)$$

где

$$\varepsilon_n^{\pm} = \sqrt{p^2 + m^2 \left(\sqrt{1 + 2\frac{H}{H_c}n} \pm \frac{H}{4H_c^*}\right)^2}.$$
 (7)

Используя интегральные преобразования Лапласа и Фурье для функций, определяющих (6), и проводя суммирование по уровням Ландау, для \mathcal{L}' можно получить

$$\mathcal{L}' = -\frac{m^4 \gamma b_1}{8\pi^2} \int_0^\infty \frac{d\eta}{\eta^2} e^{-\eta} \times \left[\operatorname{sh} b + \frac{1}{\pi} \int_{-\infty}^\infty \frac{e^{-ix} \, dx}{x} \operatorname{ctg} \left(-\frac{i\gamma\eta}{b_1} + x\gamma \right) \times \right. \\ \left. \times \left. \left. 1F_2 \left(\left\{ 1 \right\}, \left\{ \frac{1}{4}, \frac{3}{4} \right\}, -\frac{b^4}{64x^2} \right) \right] \right], \quad (8)$$

где введены обозначения

$$a_1 = \frac{\eta H}{2H_c^*}, \quad b_1 = 1 + \left(\frac{H}{4H_c^*}\right)^2, \quad b = \frac{a_1}{b_1}, \quad \gamma = \frac{H}{H_c},$$

 $_1F_2(z)$ — обобщенная гипергеометрическая функция. Формула (8) представляет собой точное выражение для функции Лагранжа с учетом аномального магнитного момента, рассчитанное в однопетлевом приближении в магнитном поле произвольной интенсивности. Важное отличие от лагранжиана Гейзенберга–Эйлера состоит в том, что выражение (8) содержит дополнительный полевой масштаб

$$H_c^* = \frac{m}{4\Delta\mu}.$$
(9)

Отметим, что в рамках теории с фундаментальной массой эту величину

$$H_c^* = \frac{M^2}{e} = \frac{M^2}{m^2} H_c$$
 (10)

естественно назвать фундаментальным полем.

Перейдя в (8) к пределам интегрирования по x от нуля до ∞ и воспользовавшись свойством четности функции $_1F_2(z)$, имеем

$$\mathcal{L}' = -\frac{m^4 \gamma b_1}{8\pi^2} \int_0^\infty \frac{d\eta}{\eta^2} e^{-\eta} \bigg[\operatorname{sh} b + \frac{2}{\pi} \int_0^\infty \frac{dx}{x} \frac{\sin(2\gamma x) \cos x + \sin x \operatorname{sh} y}{\operatorname{ch}(2y) - \cos(2\gamma x)} \, _1F_2(z) \bigg], \quad (11)$$

где $y = \eta \gamma / b_1, \ z = -b^4 / 64x^2.$

Из (11), в частности, непосредственно следует, что

$$\operatorname{Im} \mathcal{L}' = 0.$$

Вещественность лагранжиана \mathcal{L}' при всех возможных значениях поля указывает на отсутствие нестабильных мод, т.е. вакуум в постоянном и однородном магнитном поле в рассматриваемом случае, так же как и в традиционной КЭД, устойчив по отношению к спонтанному образованию электрон-позитронных пар.

Выделим далее в выражении (11) интеграл по *x*. После ряда очевидных замен он приводится к виду

$$I = \int_{0}^{\infty} \frac{du \left[2a_2 \sin u \cos(b_2 u) + (1 - a_2^2) \sin(b_2 u) \right]}{u \left[1 + a_2^2 - 2a_2 \cos u \right]} \times 1F_2(z_1), \quad (12)$$

где

$$a_2 = e^{-2y}, \quad b_2 = \frac{1}{2\gamma}, \quad z_1 = -\frac{b^4(2\gamma)^2}{64u^2}$$

