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Recently, it has been observed that the effective dipolar interactions between nuclear spins of spin-carrying
molecules of gas in a closed nano-cavities are independent of the spacing between all the spins. We derive exact
time-dependent polarization for all spins in the spin-1/2 ensemble with spatially independent effective dipolar
interactions. If the initial polarization is on a single (first) spin, P1(0) = 1, then the exact spin dynamics of the
model is shown to exhibit periodic short pulses of the polarization of the first spin, the effect being typical of
systems having a large number N of spins. If N >> 1, then within the period 47/¢g (27/g) for odd (even) N-spin
clusters, with g standing for the spin coupling, the polarization of spin 1 switches quickly from unity to the
time-independent value 1/3 over the time interval about (gv/N)~'. Thus, spin 1 spends almost all the time in
the time-independent condition P;(¢) = 1/3. The period and the width of the pulses determine the volume and
the form factor of the ellipsoidal cavity. The formalism is adapted to the case of time-varying nano-fluctuations
of the volume V (¢) of cavitation nano-bubbles. If the coupling g(V (¢)) is varied by the Gaussian-in-time random
noise due to the variation of the volume V(¢), then the envelope of the polarization peaks goes irreversibly to
1/3. The polarization dynamics of a single spin exhibits the Gaussian (exponential) time dependence when the
correlation time of fluctuations of the nano-volume is larger (smaller) than ((6g)?)~/2, where ((6g)?) is the
variance of the g(V (¢)) coupling. Finally, we report exact calculations of the NMR line shape for the N-spin
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gaseous aggregate.
PACS: 05.30.-d, 76.20.4+q
1. INTRODUCTION

The nature of ergodicity as a fundamentally impor-
tant element of the consonant description of statisti-
cal mechanics is currently being discussed in the NMR
context [1]. Spin dynamics is ergodic if the initial po-
larization prepared at a single (first) spin is spread over
the system, leading, as time proceeds, to the spatially
uniform distribution of the polarization, as expected on
the basis of a simple physical intuition. On the other
hand, nonergodic behavior that was recently observed
numerically in the nuclear spin-1/2 1D chains with the
general XY Z spin Hamiltonian [2] enters such that the
time-averaged polarization of the first spin turns out to
be several times larger than the time average polariza-
tion of any other spin in the chain. This observation of
nonergodicity has been extended to 1D chains and rings
with the XY Hamiltonian [3], showing analytically that
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the time-averaged polarization of the first spin differs
by the factor 1.5-2 from the time-averaged polarization
of all the other spins in the chain. These considerations
in 1D spin clusters address the problem of the nature of
ergodicity for different spin Hamiltonians. Motivated
by the study of nonergodic spin dynamics and because
an exact solution is a lucky exception in statistical me-
chanics, we assume in this paper that spin interactions
can be considered independent of the spacing between
the spins rather than having an r—3 dependence.

Recently, a spin Hamiltonian with space-indepen-
dent spin couplings has been applied for exploring the
NMR spectra of the gas of spin-carrying molecules un-
dergoing fast thermal motion within nonspherical cav-
ities [4]. In that report, the authors have arrived at
the space-independent effective spin couplings by mo-
tionally averaging the exact dipolar Hamiltonian over
uniformly distributed spatial coordinates of the spins in
nanometer-size cavities. This technique is expected to
have a promising application for determining the pore
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shapes and sizes [5] by the NMR spectra.

With regard to the effective nuclear spin Hamil-
tonian with infinite-range couplings, it is noteworthy
that this type of interactions has also been proposed
in the theory of nano-electrodes [6,7]. There, the
infinite-range dipolar nuclear interactions are induced
indirectly due to the fast energy transfer between the
electron and nuclear spins. On the coarse-grain time
scale of the fast electron spin dynamics, the slow effec-
tive nuclear spin dynamics is governed by an effective
nuclear spin Hamiltonian with an infinite-range inter-
action. Quite apart from its importance as a physical
model in the NMR experiments for the many-spin ag-
gregate in a confined volume [4,6,7] and few proton
molecules [8], the model with infinite-range spin inter-
actions is of a fundamental interest in its own right
because it allows treating the 3-dimensional case ex-
actly, without any reference to a 1D spin ordering.
It represents the quantum nonequilibrium version of
the exactly solvable equilibrium spin model [9], has a
mapping to the BCS pairing Hamiltonian of supercon-
ductivity [10], and has long been considered as a test
for many-body problems in higher spatial dimensions,
D > 1. The objective of this paper is to present the
exact solution of nonergodic dynamics with an infinite-
range spin Hamiltonian in the N-spin ensemble.

To our knowledge, the only result reported on this
model is that of Waugh [11], who announced (without
proof) that the time-averaged polarization of the first
spin is exactly equal to (N+2)/3N and the polarization
of any other spin is exactly 2/3N for odd numbered,
N, spin cluster. To clarify the problem of spin dy-
namics, the present paper reports a detailed analytic
theory of the average polarization for both odd and
even numbered spin clusters; it also gives the theory of
spin dynamics that is entirely missing in [11]. A con-
densed form of this paper has been published in [12].
A brief overview of the present paper is as follows. In
Sec. 2, we construct the effective nuclear spin Hamilto-
nian of spin-carrying molecules in a nano-cavity. Sec-
tion 3 gives the formalism required to obtain the exact
time-dependent polarization. This is followed by Sec. 4
that discusses three issues of the polarization dynamics
that are amenable to the techniques of the Sec. 2: the
nonergodicity of the polarization dynamics of a single
spin in the nano-cavity, the polarization dynamics of a
single spin within a fluctuating nano-bubbles, and the
spectral line shape of the nuclear spin ensemble. Fi-
nally, Sec. 5 summarizes the results of the calculations
and confronts the results obtained with the known an-
alytic results for the XY Hamiltonian.

