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The character of interaction between the thermal (vibrational) and configurational cluster excitations is con-
sidered under adiabatic conditions when a cluster is a member of a microcanonical ensemble. A hiearchy of
equilibration times determines the character of atomic equilibrium in the cluster. The behavior of atoms in
the cluster can be characterized by two effective (mean) temperatures, corresponding to the solid and liquid
aggregate states because a typical time for equilibration of atomic motion is less than the time of transition
between the aggregate states. If the cluster is considered for a time much longer than the typical dwell time
in either phase, then it is convenient to characterize the system by only one temperature, which is determined
from the statistical-thermodynamical long-time average. These three temperatures are not far apart, nor are
the cluster heat capacities evaluated on the basis of these definitions of temperature. The heat capacity of a
microcanonical ensemble may be negative under some circumstances in a region of coexistence of two phases,
provided the mean temperature is defined in terms of the mean kinetic energy, not as a the derivative of the
energy with respect to the microcanonical entropy. However, we show that if the configurational excitation
energy is small relative to the total excitation energy separating the phases, then, within the model of two
aggregate states, the heat capacity is positive whichever definition is used for temperature. In addition, for a
sufficiently large cluster, the maximum values of the microcanonical and canonical heat capacities are the same.
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1. INTRODUCTION

The contemporary description of cluster evolution
is based on saddle-crossing dynamics involving a large
number of local minima for the potential energy of this
system at zero temperature depending on the configu-
ration of atoms [1-6]. Each local minimum corresponds
to a locally stable configuration. Certain of these lie at
the point of lowest energy in a basin, while others, at
higher energies in the same basin, correspond to con-
figurational excitations from that lowest point. Neigh-
boring local minima are separated by saddle points of
the potential energy surface [7]. At low temperatures,
much of the time the cluster is then found near the lo-
cal energy minima, and the durations of intermediate
states during transitions across saddles between neigh-
boring minima are brief. Taking the cluster aggregate
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states as a group of atomic configurations near local
minima of the cluster potential energy [8], we obtain a
precise picture of the cluster phase transitions, charac-
terized by bands of dynamical coexistence of phases [9—
12]. In the case of solid-liquid equilibrium, this means
that the system is found in the solid aggregate state
during certain periods; the remainder of the time, it is
found in the liquid state, if the cluster can be located in
two aggregate states. (It is also possible for a cluster to
exhibit more than two phases in such a dynamic equi-
librium, e.g., a «surface-melted» state together with a
solid and a liquid [13, 14].)

Using these concepts, one can generalize thermo-
dynamics of bulk systems and relate these to clusters
as systems of small, finite numbers of bound atoms or
molecules. Within the framework of the saddle-crossing
dynamics, one can define the cluster aggregate states
as sets of atomic configurations near local minima of
the cluster potential energy with nearby energies [§],
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and a cluster aggregate state can therefore include a fi-
nite number of elementary configurational excitations.
In the classical thermodynamics of bulk systems, the
aggregate state includes many configurational excita-
tions, which leads to a uniform spatial distribution of
atoms for a liquid. Next, the hierarchy of cluster times
leads to the corresponding phenomenon of phase coex-
istence in clusters [9-12].

Thus, the properties and dynamics of cluster evo-
lution allow one to apply thermodynamics to clusters.
One must use a Gibbsian ensemble to describe the ther-
modynamics of clusters; some of the familiar concepts
and characteristics of bulk systems disappear and some
that are equivalent in common situations become in-
equivalent. For example, the distinction between phase
and component is lost because phase equilibrium oc-
curs on the same short time scale as the equilibrium
among reacting components. Hence, the Gibbs phase
rule loses its meaning for small systems [3]. Using this
perspective, we here consider the heat capacity of a
cluster that does not exchange energy with an environ-
ment, i.e., the cluster is in a microcanonical ensemble
of atoms [15].

