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NONERGODIC NUCLEAR DEPOLARIZATIONIN NANO-CAVITIESE. B. Fel'dman *, M. G. RudavetsInstitute of Problems of Chemi
al Physi
s, Russian A
ademy of S
ien
es,142432, Chernogolovka, Mos
ow Region, RussiaSubmitted 17 June, 2003Re
ently, it has been observed that the e�e
tive dipolar intera
tions between nu
lear spins of spin-
arryingmole
ules of gas in a 
losed nano-
avities are independent of the spa
ing between all the spins. We derive exa
ttime-dependent polarization for all spins in the spin-1=2 ensemble with spatially independent e�e
tive dipolarintera
tions. If the initial polarization is on a single (�rst) spin, P1(0) = 1, then the exa
t spin dynami
s of themodel is shown to exhibit periodi
 short pulses of the polarization of the �rst spin, the e�e
t being typi
al ofsystems having a large numberN of spins. If N � 1, then within the period 4�=g (2�=g) for odd (even) N -spin
lusters, with g standing for the spin 
oupling, the polarization of spin 1 swit
hes qui
kly from unity to thetime-independent value 1=3 over the time interval about (gpN)�1. Thus, spin 1 spends almost all the time inthe time-independent 
ondition P1(t) = 1=3. The period and the width of the pulses determine the volume andthe form fa
tor of the ellipsoidal 
avity. The formalism is adapted to the 
ase of time-varying nano-�u
tuationsof the volume V (t) of 
avitation nano-bubbles. If the 
oupling g(V (t)) is varied by the Gaussian-in-time randomnoise due to the variation of the volume V (t), then the envelope of the polarization peaks goes irreversibly to1=3. The polarization dynami
s of a single spin exhibits the Gaussian (exponential) time dependen
e when the
orrelation time of �u
tuations of the nano-volume is larger (smaller) than h(Æg)2i�1=2, where h(Æg)2i is thevarian
e of the g(V (t)) 
oupling. Finally, we report exa
t 
al
ulations of the NMR line shape for the N -spingaseous aggregate.PACS: 05.30.-d, 76.20.+q1. INTRODUCTIONThe nature of ergodi
ity as a fundamentally impor-tant element of the 
onsonant des
ription of statisti-
al me
hani
s is 
urrently being dis
ussed in the NMR
ontext [1℄. Spin dynami
s is ergodi
 if the initial po-larization prepared at a single (�rst) spin is spread overthe system, leading, as time pro
eeds, to the spatiallyuniform distribution of the polarization, as expe
ted onthe basis of a simple physi
al intuition. On the otherhand, nonergodi
 behavior that was re
ently observednumeri
ally in the nu
lear spin-1=2 1D 
hains with thegeneral XY Z spin Hamiltonian [2℄ enters su
h that thetime-averaged polarization of the �rst spin turns out tobe several times larger than the time average polariza-tion of any other spin in the 
hain. This observation ofnonergodi
ity has been extended to 1D 
hains and ringswith theXY Hamiltonian [3℄, showing analyti
ally that*E-mail: feldman�i
p.a
.ru

the time-averaged polarization of the �rst spin di�ersby the fa
tor 1.5�2 from the time-averaged polarizationof all the other spins in the 
hain. These 
onsiderationsin 1D spin 
lusters address the problem of the nature ofergodi
ity for di�erent spin Hamiltonians. Motivatedby the study of nonergodi
 spin dynami
s and be
ausean exa
t solution is a lu
ky ex
eption in statisti
al me-
hani
s, we assume in this paper that spin intera
tions
an be 
onsidered independent of the spa
ing betweenthe spins rather than having an r�3 dependen
e.Re
ently, a spin Hamiltonian with spa
e-indepen-dent spin 
ouplings has been applied for exploring theNMR spe
tra of the gas of spin-
arrying mole
ules un-dergoing fast thermal motion within nonspheri
al 
av-ities [4℄. In that report, the authors have arrived atthe spa
e-independent e�e
tive spin 
ouplings by mo-tionally averaging the exa
t dipolar Hamiltonian overuniformly distributed spatial 
oordinates of the spins innanometer-size 
avities. This te
hnique is expe
ted tohave a promising appli
ation for determining the pore233
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tra.With regard to the e�e
tive nu
lear spin Hamil-tonian with in�nite-range 
ouplings, it is noteworthythat this type of intera
tions has also been proposedin the theory of nano-ele
trodes [6; 7℄. There, thein�nite-range dipolar nu
lear intera
tions are indu
edindire
tly due to the fast energy transfer between theele
tron and nu
lear spins. On the 
oarse-grain times
ale of the fast ele
tron spin dynami
s, the slow e�e
-tive nu
lear spin dynami
s is governed by an e�e
tivenu
lear spin Hamiltonian with an in�nite-range inter-a
tion. Quite apart from its importan
e as a physi
almodel in the NMR experiments for the many-spin ag-gregate in a 
on�ned volume [4; 6; 7℄ and few protonmole
ules [8℄, the model with in�nite-range spin inter-a
tions is of a fundamental interest in its own rightbe
ause it allows treating the 3-dimensional 
ase ex-a
tly, without any referen
e to a 1D spin ordering.It represents the quantum nonequilibrium version ofthe exa
tly solvable equilibrium spin model [9℄, has amapping to the BCS pairing Hamiltonian of super
on-du
tivity [10℄, and has long been 
onsidered as a testfor many-body problems in higher spatial dimensions,D � 1. The obje
tive of this paper is to present theexa
t solution of nonergodi
 dynami
s with an in�nite-range spin Hamiltonian in the N -spin ensemble.To our knowledge, the only result reported on thismodel is that of Waugh [11℄, who announ
ed (withoutproof) that the time-averaged polarization of the �rstspin is exa
tly equal to (N+2)=3N and the polarizationof any other spin is exa
tly 2=3N for odd numbered,N , spin 
luster. To 
larify the problem of spin dy-nami
s, the present paper reports a detailed analyti
theory of the average polarization for both odd andeven numbered spin 
lusters; it also gives the theory ofspin dynami
s that is entirely missing in [11℄. A 
on-densed form of this paper has been published in [12℄.A brief overview of the present paper is as follows. InSe
. 2, we 
onstru
t the e�e
tive nu
lear spin Hamilto-nian of spin-
arrying mole
ules in a nano-
avity. Se
-tion 3 gives the formalism required to obtain the exa
ttime-dependent polarization. This is followed by Se
. 4that dis
usses three issues of the polarization dynami
sthat are amenable to the te
hniques of the Se
. 2: thenonergodi
ity of the polarization dynami
s of a singlespin in the nano-
avity, the polarization dynami
s of asingle spin within a �u
tuating nano-bubbles, and thespe
tral line shape of the nu
lear spin ensemble. Fi-nally, Se
. 5 summarizes the results of the 
al
ulationsand 
onfronts the results obtained with the known an-alyti
 results for the XY Hamiltonian.