Учитывая справедливость разложений

$$\frac{\sin u}{1 + a_2^2 - 2a_2 \cos u} = \\ = \sin u + a_2 \sin(2u) + a_2^2 \sin(3u) + \dots,$$

 $\frac{1-a_2{}^2}{1+a_2{}^2-2a_2\cos u} = 1+2a_2\cos u+2a_2{}^2\cos(2u)+\dots,$ для (12) получим

$$I = \int_{0}^{\infty} \frac{du}{u} \left[-\sin(b_2 u) + 2\sum_{k=0}^{\infty} a_2^{k} \sin[u(k+b_2)] \right] \times IF_2(z_1). \quad (13)$$

Легко видеть, что в поле, которое является слабым по сравнению с фундаментальным полем H_c^* , мы можем воспользоваться разложением функции ${}_1F_2(z_1)$ в нуле:

$$_{1}F_{2}(z_{1}) = 1 + \frac{16}{3}z_{1} + \frac{256}{105}z_{1}^{2} + \dots,$$
 (14)

и для (13) получить

$$I = \frac{\pi}{2} \frac{1+a_2}{1-a_2} = \frac{\pi}{2} \operatorname{cth} y, \tag{15}$$

где $y = \eta \gamma$.

Подставляя (15) в (11) и проводя стандартную регуляризацию полученного интеграла [5], имеем

$$\mathcal{L}' = -\frac{m^4}{8\pi^2} \int_0^\infty \frac{e^{-\eta}}{\eta^3} \left[\eta\gamma \operatorname{cth}\left(\eta\gamma\right) - 1 - \frac{\eta^2\gamma^2}{3} \right] d\eta.$$
(16)

Таким образом, из (16) следует, что в пределе «слабого поля» формула (11) совпадает с результатом Гейзенберга–Эйлера [1] для случая постоянного однородного магнитного поля произвольной интенсивности.

Рассмотрим далее область $H > 4H_c^*$. Нетрудно убедиться, что в пределе сверхсильных полей, $H \gg 16{H_c^*}^2/H_c$, мы опять можем воспользоваться разложением (14) и для интеграла (13) получить выражение

$$I = \frac{\pi}{2} \operatorname{cth} y, \tag{17}$$

где $y = 16\eta H_c^{*2}/(H_c H)$. Результаты (15) и (17) имеют простой смысл: при достаточно широкой энергетической щели, разделяющей электронные и позитронные состояния, основной вклад в интеграл (13) формируют слагаемые с большими номерами k. Однако в области магнитных полей, близких к значению фундаментального поля, $H \sim 4H_c^*$, т.е. когда ширина щели близка к нулю, в подынтегральной сумме в (13) основной вклад дает слагаемое с k = 0. Интеграл (13) в этом случае может быть вычислен точно. Расчеты приводят к простому результату:

$$I = \frac{\pi}{2} \operatorname{ch} \left[\eta \frac{H}{2H_c^*} \frac{1}{1 + (H/4H_c^*)^2} \right].$$
 (18)

Оценки интеграла (12) в трех областях изменения магнитного поля ($H \ll H_c^*$, $H \sim 4H_c^*$,

 $H \gg {H_c}^*)$, можно представить в виде единой формулы

$$I = \frac{\pi}{2} \operatorname{ch} \left[\eta \frac{H}{2H_c^*} \frac{1}{1 + (H/4H_c^*)^2} \right] \times \operatorname{cth} \left[\frac{\eta \gamma}{1 + (H/4H_c^*)^2} \right]. \quad (19)$$

Подставляя (19) в (11) и проводя регуляризацию оставшегося расходящегося интеграла⁴⁾, для \mathcal{L}' получим

$$\mathcal{L}' = -\frac{m^4}{8\pi^2} \int_0^\infty \frac{d\eta}{\eta^3} e^{-\eta} \left[\eta b_1 \gamma \frac{\operatorname{ch} \left[(1+a)\eta\gamma/b_1 \right]}{\operatorname{sh} (\eta\gamma/b_1)} - b_1^2 - \frac{\eta^2}{6} \gamma^2 \left(2 + 6a + 3a^2 \right) \right], \quad (20)$$

где $a = H_c / 2 H_c^*$.