For clusters, a typical time for establishing vibra-
tional thermal equilibrium is brief compared with a
typical time to establish configurational equilibrium in
the solid and liquid states [16]. Under microcanoni-
cal conditions, this time scale separation in clusters al-
lows one to identify the temperatures of the solid and
liquid states separately; the cluster is submitted to a
two-temperature description. Likewise, under canon-
ical conditions, the solid and liquid states can be as-
signed different mean energies and potential energies.
If the time of cluster observation is long compared with
a typical time for dynamic equilibration between the
aggregate states, it becomes appropriate to use a sin-
gle cluster temperature, i.e., to model this cluster by
one averaged aggregate state.

In an ensemble at constant energy, the effective tem-
perature of a cluster, solid or liquid, can be defined in
either of two ways. One is the mean kinetic energy per
degree of freedom; the other is the derivative of the
internal energy with respect to the microcanonical en-
tropy at constant volume. While these are equivalent
for a canonical ensemble of macroscopic systems (with
the conventional canonical entropy), they are not nec-
essarily equivalent for microcanonical ensembles, par-
ticularly of small systems. Defined in terms of kinetic
energy, the effective temperature of the solid is neces-
sarily higher than that of a liquid at the same energy.
Hence, increasing the energy in the zone of coexistence
of the solid and the liquid (i.e., in the transition region)
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can lead to an effective temperature decrease. In what
follows, we consider this problem in terms of two ag-
gregate states, with the additional simplifying assump-
tions that the separate caloric curves for the solid and
liquid states are parallel straight lines, i.e., the tran-
sition energy is independent of the temperature, and
that the difference of the solid and liquid temperatures
is relatively small. These simplifications allow us to un-
derstand the cluster properties near the melting point
in a simple way. (We use the term «melting point» to
mean the temperature at which the free energies of the
solid and liquid clusters are equal. There is, of course,
no sharp melting point for small clusters.)

Under these conditions, when equilibrium is estab-
lished at each new cluster energy, each small increase
of that energy near the melting point goes in part to
excitation of thermal (vibrational) motion, and in part
to configuration excitation. Consequently, the heat ca-
pacity of an isolated cluster changes near the melting
point. If the temperature is defined as the entropy
derivative of the internal energy, then the heat capac-
ity almost certainly remains positive and typically in-
creases as more degrees of freedom absorb energy!).
But if the mean potential energy of the liquid form is
significantly higher than that of the solid, and the tem-
perature is defined in terms of mean kinetic energy per
degree of freedom, then the system may exhibit a neg-
ative heat capacity and a region of a negative slope, an
«S-bend», in its caloric curve. This behavior of clus-
ter heating has been found for clusters on the basis
of theoretical [17-22] and experimental studies [23-28].
Below, we consider this problem in detail.

2. HIEARCHY OF CLUSTER TIMES

We first analyze the character of equilibrium in a
cluster. We use the two-state approximation for cluster
aggregate states [8], which extends the thermodynamic
concept of the aggregate states from bulk to clusters,
and we assume the existence — local stability and ther-
mal equilibration — of two aggregate states, solid and
liquid. Although clusters may exhibit several aggregate
states in equilibrium, for example associated with melt-
ing of different cluster shells [13, 14], the model that we
use here involves the assumption that in a given range
of parameters, the cluster can be found only in two
aggregate states. The character of cluster equilibrium

D) Only if the available phase space were to decrease with the
energy for some pathological system could its caloric curve show
a negative slope with this definition of temperature. Such a sit-

uation is logically possible, but physically almost unimaginable.
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is determined by typical times for processes within the
cluster. A typical time to establish thermal equilibrium
Teq between bound atoms is of the order of magnitude

1

~ —

(,«)D7

Teq (1)
where wp is the Debye frequency, roughly inversely pro-
portional to the period of cluster oscillations (~ 1074 s
at room temperature). A typical dwell time of a clus-
ter in the vicinity of the free energy minimum 7,, as-
sociated with each aggregate state is long compared
with Teq,

(2)

because transitions between aggregate states require
that the cluster overcome a significant free energy bar-
rier. We consider a cluster of bound atoms as a member
of a microcanonical ensemble, and neglect the interac-
tion between the cluster and environment, i.e.,