2. EFFECTIVE NUCLEAR SPINHAMILTONIAN IN A NANO-CAVITYThe purpose of this se
tion is to 
onstru
t the ef-fe
tive spin Hamiltonian H that governs spin dynami
sof spin-
arrying mole
ules in a nano-size 
avity on the
oarse-grain temporary s
ale of the order 10 ps. Atthese spa
e-time s
ales, the e�e
tive spin Hamiltoniandi�ers from the exa
t dipolar Hamiltonian; in parti
-ular, the many-body spin Hamiltonian H has a highsymmetry that permits the exa
t solution for the spe
-trum and, as a result, the exa
t derivation of the po-larization dynami
s of the gas within the nano-
avity.In this se
tion, we summarize the main ideas of [4℄; ho-wever, in deriving the e�e
tive spin Hamiltonian H byaveraging over spin spatial 
oordinates, we generalizethe e�e
tive spin 
oupling to the 
ase of a nonperfe
tgas in the nano-
avity.The starting point of the derivation of the operatorH is the expression�(t; fIn; rn(t);pn(t)gNn=1) == U(t)�(0; fIn; rn(0);pn(0)gNn=1)U�1(t); (1)for the density matrix with 
ompletely spe
i�ed 
oordi-nates frn(t)gNn=1 and momenta fpn(t)gNn=1 of N spin-
arrying mole
ules. The propagator U(t) is asso
iatedwith the time-dependent exa
t dipolar Hamiltonian (infrequen
y units)H(t) = NX1�i<j hi;j(t);hi;j(t) = 
2~P2(
os �ij(t))r�3ij (t)(IiIj � 3IizIjz); (2)where 
 stands for the gyromagneti
 ratio, In�(� = x; y; z) spe
ify the spin-1=2 operators, and �ij(t)is the instant polar angle between the ve
tor rij(t)from ri(t) to rj(t) and the external magneti
 �eld B.A 
ornerstone fa
t for the 
onstru
tion of the ef-fe
tive spin Hamiltonian is the essential di�eren
e be-tween the time s
ale of the relaxation in the phase spa
erN �pN and the time s
ale of the spin dynami
s underthe Hamiltonian in Eq. (2). A
tually, for the hydrogengas at room temperature and atmospheri
 pressure, thefollowing estimations hold. The average 
on
entration�n � 2:7 � 1019 mole
ules/
m3;the mean free path� = (�n�a2)�1 � 10�4 
mfor the radius of a mole
ule a � 10�8 
m and thethermal velo
ity �v � 105 
m/s. Then, a simple or-der-of-magnitude 
al
ulation leads us to expe
t that234
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 nu
lear depolarization : : :for the gas in the 
avity of the size ` � 10 nm, theKnudsen di�usion 
oe�
ient isD � �v` � 10�1 
m2=s;the 
hara
teristi
 time s
ale of the spatial relaxation ofthe gas (due to the di�usive re�e
tion from the wall ofthe pore) to the spatially homogeneous distribution istdif � `2=D � 10�11 s;and the 
hara
teristi
 time s
ale of the velo
ity relax-ation towards the Maxwell distribution istv � `=�v � 10�11 s:These time s
ales tv and tdif are well separated fromthe NMR time s
ale tnmr = 10�4�10�3 s asso
iatedwith the dipolar intera
tion in Eq. (2). The smallnessof the parameter" = treltnmr = 10�7 � 1; (3)where trel = max(tv ; tdif );allows determining the average nu
lear spin Hamilto-nian governing the behavior of the nu
lear spins over a
oarse-grain time intervals �t obeyingtrel � �t� tnmr: (4)Averaging the exa
t Hamiltonian over time �t is per-formed to the zeroth order in the perturbation expan-sion in powers of the parameter ", yielding the average(or e�e
tive) Hamiltonian [13℄hi;j = 1�t �tZ0 hi;j(ri(t0); rj(t0)) dt0; (5)with the 
orre
tions being of the order O("1).The de
isive point of the following treatment is therepla
ement of time integration in Eq. (5) with integra-tion over spatial 
oordinates within the 
on�ned region.Equating the temporal averaging with the spatial av-eraging makes sense under the ergodi
 hypotheses [14℄,Æt(d rN ; d pN )t = Z�1 exp�� EkT � d rNd pN ; (6)where the notation implies that a representative pointliving in the whole phase spa
e rN � pN , while movingover the time t, trel � t� tnmr, spends only a fra
tionZ�1 exp�� EkT � d rNd pN

