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We show that for the asymptotically strong (super-Schwinger) magnetic field B exceeding the critical value
B., = m?c®/eh = 4.4 - 10" Gs, the vacuum polarization effects become important not only in the y-range,
but also for softer electromagnetic quanta, including X-rays and optic photons, and for electromagnetic waves
of the radio frequencies. This is a consequence of the linearly growing term < B/B,, present in the vacuum
polarization in the asymptotically strong magnetic field. The results may be essential in studying reflection,
refraction, and splitting of X-rays, light and radio waves by magnetic fields of magnetars, and in considering

emission of such waves by charged particles.
PACS: 12.20.-m, 97.60.Jd

1. INTRODUCTION

Although it is long since the refracting and bire-
fringing properties of a strong magnetic field in the
vacuum have been realized, their only essential conse-
quences considered in a realistic astrophysical context
remain the photon splitting effect [1] and the effect of
photon capture [2-8]. Both effects are currently dis-
cussed mostly in application to electromagnetic radi-
ation in the 7y-range. They depend crucially on the
deviation of the photon dispersion curve from its cus-
tomary shape in the empty vacuum, k% = |k|?, where
ko is the photon energy and k is its momentum. For the
magnetic fields B below the Schwinger critical value,

B < B = m?cJeh = 4.4-10"3 Gs,

where m and e are the electron mass and charge, the
only essential source of this deviation is the singular
behavior of the polarization operator II,, (k) near the
creation thresholds of mutually independent electron
and positron on Landau levels n,n’ by a photon (the
cyclotron resonance) [2—4] or an even stronger singular
behavior of II,, near the points of a mutually bound
eTe~-pair (the positronium atom) formation [5-7,9].
To reach (at least the lower of) these positions, the
photon must belong to the y-ray range, with its energy
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above or of the order 1 MeV. For this reason, the ef-
fect of photon capture, with its transformation into an
electron—positron pair, derived from the singular be-
havior of II,, (k), applies mostly to the y-quanta, as
long as their propagation in a pulsar magnetosphere of
traditional pulsars is concerned. It was estimated that
the fields about B = 0.1B,, are sufficient to provide
this effect [4] and to protect the positronium atom into
which the captured ~-quantum is transformed against
ionization by the accelerating electric field in the polar
gap and by the thermal photons [5-9].

Also the Adler effect [1] of photon splitting v — 7y
in such fields is usually discussed for y-quanta [10-13].
There are two reasons why, again, the vy-range is im-
portant. The first is that the photon splitting becomes
possible in the magnetic field because the deviation of
the dispersion curve from the k3 = k> law opens a
kinematical aperture for this process — the wider, the
stronger the deviation (and the deviation is strong near
the thresholds). In addition, there is a strong birefrin-
gence for the photons in the vy-range, because only one
eigenvalue ko (k) of the tensor II,, is singular near the
lowest (n = n’ = 0) threshold, while the other two
eigenvalues 1 3(k) remain finite, until the next thresh-
olds (n=0,n' =1orn =1, n =0) are reached. This
implies that the photons of only one polarization mode
are essentially affected by the medium. This birefrin-
gence leads to polarization selection rules in the photon
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splitting process, which are well pronounced. The sec-
ond reason is dynamical. The matrix elements of the
photon splitting are subject to the same resonant be-
havior near the thresholds as the polarization operator.
The aforesaid explains why mainly the y-range is first
to be affected by the magnetized vacuum.

The situation changes considerably in passing to
super-Schwinger magnetic fields B > B,,., expected
to exist in soft v-ray repeaters and anomalous X-ray
pulsars (see, e.g., Ref. [14]). In this asymptotic range,
a linearly growing term proportional to B/B,, appears
in one of the eigenvalues, ko, of the polarization opera-
tor [15,16], thus providing an extra large contribution
(additional to the cyclotron resonance) to the refraction
of the vacuum.

In Sec. 3, we study the consequences of this phe-
nomenon for the photon propagation, basing on the
first three leading contributions to the asymptotic ex-
pansion of the polarization operator eigenvalues for
large B, obtained within the one-loop approximation.
One of these consequences is a frequency-independent,
but direction-sensitive, large refraction index for prop-
agation nonparallel to the magnetic field in one (out
of three) polarization modes in the kinematical do-
main far from the threshold. The corresponding strong
polarization- and direction-sensitive refraction occurs
for electromagnetic radiation of any frequency range,
including X-ray, optic, and radio range.

This study is preceded by Sec. 2, where exact re-
sults concerning the electromagnetic radiation propa-
gation in the magnetized vacuum are described. These
follow only from the general properties of the relativis-
tic, gauge, and charge invariance [17] and the Onsager
theorem [18]. The results in Sec. 2 are valid irrespec-
tive of any approximation and the field strength, unless
the opposite is explicitly indicated.

In the Appendix, the asymptotic expansion used in
Sec. 3 is derived.

2. EXACT FACTS ABOUT
ELECTROMAGNETIC EIGENMODES IN AN
EXTERNAL MAGNETIC FIELD

There are three propagating eigenmodes corre-
sponding to the vacuum excitations with photon quan-
tum numbers in an external magnetic field B. The
dispersion law, i.e., the dependence of the energy kg
of the quantum (or the frequency in the wave) on its
momentum k, is given for each mode by a solution of
the equation

K = ri(kg — ki, kD), i=1,2,3, (1)

where k| and k are the respective momentum compo-
nents parallel and perpendicular to the magnetic field
B and %? is the photon 4-momentum squared,

k2= k2 4k — k2

The k; in the right-hand sides in Eqs. (1) are eigenval-
ues of the polarization operator [2, 3, 17].