2. EFFECTIVE NUCLEAR SPIN
HAMILTONIAN IN A NANO-CAVITY

The purpose of this section is to construct the ef-
fective spin Hamiltonian H that governs spin dynamics
of spin-carrying molecules in a nano-size cavity on the
coarse-grain temporary scale of the order 10 ps. At
these space-time scales, the effective spin Hamiltonian
differs from the exact dipolar Hamiltonian; in partic-
ular, the many-body spin Hamiltonian H has a high
symmetry that permits the exact solution for the spec-
trum and, as a result, the exact derivation of the po-
larization dynamics of the gas within the nano-cavity.
In this section, we summarize the main ideas of [4]; ho-
wever, in deriving the effective spin Hamiltonian H by
averaging over spin spatial coordinates, we generalize
the effective spin coupling to the case of a nonperfect
gas in the nano-cavity.

The starting point of the derivation of the operator
H is the expression

p(t, {In, rn(t), pn(t)}r]yzl) =
= U(t)p(0, {L,,rn(0),pn(0)} ;U (1), (1)

for the density matrix with completely specified coordi-
nates {r,(t)})_, and momenta {p,(t)}_, of N spin-
carrying molecules. The propagator U (t) is associated
with the time-dependent exact dipolar Hamiltonian (in
frequency units)

N
H(t)y= Y hij(t),

1<i<j (2)
hi’j (t) = ’)/2’7,P2(COS Gij (t))’f‘igg (t)(IlI] - 3[2'5.[]'2)

3

where 7 stands for the gyromagnetic ratio, I,
(o = z,y, z) specify the spin-1/2 operators, and 6;;(t)
is the instant polar angle between the vector 7;;(t)
from r;(t) to rj(t) and the external magnetic field B.
A cornerstone fact for the construction of the ef-
fective spin Hamiltonian is the essential difference be-
tween the time scale of the relaxation in the phase space
rN —p"™ and the time scale of the spin dynamics under
the Hamiltonian in Eq. (2). Actually, for the hydrogen
gas at room temperature and atmospheric pressure, the
following estimations hold. The average concentration

i~ 2.7-10" molecules/cm?,
the mean free path
A = (Aima®) ' ~107% cm
for the radius of a molecule a ~ 1078 em and the

thermal velocity o ~ 10° cm/s. Then, a simple or-
der-of-magnitude calculation leads us to expect that
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for the gas in the cavity of the size { ~ 10 nm, the
Knudsen diffusion coefficient is

D~ol~107" cm?/s,

the characteristic time scale of the spatial relaxation of
the gas (due to the diffusive reflection from the wall of
the pore) to the spatially homogeneous distribution is

taip ~ 52/ID ~ 1071 S,

and the characteristic time scale of the velocity relax-
ation towards the Maxwell distribution is

ty~ ()5~ 107" s,

These time scales ¢, and tq;¢ are well separated from
the NMR time scale t,m, = 107%=1073 s associated
with the dipolar interaction in Eq. (2). The smallness
of the parameter

Lre —
el 1077 <« 1,

nmr

€= (3)
where
lret = maX(tva tdif)7

allows determining the average nuclear spin Hamilto-
nian governing the behavior of the nuclear spins over a
coarse-grain time intervals At obeying

trel < At < tnmr-

(4)

Averaging the exact Hamiltonian over time At is per-
formed to the zeroth order in the perturbation expan-
sion in powers of the parameter ¢, yielding the average
(or effective) Hamiltonian [13]

At

— 1

s =55 [ bt n@ar. )
0

with the corrections being of the order O(e!).

The decisive point of the following treatment is the
replacement of time integration in Eq. (5) with integra-
tion over spatial coordinates within the confined region.
Equating the temporal averaging with the spatial av-
eraging makes sense under the ergodic hypotheses [14],

1

St(drN,dp"™) _
_— =7 exp

t

=7

<_E

N N
kT) arVapN,  (6)

where the notation implies that a representative point
living in the whole phase space N — p, while moving
over the time ¢, t,; < t < t;me, spends only a fraction

Z Ltexp <— ) drNdpN

kT
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of the whole time ¢ within the volume dr™¥dp", with
E being the total energy. Relation (6) incorporates the
Gibbs stochastic level of description into the dynami-
cal treatment of molecular collisions. The phase space
degrees of freedom are assumed to relax to their equi-
librium distribution at a given temperature 7'.

We introduce the equilibrium pair distribution func-
tion for molecules 1 and 2,

Ds(ry,ma) =
N
i ‘/ d3r3...v/d3rNexp <—U](€T )> .
[ e (5]

where U(r"V) denotes inter-molecular electrostatic in-
teractions (we recall that |U||/||H|| ~ 107 [15]). Then,
taking ergodicity (6) for granted, the evolution of
the spin degrees of freedom on the coarse-grain time
scale At in Eq. (4) is governed by the static (time-
independent) effective Hamiltonian

N N
F = Z hi’]’, hi’]’ =g Z (Iin - 31@'2[]'2) (8)
1<i<yj 1<i<j

with spacing-independent pair couplings g for any pair
of spins i and j,

g = 72h//d3Ti dS’I“]'DQ(TZ’,Tj)PQ(COS@i]')Ti_j3. (9)
vV Vv

The effective operator H involves only the (slow) spin
operators, whereas the (fast) spatial coordinates of the
nucleus (labeled by indices 7 and j) are integrated out.
On the coarse-grain scale At, any nuclear spin «feels»
the field that is independent of the spatial coordinates
of all the other spins flying within the nano-cavity but
depends on the quantum states of those spins.