3. АСИМПТОТИЧЕСКИЕ РЕЗУЛЬТАТЫ

В слабых полях ($H \ll H_c$), а также в пределе очень сильных магнитных полей ($H \gg 16{H_c}^{*2}/H_c$) подынтегральное выражение в (20) допускает разложение в ряд, и в первом приближении мы имеем

$$\mathcal{L}' = \frac{m^4 \gamma^4}{2880 \pi^2 {b_1}^2} \left[8 - 15 a^2 (2+a)^2 \right] \int_0^\infty d\eta \, \eta \, e^{-\eta},$$

откуда следует

$$\mathcal{L}' = \frac{m^4 \gamma^4}{2880 \pi^2 {b_1}^2} \left[8 - 15a^2(2+a)^2 \right].$$
(21)

Таким образом, квантовая добавка к максвелловской лагранжевой функции в пределе слабого поля $(H \ll H_c)$ представима в виде

$$\mathcal{L}' = \frac{m^4}{360\pi^2} \frac{H^4}{H_c^4} \times \left[1 - \frac{15}{2}a^2 - \frac{15}{2}a^3 - \frac{15}{8}a^4 + \mathcal{O}(\gamma^2; \gamma^2 a^2)\right], \quad (22)$$

где первый член совпадает с известной формулой Гейзенберга–Эйлера. Первая поправка к ней, обусловленная наличием аномальных магнитных моментов частиц, отрицательна и квадратична по параметру *a*.

В сверхсильном поле $(H \gg 16{H_c}^{*2}/H_c)$ из (21) можно также получить

$$\mathcal{L}' = \frac{m^4}{180\pi^2 a^4} \left(8 - 60a^2 - 60a^3 - 15a^4\right) \times \left(1 - \frac{8}{\gamma^2 a^2}\right). \quad (23)$$

Согласно (23), в пределе экстремально сильных полей лагранжиан \mathcal{L}' перестает зависеть от поля, т.е. квантовая поправка к плотности функции Лагранжа в рассматриваемом случае с ростом поля асимптотически стремится к константе

$$\mathcal{L}'_{\infty} = \frac{\alpha^2}{360\pi^2 (\Delta\mu)^4}.$$
 (24)

Полученный результат в каком-то смысле можно сопоставить с ситуацией, наблюдающейся в Стандартной модели, когда для ряда процессов рост сечений с ростом энергии останавливается, если в рассмотрение наряду с фотоном, векторными W^{\pm} - и Z^0 -бозонами включается дополнительная диаграмма с хиггсовским Н-бозоном. Учет этой диаграммы сокращает растущие члены в амплитуде и приводит к поведению сечений, согласующемуся с унитарным пределом. Как известно, Стандартная модель не предсказывает массу Н-бозона, поэтому не исключено, что данная частица значительно тяжелее t-кварка, самой тяжелой из известных ныне элементарных частиц. Таким образом, может оказаться, что $M_H \sim 1$ ТэВ и является предельной массой, ограничивающей спектр масс элементарных частиц, т. е. играет роль фундаментальной массы (см. $(3))^{5}$).

Сопоставляя поправку \mathcal{L}' с лагранжевой функцией максвелловского поля, найдем интенсивность поля:

$$F_c^{\ *} = \sqrt{\frac{256\alpha}{45\pi}} \frac{{H_c}^{\ast 2}}{H_c}, \tag{25}$$

при которой величина \mathcal{L}_0 сравнивается с (24). При $H = F_c^*$ квантовая поправка \mathcal{L}' еще не достигает своего асимптотического значения \mathcal{L}'_{∞} . В ре-

⁴⁾ Отметим, что, во-первых, как обычно [5], следует отбросить часть интеграла, не содержащую напряженность магнитного поля и представляющую собой энергию свободных вакуумных электронов. Во-вторых, необходимо вычесть вклад, пропорциональный H², который уже включен в невозмущенную энергию поля. Отбрасывание этого слагаемого связано с перенормировкой напряженности поля, а тем самым и заряда. Наконец вычитание вклада порядка H⁴/H^{*4} по существу соответствует перенормировке дополнительного параметра теории — аномального магнитного момента частицы.