A general consequence of the relativistic covariance
is that the eigenvalues depend on the two combinations
of the momentum specified in (1). This implies that
solutions of dispersion equations (1) have the general
structure

and that the direction of the group velocity v = dkq/dk
in each mode does not coincide (for k; # 0) with that
of the phase velocity k/kqg. To see this, we calculate the
components of the respective group velocities v, and v
across and along the magnetic field B on solutions (2)
of each dispersion equation (1),

v, = ko _ ki Okg
YT 0k, ke 0K
kl 1—8!%/8]{:3_

_ ko dfi(kY)

T 10RO - ke a2 D)
oy = Ok _ By
T

It follows from (3) that the angle # between the direc-
tion v of the electromagnetic energy propagation and
the external magnetic field satisfies the relation

-1
v Ok; OK;

— =tgl = <1——> I+ ——~ tgd, (4
gl ok% (kg —k?) @

where 9 is the angle between the photon momentum
(phase velocity) and the external field, tgv = k1 /k.
The following statement holds: if the phase velocity
k/ko exceeds the velocity of light ¢, i.e., if k2 + kﬁ > k3
(or fi(k?) < k? in (2)), but the group velocity (3)
does not, vi +vf < 1 (or d®fi(k1)/(dk1)* < 0),
then tg# < tgd. The conditions of this state-
ment are fulfilled for the dispersion laws found within
approximation-dependent calculations of the ;. For
the super-Schwinger fields, treated within the one-loop
approximation, this fact follows explicitly from equa-
tions in Sec. 3 below. Therefore, the photon tends to
deviate closer to the magnetic field line.
It follows from the gauge invariance that

k:(0,0)=0, i=1,23. (5)

2*



A. E. Shabad

MITD, Tom 125, BRIm. 2, 2004

This property implies that for each mode, there always
exists a dispersion curve with f;(0) = 0, which passes
through the origin in the (k2 — kﬁ,ki) plane. But
only two of these three solutions may simultaneously
correspond to physical massless particles, the photons.
The third solution is a nonphysical degree of freedom,
characteristic of gauge theories: in a magnetic field,
a photon has two degrees of freedom, the same as in
the empty vacuum. Which of the modes becomes non-
physical depends on the propagation direction and on
the specific form of the function f;(k%) in (2). We dis-
cuss this point for the super-Schwinger field limit in
the next section. Massive branches of solutions of (1),
with f;(0) > 0, may also exist, despite (5). For them,
the number of physical degrees of freedom is three,
and hence all the three equations (1) can have physi-
cal solutions simultaneously (see, e.g., the positronium
branches found in [7, 19, 20])
The refraction index n; in mode 7 is

K <1+ .>1/2:<1+M>1/2. (6)

" K K
Unlike k;, the refraction index n; is not a Lorentz scalar
and may depend on two energy-momentum variables,
after it is reduced to dispersion law (2). Gauge invari-
ance property (5) implies that the refraction index (6)
for parallel propagation, k; = 0, is exactly equal to
unity for the massless (f;(0) = 0) branches in every
mode,

(3

=1 (7)

The electromagnetic wave propagating strictly along
the external constant and homogeneous magnetic field
propagates with the velocity of light ¢ in the vacuum,
the phase and group velocities coinciding in this case.

If, within a certain approximation, the eigenvalue k;
is a linear function of its arguments with condition (5)
satisfied, refraction index (6) for the corresponding dis-
persion law depends on a single combination of the pho-
ton energy and momentum, which is the propagation
direction ¢. This happens in a nonresonant situation,
for instance, as described in the next section.

The polarizations of the modes are described in an
approximation-independent way [3, 17] by the relations

k, k,
el = —Hko-, h") = <E X kl) ) (8)
k
2 Il
ei) = ki—kl\v e|(\ = k_H(kﬁ - k§)=
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k
e® = _, ks : h(s)——k—lkua
kL Kk k
(10)
b = ki,
Ky

where e(? and h() are the electric and magnetic fields
in the wave belonging to mode the number i = 1,2, 3,
the cross denotes the vector product, and boldface let-
ters with the subscripts «||» and «L» denote vectors
along the directions parallel and perpendicular to the
external magnetic field respectively. In the mode 1
wave, the electric field e is parallel to k|, in mode 2 it
lies in the plane containing the vectors k and B, and
in mode 3 it is orthogonal to this plane, which means
that mode 3 is always transversely polarized.

We note that the normalizations in Egs. (8), (9),
and (10) are different, and we can therefore judge
about vanishing of some components compared to oth-
ers within one equation, but not between different equa-
tions.

Concerning the direction of propagation, two cases
are essentially different. If &k, = 0, we speak about
longitudinal propagation. Otherwise, there exists a
Lorentz boost along the external (constant and ho-
mogeneous) magnetic field, which does not change the
value of the magnetic field and does not introduce an
extra electric field, but nullifies k. Hence, the gen-
eral case of nonparallel propagation k; # 0, k| # 0 is
reduced to purely transversal propagation, k = 0 (in
the corresponding reference frame). One should keep in
mind, however, that the above transformation changes
the photon energy ko and should be treated with cau-
tion when one considers a field with curved force lines.