The effective spin coupling g encodes the infor-
mation about the shape and size of the nano-cavity.
The primary objective of the preceding discussion is to
present the expression for the coupling ¢ in Eq. (9) for
an ellipsoidal nano-cavity.

For perfect hard-sphere molecules within the nano-
cavity, the pair distribution function is given by

DQ(’I‘Z',T‘J') = V72
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spin-1/2 probe

nano-cavity

X

Fig.1. Schematic representation of a nano-cavity par-
tially occupied with spin-carrying molecules undergoing
rapid thermal motion

for the molecules ¢ and j in the cavity. Hence, the
averaging in Eq. (9) gives
B v2hF

F =
</

v
where the function 6(z) (= 1(0) for & > 0(< 0)) ex-
cludes the intersection of two hard spheres having the
diameter o. In this paper, we use the remarkable
fact [4] that the volume V of the nano-cavity enters
the expression for the effective coupling g in Eq. (10),
which itself enters the polarization (defined below in
Sec. 3), giving rise to the dependence of the polariza-
tion on the volume of the nano-cavity by no means as
trivial as merely proportional to the volume.

The transformation of the coordinates r; and rs to
the relative coordinate ri» r1 — ry and the coordi-
nate of the center of gravity r = (r; +r2)/2, see Fig. 1,
reduces the form factor F' in Eq. (10) to the form

3

(10)

X
d3T1 d37'29(‘7'1 — ’I“2| — O')P2 (COS 912)7’1_23,

<\<|H<
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F= /9(‘7"1 — 'I“Q‘ — 0)d3T12 P2(008912)7"1_23. (].].)
\%4

It is convenient to assume that the initial point of the
vector 115 = 1y — ro starts at the origin of the frame of
reference xyz connected with the ellipsoid, see Fig. 1.
Straightforward integration over r15 in Eq. (11), see,
e.g., [16], yields the sought form factor

F = InPy(cos a),

2 1 1
§+2<5—2—1> (1—gArcth5>,
a>b (12)
I'=9 9 1 1
- =2 —=+1](1— —Arct ,
52 () (1 gaensl).
L aSb

Here, ¢ is the excentricitet of the ellipsoid with the
principal axes a,b = ¢. Equation (12) shows that the
dependence of the form factor on the angle a between
the z axis of the reference frame of the ellipsoid and
the Z axis of the laboratory reference frame is factored
out. For a > b, we have e =1 and I = 2/3. For a = b,
we have ¢ — 0 and Eq. (12) gives I = 0. For a < b,
le] = oo and I =2/3 —2 = —4/3. These limiting cases
confirm the result reported in [4].

3. POLARIZATION DYNAMICS

We consider the spin Hamiltonian H of an N-spin
cluster in a uniform external magnetic field B parallel
to the Z axis of a fixed reference frame XY Z and the
spatially independent spin couplings ¢ in Eq. (10),

N
+ g Z {Clmzlnz - Imxlmv - ImyIny}7 (13)

m#n

where w = vB denotes the Zeeman frequency and ( is
an arbitrary factor.

The standard way of approaching the N-spin ag-
gregate is to find the polarization at the n-th spin at a
time instant ¢ given the initial polarization at the 1-st
spin,

_tr {exp(iFt)IlZ exp(—iﬁt)]nz}
- tr {17} '

The Hamiltonian in Eq. (13) can be rewritten as (up
to the constant gN (1 — (/2)/4)

Pa(t) (14)

sz[z+g(ﬁ+1)lf - gﬂ, (15)
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where

is the total spin and

N
I, = Z I,
n=1

is its projection on the z axis. The polarization P, (t)
in Eq. (14) is unchanged if we modify the Hamiltonian
H in Eq. (15) to the effective one
H =2
2
In addition, the equivalence of polarizations P,(t) of
all spins except the first, as well as time conservation
of the total polarization 27]:7:1 P, (t) allow us to focus
on the first spin only,

_tr {exp(itI?) Iy, exp(—itI?) 1. }

(16)

P1(T) (17)
tr {17, }
where the dimensionless time scale is defined as
T =gt/2.

A powerful tool for investigating the problem in
Eq. (17) is the theory of coupling of angular mo-
menta [17,18]. To describe it, we consider the total
spin cluster composed of two subsystems A and B. The
subsystem A has only the spin I; = I4 and the remain-
ing fragment B of the spin cluster has the spin Ig, with
the total spin I = I'4 + Ig. The states of the two sub-
systems A and B are coupled together within the state
of the whole system A® B through the Clebsch-Gordan
(CG) coefficients

|1a, 15,1, m) =
I,
= Z IA”TLmA;]B’mBUAmA)‘IBmB)a (18)
mA::tl/2

mp=m—ma

where T4 = 1/2 and m4 = £1/2 are the spin and its
magnetic quantum numbers for the 1-st spin respec-
tively, and Ip and mp = m — my4 are the spin and
its magnetic quantum numbers of the fragment B. For
Ig = 0, only I = 1/2 and m = £1/2 are allowed.
For I > 1/2, the allowed I and m are [ = Ig +1/2,
—I < m < I. The CG coefficients are given by (see,

e.g., [19])