⁵⁾ Заметим в этой связи, что центральным пунктом программы исследований на Большом адронном коллайдере (LHC) в CERN является поиск хиггсовских бозонов в диапазоне значений масс до 1 ТэВ.

Рис.1. Зависимость нормированной лагранжевой функции \mathcal{L}'/m^4 от интенсивности магнитного поля $\gamma = H/H_c$ при различных значениях аномальных магнитных моментов частиц: $1 - \Delta \mu_1/\mu_0 = 10^{-3}$; $2 - \Delta \mu_2/\mu_0 = 10^{-3.05}$; $3 - \Delta \mu_3/\mu_0 = 10^{-3.1}$

зультате сравнения \mathcal{L}_0 и \mathcal{L}' в других областях изменения поля становится очевидным, что поправки \mathcal{L}' всегда малы по сравнению с лагранжевой функцией \mathcal{L}_0 . Зависимости относительных величин поправок \mathcal{L}'/m^4 от параметра интенсивности магнитного поля $\gamma = H/H_c$, построенные на основании (20) в случае, когда аномальные магнитные моменты частиц принимают значения: $\Delta \mu_1/\mu_0 = 10^{-3}$, $\Delta \mu_2/\mu_0 = 10^{-3.05}$, $\Delta \mu_3/\mu_0 = 10^{-3.1}$, представлены на рис. 1.

Оценку лагранжевой функции в области сильных магнитных полей проведем, исходя из формулы (20), которую с помощью замены $\gamma \eta/b_1 \rightarrow x$ представим в виде

$$\mathcal{L}' = -\frac{m^4 \gamma^2}{8\pi^2} \int_0^\infty \frac{\exp(-b_1 x/\gamma)}{x^3} \times \left[x \frac{\operatorname{ch}[x(1+a)]}{\operatorname{sh}(x)} - 1 - \frac{x^2}{3} \left(1 + 3a + \frac{3}{2}a^2 \right) \right] dx. \quad (26)$$

При $H_c \ll H \ll 16{H_c}^{*2}/H_c$ в интеграле (26) существенна область $1 \ll x \ll 16{H_c}^{*2}/{H_c}^2$. В этом случае гиперболические функции можно заменить экспонентами, и подынтегральная функция в (26) при-

обретает вид

$$\frac{\exp[f_1(a,\gamma,x)]}{x^2} - \frac{\exp[f_2(a,\gamma,x)]}{x^3} - \frac{\exp[f_2(a,\gamma,x)]}{3x} \left(1 + 3a + \frac{3}{2}a^2\right), \quad (27)$$

где

$$f_1(a,\gamma,x) = -\frac{1}{4\gamma}(2-a\gamma)^2 x,$$

$$f_2(a,\gamma,x) = -\frac{1}{\gamma}\left(1+\frac{a^2}{4}\gamma^2\right) x.$$

При $H_c \ll H < 4{H_c}^*$ (1 < $\gamma < 2/a$) получаем $f_1 \sim f_2 = -x/\gamma$ и с логарифмической точностью из (26) имеем

$$\mathcal{L}' = \frac{m^4 \gamma^2}{24\pi^2} \left(1 + 3a + \frac{3}{2}a^2 \right) \ln \gamma,$$
 (28)

что при $a \to 0$ совпадает с результатом Гейзенберга-Эйлера в пределе сильных магнитных полей $H \gg H_c$ [5].