For transversal propagation, k 1 B (k‘g = 0), modes
2 and 3 are transversely polarized (e(®-() 1 k) in two
mutually orthogonal planes, e 1 e®), while mode 1
is longitudinally polarized (e™") || k) with no magnetic
field in it, h™) = 0. Tt is expected not to correspond to
a photon (depending on the dispersion law).

On the contrary, for longitudinal propagation,
k || B, (k; =0), modes 1 and 3 are transversely polar-
ized (e"3) 1 B) and their electric field vectors lie in
mutually orthogonal planes, eV L e, as they always
do, while mode 2 is longitudinally polarized (e(® || B)
and does not contain a magnetic field, h(®? = 0. Mode
2 is then expected not to correspond to a photon,
whereas mode 1 is a physical electromagnetic wave,
which matches the electromagnetic wave of mode 3: to-
gether, they may form a circularly polarized transversal
wave because of the degeneracy property

R (0 = 1), 0) = ws (K = £),0). (1)
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This relation reflects the cylindrical symmetry of the
problem of a photon propagating along the external
magnetic field.

Another remark of almost general character is in or-
der. One might expect the possibility of the Cherenkov
radiation by a charged particle moving in an opti-
cally dense medium formed by the magnetized vacuum.
This effect (with the Cherenkov photons softer than
ko = 2m) does not occur in known situations, however.
We consider emission of a photon by an electron in a
magnetic field, not accompanied by a change of its Lan-
dau quantum number, n = n' (otherwise, that would be
the cyclotron, and not Cherenkov, radiation). Accord-
ing to the kinematical analysis of the energy and mo-
mentum conservation in [21] (and to the study [21] of
analyticity regions of the one-loop photon polarization
operator in the electron-positron plasma in a magnetic
field, calculated in [18]), the Cherenkov photon with
ko < 2m can only belong to the right lower sector

kg — ki <0, k1 >0 (12)
in the (k§ — ki, k%) plane. The substantial reason for
this is the degeneration of the electron energy with re-
spect to the center-of-orbit position in the transver-
sal plane. No dynamical calculations, hitherto known,
provide penetration of photon dispersion curves into
this sector. The only exception is the nonphysical sit-
uation due to exponentially strong external fields, to
be mentioned in Sec. 3.2 below. We conclude that no
Cherenkov emission of a photon softer than kg = 2m is
possible under standard conditions.

3. PHOTON DISPERSION IN A
SUPER-SCHWINGER MAGNETIC FIELD

3.1. Asymptotic expansion of polarization
tensor eigenvalues

In the asymptotic region of supercritical magnetic
fields B > B,, and a restricted energy of longitudinal
motion,

ko — ki < (B/Bey)m?,

the three eigenvalues k1 2 3(k) of the polarization ope-
rator (if it is calculated within the one-loop approxima-
tion as in [17,22]) have the following behavior, derived
from equations of Ref. [3] (see the Appendix),

(1

ak?

3

B
Bcr

w1 (kg — ki, kD) = —0—1.21>, (13)
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aBm? (k3 — k?)
I’

ol — K 3) = T
1
k3 Ber (1=n*)dn
<o (30 5) [ =gy Y
—1
9 9 19 ak? B
Iig(ko—k”,kl):?)—ﬂ_ lnB -C | -

(0]
- (0~21ki —121(k2 - kﬁ)) . (15)

Here, o = 1/137 is the fine structure constant and
C 0.577 is the Euler constant. Equations (13)
and (15) are accurate up to terms decreasing with B
as (B.r/B)In(B/B,,) and faster. Equation (14) is ac-
curate up to terms logarithmically growing with B. In
k1,3, we also took the limit

kK < (B/Ber)m?,

which is not the case for ks, where the factor
exp(—k?% B.,/2m>B) s kept different from unity, be-
cause it is important near the cyclotron resonance, as
explained in Sec. 3.2 below. The integral in (14) can
readily be calculated, but we do not need its explicit
form here.

The parts growing with B in k2,3 were written
in [16], their derivation from equations of Ref. [3] is
traced in detail in [19,20]. The linearly growing term
in Eq. (14) was obtained in [15] in a different way using
a two-dimensional (one time, one space) diagram tech-
nique developed to serve the asymptotic magnetic field
regime. The logarithmic terms in the expressions above
do not dominate over the constant terms unless expo-
nentially large magnetic fields are included into consid-
eration!). The derivation of all terms in Eqs. (13), (14),
and (15), including those that do not grow with B, is
given in the Appendix using a straightforward method
different from the one applied earlier in [19,20]. The
asymptotic expressions used in [13] do not coincide with
ours, except for the term linear in B.

The limiting expressions (13), (14), and (15) do sat-
isfy the exact properties (11) and (5).

In this paper, we only deal with the transparency re-
gion, k3 — kﬁ < 4m? (i.e., with the kinematical domain

1) That would be unreasonable not only because such fields
are hardly expected to exist in nature, but mainly because their
consideration is beyond the scope of quantum electrodynamics:
the logarithmically growing terms in (13) and (15) are associated
with the absence of asymptotic freedom in QED (cf. analogous
asymptotic behavior [23] in the Euler—Heisenberg effective La-
grangian).
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where K1 2 3 are real), because we are interested in pho-
tons with kg < 2m, or even kg < 2m, which never reach
the free pair creation threshold k§ — &} = 4m?®. The
eigenvalue ko in (14) has a singular branching point
in the complex plane of the variable (k§ — &ff) near
the lowest pair creation threshold (k3 — kﬁ)thr = 4m?2.
Thresholds of creation of et e~ -pairs with the electron

and the positron on excited Landau levels n,n' # 0,

)1/2+ <1+n'BB )UT, (16)

cr
are shifted in the asymptotic regime to the infinitely re-
mote region. Therefore, the eigenvalues x4 3, which are
responsible for photons of such polarizations that can
only create eTe~-pairs with at least one charged par-
ticle in an excited Landau state, do not contain imagi-
nary parts or singular branching points in this regime.
On the other hand, the eigenvalue x5 has only one sin-
gular branching point, corresponding to the possibility
of creation of the electron and positron in the lowest
Landau states by the photon polarized as in mode 2.
The singular threshold behavior of (14) near the point

n,n' _
thr —

2

1)