Teq K Tag,

(3)

where 74, is a typical time for the exchange of energy
between the cluster and its environment; for shorter
times, the cluster can be considered as an isolated par-
ticle. We introduce a typical time 7 of cluster observa-
tion such that

Tag < Tih,

Tag K T KL Tip-

(4)

This hierarchy of cluster times leads to a particular
pattern of cluster behavior. Indeed, during 7,4, thermal
equilibrium is established for the vibrational motion of
the cluster atoms, and the thermal motion of atoms can
then be characterized by a temperature [16]. Because
of criterion (2), this temperature is different for the
two aggregate states. We therefore introduce separate
temperatures of atoms for the solid T, and liquid Tj;4
aggregate states. In particular, in the Dulong—Petit
limit, the cluster energy is given by

E=3n—-06)Tso = AE + (3n — 6)Tiq, (5)
where n is the number of cluster atoms and AFE is the
fusion energy. This implies that

AFE

AT = Tsor — Tliq = 5 A

3n—6 (6)

Along with these temperatures, one can introduce a
general cluster temperature T for a large time of the
order of 7, which can be expressed in terms of an aver-
age energy of an individual cluster atom if the average
is taken for a time of the order of 7 long enough for the
cluster to change its aggregate state many times.
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3. TWO-AGGREGATE APPROACH

Considering the approximation of two aggregate
states [8], we express the total partition function of
a cluster as

Z = Zsot + Ziiq (7)
where Z;, and Zj;,, the partition functions for the solid
and liquid cluster states respectively, are related by
= Z, ©

Zsol
The respective probabilities wg, and wy;, that the clus-
ter is found in the solid and liquid states are
1 j—
Ty YT Ty

From the thermodynamic relation, we have

p(T)

Wsol = Wiiq (9)

AE
p=exp |———

T + Sliq (Tliq) - Ssol(Tsol):| =

AE
—= AS] . (10

= exp {
where S0/ (T') and S;;,(T') are the entropies of the solid
and liquid states at the given temperature, T is an ef-
fective temperature that characterizes the rates of tran-
sitions between the solid and liquid states, and AE and
AS are the changes of the thermodynamic variables at
the phase transition.

Although clusters exhibit bands of coexistence
rather than the sharp melting points of bulk systems,
we can, as mentioned above, define the melting point of
a cluster by analogy with that of the bulk as the tem-
perature of equal free energies of the two phases. In
this way, the precise definition is that of the «equality»
temperature T¢, such that

p(Teq) = 1, (11)

and hence
wsol(Teq) = Wiiq (Teq) = 1/2

As the general cluster temperature, the effective clus-
ter temperature T tends to Tso as p — 0 (wse; = 1),
and tends to Tj;, in the limit as p — oo0,or when
wiig = 1. (It is sometimes convenient to use the quan-
tity (wiig — wsot)/ (Wiig + Wsor) simply because it varies
only between —1 and +1 [13, 14].)

4. ENTROPY OF AN ISOLATED CLUSTER IN
THE TWO-STATE APPROACH

When a cluster does not interact with its environ-
ment, a thermodynamic equilibrium is established. In
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addition to the temperatures of the solid Ty, and lig-
uid Tj;, aggregate cluster states, this allows us to in-
troduce the general cluster temperature from the ther-
modynamical relation

dE =T ds, (12)

where E/ and S are the cluster energy and entropy. This
definition can be used for the two aggregate states sepa-
rately or for the long-time average over both aggregate
states. Here, we use the latter option and evaluate
the entropy S of a cluster in a long-term equilibrium
(with or without the environment) between two aggre-
gate states. Basing this analysis on a general entropy
formula [29], we have

S=—<lnw>=—2wi1nwi, (13)
i

where 7 is a cluster state and w; is the probability that

the cluster is found in this state (3 w; = 1). Along

with wge and wy;e in Eq. (9), we intlroduce the proba-
bility X; for the cluster to be in the jth state if the
cluster is first found in the solid aggregate state, and
the probability Y} for the cluster to be in kth state if
it is initially in the liquid aggregate state. That is, we
introduce a kind of conditional probability. According
to the definition, we have