Если $4H_c^* < H \ll 16{H_c^*}^2/H_c$, или $2/a < \gamma \ll 4/a^2$, имеем $f_1 \sim f_2 = -\gamma a^2 x/4$. Основной вклад в интеграл дает область $1 \ll x \ll 4/(a^2\gamma)$. Из (26) в этом случае находим

$$\mathcal{L}' = \frac{m^4 \gamma^2}{24\pi^2} \left(1 + 3a + \frac{3}{2}a^2 \right) \left(2\ln\frac{2}{a} - \ln\gamma \right).$$
(29)

При $H \gg 16 H_c^{*2}/H_c$ мы возвращаемся к случаю, рассмотренному выше (см. (23)), когда основной вклад в интеграл (26) дает область $x \ll 1$.

Если $a\gamma = 2$, т. е. при $H = 4{H_c}^*$, в одной из экспонент в (27) показатель (f_1) обращается в нуль. Нетрудно убедиться, что это слагаемое обусловлено вкладом основного энергетического состояния ε_0^- (см. формулу (7)), в котором при этом значении поля полностью выпадает зависимость от массы частиц. Такого состояния с «выпадающей» массой при фиксированном поле нет в структуре лагранжиана Гейзенберга-Эйлера. Однако, если рассмотреть предельный переход $m^2 \rightarrow 0$, то лагранжиан Гейзенберга-Эйлера может имитировать подобный эффект. Легко видеть, что интегральный вклад основного состояния оказывается малым по сравнению с вкладом последнего члена в (27), возникновение которого обязано проведению процедуры перенормировки поля в выражении (11). К аналогичному выводу можно прийти, и рассматривая интеграл (16).

Комментируя аналогию между пределами $m^2 \rightarrow 0$ в лагранжиане Гейзенберга–Эйлера (см. формулу (16)) и $H \rightarrow 4H_c^*$ в (26), следует подчеркнуть следующее. Как показано выше, при

 $H = 4H_c^*$ в модифицированном лагранжиане, так же как и в лагранжиане Гейзенберга–Эйлера при $m^2 = 0$, обращается в нуль показатель экспоненты в слагаемых, вклад которых исчезающе мал на фоне вкладов, обусловленных процедурой перенормировки. Другими словами, в обоих случаях основные состояния в структуре подынтегральной функции одинаково выделены, но их вклад в интеграл не является определяющим.

Пренебрегая первым и вторым членами в (27), из (26) имеем

$$\mathcal{L}' = \frac{m^4}{6\pi^2 a^2} \left(1 + 3a + \frac{3a^2}{2} \right) \ln \frac{2}{a}.$$

Отметим, что этот результат согласуется с формулами (28) и (29), из которых он может быть получен простой подстановкой $\gamma = 2/a$. Таким образом, в точке $H = 4H_c^*$ эти функции непрерывно сшиваются.

Наконец, оценим лагранжиан \mathcal{L}' в рамках традиционной КЭД, т. е. учтем отличные от нуля аномальные магнитные моменты частиц в интенсивных электромагнитных полях, обусловленные радиационными эффектами. Подставляя в выражение $b_1 = 1 + (\Delta \mu H/m)^2$ значения $\Delta \mu$ из (1), получим оценку \mathcal{L}' (26) в пределе сверхсильных полей. Для случая постоянного магнитного поля $\gamma \gg \mu_0/\Delta \mu$, имеем

 $b_1 \sim \alpha_2 \ln^2(2\gamma),$

где

$$\alpha_2 = \alpha^2 / 16\pi^2.$$

Показатель экспоненты в (26) в этом случае равен

$$f_3 = -x\frac{b_1}{\gamma} = -\frac{\alpha_2 \ln^2(2\gamma)}{\gamma}x.$$

Если $\gamma \gg \alpha_2 \ln^2(2\gamma)$, в (26) существенна область $1 \ll x \ll \gamma/\alpha_2 \ln^2(2\gamma)$. Таким образом, из (26) можно получить

$$\mathcal{L}' = \frac{m^4 \gamma^2}{24\pi^2} \left[\ln \gamma - \ln \alpha_2 - 2\ln(\ln 2\gamma) \right].$$
(30)