140D
"B

cr

(kg — &

m2

k%—kﬁ=4m2—e, e>0, e—0

o ) *

x (4m2 — R +kﬁ)_

is

2aBm?
BCT

k* B,

2 “an® B

(17)

As could be expected, this is the same as the behavior
of the exact one-loop expression for x2(k) [3] near this
threshold, before the limiting transition to large fields
has been performed.

3.2. Propagation of eigenmodes in the
super-Schwinger field limit

If Eq. (13) for k is taken as the right-hand side of
Eq. (1), the latter has only one solution, which is the
trivial dispersion law k% = 0. With the relation k> = 0
satisfied, however, the 4-potential corresponding to the
electromagnetic field of mode 1 becomes proportional
to the photon 4-momentum vector k,, unless k = 0
(see [3,19,20]). Therefore, for nonparallel propagation,
mode 1 corresponds to only the gauge degree of free-
dom discussed in Sec. 2, with no real electromagnetic
field associated with it.

214

1.0

0.5

0.5 1.0 1.5 2.0

kL

A family of dispersion curves for mode 2 (solutions of
Eq. (1) with Eq. (14) taken for the right-hand side)
below the threshold k3 — kﬁ = 4m?>. The values of
the external magnetic field corresponding to the curves
are (from left to right) B = 10B.,, 100B.,, 10008 .
The straight line is the light cone dispersion curve for
B = 0. The dashed horizontal line marks the maximum
to which the photon with the energy ko may proceed
if ko < 2m. The variables along the axes are plotted
in the units of 4m? ~ 1 MeV?

Solutions of Eq. (1) for the second mode i = 2 with
Eq. (14) taken for ko are plotted in the Figure for three
values of the field B using MATHCAD code. These
solutions are dominated by cyclotron resonance (17),
which causes a strong deviation of the dispersion curves
in the Figure from the shape k2 = 0 (the light cone). As
k% — oo near the threshold on the dispersion curves,
the quantity k% B.,/m>B must be kept different from
zero even in the large-field limit under consideration.

Behavior of the dispersion curves of mode 2 near the
threshold for super-Schwinger magnetic fields B > B,
is the same as for the «moderate» fields B < B..,., and
therefore it also presents the photon capture effect for
photons harder than 2m, known for such fields [4]: if
we calculate (4) near the threshold kf —kf = 4m? using
Eq. (17) as k2 to obtain

k
tgf = L

5 (4m? — k5 + ki), (18)

we conclude that the angle 8 between the external mag-
netic field and the direction of the wave packet propa-
gation in mode 2 tends to zero, the faster, the stronger
the field. If the photon energy kg is slightly less than
2m, the photon may be close to the threshold when its
k) disappears. At this upper point, the wave packet
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stops, because the group velocity length

2

f(1+tg%0),

vi + U2| =0
equal to kjf/kj according to the second line in (3)
and (18), disappears together with k.

Applied to the conventional pattern of a pulsar mag-
netosphere, this effect acts as follows [4]. A curvature
~v-quantum emitted tangentially to the magnetic force
line, i.e., placed initially at the origin in the Figure,
then evolves along its dispersion curve as it propa-
gates in the dipole magnetic field with its force line
curved, because the components k| and %k, are chang-
ing. The maximum value of the ordinate kg — kf oc-
curs at k| = 0, and it is the photon energy squared,
kZ. If the latter is greater than 4m?, the photon may
reach the horizontal asymptote in the Figure. Here, its
group velocity dko/dk, across the magnetic field dis-
appears, dko/dk, — 0, and hence it propagates along
the magnetic field and does not cross the threshold, be-
cause the other branch of the dispersion curve, which
passes above the threshold, is separated from the initial
branch by a gap. A mixed state — photon-pair — is
actually formed [4], analogous to the polariton known
in condensed matter physics. The massless part of its
spectrum is presented by the dispersion curves in the
Figure. The photon gradually turns into the ete™ pair
and exists mostly in that form when it is finally prop-
agating along the magnetic force lines. This capturing
effect is important for the formation of radiation of pul-
sars with the fields B > 0.1B.,, because it prevents the
screening of the accelerating electric field in the polar
gap (if the binding of the electron—positron pair into a
positronium atom is taken into account [5-9]). It may
also be essential for magnetars with their fields approx-
imately 10™-10' Gs.