of the whole time t within the volume d rNd pN , withE being the total energy. Relation (6) in
orporates theGibbs sto
hasti
 level of des
ription into the dynami-
al treatment of mole
ular 
ollisions. The phase spa
edegrees of freedom are assumed to relax to their equi-librium distribution at a given temperature T .We introdu
e the equilibrium pair distribution fun
-tion for mole
ules 1 and 2,D2(r1; r2) == ZV d3r3 : : : ZV d3rN exp��U(rN )kT �ZV d3r1 : : : ZV d3rN exp��U(rN )kT � ; (7)where U(rN ) denotes inter-mole
ular ele
trostati
 in-tera
tions (we re
all that kUk=kHk � 107 [15℄). Then,taking ergodi
ity (6) for granted, the evolution ofthe spin degrees of freedom on the 
oarse-grain times
ale �t in Eq. (4) is governed by the stati
 (time-independent) e�e
tive HamiltonianH = NX1�i<j hi;j ; hi;j = g NX1�i<j(IiIj � 3IizIjz) (8)with spa
ing-independent pair 
ouplings g for any pairof spins i and j,g = 
2~ ZV ZV d3ri d3rjD2(ri; rj)P2(
os �ij)r�3ij : (9)The e�e
tive operator H involves only the (slow) spinoperators, whereas the (fast) spatial 
oordinates of thenu
leus (labeled by indi
es i and j) are integrated out.On the 
oarse-grain s
ale �t, any nu
lear spin �feels�the �eld that is independent of the spatial 
oordinatesof all the other spins �ying within the nano-
avity butdepends on the quantum states of those spins.The e�e
tive spin 
oupling g en
odes the infor-mation about the shape and size of the nano-
avity.The primary obje
tive of the pre
eding dis
ussion is topresent the expression for the 
oupling g in Eq. (9) foran ellipsoidal nano-
avity.For perfe
t hard-sphere mole
ules within the nano-
avity, the pair distribution fun
tion is given byD2(ri; rj) = V �2235
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Fig. 1. S
hemati
 representation of a nano-
avity par-tially o

upied with spin-
arrying mole
ules undergoingrapid thermal motionfor the mole
ules i and j in the 
avity. Hen
e, theaveraging in Eq. (9) givesg = 
2~FV ;F = 1V �� ZV ZV d3r1 d3r2�(jr1 � r2j � �)P2(
os �12)r�312 ; (10)where the fun
tion �(x) (= 1(0) for x > 0(< 0)) ex-
ludes the interse
tion of two hard spheres having thediameter �. In this paper, we use the remarkablefa
t [4℄ that the volume V of the nano-
avity entersthe expression for the e�e
tive 
oupling g in Eq. (10),whi
h itself enters the polarization (de�ned below inSe
. 3), giving rise to the dependen
e of the polariza-tion on the volume of the nano-
avity by no means astrivial as merely proportional to the volume.The transformation of the 
oordinates r1 and r2 tothe relative 
oordinate r12 = r1 � r2 and the 
oordi-nate of the 
enter of gravity r = (r1+ r2)=2, see Fig. 1,redu
es the form fa
tor F in Eq. (10) to the form

F = ZV �(jr1 � r2j � �)d3r12 P2(
os �12)r�312 : (11)It is 
onvenient to assume that the initial point of theve
tor r12 = r1 � r2 starts at the origin of the frame ofreferen
e xyz 
onne
ted with the ellipsoid, see Fig. 1.Straightforward integration over r12 in Eq. (11), see,e.g., [16℄, yields the sought form fa
torF = I�P2(
os�);I = 8>>>>>>><>>>>>>>:
23 + 2� 1"2 � 1��1� 1"Ar
th"� ;a � b23 � 2� 1j"j2 + 1��1� 1j"jAr
tgj"j� ;a � b: (12)Here, " is the ex
entri
itet of the ellipsoid with theprin
ipal axes a; b = 
. Equation (12) shows that thedependen
e of the form fa
tor on the angle � betweenthe z axis of the referen
e frame of the ellipsoid andthe Z axis of the laboratory referen
e frame is fa
toredout. For a� b, we have " = 1 and I = 2=3. For a = b,we have " ! 0 and Eq. (12) gives I = 0. For a � b,j"j ! 1 and I = 2=3� 2 = �4=3. These limiting 
ases
on�rm the result reported in [4℄.3. POLARIZATION DYNAMICSWe 
onsider the spin Hamiltonian H of an N -spin
luster in a uniform external magneti
 �eld B parallelto the Z axis of a �xed referen
e frame XY Z and thespatially independent spin 
ouplings g in Eq. (10),H = ! NXn=1 Inz ++ g2 NXm6=n f�ImzInz � ImxInx � ImyInyg ; (13)where ! = 
B denotes the Zeeman frequen
y and � isan arbitrary fa
tor.The standard way of approa
hing the N -spin ag-gregate is to �nd the polarization at the n-th spin at atime instant t given the initial polarization at the 1-stspin,Pn(t) = tr�exp(iHt)I1z exp(�iHt)Inz	tr fI21zg : (14)The Hamiltonian in Eq. (13) 
an be rewritten as (upto the 
onstant gN(1� �=2)=4)H = !Iz + g2(� + 1)I2z � g2I2; (15)236
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 nu
lear depolarization : : :where I =XNn=1 Inis the total spin and Iz = NXn=1 Inzis its proje
tion on the z axis. The polarization Pn(t)in Eq. (14) is un
hanged if we modify the HamiltonianH in Eq. (15) to the e�e
tive oneH 0 = �g2I2: (16)In addition, the equivalen
e of polarizations Pn(t) ofall spins ex
ept the �rst, as well as time 
onservationof the total polarization PNn=1 Pn(t) allow us to fo
uson the �rst spin only,P1(�) = tr�exp(i�I2)I1z exp(�i�I2)I1z	tr fI21zg ; (17)where the dimensionless time s
ale is de�ned as� = gt=2.A powerful tool for investigating the problem inEq. (17) is the theory of 
oupling of angular mo-menta [17; 18℄. To des
ribe it, we 
onsider the totalspin 
luster 
omposed of two subsystems A and B. Thesubsystem A has only the spin I1 = IA and the remain-ing fragment B of the spin 
luster has the spin IB , withthe total spin I = IA + IB . The states of the two sub-systems A and B are 
oupled together within the stateof the whole system A
B through the Clebs
h�Gordan(CG) 
oe�
ientsjIA; IB ; I;mi == XmA=�1=2mB=m�mA CI;mIA;mA;IB ;mB jIAmAijIBmBi; (18)where IA = 1=2 and mA = �1=2 are the spin and itsmagneti
 quantum numbers for the 1-st spin respe
-tively, and IB and mB = m � mA are the spin andits magneti
 quantum numbers of the fragment B. ForIB = 0, only I = 1=2 and m = �1=2 are allowed.For IB � 1=2, the allowed I and m are I = IB � 1=2,�I � m � I . The CG 
oe�
ients are given by (see,e.g., [19℄)CIB+1=2;m1=2;1=2;IB ;m�1=2 = CIB�1=2;m1=2;�1=2;IB ;m+1=2 == �IB + 1=2 +m2IB + 1 �1=2 ;CIB+1=2;m1=2;�1=2;IB ;m+1=2 = CIB�1=2;m1=2;1=2;IB ;m�1=2 == �IB + 1=2�m2IB + 1 �1=2 : (19)