Отметим, что первое слагаемое в (30) совпадает с аналогичной оценкой в теории Гейзенберга-Эйлера [5]. Зависимость относительной эффективной функции Лагранжа \mathcal{L}'/m^4 от интенсивности магнитного поля, построенная на основе интегрального представления (26) (при этом величина $\alpha_2 \approx 3.4 \cdot 10^{-7}$), приведена на рис. 2 (кривая 1). На том же графике для сравнения изображена и зависимость, соответствующая случаю $\Delta \mu = 0$ (кривая 2).

Рис.2. Зависимость лагранжевой функции от интенсивности магнитного поля $\gamma = H/H_c$ с учетом (кривая 1) и без учета (кривая 2) аномального магнитного момента электрона

Обратим внимание, что учет аномальных магнитных моментов вакуумных частиц, проведенный в рамках общепринятой КЭД, приводит к уменьшению радиационной поправки к плотности энергии поля. Напомним, что к аналогичному выводу мы пришли, рассматривая случай статического аномального магнитного момента, возникающего, в частности, в модифицированной теории поля. Таким образом, независимо от природы аномального магнитного момента, обусловленной динамическим или статическим типами взаимодействия, мы получаем согласующиеся результаты. Полученные выводы важны и с точки зрения изучения аномального магнитного момента, как наиболее точной расчетной и измеримой в многочисленных прецизионных экспериментах характеристики частиц.

4. ЗАКЛЮЧЕНИЕ

Полученные результаты могут иметь важное значение при построении астрофизических моделей, в частности, при изучении экстремально намагниченных нейтронных звезд — магнетаров, интерес к существованию которых заметно возрос в последнее время (см., например, [4] и цитируемые там работы). Согласно моделям макроскопической намагниченности тел, состоящих в основном из нейтронов, индукция «вмороженных» в них магнитных полей увеличивается от поверхности к центральным областям и может достигать 10¹⁵–10¹⁷ Гс [19].

Заметим также, что усиление радиационных эффектов посредством внешних интенсивных электромагнитных полей может иметь место не только в абелевых, но и в неабелевых квантовых теориях поля. В этой связи укажем, что к нетривиальным результатам приводит, например, учет в рамках Стандартной модели влияния внешнего поля на такие характеристики, как масса и магнитный момент лептонов. В этом случае однопетлевой массовый оператор заряженного лептона наряду с электродинамическим содержит также вклады, обусловленные взаимодействием с вакуумом W^{\pm} -, Z^{0} - и H-бозонов. Легко видеть, что в отсутствие внешнего поля вклад в радиационный сдвиг массы лептона т от слабых взаимодействий по сравнению с электродинамическим вкладом подавлен в $(m/M_i)^2$ раз (i = W, Z, H). Однако в ультрарелятивистском пределе в интенсивных внешних полях вклады слабых токов могут доминировать, на что впервые было обращено внимание в работе [20] (см. также [21]).

Аномальные магнитные моменты заряженных лептонов в Стандартной модели, в полной аналогии с квантовыми поправками к массам частиц, обусловлены вакуумными радиационными эффектами электромагнитных и слабых взаимодействий, а также содержат вклад адронной поляризации вакуума. Например, для аномального магнитного момента мюона имеем

$$a^{SM}_{\mu} = a^{QED}_{\mu} + a^{weak}_{\mu} + a^{had}_{\mu}.$$

Согласно теоретическим оценкам, проведенным в рамках Стандартной модели совсем недавно [22], вклады от электромагнитных и слабых взаимодействий можно записать в виде