Weot FWiig =1, Y X;= Yi=1  (14)
J k

From this, we obtain the cluster entropy

S = —Wgsol Z Xj ln(wsolXj)—w“q Z Yk In (w“qu) =

J k
= Wso!Ssol + wliqsliq + Sconfa (15)
where
Se =Y _X;jInX;, Sig=) YilnYy (16)
j k

J

are the entropies of the corresponding aggregate states.
We thus express the entropy of a cluster with two ag-
gregate states through entropies of each aggregate state
and the entropy of the cluster configuration state Scony,
equal to

Sconf = - sz Inz; = —wge In Wsol —Wiiq In Wiiqg =
i
p
n(1+ p) T p P (17a)
dSconys Inp
= — , 17b
dp (1+p)* (170)
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where x; is the probability for the cluster to be in a
given aggregate state, and we use Eqs. (9). We note
that this expression is valid under the assumption that
the cluster is observed in a long-term equilibrium, i.e.,
can be located many times in each aggregate state dur-
ing the observation time. Thus, expression (15) for the
cluster entropy is a sum of terms corresponding to the
solid and liquid aggregate states, and also of the term
that accounts for configurational excitation.

5. TEMPERATURE OF A CLUSTER AS A
MICROCANONICAL ENSEMBLE OF
ATOMS

It follows from the above discussion that an isolated
cluster with two aggregate states can be considered in
the two-temperature approach if criterion (2) is satis-
fied, i.e., a typical time 7., for thermodynamic equili-
bration of the atomic thermal motion in each aggregate
state is short compared with the dwell time 7,, of the
cluster in each aggregate state. When we observe a
cluster during a time long compared with 7,4, we can
model the cluster with two aggregate states by a cluster
with one aggregate state, and thus introduce a single
average cluster temperature 7. For this purpose, we
can use the connection between the kinetic energy of
cluster atoms and their temperature. Connecting the
mean kinetic energy of cluster atoms averaged over a
time long enough to reflect the kinetic energies of atoms
in both aggregate states, we then define the (long-term)
cluster temperature as

T= wsolTsol + wliqﬂiq- (18)

This definition of temperature is to be used in the con-
text of traditional statistical physics, i.e., on the basis
of a very long-time average. This remains a useful and
valid approach, but the availability of measurements
fast enough to enable us to observe the individual ag-
gregate states justifies the extension of the conceptual
framework to describe each aggregate state by itself, to
supplement our long-time average description.

Turning to the two-temperature approach for a clus-
ter, we assume the cluster heat capacity to be indepen-
dent of the temperature in the range of phase coexis-
tence; in other words, the caloric curves for the solid
and liquid states are straight lines, as shown in the Fi-
gure. We use the parameters of this curve

= T Ty
T = % AT = Tyor — Tiig, (19a)
and for simplicity assume that
AT < T. (19h)
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Caloric curves of an isolated cluster with two aggregate

states in the one-temperature approach: 1 — the case

of a positive heat capacity; 2 — the case of a negative
heat capacity near the melting point

In accordance with Eq. (18), the statistical tempera-

3

ture T' is expressed through these parameters as

— AT 1-p
T=T+——. 20
+ 2 1+p (20)
Evidently, within the framework of the general temper-
ature, it follows from (10) that

AE

p = exp [—— + AS} . (21)

T
For simplicity, we assume that the entropy jump AS
at the phase transition and the transition energy AFE
are independent of the temperature. In addition, we
have for the cluster energy E under our assumptions
(see the Figure)

E =0T, AE = CyAT, (22)

where Cj is the cluster heat capacity far from the melt-
ing point.