0111/3;11//22;’17;,77171/2 = 0111/52T—1{§,27;nls,m+1/2 =
B (13 +1/2+ m>1/2
oTp+1/2,m _ 015_21‘;]23,,:1 _ (19)
1/2,—1/2;15,m+1/2 1/2,1/2;15,m—1/2
B ([B +1/2 - m>1/2
2Ip +1 '
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The two pairs of independent variables (Ig,mp) and
(In =1/2, ma = £1/2) are used for determining the
trace in Eq. (17) for the whole N-spin system A @ B,

NB/2
tr{...}= Y  w(p)x
IB:Ign'n

IB+1/2 T

X

Z Z <IA7[BaIam‘-~-|IA7[Balam>7 (20)

I=|Ip—1/2| m=—1

where Ng = N — 1 is the number of spins in the frag-
ment B; the minimal value of Ig is I%" = 0 for even
Np and I'?" =1/2 for odd Np. The factor

( )

is the number of ways of grouping Np individual spins
1/2 into the total spin Ip. The factor w(Ip) satisfies
the relation 17,18, 20]

Np+1

2Ip +1
= 1
§NB+IB+1

_NB+1

w(Ip) (21)

NB/2 NB
S wilp) = (1 ) (22)
Ip=>|mg] §NB+mB

The right-hand side of Eq. (22) is the number of states
for each allowed eigenvalue mp of the fragment B.

To deal with the diagonal evolution matrices in
Eq. (17), we introduce additional bases of the bra,
(Ia,Ip,I';m'|, and ket, |Ia,Ip,I',m'), vectors in
the Hilbert space H(I4) @ H(Ip) for fixed values
I 1/2 and Ip; we then use the completeness of
the 2(2Ip + 1) orthonormal basis vectors belonging to
the space H(I4) @ H(Ip),

Ly(ra)eons) =
IB+1/2 T

Z Z |IA7IB-,Ilaml><IA7[B-,II7mI‘7

I'=|Ig—1/2|m'=—1

(23)

and, finally, insert the representation of unity in
Eq. (23) in front of the rightmost operator I, in
Eq. (17), whose matrix elements are given by

<IA-,IBall-,ml|Ilz‘IA7]B-,I-,m> = 5m,m’ X

>

mA:jzl/Z

1 1
I'm

X 1/2,ma:Ig,m'—ma

maC

I,m
x Cl/ZmA;IBM—mA'

(24)

With these algebraic steps, we immediately obtain the
polarization P;(7) in terms of the CG coefficients as
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NB/2
Pi(r)=2"Ns=D N (1) >
Ig=Igin [Ig—1/2|<I<Ip+1/2

>

—I<m<I

St xp (ir{I(I +1) = I'(I' + 1)})

[Ig—1/2|<I'<Ip+1/2 —I'<m'<I'

For the term Ip = 0, only a single pair (/
I' = 1/2) is allowed in the sum in Eq. (25), and for
Ip > 1/2, the four pairs of (I, I') must be distinguished
in this sum depending on the sign (+) or (=) in the ex-
pressions

1 1
(I1,1') = (1:13i571'=13i5>. (26)

Armed with the polarization Py (1) in Eq. (25), we

|
1/2,

! !
I'm

1/2,ma;Ig,m'—m

I,m
A T1/2ma;Ig,m—ma

maC (25)

>

mA::tl/2

now decompose it into the time-independent part P,
and the oscillating part PP*¢(r),

Pi(r) = Py + PP™ (7). (27)
The time-independent contribution P; to the function
Py (7) is provided by the quantum numbers m,m’ be-
longing to the states [ = I' = Ig £ 1/2if I > 1/2,
and by the quantum numbers m,m’ belonging to the
states I = I' =1/2if I = 0,

Np/2 Ig+1/2
Pr=2 WD N w(lg) Y
Ig=Igin I=|Ig—1/2| m=—1

|
Our aim is now to sum over the indices m and I for a

fixed value of Tp in Eq. (28). For this, we start with the
state Ip = 0 that arises for even Np (see the comments
to Eq. (20)). For Iz =0, only I = 1/2 is allowed, and
the partial polarization P;(Ig) in Eq. (28) is given by

1/2
Pi(Ig =0) =2=Ns=Dy(0) Z m?2.

m=—1/2

(29)

Next, we consider the contribution to P; in Eq. (28)
from the spin Iy > 1/2. In this situation, I = Ig +1/2
are allowed and invoking the CG coefficients in
Eq. (19), the contributions P; (I5) to P; can be conve-
niently written as

Ip

Pi(Ig) =27 Nrw(Ip) Y

u=—1Ip

2u+1
2Ip +1°

(30)

Combining Pi(Ig = 0) in Eq. (29) and P;(Ip) in
Eq. (30) results in

Np/2 Ip

Pr=2""" N w(lp) Y

Ig=Igin n=—Ip

2u+1
2Ip +1°

(31)

1

2
Z mA (Cllk’gl,mA;IB,m—mA)

>

mA::tl/2

The sum over u in Eq. (31) easily yields

Ip
D> (@ut1)’ = (2Ip+1)

u=—1Ip

<1+§IB (IB+1)> . (32)

and substituting w(Ig) from Eq. (21), we arrive at the
sought result

_ 9 Ns Na/2 Np+1
P1 = E 1 X
Np+1 “— \-Np+Ip+1
B=Ip 2

x (1 + ng(IB + 1)) . (33)

The remaining sum over Ig in Eq. (33) depends on
whether Npg is an even or odd number. If Np is even,
then 11" = 0 and straightforward summation over I

in Eq. (33), with the known sums involving the bino-
mial coefficients
NB/2
Z<1 Np +1 >:2NB_
In—=0 iNB +Ig+1
(34)
Nr/2 Np+1
Z IB(IB+1)<1 > :NBQNBﬂ’
In—=0 iNB +Ig+1
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yields the polarization

— N+2
=

3N

for an odd N = Np + 1 spin cluster [11]. If Np is
odd, then I'*™ = 1/2 and some simple algebra gives
the polarization

(35)

~N(N
N+2-21"N(0,
3N

for an even N = N + 1 spin cluster.
When N > 1, the polarization Py in Eq. (36) be-
haves as

)

12 (36)

N +2—2(xN/2)~1/?