$$a_{\mu}^{QED} = 11658470.57(0.29) \cdot 10^{-10},$$

$$a_{\mu}^{weak} = 15.1(0.4) \cdot 10^{-10}.$$

Хотя расчеты вкладов в a_{μ}^{SM} , обусловленные адронной поляризацией вакуума, имеют почти сорокалетнюю историю, на сегодняшний день величина a_{μ}^{had} известна с наибольшей неопределенностью (см., например, [23–28]). Одна из наиболее надежных оценок вкладов в адронную поляризацию вакуума низшего порядка, обобщающая данные по адронному τ -распаду и e^+e^- -аннигиляции, выглядит как [23, 24]⁶)

$$a_{\mu}^{had} = 692(6) \cdot 10^{-10},$$

и теоретическое значение аномального магнитного момента мюона в Стандартной модели приобретает вид [28]

$$a_{\mu}^{SM} = 11659177(7) \cdot 10^{-10}$$

Результаты одного из последних (g - 2)-экспериментов по измерению аномальных магнитных моментов положительных поляризованных мюонов, проведенного на накопительном кольце со сверхпроводящими магнитами Брукхейвенской национальной лаборатории (BNL) [29], представимы в виде

$$a_{\mu}^{exp} = 11659204(7)(5) \cdot 10^{-10}, \tag{31}$$

где указаны статистическая и систематическая погрешности. Полученные данные позволяют определить разность

$$\Delta_{\mu} = a_{\mu}^{exp} - a_{\mu}^{SM} = 27 \cdot 10^{-10}, \qquad (32)$$

превышающую суммарные погрешности измерений и неопределенности теоретических оценок. Согласно последним сообщениям мюонной (g-2)-коллаборации BNL [29], относительная величина этого превышения составляет 2.6. Ожидается, что в ближайшем будущем будет достигнуто двукратное повышение указанной точности. Очевидно, что решение мюонной (g-2)-проблемы может привести к появлению новой теории, возникающей за пределами Стандартной модели.

В этой связи напомним, что аномальный магнитный момент мюона в модифицированной теории изначально содержит вклад, обусловленный наличием нового универсального параметра *M*. В соответствии с (4) имеем

$$a_{\mu}(M) = \frac{m_{\mu}^{2}}{2M^{2}},$$
(33)

где m_{μ} — масса мюона. Легко видеть, что по порядку величины $a_{\mu}(M)$ совпадает с (32) при $M \sim 1$ ТэВ.

Главный вывод из сравнения приведенных оценок состоит в том, что нельзя исключить возможность совпадения наблюдаемой разности теоретических и экспериментальных результатов для Δ_{μ} с величиной $a_{\mu}(M)$. Как уже отмечалось, параметр Mновой теории можно связать с массой M_H хиггсовского бозона. В этом случае наличие разности между a_{μ}^{exp} и a_{μ}^{SM} позволяет получить весьма ценную информацию о частице, масса которой не определена в Стандартной модели. Подставляя значение m_{μ} и данные для аномального магнитного момента мюона в (33), нетрудно установить следующие ограничения на массу H-бозона:

$$1.2 \operatorname{TaB} \le M_H \le 1.8 \operatorname{TaB}.$$

⁶⁾ См., однако, работу [25], где проведено вычисление вклада высших порядков адронной поляризации вакуума, а также недавние работы [26,27], содержащие учет вклада диаграмм третьего порядка в a^{had}, обусловленного фотон-фотонным рассеянием.

Как известно, вариант Стандартной модели, в котором масса хиггсовских бозонов $M_H \ge 1$ ТэВ, влечет за собой ряд дополнительных особенностей и, в частности, невозможность описания слабых взаимодействий в секторе H-, W- и Z-частиц в рамках теории возмущений [30]. При этом, естественно, возникает необходимость построения новой непертурбативной теории. Хиггсовский механизм возникновения масс и компенсации расходимостей наряду с условием ограниченности спектра масс, $m \le M_H$ (см. (2)), могут стать неотъемлемыми элементами одного из перспективных вариантов модифицированной теории — Стандартной модели с фундаментальной массой.