We now use Eq. (12) as the thermodynamic defini-
tion of the cluster temperature T,

1 [dS

- 4B
That is, we use the entropy—energy definition, rather
than the mean kinetic energy definition for tempera-
ture. Because this formula is also valid for each aggre-
gate state, we have the relations

1 . dSsol 1 _ dSliq
Tsot B dE ’ Tliq B dE

- (23)

\4

for the cluster temperature of a given aggregate state.
On the basis of these formulas and formula (17) for the
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entropy of a cluster with two aggregate states, we then
express the cluster temperature as

l _ Wsol (Tsol) Wiiq (Tliq) + dSconf _
T Tsol Tiiq dE
1 P Inp dp
= + - TR 24
(1 +p)Tsol (]- +p)Tl2q (]- +p)2 dE ( )
where s | J
conf np P
- @ 25
dE (1+p)? dE (25)

in accordance with Eqs. (17). It can be seen that the
statistical and thermodynamic temperature definitions
(20) and (23) are different. But the difference between
them is small in the present case because we have im-
posed criterion (19b). In particular, at the equality
point (p = 1), we have T,, = T in accordance with
(20), and Eq. (24) then gives

=T<1_

Thus, although the definitions of the cluster tempera-
ture are different, under assumption (19b) this differ-
ence is only of the second order in terms of the expan-
sion in the small parameter AT /T.

AT?

AT

2TsolTliq
Tsol + niq

(26)

eq —

6. HEAT CAPACITY OF A CLUSTER AS A
MICROCANONICAL ENSEMBLE OF
ATOMS

We now construct caloric curves for a large cluster,
supposing that the caloric curves for the solid and lig-
uid aggregate states are parallel straight lines and the
distance between these lines satisfies criterion (19b).
The cluster state corresponds to the solid caloric curve
at low temperatures below the equality point, and to
the liquid caloric curve at high temperatures above that
temperature, T,,. An intermediate part of the caloric
curve near the melting point can have two forms, as
shown in the Figure; in case 1, the cluster heat capac-
ity is positive at any temperature, and in case 2, it is
negative near T¢,. In principle, both cases are possible.
Based on their experimental study of sodium clusters
of hundreds of atoms, Haberland [30,31] et al. infer
that the case of a negative cluster heat capacity near
T, is more representative. Initially, the accuracy of the
experimental data [23—-26] left some possibility to ques-
tion that inference, but more recent, independent mea-
surements have made the case for some microcanonical
negative heat capacities much more plausible [27,28].
All these experiments, in effect, base the evaluation of
temperature on the kinetic energy of the atoms of the
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clusters, consistent with this definition being the one
that allows negative heat capacities. Below, we ana-
lyze this problem using the above approach. Within
the framework of statistical and thermodynamical con-
siderations, we introduce the general temperature for
an isolated cluster that can be found in both the solid
and liquid states.

We evaluate the heat capacity C' of a cluster of
bound atoms as a member of a microcanonical ensem-
ble near the melting or equality point. When we in-
troduce one cluster temperature 7', its heat capacities
are

dE dE dE dE
O = — C = — = = N
0 dT deol dTliq

T dT’

where E is the internal cluster energy and T is given by
Eq. (19a). We assume in the discussion here that Ty,
and Tj;, are almost equal; hence, we are not dealing
with the general case. Relation (21) is valid under our
assumption and gives

@_pAE
dE  T2C

(27)

For simplicity, we assume here that the cluster param-
eters AE and AS are independent of the cluster tem-
perature T'. Under these conditions, for the statistical
definition of the temperature, we have, taking the dif-
ferential of (20) and using Eq. (22),

1 _ 1 AT pAE
C  Cy (1+p2T2C

This implies that

P ATAE

= 1+7 Z = —7
C CO( + )7 (1+p)2 T2

(28)

We now consider the case of the thermodynamic
definition of the cluster temperature when a cluster
with two aggregate states is modeled by the cluster
with one average aggregate state. Taking the differ-
ential of (24) and expanding it in a small parameter
AT/T, we then have

dT dT ATdT 1-p

TTTEYTE T
ATd 1 d
+_27p+d<i2_p>,

T (1 + p)? (1+p)? dE

Ignoring the second term in the right-hand side of this
equation in comparison with the first one because of
(19b), we then obtain