The new features introduced by super-Schwinger
fields are that the dispersion curves for mode 2 in the
Figure already step aside from the light cone far from
the resonance region. This means that although the
photons softer than 2m 1 MeV cannot proceed to
the values of the ordinate in the Figure higher than
their energy squared (corresponding to kj = 0), they
can still reach the region where the transversal group
velocity dkq/dk, becomes much less than unity and are
therefore captured to the trajectory almost parallel to
the magnetic field. This is how the capture effect ex-
tends to the photon energies below the border ky = 2m.
The cyclotron singularity at the pair-creation threshold
in such fields is so strong that even low-energy photons
that are unable to create a pair are sensitive to it, pro-
vided that they belong to mode 2!
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In addition to extension of the photon capture ef-
fect to softer photons, the inclusion of super-Schwinger
fields into consideration has another impact. It leads to
a large direction-dependent refraction of mode 2 elec-
tromagnetic waves of low frequency. To see this, we
consider the limit

kg — ki < 4m? (19)

in Eq. (14), which reduces to neglecting k3 — k? in the

I
integrand in (14). Then (14) becomes

)B%exp< ) . (20)

The exponential factor in (20) cannot be essential
within region (19). Dispersion equation (1) for mode
2 (i = 2) then has solutions expressing the photon en-
ergy ko as a function of its transversal and longitudinal
momentum,

) —1

Equation (21) analytically presents the straight line
parts of the dispersion curves in the Figure adjacent
to the origin for various values of B. The components
v, | of the group velocity, Eq. (3), calculated from (21)

k% B,
2m? B

a B
37 B,

B=k+ i (1 i (21)

are
ki a B\ ' k|
UL ]{50 < + 371' Bcr) ’ Q)H ko ( )
The modulus of the group velocity squared is now
given by
a 2
— cos” 1
1
o arf = —— 4 7 Do . (23)
— — cos? ¥
31 B, 31 B,

where 9 is the angle between the photon momentum
and the field, tg¥) = ki /kj. Equation (23) has the
maximum value of unity for the parallel propagation,
¥ = 0, in accordance with the general statement in
Sec. 2, and is minimum for perpendicular propagation,
v =m7/2.

Expression (4) for the angle § between the direction
of the electromagnetic energy propagation and the ex-
ternal magnetic field in the super-Schwinger limit for
mode 2 becomes

V1 kJ_ « B>1
L —tgh="Z(1+— =
’U” & k|< 371'BCT
a B!
=tgd |1+ — . (24
& <+37TBCT> (24)
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Because tgf < tgd, the photon emitted tangentially
to curved force lines bends towards these lines. This is
also related to low-frequency radiation.

The refraction index (6) in mode 2 for k§ — kf <

< 4m? and B > B, is given by

- o« B 1/2
37 Ber

o8B
37 B,

(25)

No =
cos 9

The refraction index obtained depends on the direc-
tion of the photon momentum, characterized by the
angle 9, but does not depend on its energy. In other
words, there is no frequency dispersion in a wide range
from slow radio waves up to soft y-rays with ky < 2m.
This is a consequence of the fact that only linear parts
in momenta squared were actually left in ko (corre-
spondingly, f(k?) in (2) is proportional to k3 accord-
ing to (21)).

Refraction index (25) reaches its maximum for
transversal propagation (kj = 0, ¥ = 7/2),

1/2
i (1455,

= (1 +7.7-1074

142D
31 Ber

B )1/2. (26)

cTr

For B ~ 10B.,, the deviation of refraction index (26)
from unity exceeds that value for gases at atmospheric
pressure in the optic range by an order of magnitude;
for B ~ 1000B,,, it reaches the value characteris-
tic of transparent liquids and glass; the refraction in-
dex (26) becomes equal to that of diamond (n = 2.4)
for B =27-10'6 Gs.

Contrary to the case of mode 2 just considered, the
polarization tensor eigenvalue k3 in (15) contains nei-
ther the contribution linearly growing with the external
field nor the resonance. For mode 3, dispersion equa-
tion (1) with its right-hand side given as (15) has the
solution

Z —a/3n
K=K+ I (27)
where
« B
Z=1—-—11 —-C-121]. 2
37r<nBC, ¢ > (28)

The known absence of the asymptotic freedom in
QED manifests itself in the negative sign in front of
the logarithm in (28). This results in pathological con-
sequences for the fields as large as B, exp(37/a). In
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this domain, the coefficient of k3 in (27) first becomes
less than zero and then greater than unity as the field
grows. The corresponding dispersion laws are nonphys-
ical because they lead to the group velocity greater than
unity. In the negative slope case in (27),

B
exp(—0.21 —C — 37 /a) > 1,

cTr

e >

the dispersion curve enters the sector (12) acceptable
for the Cherenkov radiation. But this is the Cherenkov
emission of tachyons! It is also odd that in the latter
case, electromagnetic waves can only propagate inside
the cone

(8%
O0<tgd < -1+ —
<tgv < +37rZ

with its axis along the external field, irrespective of the
way they are produced. This domain of exponentially
large external fields is not of our interest in this paper.

For the fields that are not exponentially large, with
the logarithmic terms of the order of unity, one should
treat all the terms marked by the coefficient a/3w
in (27) as small. Then, finally, the dispersion law for
mode 3 becomes

Notably, the field-containing logarithmic terms have
cancelled here. Therefore, dispersion law (29) of mode
3 is saturated in the sense that unlike Eq. (21) for mode
2, it has reached the universal form, independent of the
external field in the super-Schwinger limit. The refrac-
tion index of mode 3 corresponding to (29) is

Q

3 (29)

kgzkﬁ+ki(1—

ny =1+ 2 sin2v. (30)
6T

Again, similarly to (26), the maximum refraction

in mode 3 is achieved at perpendicular propagation,

V=m7/2:

ny =1+38-10"% (31)

This refraction index is of the order of that of gaseous
ammonia and cannot be made larger by increasing the
external field any further.