3N '
Equations (35) and (36) give the sought time-indepen-
dent contributions P; to the total polarization Py (1)

1/2

>

in Eq. (27) for odd and even numbered spin clusters,
respectively.

It remains to find the time-dependent contribution
PP*¢(r) to the total polarization Pi(r) in Eq. (25).
Among the four pairs (I,I') in Eq. (26), only the pairs
(I,I') with I # I' contribute to the time-dependent
part of the function P;(7) in Eq. (25). This occurs
for Ip > 1/2 only, because otherwise, i.e., for I = 0,
the allowed values T = I' = 1/2 are already encoun-
tered in the time-independent polarization P;. Thus,
among the four pairs (I,1') in Eq. (26) only the two
pairs (I = Ig+1/2, I' =I5 —1/2) and (I =I5 —1/2,
I' = Ig +1/2) are allowed and provide complex conju-
gate contributions to the real-valued function P*(7).
Tt suffices to deal with the first pair, (I = Ip +1/2,
I' = Ig — 1/2). The polarization becomes

Om.m2cos (27(Ip +1/2)) x

NB/2 IB+1/2 Ip—
P =) 3w Y
IB:1/2 m:—(IB+1/2) m’:—(IB—l/Q)

To complete the derivation of the function PP%¢(7), we
use the expression for the factor w(Ig) in Eq. (21), the
CG coefficients in Eq. (19), and sum over m and m' in
Eq. (37) for a fixed value of Ip. This gives
) Y
/2

Na/2 Np+1
(1
x Ip(Ip + 1) cos(27(Ip + 1/2)).

9—Np+3

POSC
B=

ENB +Ip+1
(38)

Finally, by gathering the expressions for P; in Egs. (35)
and (36) and the expression for P*°(7) in Eq. (38), we
go over (with the substitution k = Ig —1/2 for even N
and k = Ip for odd N) to the total polarization at the
first spin,

N

N+2—21—N(N/2

24—N
Pi(r) =

3N

X

) +
(N) cos(t(N —2k)) (39)

for an even N-cluster, and

Ig—1/2,m'
1/2mailp,m'—ma

Ig+1/2,m

maC 1/2,ma:lp,m—ma

(37)
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N+4+2 24N
h(r) = =35 3N
(N-1)/2

for an odd N-cluster, with the coefficient

x> Ap(N)cos(r(N —2k)) (40)
k=0
(N-l-l_k)(N—l_k)(N

2 2 k)

arising in both cases. Formulas (39) and (40) are the
central result of the paper. They are used to describe
a variety of systems in the next section.

Ar(N)

4. DISCUSSION

4.1. Nonergodic spin dynamics

As Eq. (40) states, for large odd-N clusters, the
time-averaged polarization (P; (7)) of spin 1 tends to
1/3, while the time-averaged polarization 2/3N of any
other spin tends to 0, i.e., polarization of spin 1 does
not spread uniformly over an N-spin cluster. We call
this behavior the nonergodic spin dynamics, to confront
it with the ergodic spin dynamics providing the 1/N
polarization for all spins in an N-spin ensemble. Figu-
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re 2a shows the behavior of the polarization P (7) for
a series of odd-N clusters. The principle features of
the periodic pulses of the polarization are determined
by two factors: first, time reversibility of the dynamics
affects the exact reentrance of the polarization to the
prepared value P;(0) = 1 after each period 47/g, and,
second, gives rise to the time interval with the time-
independent polarization of spin 1, see the Appendix
for details. For large-N clusters, the total period 47 /g
can be partitioned into the switching time

o)

gV N

" =A4r

and the stopping time

tst — 4_71'( _ 0(1)> .
9 VN )’
we recall that 7 = g¢t/2. As shown in the Ap-

pendix, the polarization P;(7) is peaked at the in-
stants t = 0,27/g,47/g, . ... The profile of the function
Pi(7), e.g., around 7 = 0, is

+§(1—72N) exp(

The function P;(7) has the same profile around all the
instants 7 = mm, for all integer m. The interval be-
tween the successive peaks and their width are

N

1

Pi(r) = 3 (41)

27

. o)
g

7r )
gV N

respectively. In other words, for large-N clusters, the
polarization of spin 1 stays at the fixed value P, = 1/3
almost all the time. The oscillating part of P;(7) is
an odd function of time with respect to the instants
T=m7/2,37/2,..., as is apparent from Eq. (40).

. Ar=4 (42)

Figure 2b shows the profiles of the polarization for
N-spin clusters with even N. For large even values of
N, the polarization at spin 1 stays fixed over the long

liIIle iIlleI Val
V N

within each period 27 /g. Unlike odd-N clusters, the
profiles of Py () for even-N clusters are even functions
of time with respect to time instants 7 = 7/2,37/2, .. ..

2

9

o)

tst

Using the experimental values of the time interval
T and the width of the pulses Ay in Eq. (42) together
with the expressions for the coupling ¢ in Eqgs. (10)
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and (12), we find that the volume and form factor are
given by

(LY
S e\Ar/ (43)
F (E) Py(cosa) = §_T
b ¢ V?hAZ’

where ¢

N/V denotes the concentration of the
molecules carrying spin 1/2 and the angle « is assumed
to be known.