1 1 AT dp
— = o
CoT T (1+p)2 dE
d Inp dp

— | —-—=. (29

T <(1+p)2dE> (29)

Because the maximum heat capacity of the clus-

ter corresponds to the equality or melting point (if its

value is positive), we consider Eq. (29) at T,,, where
p=1T =T =T,,, and therefore

1 1 Z ZGy

c- ¢ ¢ o

(30)

We note that Eq. (28) follows from this if we ignore
the last term, i.e., if we neglect the configurational part
Secony in expression (15) for the cluster entropy. The
physical solution of Eq. (30) is given by

1+2Z 1+ 7\2
——+ <T) vz, 6

C=0Cy
Formulas (28) and (31) for the cluster heat capacity,
based on the two different definitions of the cluster tem-
perature, lead to identical results in the limiting cases
7Z =0 and Z = co. The maximum ratio of the heat
capacities according to formulas (31) and (28) corre-
sponds to Z = 1 and is (1 + v/2)/2 ~ 1.2. Thus, if an
isolated cluster with two aggregate states is modeled by
a cluster with one temperature, the values of its heat
capacity depend on the definition of the cluster tem-
perature. But for the statistical and thermodynamical
definitions of the cluster temperatures, the values of
the cluster heat capacity coincide within the limits of
20 % in the cases considered here.

We now analyze the character of consumption of
energy that is transferred to an isolated cluster very
slowly, such that equilibrium is established for each in-
put of energy. We divide the total energy of the ensem-
ble of bound atoms into the kinetic energy of atoms, the
potential energy of the interaction between atoms, and
the energy of configurational excitation. For simplic-
ity, we take the ratio between the kinetic and potential
energy to be governed by the virial relation; this ra-
tio is therefore independent of excitation. Moreover,
these excitations involve sufficiently low energies such
that they can be supposed to be harmonic oscillations.
Therefore, the excitation energy can be thought to be
consumed in two channels, thermal motion of atoms
and configurational excitation. It is clear that the clus-
ter total heat capacity must be greater than if config-
uration excitation were absent, because only a part of
the input energy is consumed by the thermal motion
of atoms. A significant part must go into increasing

419 15%
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excitation of «new» degrees of freedom that are unex-
cited at lower temperatures, but are fully excited at
higher temperatures. Hence, in the range of the phase
change, the heat capacity exceeds that in the temper-
ature ranges far from the phase change.

The configurational and vibrational contributions
may nonetheless be strongly linked in the following way.
If the configurational excitations bring the cluster to a
region of high potential energy, and thus to a region
of low kinetic energy, then during those intervals in
which the configurational excitation is high, the kinetic
temperature is necessarily low. This situation does not
conform to our assumption above that 75, and T}, are
almost equal. In accordance with this assumption, con-
figurational excitation requires relatively little energy.
Consequently, we can suppose that clusters of sizes far
from the «magic number» or closed-shell sizes are likely
to conform to the assumption used above, but that the
«magic number» or closed-shell clusters are least likely
to satisfy that assumption.

If the configurational excitation energy requires a
significant part of the cluster internal energy, the heat
capacity may become negative because an increase of
the total cluster energy leads to a decrease of its ther-
mal (or vibrational) energy. Just this situation is pro-
posed by Haberland [30, 31] for sodium clusters consist-
ing of a hundred and more atoms. Evidently, the con-
ditions favorable for clusters to have a negative heat
capacity apply to those systems. Based as it is on
Eqs. (28) and (31), the analysis here, with its strong
assumptions, leads to a positive cluster heat capacity
at any cluster temperature. We can therefore interpret
the assumptions leading to this conclusion as sufficient
conditions for a positive heat capacity. This should
not be interpreted to imply that negative heat capaci-
ties cannot occur in microcanonical systems; they cer-
tainly can occur if the kinetic definition of temperature
is used. In fact, we can now say that the next chal-
lenge in this field is finding sufficient conditions for a
negative heat capacity, in terms of the relative ener-
gies and phase space volumes of the solid and liquid
phases, and then finding what classes of systems best
satisfy those conditions — or those for strictly positive
heat capacities.

