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PHOTON PROPAGATION IN A SUPERCRITICAL MAGNETIC FIELDA. E. Shabad *Tamm Department of Theoreti
al Physi
s,Lebedev Physi
al Institute, Russian A
ademy of S
ien
es119991, Mos
ow, RussiaSubmitted 25 August 2003We show that for the asymptoti
ally strong (super-S
hwinger) magneti
 �eld B ex
eeding the 
riti
al valueB
r = m2
3=eh = 4:4 � 1013 Gs, the va
uum polarization e�e
ts be
ome important not only in the 
-range,but also for softer ele
tromagneti
 quanta, in
luding X-rays and opti
 photons, and for ele
tromagneti
 wavesof the radio frequen
ies. This is a 
onsequen
e of the linearly growing term � B=B
r present in the va
uumpolarization in the asymptoti
ally strong magneti
 �eld. The results may be essential in studying re�e
tion,refra
tion, and splitting of X-rays, light and radio waves by magneti
 �elds of magnetars, and in 
onsideringemission of su
h waves by 
harged parti
les.PACS: 12.20.-m, 97.60.Jd1. INTRODUCTIONAlthough it is long sin
e the refra
ting and bire-fringing properties of a strong magneti
 �eld in theva
uum have been realized, their only essential 
onse-quen
es 
onsidered in a realisti
 astrophysi
al 
ontextremain the photon splitting e�e
t [1℄ and the e�e
t ofphoton 
apture [2�8℄. Both e�e
ts are 
urrently dis-
ussed mostly in appli
ation to ele
tromagneti
 radi-ation in the 
-range. They depend 
ru
ially on thedeviation of the photon dispersion 
urve from its 
us-tomary shape in the empty va
uum, k20 = jkj2, wherek0 is the photon energy and k is its momentum. For themagneti
 �elds B below the S
hwinger 
riti
al value,B � B
r = m2
3=eh = 4:4 � 1013 Gs;where m and e are the ele
tron mass and 
harge, theonly essential sour
e of this deviation is the singularbehavior of the polarization operator ���(k) near the
reation thresholds of mutually independent ele
tronand positron on Landau levels n; n0 by a photon (the
y
lotron resonan
e) [2�4℄ or an even stronger singularbehavior of ��� near the points of a mutually bounde+e�-pair (the positronium atom) formation [5�7; 9℄.To rea
h (at least the lower of) these positions, thephoton must belong to the 
-ray range, with its energy*E-mail: shabad�lpi.ru

above or of the order 1 MeV. For this reason, the ef-fe
t of photon 
apture, with its transformation into anele
tron�positron pair, derived from the singular be-havior of ���(k), applies mostly to the 
-quanta, aslong as their propagation in a pulsar magnetosphere oftraditional pulsars is 
on
erned. It was estimated thatthe �elds about B = 0:1B
r are su�
ient to providethis e�e
t [4℄ and to prote
t the positronium atom intowhi
h the 
aptured 
-quantum is transformed againstionization by the a

elerating ele
tri
 �eld in the polargap and by the thermal photons [5�9℄.Also the Adler e�e
t [1℄ of photon splitting 
 ! 

in su
h �elds is usually dis
ussed for 
-quanta [10�13℄.There are two reasons why, again, the 
-range is im-portant. The �rst is that the photon splitting be
omespossible in the magneti
 �eld be
ause the deviation ofthe dispersion 
urve from the k20 = k2 law opens akinemati
al aperture for this pro
ess � the wider, thestronger the deviation (and the deviation is strong nearthe thresholds). In addition, there is a strong birefrin-gen
e for the photons in the 
-range, be
ause only oneeigenvalue �2(k) of the tensor ��� is singular near thelowest (n = n0 = 0) threshold, while the other twoeigenvalues �1;3(k) remain �nite, until the next thresh-olds (n = 0, n0 = 1 or n = 1, n0 = 0) are rea
hed. Thisimplies that the photons of only one polarization modeare essentially a�e
ted by the medium. This birefrin-gen
e leads to polarization sele
tion rules in the photon210
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riti
al magneti
 �eldsplitting pro
ess, whi
h are well pronoun
ed. The se
-ond reason is dynami
al. The matrix elements of thephoton splitting are subje
t to the same resonant be-havior near the thresholds as the polarization operator.The aforesaid explains why mainly the 
-range is �rstto be a�e
ted by the magnetized va
uum.The situation 
hanges 
onsiderably in passing tosuper-S
hwinger magneti
 �elds B � B
r, expe
tedto exist in soft 
-ray repeaters and anomalous X-raypulsars (see, e.g., Ref. [14℄). In this asymptoti
 range,a linearly growing term proportional to B=B
r appearsin one of the eigenvalues, �2, of the polarization opera-tor [15; 16℄, thus providing an extra large 
ontribution(additional to the 
y
lotron resonan
e) to the refra
tionof the va
uum.In Se
. 3, we study the 
onsequen
es of this phe-nomenon for the photon propagation, basing on the�rst three leading 
ontributions to the asymptoti
 ex-pansion of the polarization operator eigenvalues forlarge B, obtained within the one-loop approximation.One of these 
onsequen
es is a frequen
y-independent,but dire
tion-sensitive, large refra
tion index for prop-agation nonparallel to the magneti
 �eld in one (outof three) polarization modes in the kinemati
al do-main far from the threshold. The 
orresponding strongpolarization- and dire
tion-sensitive refra
tion o