4. CONCLUSION

We have found that in the asymptotic case of
external magnetic fields B that can be orders of mag-
nitude larger than the Schwinger value 4.4 x 103 Gs,
the refractive capacity of the magnetized vacuum
grows unlimitedly with this field for electromagnetic
radiation belonging to polarization mode 2, but comes
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to saturation at a moderate level of corrections of the
order of a/37 for mode 3. For the «parallel energy»
of the photon not close to the cyclotron resonance,
ki — ki < 4m?, the refraction effects for mode 2
essentially exceed the above small corrections, typical
of the nonasymptotic domain, already for B ~ 10B,,.
In the range of photon frequencies/energies extending
from zero to soft 7-rays, a regime is established for
which the dispersive properties of the magnetized vac-
uum are independent of the photon frequency/energy
in each mode, but do depend on the direction of its
propagation. Apart from the fact that the refraction
index in mode 2 for the propagation nonparallel to the
external field grows numerically with the field, it is
remarkable that the angle between the group velocity
and the direction of the photon momentum also grows,
the wave packet being attracted by the force line of
the external field. The effect of y-quantum capture
by a strong magnetic field, known to exist due to
resonance phenomena associated with free and bound
pair creation, is thus extended to lower energy ranges.
Therefore, not only hard ~-rays, but also X-rays, light
and radio-waves undergo strong dispersive influence
of the magnetized vacuum when the magnetic fields
are of the order of magnitude of those estimated to
exist in magnetars. In view of this, the electromag-
netic energy canalization phenomena may become
important not only within the traditional context
described in Sec. 3.2 above, but also in application to
the scattering of electromagnetic waves falling onto
the magnetic field from outside [2]. These may be, for
instance, the X-rays emitted from the accretion disk
or from the pulsar surface outside the region where the
magnetic field enters it. The problem of the bending
of electromagnetic radiation by the dipole magnetic
field of a neutron star was recently addressed in [24],
and the competition of this process with the effects
of gravity was considered?. We insist, however, that
such effects cannot be adequately treated disregarding
the refraction index dependence on the direction
of propagation and using the quadratic-in-the-field
expressions for the polarization operator, only valid in
the low-field limit, as is the case in Ref. [24].

I am indebted to Professor Hugo Pérez Rojas for
the hospitality extended to me during the Workshop
on Strong Magnetic Fields and Neutron Stars at ICI-
MAF in Havana and for encouraging me to refresh
the study of magnetic optics of the vacuum. I ac-

2) The author is indebted to H. Mosquera Cuesta who at-
tracted his attention to that work.

217

knowledge the financial support of the REFBR (grant
Ne02-02-16944) and the President of Russian Federa-
tion Program for Support of Leading Scientific Schools
(grant NeLSS-1578.2003.2). My stay in Havana, where
most part of this work was fulfilled, has become pos-
sible thanks to the support granted by Instituto de
Cibernética, Mateméatica y Fisica (ICIMAF), Centro
Latino-Americano de Fisica (CLAF), and the Abdus
Salam International Centre for Theoretical Physics

(ICTP).

APPENDIX

In this Appendix, the asymptotic expansion pre-
sented in Sec. 3.1 is derived from expressions in
Ref. [3,19, 20].

The three eigenvalues k;, i = 1,2,3, of the pho-
ton polarization operator in the one-loop approxima-
tion, calculated using the exact electron propagator in
an external magnetic field, can be expressed as linear
combinations of the three functions X;,

K1 =35 (21 + 22) ¥y,
Ko = —%(2122+2221), (A1)
K3 = —% (2283 + 21%4) ,
where the new notation
a =k -k, =kl (A.2)

is introduced for the momentum variables, with &2
z1 + zo. Here, ¥; are dimensionless functions of
the three ratios Be./B, zaBer/m?>B, and 21 B.,/m?>B,
given by

(A.3)

Ui(t',n)
sht

) ) !

thr Ui(t-,n)
<_ B >/dn sht

2] o

]7 (A.4)

Ber 22Ber 21Ber
B ' m2B’ m?B

2 oo
—a/dtexp
™

0
X [exp (—22

IS

(3

(

M(t,n)
eB

1—n
4eB

1
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where
cht—chitn
M(t,n) = “oshi (A.6)
and
1—mn sh(1+n)t
oi(t,n) = — %7 (A.7)
1_ 2
oo (t,1) = 4’7 cht, (A.8)
cht —chnt
o3(t,n) = Toalr (A.9)

The notation «lim» in (A.4) stands for the asymptotic
limit
1—n?

Ui(t7 77) _
o it

sht

The fact that X; are independent of the fourth pos-
sible dimensionless variable z;/zy seems to be an
approximation-independent manifestation of analyt-
icity properties due to dispersion relations of the
Kramers-Kronig nature.

We first consider 251). It is independent of the pho-
ton energy and momentum. With the notation

i=1,2,3. (A.10)

t—0

1
5it) = [ outt.) i, (A1)
1
Eq. (A.4) can be represented as
(1) _ 20 _tBer) (git) 1
X = - /exp( B )(sht 3 dt. (A.12)
0

The integrals in (A.11) are explicitly calculated to give

1 sh 2t cht
00 = g7 (T -2)s w0 =5
(A.13)
(1) = 1 <cht sht)
93  sh%t t )

Our goal is now to find the asymptotic behavior
of (A.12) as

— 0. (A.14)

BCT

The integrands in (A.12) do not contain singularities
at t = 0, but would cause divergence at t — oo if we
just set the limiting value

exp(—tB../B) = 1.