The two pairs of independent variables (IB ;mB) and(IA = 1=2, mA = �1=2) are used for determining thetra
e in Eq. (17) for the whole N -spin system A
B,tr f: : : g = NB=2XIB=IminB w(IB)�� IB+1=2XI=jIB�1=2j IXm=�IhIA; IB ; I;mj : : : jIA; IB ; I;mi; (20)where NB = N � 1 is the number of spins in the frag-ment B; the minimal value of IB is IminB = 0 for evenNB and IminB = 1=2 for odd NB . The fa
torw(IB) = 2IB + 1NB + 1� NB + 112NB + IB + 1� (21)is the number of ways of grouping NB individual spins1=2 into the total spin IB . The fa
tor w(IB) satis�esthe relation [17; 18; 20℄NB=2XIB�jmB jw(IB) = � NB12NB +mB�: (22)The right-hand side of Eq. (22) is the number of statesfor ea
h allowed eigenvalue mB of the fragment B.To deal with the diagonal evolution matri
es inEq. (17), we introdu
e additional bases of the bra,hIA; IB ; I 0;m0j, and ket, jIA; IB ; I 0;m0i, ve
tors inthe Hilbert spa
e H(IA) 
 H(IB) for �xed valuesIA = 1=2 and IB ; we then use the 
ompleteness ofthe 2(2IB + 1) orthonormal basis ve
tors belonging tothe spa
e H(IA)
H(IB),1H(IA)
H(IB) == IB+1=2XI0=jIB�1=2j IXm0=�I jIA; IB ; I 0;m0ihIA; IB ; I 0;m0j;(23)and, �nally, insert the representation of unity inEq. (23) in front of the rightmost operator I1z inEq. (17), whose matrix elements are given byhIA; IB ; I 0;m0jI1z jIA; IB ; I;mi = Æm;m0 �� XmA=�1=2mACI0;m01=2;mA;IB ;m0�mA �� CI;m1=2;mA;IB;m�mA : (24)With these algebrai
 steps, we immediately obtain thepolarization P1(�) in terms of the CG 
oe�
ients as237
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P1(�) = 2�(NB�1) NB=2XIB=IminB w(IB) XjIB�1=2j�I�IB+1=2jIB�1=2j�I0�IB+1=2 X�I�m�I�I0�m0�I0 Æm;m0 exp (i�fI(I + 1)� I 0(I 0 + 1)g)��0� XmA=�1=2mACI0;m01=2;mA;IB ;m0�mACI;m1=2;mA;IB ;m�mA1A2 : (25)For the term IB = 0, only a single pair (I = 1=2,I 0 = 1=2) is allowed in the sum in Eq. (25), and forIB � 1=2, the four pairs of (I; I 0) must be distinguishedin this sum depending on the sign (+) or (�) in the ex-pressions(I; I 0) = �I = IB � 12 ; I 0 = IB � 12� : (26)Armed with the polarization P1(�) in Eq. (25), we

now de
ompose it into the time-independent part P1and the os
illating part P os
1 (�),P1(�) = P1 + P os
1 (�): (27)The time-independent 
ontribution P1 to the fun
tionP1(�) is provided by the quantum numbers m;m0 be-longing to the states I = I 0 = IB � 1=2 if IB � 1=2,and by the quantum numbers m;m0 belonging to thestates I = I 0 = 1=2 if IB = 0,P1 = 2�(NB�1) NB=2XIB=IminB w(IB) IB+1=2XI=jIB�1=2j IXm=�I0� XmA=�1=2mA�CI;m1=2;mA;IB ;m�mA�21A2 : (28)Our aim is now to sum over the indi
es m and I for a�xed value of IB in Eq. (28). For this, we start with thestate IB = 0 that arises for even NB (see the 
ommentsto Eq. (20)). For IB = 0, only I = 1=2 is allowed, andthe partial polarization P1(IB) in Eq. (28) is given byP1(IB = 0) = 2�(NB�1)w(0) 1=2Xm=�1=2m2: (29)Next, we 
onsider the 
ontribution to P1 in Eq. (28)from the spin IB � 1=2. In this situation, I = IB�1=2are allowed and invoking the CG 
oe�
ients inEq. (19), the 
ontributions P1(IB) to P1 
an be 
onve-niently written asP1(IB) = 2�NBw(IB) IBX�=�IB 2�+ 12IB + 1 : (30)Combining P1(IB = 0) in Eq. (29) and P1(IB) inEq. (30) results inP1 = 2�NB NB=2XIB=IminB w(IB) IBX�=�IB 2�+ 12IB + 1 : (31)