4.2, Polarization dynamics in fluctuating
nano-bubbles

Equations (39) and (40) can be adapted to account
for the time dependence of the volume of the nano-
cavity, thereby providing a means to explore NMR
imaging of cavitation bubbles in water [21], blood [22],
etc., along with the conventional high-speed photog-
raphy. Dynamics of the surface of a typical bubbling
behavior occurs at a millisecond time scale [21], i.e., at
the same time scale that is relevant for the nuclear spin
dynamics. It is therefore legitimate to ask how the dy-
namics of a nano-size volume affects the nuclear spin
dynamics. Our intention in this section is to show that
fluctuations of the nano-volume (governed either by ex-
ternal inputs or by inherently thermal noise) drive the
polarization to the nonergodic value 1/3 irreversibly,
and therefore time-periodic pulsating of the polariza-
tion breaks down as time proceeds.

The formulation in Sec. 3 is easily extended to the
case of a time-varying volume V' because the coupling
g(V (t)) enters Hamiltonian (13) as a common factor
in front of the operator part. The functional form of
the polarization PP*°(7) in Eq. (38), which has been
derived for time-independent coupling g, is generalized
to the case of a function ¢(¢) provided that the time
7 = gt/2 in Eq. (38) is replaced with a new time,

¢
1 1
T=—-gt— = /g(t')dt'. (44)
2 2
0
We are interested in transformation (44),
9(t) = (g) + dg(t), (45)

where dg(t) is the Gaussian random noise characterized
by the first two moments

(0g(t))

=0,
(0g(t1)dg(t2)) = ( (46)

(69))7(Its = ta),
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P a P o
1.00 ; : 1.00

133 134

0.33 1 033 .

1.00f 4 100§ .
33 34

0.33 V 1 033 V i

1.00f 4 1o0f §
23 24

0.33 {/ . 0.33{/ .

1.00 4 1.00 .
13 14

0.33 1 033 §

1.00 1 1.00 .
7 8

0.33} 4 033f .

1.00 4 1.00 .
N=3 N =4

0.33} 4 033f .

0 1 2 3 1 /n 0 1 2 3 L /n

Fig.2. a — Polarization Pi(7) in Eq. (40) of the first spin is varied with the dimensionless time 7 = gt/2 for the series of
an odd total number N of spins. b — Polarization P;(7) in Eq. (39) for the series of even N

where ((dg)?) is the variance and ~(t) denotes the cor-
relation function, for example, v(t) = exp(—t/t.), with
t. being the correlation time. In accordance with the
comment before Eq. (44), we replace the factor

cos (27(Ip +1/2))

in Eq. (38) with

cos | (Ip +1/2) <g>t+/5g(t')dt'

Gaussian averaging of this factor over the random func-
tion dg(t) is performed as (see, e.g., [15])

t

<exp i(IB-|-1/2)/5g(t')dt' > =

0 8¢

= exp(— (s +1/2%((69)1)T?),  (47)

4 JKDOT®, Beim. 2

with

T2 = /(t—t’)y(t’)dt’. (48)

We first confine our attention to the polarization for
even N, with N > 1, and then close the section with
the final result for odd N, N > 1. We write the polar-
ization in Eq. (38) with averaging (47) as

9—Np+3

Pi(t)=P + 5 X
1 (1) 1+3(NB+1)

Ng/2 Np+1
<1 n >IB(IB-|-1)<I>(7§)7 (49)

>
IB:1/2 §NB + ]B + 1

o(t) =exp (= (In +1/2) ((59)) T*) %
x cos ((g)t(Ip +1/2)).

The exponent in Eq. (49) tell us that the successive
peaks of the time-dependent part of P;(t) reduce to
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Py

1.00 . N =134 A

0.33

(g)t/2m

Fig.3. Polarization dynamics of a single spin, Pi(t),

within the NV = 134 spin aggregate when the volume

of the nano-cavity fluctuates providing the relative vari-

ance of the g coupling equal to ((dg)%)/(g)? = 1074,
see Egs. (51) and (52)

zero as t — oo, and therefore only the time-independent
part of P(t), i.e., P, = 1/3 in Eq. (33), survives as
t — oo after the Gaussian averaging over the function
dg(t). The integral over ¢’ in the constant 72 in Eq. (48)
can be evaluated in the two asymptotic cases, for the
large and the small correlation time [15],

ﬂ:{tWQH 12{(69)%) > 1,

. (50)
tt if t2((0g)?) < 1.

To find the function P;(¢) in Eq. (49) for N > 1, we
can replace the sum in Eq. (49) with the Gaussian av-
eraging, as in Eq. (A.3) in the Appendix, which gives

1 16
RV
N/2
X ; cos ({g)tn) <n2 - i) exp(—an?), (51)
where
2 2\ 2
a =2+ (59T (52)

Figure 3 shows the polarization dynamics of a single
spin within the N = 134 spin aggregate for

(69" _ 41

(9)?