Equations (28) and (31) characterize the increase
of the cluster heat capacity near the melting point.
We now consider this increase for a large cluster with
Z > 1. Because for a large cluster Cy ~ n, where n
is the number of atoms forming the cluster, criterion

(19b) becomes
To\2
< 1 > << "

AT (32)
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The parameters of the isolated Lennard—Jones cluster
consisting of 13 atoms at the melting point. The data
are obtained on the basis of [10].

Parameter Value
En 13.6
AE 2.46

n(Em) 0.39
Tsol 0.32
Tiiq 0.26
T 0.29

Z(Tm) 0.46

Cg:", (28) 1.46

Cgsx, (31) 1.73

such that the increase of the heat capacity for such
large clusters is strong. In this limit, Eqs. (28) and
(31) give the maximum heat capacity that corresponds
to the equality or melting point

AR

max = CoZ = =
Cons = CoZ =

(33)

This expression also involves the assumption that the
transition thermodynamic parameters AE and AS are
independent of the temperature. The maximum heat
capacity has the same value in the case of isothermal
heating [8].

We now apply Eq. (30) to the Lennard-Jones clus-
ter of 13 atoms, taking its parameters from the com-
puter modeling [10] of this cluster. Assuming the
Dulong—Petit law to be valid at melting, we have the
heat capacity of this cluster Cp = 3n — 6 = 33. The
temperatures of the solid Ts,; and liquid 7j;, states are

2nE

2E m(E — AE)
Co’

Tso1 = C[) s

Tiiqg = (34)
where 7 is the part of the cluster excitation energy E
that is transformed into kinetic energy of the atoms.
Thus, we express the temperature of cluster atoms
through the total kinetic energy. Parameters in the Ta-
ble refer to the equality or melting point (p(E,,) = 1,
T = Te,), and we use reduced energy units with the

energy unit given by the binding energy per bond.
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The data in the Table, based on cluster computer
simulation [10], show the validity of criterion (19b); the
small parameter AT /T,, used above is equal to 0.2 for
the Lennard—Jones cluster of 13 atoms. This small pa-
rameter determines the accuracy of using one cluster
temperature. We note that the increase of the heat
capacity near the melting point is not strong for this
cluster, and the heat capacity is positive at any tem-
perature. This does not agree with the supposition of
a negative heat capacity of clusters near Te, [30,31] of
the sort inferred from experiments with sodium clus-
ters [23-26]. A more exacting test with Lennard—Jones
clusters would require examining the behavior of a
larger system, e.g., a closed-shell icosahedral structure
of 55 or 137 atoms.

7. CONCLUSIONS

It follows from the above analysis that the behavior
of a real isolated cluster with two aggregate states can
be described using either one aggregate state with a
general temperature or two aggregate states with two
temperatures. The latter requires that the vibrational
modes of the cluster equilibrate rapidly compared with
the rate of passage between aggregate states, such
that temperatures of those states can be well defined.
In reality, such thermodynamical equilibrium is es-
tablished for many kinds of clusters and other small
systems during the time the system resides in each
aggregate state. The single-temperature description
requires that during an observation time, a cluster
changes its aggregate state many times. Although
the statistical and thermodynamical definitions of the
temperature lead to different temperatures and heat
capacities, the differences between these values are
not large under the assumptions used in this work.
In addition, under these assumptions, the maximum
heat capacities of a large cluster at the melting point
coincide for the adiabatic and isothermal regimes
of energy input, and in the case of the adiabatic
regime (or for an isolated cluster), the heat capacities
of a large cluster coincide for the statistical and
thermodynamic definitions of temperature. A system
satisfying the conditions invoked here does not exhibit
a negative heat capacity of the type reported for
an isolated cluster [30,31]. The analysis provides
sufficient conditions that the heat capacity of an
isolated cluster in a microcanonical ensemble with two
aggregate states is positive at any size and temper-
ature. The question is now open to find comparable
general conditions that produce the negative heat ca-
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pacities that have been seen in experiment and theory.
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