The sum over � in Eq. (31) easily yieldsIBX�=�IB(2�+1)2 = (2IB+1)�1+43IB(IB+1)� ; (32)and substituting w(IB) from Eq. (21), we arrive at thesought resultP1 = 2�NBNB + 1 NB=2XIB=IminB � NB + 112NB + IB + 1����1 + 43IB(IB + 1)� : (33)The remaining sum over IB in Eq. (33) depends onwhether NB is an even or odd number. If NB is even,then IminB = 0 and straightforward summation over IBin Eq. (33), with the known sums involving the bino-mial 
oe�
ientsNB=2XIB=0� NB + 112NB + IB + 1� = 2NB ;NB=2XIB=0 IB(IB + 1)� NB + 112NB + IB + 1� = NB2NB�2; (34)
238
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 nu
lear depolarization : : :yields the polarizationP1 = N + 23N (35)for an odd N = NB + 1 spin 
luster [11℄. If NB isodd, then IminB = 1=2 and some simple algebra givesthe polarizationP1 = N + 2� 21�N� NN=2�3N (36)for an even N = NB + 1 spin 
luster.When N � 1, the polarization P1 in Eq. (36) be-haves as N + 2� 2(�N=2)�1=23N :Equations (35) and (36) give the sought time-indepen-dent 
ontributions P1 to the total polarization P1(�)

in Eq. (27) for odd and even numbered spin 
lusters,respe
tively.It remains to �nd the time-dependent 
ontributionP os
1 (�) to the total polarization P1(�) in Eq. (25).Among the four pairs (I; I 0) in Eq. (26), only the pairs(I; I 0) with I 6= I 0 
ontribute to the time-dependentpart of the fun
tion P1(�) in Eq. (25). This o

ursfor IB � 1=2 only, be
ause otherwise, i.e., for IB = 0,the allowed values I = I 0 = 1=2 are already en
oun-tered in the time-independent polarization P1. Thus,among the four pairs (I; I 0) in Eq. (26) only the twopairs (I = IB +1=2, I 0 = IB � 1=2) and (I = IB � 1=2,I 0 = IB +1=2) are allowed and provide 
omplex 
onju-gate 
ontributions to the real-valued fun
tion P os
1 (�).It su�
es to deal with the �rst pair, (I = IB + 1=2,I 0 = IB � 1=2). The polarization be
omesP os
1 (�) = 2�(NB�1) NB=2XIB=1=2w(IB) IB+1=2Xm=�(IB+1=2) IB�1=2Xm0=�(IB�1=2) Æm;m02 
os (2�(IB + 1=2))��0� XmA=�1=2mACIB�1=2;m01=2;mA;IB ;m0�mACIB+1=2;m1=2;mA;IB ;m�mA1A2 : (37)To 
omplete the derivation of the fun
tion P os
1 (�), weuse the expression for the fa
tor w(IB) in Eq. (21), theCG 
oe�
ients in Eq. (19), and sum over m and m0 inEq. (37) for a �xed value of IB . This givesP os
1 (�) = 2�NB+33(NB + 1) NB=2XIB=1=2� NB + 112NB + IB + 1��� IB(IB + 1) 
os(2�(IB + 1=2)): (38)Finally, by gathering the expressions for P1 in Eqs. (35)and (36) and the expression for P os
1 (�) in Eq. (38), wego over (with the substitution k = IB �1=2 for even Nand k = IB for odd N) to the total polarization at the�rst spin,P1(�) = N + 2� 21�N� NN=2�3N + 24�N3N �� N=2�1Xk=0 Ak(N) 
os(�(N � 2k)) (39)for an even N -
luster, and

P1(�) = N + 23N + 24�N3N �� (N�1)=2Xk=0 Ak(N) 
os(�(N � 2k)) (40)for an odd N -
luster, with the 
oe�
ientAk(N) = �N + 12 � k��N � 12 � k��Nk�arising in both 
ases. Formulas (39) and (40) are the
entral result of the paper. They are used to des
ribea variety of systems in the next se
tion.4. DISCUSSION4.1. Nonergodi
 spin dynami
sAs Eq. (40) states, for large odd-N 
lusters, thetime-averaged polarization hP1(�)i of spin 1 tends to1=3, while the time-averaged polarization 2=3N of anyother spin tends to 0, i.e., polarization of spin 1 doesnot spread uniformly over an N -spin 
luster. We 
allthis behavior the nonergodi
 spin dynami
s, to 
onfrontit with the ergodi
 spin dynami
s providing the 1=Npolarization for all spins in an N -spin ensemble. Figu-239
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lusters. The prin
iple features ofthe periodi
 pulses of the polarization are determinedby two fa
tors: �rst, time reversibility of the dynami
sa�e
ts the exa
t reentran
e of the polarization to theprepared value P1(0) = 1 after ea
h period 4�=g, and,se
ond, gives rise to the time interval with the time-independent polarization of spin 1, see the Appendixfor details. For large-N 
lusters, the total period 4�=g
an be partitioned into the swit
hing timetsw = 4�O(1)gpNand the stopping timetst = 4�g �1� O(1)pN � ;we re
all that � = gt=2. As shown in the Ap-pendix, the polarization P1(�) is peaked at the in-stants t = 0; 2�=g; 4�=g; : : : . The pro�le of the fun
tionP1(�), e.g., around � = 0, isP1(�) = 13 + 23�1� �2N� exp���2N2 � : (41)The fun
tion P1(�) has the same pro�le around all theinstants � = m�, for all integer m. The interval be-tween the su

essive peaks and their width areT = 2�g ; �T = 4�O(1)gpN ; (42)respe
tively. In other words, for large-N 
lusters, thepolarization of spin 1 stays at the �xed value P1 = 1=3almost all the time. The os
illating part of P1(�) isan odd fun
tion of time with respe
t to the instants� = �=2; 3�=2; : : : , as is apparent from Eq. (40).Figure 2b shows the pro�les of the polarization forN -spin 
lusters with even N . For large even values ofN , the polarization at spin 1 stays �xed over the longtime interval tst = 2�g �1� O(1)pN �within ea
h period 2�=g. Unlike odd-N 
lusters, thepro�les of P1(�) for even-N 
lusters are even fun
tionsof time with respe
t to time instants � = �=2; 3�=2; : : : .Using the experimental values of the time intervalT and the width of the pulses �T in Eq. (42) togetherwith the expressions for the 
oupling g in Eqs. (10)