Based on the formulas in the Appendix, we simplify the
sum over n in Eq. (51) via the Poisson resummation

formula. Defining the partial sums entering Eq. (51)
by

N/2
Si(t) = Z cos ({g)tn) exp(—an?) =
Sl S () ) @
and
N/2
Sa(t) = Z cos ({g)tn) n?e” " = _65(;1;15)
T ~— 272 £\
_K\/S;q; (1— <q+%>>x
X exp (— : <q+ %) ) , (54)
we obtain
1 16 1

To find the envelope of the successive peaks of the
function P;(t) in Eq. (55), we substitute the time
t = 2mm/(g) in Eqs. (53)-(55), with m running over
integer numbers. This gives the polarization at the
discrete values m,

N/2

Si(m) = Zexp(—anQ) =

1 1 7 & w2k
_—E-I-E\/gk_zooexp(— , ), (56)

N2
Sa(m) = Zn2 exp(—an?) =
n=1

VT o 2 9,2 mk?
:Wk_z 1—E7rk exp ( ——— . (57)

The functions S;(m) and Si(m) inherit their depen-
dence on the «time» m through the constant a in
Eqgs. (52) and (50),

2 2 2((09)%) o s o

~ +27°m ) if t.((dg)7) > 1, =
_ 58

2 ((09)*) 0 a5 1o

~ +2mmt ) it :((09)") <1,
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where we substitute t = 2rm/(g) in Egs. (52) and (50).
For N > 1 and m > 1, we drop the summand 2/N in
Eq. (58) assuming that a > 1,

2,2 <(59)2> i 2 2
xS0 it 2(007) > 1.

a = ) (59)
27rmtc<(5g) ) it £2((69)%) < 1.

(9)
For a > 1, we find the sums over k in Egs. (56)
and (57) by again using the Poisson resummation for-
mula, Eq. (A.5), which accelerates convergence of the
sums for a > 1. Reading Eq. (A.4) backwards, from
the right-hand side to the left-hand side, we obtain

o=y Z ()5

k=—o0

= Z exp(—al®) =1+ 2e %+ O(e ). (60)

{=—0c

Thus, Eqs. (53) and (54) become
Si(m) = —= + 21(a) = ¢~ (61)
1(m) =—5 +5l(a) =€,
_ 10I(a) ~ _,
Salm) = —5 25 = e, (62)

and Eq. (55) therefore gives the polarization of the first
spin

1 42 -

Pim) =3+ wmz°

(63)
with @ in Eq. (59).

We conclude this section with the result for the to-
tal polarization for an odd total number N of spins.

Due to alternating peaks of the polarization P;(t) in
Eq. (40) (see also Fig. 2a), we obtain

P1 (m) =
1 44/2
) i ﬁ_e“ for large odd m, o0
L, 42 . o
§ N3/2\/_ or large even m.

Equation (64), with a in Eq. (59), shows that the po-
larization peaks P;(m) of a spin-carrying gas have a
Gaussian and an exponential time dependence for large
and small correlation times of the fluctuations of the
nano-bubbles, respectively.
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4.3. NMR line shape

To calculate the NMR line shape exactly, we use the
same effective Hamiltonian (13) as described in Sec. 3.
The NMR line shape is the Fourier transform of the
free induction decay (FID), F'(¢), of an N-spin ensem-
ble [15]. The NMR line shape on the protons in hy-
drogenated thin silicon films provided the first exper-
imental evidence for the validity of effective Hamilto-
nian (13) in nano-cavities [4]. We are interested in the
FID signal

tr {ethI+e—thI_}

F#) = tr {1, 1}

(65)

with

Iy =1, £il,, a==zy,z

Il
M-
5

2

The reason for an exact solution for the FID in Eq. (65)
is that the total Hamiltonian in Eq. (13) can be ex-
pressed in terms of the three collective spin operators
I, just as in Eq. (15). Because [I?,1,] = 0, we can
rewrite Eq. (65) as

tr { iGHI2 I+e—zGtIz2[_}
tr {I+I_}

F(t) = (66)
with G = 3¢g/2 for dipolar interactions in the effective
Hamiltonian (13) with ¢ = 2. The Heisenberg equation
of motion for the operator

I, (t) = exp(iGtI?) I, exp(—iGtI?)
is solved exactly as
I.(t) = exp(iGt(21. — 1))1;.(0),

The averaging in Eq. (65) is performed in the
N!/(N4IN,!)-fold degenerate basis of the states
(N4, N}) with Ny (N}) spins up (down), such that
Ny + Ny = N and I, = (Ny — N)/2. The averaging
gives the FID

Flt) = {cos @qtﬂ o (67)

The effect of dephasing of proton spins within the nano-
cavity due to the interactions with the protons at the
surface of the nano-cavity is introduced phenomenolog-
ically as
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where the time T5 relevant for the experiments [4] is
Ty ~ 1-3 ms. The moments of the line shape are

d"F (1) } )

d(it)»

M, = / dww™I(w) = {
o t=0

where J(w) enters through the Fourier transformation

of the FID,

F(t) = / dw J(w)e™*, (70)

The function J(w) is meaningful for the frequencies
0 < w < y?h/o?, with o standing for the diameter of
hard-sphere spin-carrying molecules. The upper cut-
off of the frequency provides finite second and fourth
moments for g75 > 1,

M = (N - 1) (39/2)°

A (71)
My = (N = 1)(3N = 5) (3g/2)"

The moment M, derived in [4] by the Van Vleck for-
mula coincides with M> in Eq. (70), as it should. The
line shape in the nano-cavity volume appears to be
volume-dependent (through the coupling ¢ in Eq. (10)),
allowing one to determine the volume of the nano-pores
in hydrogenated silicon film [4].