218

We must therefore divide the integration domain into
two parts. In addition,

392(t)

—1
sht

as t — o0, and hence we have to add and subtract this
limit beforehand in the integrand of Zgl). This is not

required in handling the cases of i = 1,3, because

913
sht

sufficiently fast. We thus have

3 Vi B\ (3¢:i(t) 1
il = fow (-5 ) (347 —bn ) s
0
T B
+5¢2/exp (—tB”> dt =
0
p B 3g:(t) 1 B
t cr it
=/eXp (— B > ( th —Z—5i2> dt-}—B—CT(SZ'Q-F
0
T thr 392(t)
+/eXp <_?> < Sht —612 dt —
T

_]lx tBe \ dt _
b B t
T
[ (3g:t) 1 7 (30:)
. gi(t) 1 . gi(t)
_/< o t)dt 5,2T+/< o 522> dt+
0 T
B B,
+ B.. 0;2 +In < B > +C +1InT, (A15)

where T is an arbitrary positive number, d;5 is the Kro-
necker delta, and C is the Euler constant. We have
omitted the exponentials in the first two integrals after
the second equality sign in (A.15) because the resulting
integrals converge. We then used the known asymp-
totic expansion of the standard exponential-integral
function, which is given by (up to terms linearly de-
creasing with B/B,,) [25]

Jon(2)

The most slowly decreasing term neglected in

/

thr
B

at _

_ ln BCT
t

+InT +C.

(A.16)

gi(t)

3
sht

dt exp (—tBe./B)
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. t, 2
s 3B,. B <34—ﬂl) =1 (1+2exp(-2t), (A.22)
511 cr ln CT7 Sht {00 4
4B B

because 0 . )

g1(t 1 os3(t,n B B

sht ~ ap < o > LT 2 exp(—2t). (A.23)
as t — oo. Other neglected terms decrease at least ] ] o
as fast as Be,/B, because 3g;(t)/sht — §; decreases Changing the variable as 7 = t/eB and taking into

exponentially, as exp(—2t), for i = 2,3 when ¢ is large.
Numerical calculations using MATHCAD code al-
low evaluating the constants (dh;/dT = 0)

ro/3 1
Ji
/d<sht t>+
0
ﬁ/cﬂf—@adﬁmﬁ—hT(Am
T

involved in (A.15) as

hy =121, hy=-069, hy=021.  (A.18)

Finally, in the asymptotic regime B/B., > 1, we have
2a

Z(l)——<n

Bcr
B

B

up to terms decreasing at least as fast as integral pow-
ers of the ratio B.,/B and to the slower term

g Bcr In Bcr
2r B B’

omitted in Zgl).

We now turn to 252) in Eq. (A.5). This depends
on the three arguments as indicated in (A.5). We are
interested in the asymptotic domain described by con-
dition (A.14) and

2eB
— >

: (A.20)

We keep the ratio 2eB/zy finite whenever it makes
sense.

The asymptotic expansion of (A.7), (A.8), and
(A.9) in powers of exp(—t) and exp(nt) produces an
expansion of (A.5) into a sum of contributions com-
ing from thresholds (16), the singular behavior at the
threshold points originating from the divergences of the
t-integration in (A.5) near t = oo (see [3,19,20] for the
details). The leading terms in the expansion of (A.7),
(A.8), and (A.9) at t — oo are

(")

_ 1=

01 (t7 77)
sht

exp(t(n —1))), (A.21)

t—o0
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account that M (oo, n) 1/2 (see (A.6)), we eva-
luate (A.5) near the lowest singular thresholds (n = 0,
n'=1lorn'=0,n=1fori=1in (16),n =n' =1
fori=3,andn=n'"=0andn=n'=1fori=2) as

1 o)
/dn/drexp 2r) x
~10

2ae

(S|
x [exp <—2'Z—23 - Zl(%”%T) - 1} . (A24)

After integration over T we obtain, e.g.,

1
s - 2ok /dn(l —n) %
i
1
exp (—z2/2eB) 3
4m? +4(1 = n)eB + z (1 — n?)

1
~ 4m2 +4(1—n)eB

).(Azm

The pole in the above expression, caused by the inte-
gration over ¢, turns into the inverse square root sin-
gularity after the integration over n (cf. the derivation
of (17) from (14)). In the limit (A.14), (A.20) when
B > m?, B> |z], no singularity remains in this ex-
pression (it is shifted to the infinitely remote region)
and we are left with
)-1)-

(2)

(2) 22
= 2¢B

(o (-

The same situation occurs for 337 and for higher
thresholds (also for contributions into 222) other than
those coming from the first term in (A.22)). The result

of the calculation analogous to (A.25) is

»(~55) ~1)-
We conclude that in the limit (A.14), (A.20), there are
no cyclotron resonances in the eigenvalues 1, 3 accord-

4o

(e
™

Z2

(2 _ 22
Y3 = 2¢B

ing to (A.1), and that E§2) does not introduce a singular
contribution into k. Consequently, there is no reason
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to keep the ratio eB/z, finite as B — o0, in ¥4 3, be-
cause zo may grow infinitely on the dispersion curve
only when there is a resonance.