and (12), we �nd that the volume and form fa
tor aregiven by V = 4
 � T�T �2 ;F �ab�P2(
os�) = 8
 T
2~�2T ; (43)where 
 = N=V denotes the 
on
entration of themole
ules 
arrying spin 1=2 and the angle � is assumedto be known.4.2. Polarization dynami
s in �u
tuatingnano-bubblesEquations (39) and (40) 
an be adapted to a

ountfor the time dependen
e of the volume of the nano-
avity, thereby providing a means to explore NMRimaging of 
avitation bubbles in water [21℄, blood [22℄,et
., along with the 
onventional high-speed photog-raphy. Dynami
s of the surfa
e of a typi
al bubblingbehavior o

urs at a millise
ond time s
ale [21℄, i.e., atthe same time s
ale that is relevant for the nu
lear spindynami
s. It is therefore legitimate to ask how the dy-nami
s of a nano-size volume a�e
ts the nu
lear spindynami
s. Our intention in this se
tion is to show that�u
tuations of the nano-volume (governed either by ex-ternal inputs or by inherently thermal noise) drive thepolarization to the nonergodi
 value 1=3 irreversibly,and therefore time-periodi
 pulsating of the polariza-tion breaks down as time pro
eeds.The formulation in Se
. 3 is easily extended to the
ase of a time-varying volume V be
ause the 
ouplingg(V (t)) enters Hamiltonian (13) as a 
ommon fa
torin front of the operator part. The fun
tional form ofthe polarization P os
1 (�) in Eq. (38), whi
h has beenderived for time-independent 
oupling g, is generalizedto the 
ase of a fun
tion g(t) provided that the time� = gt=2 in Eq. (38) is repla
ed with a new time,� = 12gt! 12 tZ0 g(t0)dt0: (44)We are interested in transformation (44),g(t) = hgi+ Æg(t); (45)where Æg(t) is the Gaussian random noise 
hara
terizedby the �rst two momentshÆg(t)i = 0;hÆg(t1)Æg(t2)i = h(Æg)2i
(jt1 � t2j); (46)240
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Fig. 2. a � Polarization P1(�) in Eq. (40) of the �rst spin is varied with the dimensionless time � = gt=2 for the series ofan odd total number N of spins. b � Polarization P1(�) in Eq. (39) for the series of even Nwhere h(Æg)2i is the varian
e and 
(t) denotes the 
or-relation fun
tion, for example, 
(t) = exp(�t=t
), witht
 being the 
orrelation time. In a

ordan
e with the
omment before Eq. (44), we repla
e the fa
tor
os (2�(IB + 1=2))in Eq. (38) with
os24(IB + 1=2)0�hgit+ tZ0 Æg(t0) dt01A35 :Gaussian averaging of this fa
tor over the random fun
-tion Æg(t) is performed as (see, e.g., [15℄)*exp0�i(IB + 1=2) tZ0 Æg(t0)dt01A+Æg == exp��(IB + 1=2)2h(Æg)2iT 2�; (47)

with T 2 = tZ0 (t� t0) 
(t0) dt0: (48)We �rst 
on�ne our attention to the polarization foreven N , with N � 1, and then 
lose the se
tion withthe �nal result for odd N , N � 1. We write the polar-ization in Eq. (38) with averaging (47) asP1(t) = P1 + 2�NB+33(NB + 1) �� NB=2XIB=1=2� NB + 112NB + IB + 1�IB(IB + 1)�(t);�(t) = exp�� (IB + 1=2)2 h(Æg)2iT 2��� 
os (hgit(IB + 1=2)) : (49)
The exponent in Eq. (49) tell us that the su

essivepeaks of the time-dependent part of P1(t) redu
e to4 ÆÝÒÔ, âûï. 2 241
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N = 134

6 7 80 91 2 3 4 50:33
1:00P1

hgit=2�Fig. 3. Polarization dynami
s of a single spin, P1(t),within the N = 134 spin aggregate when the volumeof the nano-
avity �u
tuates providing the relative vari-an
e of the g 
oupling equal to h(Æg)2i=hgi2 = 10�4,see Eqs. (51) and (52)zero as t!1, and therefore only the time-independentpart of P1(t), i.e., P1 = 1=3 in Eq. (33), survives ast ! 1 after the Gaussian averaging over the fun
tionÆg(t). The integral over t0 in the 
onstant T 2 in Eq. (48)
an be evaluated in the two asymptoti
 
ases, for thelarge and the small 
orrelation time [15℄,T 2 = ( t2=2 if t2
 h(Æg)2i � 1;t
t if t2
 h(Æg)2i � 1: (50)To �nd the fun
tion P1(t) in Eq. (49) for N � 1, we
an repla
e the sum in Eq. (49) with the Gaussian av-eraging, as in Eq. (A.3) in the Appendix, whi
h givesP1(t) = 13 + 163N3=2p�=2 �� N=2Xn=1 
os (hgitn)�n2 � 14� exp(�an2); (51)where a = 2N + h(Æg)2iT 2: (52)Figure 3 shows the polarization dynami
s of a singlespin within the N = 134 spin aggregate forh(Æg)2ihgi2 = 10�4:Based on the formulas in the Appendix, we simplify thesum over n in Eq. (51) via the Poisson resummation

formula. De�ning the partial sums entering Eq. (51)byS1(t) = N=2Xn=1 
os (hgitn) exp(�an2) == �12+12r�a 1Xq=�1 exp ��2 �q+hgit2� �2 =a! ; (53)andS2(t) = N=2Xn=1 
os (hgitn)n2e�an2 = ��S1(t)�a == p�4a3=2 1Xq=�1 1� 2�2a �q + hgit2� �2!�� exp ��2a �q + hgit2� �2! ; (54)we obtainP1(t) = 13 + 163N3=2p�=2 �S2(t)� 14S1(t)� : (55)To �nd the envelope of the su