5. CONCLUSION

We have presented the exact time-dependent de-
scription of spin-1/2 dynamics with infinite-range spin
interactions and the initial polarization prepared on a
single spin 1, i.e., P;(0) = 1. Spin dynamics for odd and
even numbered clusters demonstrates periodic pulses of
the polarization P;(7) on spin 1. For large-N clusters
with odd N, the polarization on spin 1 has pulses over
the time interval

5 = 47r@,
gV N
from P;(0) = 1 to the time-independent polarization,
which therefore lasts

within any period 47/g. For large-N clusters with even
N, the switching time is
o)

7Y = 2r—=

gV N

and the period equals 27 /g. The stationary polariza-
tion on spin 1 is nonergodic, because its value tends
to 1/3 (instead of tending to the ergodic value 1/N)
as N tends to infinity. The profiles of the polariza-
tions within the series of odd (even) large clusters are
remarkably similar.

The specific polarization profile in clusters with
infinite-range spin interactions is in sharp contrast with
the polarization profiles in 1D clusters with the nearest-
neighbor XY Hamiltonian [3]. Two differences can be
drawn from the presented results.

1. The overall behavior of the polarization P (t) in
the system with an infinite-range interaction is strictly
reversible, periodic with the period 47 /g for any N,
whereas on large 1D chains (N > 1) with the XY
Hamiltonian, the polarization P;(t) on spin 1 moves in
irregular fashion.

2. For N-spin clusters with N > 1, the polarization
Py (t) of spin 1 exhibits a plateau region at the noner-
godic value P, = 1/3; the pulses of the polarization
Py (t) have a short time span about 47O(1)/(9v/N).
This is in contrast to the behavior of the polarization
Pi(t) in 1D spin chains with the XY Hamiltonian,
where polarization on spin 1 depends on time in ir-
regular fashion with 5t = 0.

Finally, this paper demonstrates the sensitivity of
the polarization dynamics (reversibility and ergodicity
in many-spin systems) to the radius of the interaction.
Incorporation of the real dipolar interactions into
the theory is the most challenging task of dynamical
theory and the accurate answer is not settled yet,
although the general picture of the spin dynamics is
known to be diffusional [23].

We thank to D. E. Fel'dman and S. V. Iordanskii
for helpful discussions, A. K. Khitrin for sending the
report [4], and S. I. Doronin and I. I. Maximov for help
in preparing the manuscript. This paper was supported
in part by the RFBR (grant Ne01-03-33273).

APPENDIX

Derivation of Eq. (41)

We want to prove that the function PP*°(r) in
Eq. (38) for N > 1 has the form of periodic pulses,
each of the width

0(1)
gV N

AT:47T
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ey

at equidistant time instants 7 = 0, 27, 4, such
that the profile of PP%¢(7), e.g., at the time instant
T=01is

Py (r)

= ;(1 — T2N) exp(—TQN/Q), for N > 1. (A.1)

To prove Eq. (A.1), we introduce the new variable
1
n = IB + 5

in Eq. (38), such that the function P?*¢(r) takes the
form (we recall that the total number of spins is equal
N

to N=Ng+1)
<N/2+n>X
1
2__
(!

Next, we use the asymptotic formula for the binomial
distribution,

N/2

osc 16 -
PP(r) = 35 N
n=1

) cos(2rn). (A.2)

2_N<N/;V+n> - \/ﬁ 8

<o (o) (1400 9) .

Equation (A.3) allows us to consider summation in
Eq. (A.2) as averaging over the Gaussian distribution
function. To simplify the calculation of Eq. (A.2) fur-
ther, we apply the Poisson identity [24]

o

Z cos (27mel) exp(—al®) =

S e

k=—o0

72(k +¢)?

a

) . (A4)

In many circumstances, including the present ones, the
resulting sum over k in the right-hand side of Eq. (A.4)
converges much faster than the original sum over ¢ in
the left-hand side of Eq. (A.4). To apply Eqs. (A.4)
to Eq. (A.2), we can expand the sum in Eq. (A.2) up
to n = oo because the terms in the sum in Eq. (A.2)
practically vanish for n > N/2 and N > 1. Thus, by
Poisson identity (A.4), we introduce the sum (a partial
contribution to the sum in Eq. (A.2))

-
<—7r2 (k+%)2g> (A.5)

N/2

Si(r) = Z cos (2Tn) exp

n=1
1 [aN &
oy 2 e
k=—0c0

n? 1 N
NJ2 3
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To show that the function S;(7) has the form
of Gaussian peaks at the equidistant instants
T 0,+7m, +£27,..., it suffices to analyze the
function S;(7) around the point 7 = 0. The leading
contribution to the sum in Eq. (A.5) is then provided
by the term k£ = 0. We note that if we analyze the
peak around 7 = mm, where m is an integer, then the
leading contribution to S;(r) comes from the term
k = —m. Thus, in considering N > 1, we can drop all
the terms in Eq. (A.5) except the leading term k& = 0,
which yields

Si(r) = —% + %@exp (—7—27]\[) . (A.6)
Analogously, we determine the partial sum
N/2 2
Sy(r) = nz_:lcos (2rn) n? exp <—N—/2> =
= —(9(%/]\[)51(7') = %\2/%/% (1-72N) x
X exp <—T2—N> . (A

At N > 1, the function S;(7) in Eq. (A.6) has a neg-
ligible contribution to the function
1
PPe(r) = 0

= 73N3/2\/7r—/2 <52(T) _

in comparison with the contribution of the function
Sa(t) in Eq. (A.7), yielding the sought result in
Eq. (A.1).

In general, the function PP%¢(r) for an arbitrary
has pulses at the moments 7 = k7 with integer k,

1

151(7)>

3

oo

PPe(r) = Z ; <1—71'2 <k+ %)2N> X
k=—oc
X exp <—7r2 (k + %)2 g) . (A8)
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