We must therefore consider only the limit when all
the three arguments in 252% tend to zero. Handling this
limit in (A.5) is straightforward:

/dtx

o 1
/d 1:ht <22M(t,n)+21

Both integrations here converge, and hence this contri-
bution decreases as z1/eB and z3/eB when B — oo.
This is to be neglected within our scope of accuracy.
The situation is different with 252). The resonance
behavior is here present due to the contribution of the
leading asymptotic term (1 — p?)/4 in (A.22). Tt is
responsible for the first threshold at —z; = 4m? (the
ground Landau state n = n' = 0 in (16)), which re-
mains in its place as B — oco. We must therefore keep
the ratio z3 /e B nonzero in passing to the limit of large
fields (because z9 — oo near the singular threshold on
the dispersion curve) for the contribution of this term
into 222). The contributions of nonleading terms in
expansion (A.22) to 252) are nonsingular and should
be treated along the same lines as ¥ 3 above. They
decrease as z1/eB, z/eB and are to be neglected. Fi-
nally, for (A.5) we are left in the limit (A.14), (A.20)

with
2 [ B\ [
a t
?/dtexp<— i >/dn
0 -1
2
X [exp <—22 t) — 1} . (A.27)

L-n
4eB

Changing the integration variable as ¢ = e BT and using

the asymptotic form M(eBt,n) = 1/2, eBt > 1, we

finally obtain (after the 7 integration) the leading con-

tribution to £ in the limit (A.14), (A.20),

lim Z

2

_4” t). (A.26)

1-n?

4

cTr

IS

X

M(t,n)
eB

-z

1

s - 20e8 /dn (1-7°)
21
exp (—z2/2eB) 2aeB
— . (A2
Adm? + 2 (1 —n?)  3mm? (4.28)

Combining Eqs. (A.28) and (A.19) in accordance
with (A.1), and bearing (A.2) and (A.3) in mind, we
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obtain expressions (13), (14), and (15) for the polariza-
tion operator eigenvalues if we also neglect the constant
and logarithmic terms in k» coming from 251% in (A.19)
as compared to the terms growing linearly with B.

REFERENCES

1. S. L. Adler, J. N. Bahcall, G. G. Callan, and M. N. Ro-
senbluth, Phys. Rev. Lett. 25, 1061 (1970).

2. A. E. Shabad, Lett. Nuovo Cimento 2, 457 (1972).

3. A. E. Shabad, Ann. Phys. 90, 166 (1975).

4. A.E. Shabad and V. V. Usov, Nature 295, 215 (1982);
Astrophys. Space Sci. 102, 327 (1984).

5. V. V. Usov and A. E. Shabad, Pis'ma v Zh. Eksp. Teor.
Fiz. 42, 17 (1985).

6. H. Herold, H. Ruder, and G. Wunner, Phys. Rev. Lett.
54, 1453 (1985).

7. A. E. Shabad and V. V. Usov, Astrophys. Space Sci.
117, 309 (1985); 128, 377 (1986).

8. V. B. Bhatia, Namrata Chopra and N. Panchapakesan,
Astrophys. J. 388, 131 (1992).

9. V. V. Usov and D. B. Melrose, Aust. J. of Phys. 48,
571 (1995).

10. V. V. Usov, Astrophys. J. L87, 572 (2002).

11. M. G. Baring, Astrophys. J. L69, 440 (1995).

12. A. C. Harding, M. G. Baring, and P. L. Gonthier, Ast-
rophys. J. 246, 476 (1997).

13. M. V. Chistyakov, A. V. Kuznetsov, and N. V. Mi-
kheev, Phys. Lett. B 434, 67 (1998); M. V. Chistyakov
and N. V. Mikheev, E-prins archives hep-ph/0107217.

14. V. M. Kaspi, in Pulsar Astronomy-2000 and Beyond.
ASP Conference Series, ed. by M. Kramer, N. Wex,
and R. Wielebinski (1999), Vol. 202; E-print archives,
astro-ph/9912284.

15. V. V. Skobelev, Izv. Vyssh. Uchebn. Zaved. Fiz. Ne 10,
142 (1975); Yu. M. Loskutov and V. V. Skobelev, Phys.
Lett. A 56, 151 (1976).

16. A. E. Shabad, Kratk. Soobtch. Fiz. 3, 13 (1976).

17. 1. A. Batalin and A. E. Shabad, Zh. Eksp. Teor. Fiz.
60, 894 (1971).

18. H. Pérez Rojas and A. E. Shabad, Ann. Phys. 121,

432 (1979).



MITD, Tom 125, BhIm. 2, 2004

Photon propagation in a supercritical magnetic field

19. A. E. Shabad, Trudy FIAN 192, 5 (1988).

20. A. E. Shabad, Polarization of the Vacuum and a Quan-

21.

tum Relativistic Gas in an External Field, Nova Science
Publishers, New York (1991); Proc. Lebedev Physics
Institute, Academy of Sciences of the USSR, ed. by
V. L. Ginzburg, Vol. 191.

H. Pérez Rojas, Zh. Eksp. Teor. Fiz. 76, 3 (1979);
H. Pérez Rojas and A. E. Shabad, Ann. Phys. 138,
1 (1982).

221

22,

23.

24.

25.

Wu-yang Tsai, Phys. Rev. D 10, 2699 (1974);
V. N. Baier, V. M. Katkov, and V. M. Strakhovenko,
Zh. Eksp. Teor. Fiz. 68, 403 (1975).

V. L. Ritus, Zh. Eksp. Teor. Fiz. 69 1517 (1975); 73,
807 (1977).

V. L. Denisov, I. P. Denisova and S. I. Svertilov, Dok-
lady Akademii Nauk 380, 754 (2001); E-print archives
astro-ph/0110705.

Handbook of Mathematical Functions, ed. by M. Abra-
movitz and I. Stegun, National Bureau of Standards,
New York (1964).