essive peaks of thefun
tion P1(t) in Eq. (55), we substitute the timet = 2�m=hgi in Eqs. (53)�(55), with m running overinteger numbers. This gives the polarization at thedis
rete values m,S1(m) = N=2Xn=1 exp(�an2) == �12 + 12r�a 1Xk=�1 exp���2k2a � ; (56)S2(m) = N=2Xn=1n2 exp(�an2) == p�4a3=2 1Xk=�1�1� 2a�2k2� exp���2k2a � : (57)The fun
tions S1(m) and S2(m) inherit their depen-den
e on the �time� m through the 
onstant a inEqs. (52) and (50),a == 8>>>><>>>>: 2N + 2�2m2 h(Æg)2ihgi2 if t2
h(Æg)2i � 1;2N + 2�mt
 h(Æg)2ihgi if t2
h(Æg)2i � 1; (58)242
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lear depolarization : : :where we substitute t = 2�m=hgi in Eqs. (52) and (50).For N � 1 and m� 1, we drop the summand 2=N inEq. (58) assuming that a� 1,a �8>><>>: 2�2m2 h(Æg)2ihgi2 if t2
h(Æg)2i � 1;2�mt
 h(Æg)2ihgi if t2
h(Æg)2i � 1: (59)For a � 1, we �nd the sums over k in Eqs. (56)and (57) by again using the Poisson resummation for-mula, Eq. (A.5), whi
h a

elerates 
onvergen
e of thesums for a � 1. Reading Eq. (A.4) ba
kwards, fromthe right-hand side to the left-hand side, we obtainI(a) =r�a 1Xk=�1 exp���2k2a � == 1X`=�1 exp(�a`2) = 1 + 2e�a +O(e�4a): (60)Thus, Eqs. (53) and (54) be
omeS1(m) = �12 + 12I(a) = e�a; (61)S2(m) = �12 �I(a)�a = e�a; (62)and Eq. (55) therefore gives the polarization of the �rstspin P1(m) = 13 + 4p2N3=2p� e�a (63)with a in Eq. (59).We 
on
lude this se
tion with the result for the to-tal polarization for an odd total number N of spins.Due to alternating peaks of the polarization P1(t) inEq. (40) (see also Fig. 2a), we obtainP1(m) == 8>>><>>>: 13 � 4p2N3=2p� e�a for large odd m;13 + 4p2N3=2p� e�a for large even m: (64)Equation (64), with a in Eq. (59), shows that the po-larization peaks P1(m) of a spin-
arrying gas have aGaussian and an exponential time dependen
e for largeand small 
orrelation times of the �u
tuations of thenano-bubbles, respe
tively.

4.3. NMR line shapeTo 
al
ulate the NMR line shape exa
tly, we use thesame e�e
tive Hamiltonian (13) as des
ribed in Se
. 3.The NMR line shape is the Fourier transform of thefree indu
tion de
ay (FID), F (t), of an N -spin ensem-ble [15℄. The NMR line shape on the protons in hy-drogenated thin sili
on �lms provided the �rst exper-imental eviden
e for the validity of e�e
tive Hamilto-nian (13) in nano-
avities [4℄. We are interested in theFID signal F (t) = tr�eiHtI+e�iHtI�	tr fI+I�g (65)with I� = NXn=1 In�; I� = Ix � iIy; � = x; y; z:The reason for an exa
t solution for the FID in Eq. (65)is that the total Hamiltonian in Eq. (13) 
an be ex-pressed in terms of the three 
olle
tive spin operatorsI� just as in Eq. (15). Be
ause [I2; I�℄ = 0, we 
anrewrite Eq. (65) asF (t) = trneiGtI2z I+e�iGtI2z I�otr fI+I�g ; (66)with G = 3g=2 for dipolar intera
tions in the e�e
tiveHamiltonian (13) with � = 2. The Heisenberg equationof motion for the operatorI+(t) = exp(iGtI2z )I+ exp(�iGtI2z )is solved exa
tly asI+(t) = exp(iGt(2Iz � 1))I+(0); I+(0) = I+:The averaging in Eq. (65) is performed in theN !=(N"!N#!)-fold degenerate basis of the states(N"; N#) with N" (N#) spins up (down), su
h thatN" + N# = N and Iz = (N" � N#)=2. The averaginggives the FID F (t) = �
os�32gt��N�1 : (67)The e�e
t of dephasing of proton spins within the nano-
avity due to the intera
tions with the protons at thesurfa
e of the nano-
avity is introdu
ed phenomenolog-i
ally asF (t) = �
os�32gt��N�1 exp�� tT2� : (68)243 4*
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tion I(!) is meaningful for the frequen
ies0 < ! < 
2~=�3, with � standing for the diameter ofhard-sphere spin-
arrying mole
ules. The upper 
ut-o� of the frequen
y provides �nite se
ond and fourthmoments for gT2 � 1,M2 = (N � 1) (3g=2)2 ;M4 = (N � 1)(3N � 5) (3g=2)4 : (71)The moment M2 derived in [4℄ by the Van Vle
k for-mula 
oin
ides with M2 in Eq. (70), as it should. Theline shape in the nano-
avity volume appears to bevolume-dependent (through the 
oupling g in Eq. (10)),allowing one to determine the volume of the nano-poresin hydrogenated sili
on �lm [4℄.5. CONCLUSIONWe have presented the exa
t time-dependent de-s
ription of spin-1=2 dynami
s with in�nite-range spinintera
tions and the initial polarization prepared on asingle spin 1, i.e., P1(0) = 1. Spin dynami
s for odd andeven numbered 
lusters demonstrates periodi
 pulses ofthe polarization P1(�) on spin 1. For large-N 
lusterswith odd N , the polarization on spin 1 has pulses overthe time interval tsw = 4�O(1)gpN ;from P1(0) = 1 to the time-independent polarization,whi
h therefore laststst = 4�g �1� O(1)pN �within any period 4�=g. For large-N 
lusters with evenN , the swit
hing time istsw = 2�O(1)gpN