Автор признателен В. Г. Кадышевскому за полезные обсуждения и ценные замечания, а также В. Р. Халилову и А. Е. Лобанову за внимание к работе и плодотворные дискуссии. Работа выполнена при поддержке РФФИ (грант № 02-02-16784).

ЛИТЕРАТУРА

- 1. W. Heisenberg and H. Euler, Zs. Phys. 98, 714 (1936).
- 2. В. И. Ритус, ЖЭТФ 69, 1517 (1975); 73, 807 (1977).
- 3. V. I. Ritus, E-print archives, hep-th/9812124.
- **4**. В. Р. Халилов, ТМФ **133**, 103 (2002).
- 5. В. Б. Берестецкий, Е. М. Лифшиц, Л. П. Питаевский, *Квантовая электродинамика*, Наука, Москва (1989).
- **6**. А. Б. Мигдал, ЖЭТФ **62**, 1621 (1972).
- И. М. Тернов, В. Р. Халилов, В. Н. Родионов, Взаимодействие заряженных частиц с сильным электромагнитным полем, Изд-во МГУ, Москва (1982).
- В. Н. Родионов, Г. А. Кравцова, А. М. Мандель, Письма в ЖЭТФ 75, 435 (2002); 78, 253 (2003).
- В. Н. Родионов, Г. А. Кравцова, А. М. Мандель, ДАН 386, 753 (2002).
- В. Н. Байер, В. М. Катков, В. М. Страховенко, ЯФ 24, 379 (1976).

- 11. В. И. Ритус, ЖЭТФ 57, 2176 (1969).
- 12. В. Г. Кадышевский, ЭЧАЯ 11, 5 (1980).
- 13. В. Г. Кадышевский, ЭЧАЯ 29, 563 (1998).
- 14. G. E. Stedman, Z. Li, and H. R. Bilger, Phys. Rev. A 51, 4944 (1995).
- **15**. В. И. Денисов, И. П. Денисова, ТМФ **129**, 131 (2001); ДАН **378**, 4 (2001).
- 16. В. Г. Кадышевский, В. Н. Родионов, в сб. Труды семинара «Симметрии и интегрируемые системы», под ред. А. Н. Сисакяна, ОИЯИ, Дубна (1999), с. 103.
- **17**. В. Г. Кадышевский, В. Н. Родионов, ТМФ **125**, 432 (2000).
- И. М. Тернов, В. Г. Багров, В. Ч. Жуковский, Вестник МГУ, серия физика, астрономия № 1, 30 (1966).
- 19. R. C. Duncan, E-print archives, astro-ph/0002442.
- 20. И. М. Тернов, В. Н. Родионов, А. И. Студеникин, в сб. Тезисы докладов Всесоюзного совещания по квантовой метрологии и фундаментальным физическим константам, Ленинград (1982), с. 47.
- 21. И. М. Тернов, В. Н. Родионов, А. И. Студеникин, ЯФ 37, 1270 (1983).
- 22. A. Czarnecki and W. Marciano, Phys. Rev. D 64, 012014 (2001).
- 23. M. Davier and A. Hocker, Phys. Lett. 435B, 427 (1998).
- 24. M. Davier, S. Eidelman, A. Hocker, and Z. Zhang, E-print archives, hep-ph/0208177.
- 25. B. Krause, Phys. Lett. 390B, 392 (1997).
- 26. E. Bartos, A. Z. Dubnichkova, S. Dubnichka et al., Nucl. Phys. B 632, 330 (2002).
- 27. E. Bartos, S. Dubnichka, A. Z. Dubnichkova et al., E-print archives, hep-ph/0305051.
- C. S. Ozben, G. W. Bennett, B. Bousquet et al., E-print archives, hep-ex/0211044.
- 29. G. W. Bennett et al. (Muon g-2 Collaboration), Phys. Rev. Lett. 89, 101804 (2002).
- **30**. Л. Б. Окунь, *Лептоны и кварки*, Наука, Москва (1981).