and the period equals 2�=g. The stationary polariza-tion on spin 1 is nonergodi
, be
ause its value tendsto 1=3 (instead of tending to the ergodi
 value 1=N)as N tends to in�nity. The pro�les of the polariza-tions within the series of odd (even) large 
lusters areremarkably similar.The spe
i�
 polarization pro�le in 
lusters within�nite-range spin intera
tions is in sharp 
ontrast withthe polarization pro�les in 1D 
lusters with the nearest-neighbor XY Hamiltonian [3℄. Two di�eren
es 
an bedrawn from the presented results.1. The overall behavior of the polarization P1(t) inthe system with an in�nite-range intera
tion is stri
tlyreversible, periodi
 with the period 4�=g for any N ,whereas on large 1D 
hains (N � 1) with the XYHamiltonian, the polarization P1(t) on spin 1 moves inirregular fashion.2. ForN -spin 
lusters with N � 1, the polarizationP1(t) of spin 1 exhibits a plateau region at the noner-godi
 value P1 = 1=3; the pulses of the polarizationP1(t) have a short time span about 4�O(1)=(gpN).This is in 
ontrast to the behavior of the polarizationP1(t) in 1D spin 
hains with the XY Hamiltonian,where polarization on spin 1 depends on time in ir-regular fashion with tst = 0.Finally, this paper demonstrates the sensitivity ofthe polarization dynami
s (reversibility and ergodi
ityin many-spin systems) to the radius of the intera
tion.In
orporation of the real dipolar intera
tions intothe theory is the most 
hallenging task of dynami
altheory and the a

urate answer is not settled yet,although the general pi
ture of the spin dynami
s isknown to be di�usional [23℄.We thank to D. E. Fel'dman and S. V. Iordanskiifor helpful dis
ussions, A. K. Khitrin for sending thereport [4℄, and S. I. Doronin and I. I. Maximov for helpin preparing the manus
ript. This paper was supportedin part by the RFBR (grant � 01-03-33273).APPENDIXDerivation of Eq. (41)We want to prove that the fun
tion P os
1 (�) inEq. (38) for N � 1 has the form of periodi
 pulses,ea
h of the width �T = 4�O(1)gpN244
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lear depolarization : : :at equidistant time instants � = 0; 2�; 4�; : : : , su
hthat the pro�le of P os
1 (�), e.g., at the time instant� = 0 isP os
1 (�) == 23�1� �2N� exp���2N=2�; for N � 1: (A.1)To prove Eq. (A.1), we introdu
e the new variablen = IB + 12in Eq. (38), su
h that the fun
tion P os
1 (�) takes theform (we re
all that the total number of spins is equalto N = NB + 1)P os
1 (�) = 163N N=2Xn=1 2�N� NN=2 + n����n2 � 14� 
os (2�n) : (A.2)Next, we use the asymptoti
 formula for the binomialdistribution,2�N� NN=2 + n� = 1p�N=2 �� exp�� n2N=2��1 + n3O(1)pN � : (A.3)Equation (A.3) allows us to 
onsider summation inEq. (A.2) as averaging over the Gaussian distributionfun
tion. To simplify the 
al
ulation of Eq. (A.2) fur-ther, we apply the Poisson identity [24℄1X`=�1 
os (2��`) exp(�a`2) ==r�a 1Xk=�1 exp���2(k + �)2a � : (A.4)In many 
ir
umstan
es, in
luding the present ones, theresulting sum over k in the right-hand side of Eq. (A.4)
onverges mu
h faster than the original sum over ` inthe left-hand side of Eq. (A.4). To apply Eqs. (A.4)to Eq. (A.2), we 
an expand the sum in Eq. (A.2) upto n = 1 be
ause the terms in the sum in Eq. (A.2)pra
ti
ally vanish for n > N=2 and N � 1. Thus, byPoisson identity (A.4), we introdu
e the sum (a partial
ontribution to the sum in Eq. (A.2))S1(�) = N=2Xn=1 
os (2�n) exp�� n2N=2� = �12 ++ 12r�N2 1Xk=�1 exp���2 �k + ���2 N2 � : (A.5)

To show that the fun
tion S1(�) has the formof Gaussian peaks at the equidistant instants� = 0;��;�2�; : : : , it su�
es to analyze thefun
tion S1(�) around the point � = 0. The leading
ontribution to the sum in Eq. (A.5) is then providedby the term k = 0. We note that if we analyze thepeak around � = m�, where m is an integer, then theleading 
ontribution to S1(�) 
omes from the termk = �m. Thus, in 
onsidering N � 1, we 
an drop allthe terms in Eq. (A.5) ex
ept the leading term k = 0,whi
h yieldsS1(�) = �12 + 12r�N2 exp���2N2 � : (A.6)Analogously, we determine the partial sumS2(�) = N=2Xn=1 
os (2�n)n2 exp�� n2N=2� == � ��(2=N)S1(�) = N3=2p�8p2 �1� �2N��� exp���2N2 � : (A.7)At N � 1, the fun
tion S1(�) in Eq. (A.6) has a neg-ligible 
ontribution to the fun
tionP os
1 (�) = 163N3=2p�=2 �S2(�)� 14S1(�)�in 
omparison with the 
ontribution of the fun
tionS2(�) in Eq. (A.7), yielding the sought result inEq. (A.1).In general, the fun
tion P os
1 (�) for an arbitrary �has pulses at the moments � = k� with integer k,P os
1 (�) = 1Xk=�1 23 �1� �2 �k + ���2N��� exp���2 �k + ���2 N2 � : (A.8)REFERENCES1. F. S. Dzheparov, Zh. Eksp. Teor. Fiz. 116, 1398 (1999).2. R. Brüs
hweiler and R. R. Ernst, Chem. Phys. Lett.264, 393 (1997).3. E. B. Fel'dman, R. Brüs
hweiler, and R. R. Ernst,Chem. Phys. Lett. 294, 297 (1998); E. B. Fel'dman andM. G. Rudavets, Chem. Phys. Lett. 311, 453 (1999).4. J. Baugh, A. Kleinhammes, D. Han, Q. Wang, andY. Wu, S
ien
e 294, 1505 (2001).245
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