ursfor ele
tromagneti
 radiation of any frequen
y range,in
luding X-ray, opti
, and radio range.This study is pre
eded by Se
. 2, where exa
t re-sults 
on
erning the ele
tromagneti
 radiation propa-gation in the magnetized va
uum are des
ribed. Thesefollow only from the general properties of the relativis-ti
, gauge, and 
harge invarian
e [17℄ and the Onsagertheorem [18℄. The results in Se
. 2 are valid irrespe
-tive of any approximation and the �eld strength, unlessthe opposite is expli
itly indi
ated.In the Appendix, the asymptoti
 expansion used inSe
. 3 is derived.2. EXACT FACTS ABOUTELECTROMAGNETIC EIGENMODES IN ANEXTERNAL MAGNETIC FIELDThere are three propagating eigenmodes 
orre-sponding to the va
uum ex
itations with photon quan-tum numbers in an external magneti
 �eld B. Thedispersion law, i.e., the dependen
e of the energy k0of the quantum (or the frequen
y in the wave) on itsmomentum k, is given for ea
h mode by a solution ofthe equationk2 = �i(k20 � k2k ; k2?); i = 1; 2; 3; (1)

where kk and k? are the respe
tive momentum 
ompo-nents parallel and perpendi
ular to the magneti
 �eldB and k2 is the photon 4-momentum squared,k2 = k2? + k2k � k20 :The �i in the right-hand sides in Eqs. (1) are eigenval-ues of the polarization operator [2; 3; 17℄.A general 
onsequen
e of the relativisti
 
ovarian
eis that the eigenvalues depend on the two 
ombinationsof the momentum spe
i�ed in (1). This implies thatsolutions of dispersion equations (1) have the generalstru
ture k20 = k2k + fi(k2?); i = 1; 2; 3; (2)and that the dire
tion of the group velo
ity v = �k0=�kin ea
h mode does not 
oin
ide (for k? 6= 0) with thatof the phase velo
ity k=k0. To see this, we 
al
ulate the
omponents of the respe
tive group velo
ities v? and vka
ross and along the magneti
 �eld B on solutions (2)of ea
h dispersion equation (1),v? � �k0�k? = k?k0 �k20�k2? == k?k0 1� ��i=�k2?1 + ��i=�(k20 � k2k) = k?k0 dfi(k2?)dk2? ;vk � �k0�kk = kkk0 : (3)It follows from (3) that the angle � between the dire
-tion v of the ele
tromagneti
 energy propagation andthe external magneti
 �eld satis�es the relationv?vk � tg � = �1� ��i�k2?� 1+ ��i�(k20�k2k)!�1 tg #; (4)where # is the angle between the photon momentum(phase velo
ity) and the external �eld, tg # � k?=kk.The following statement holds: if the phase velo
ityk=k0 ex
eeds the velo
ity of light 
, i.e., if k2?+k2k > k20(or fi(k2?) < k2? in (2)), but the group velo
ity (3)does not, v2? + v2k � 1 (or d2fi(k2?)=(dk2?)2 < 0),then tg � < tg #. The 
onditions of this state-ment are ful�lled for the dispersion laws found withinapproximation-dependent 
al
ulations of the �i. Forthe super-S
hwinger �elds, treated within the one-loopapproximation, this fa
t follows expli
itly from equa-tions in Se
. 3 below. Therefore, the photon tends todeviate 
loser to the magneti
 �eld line.It follows from the gauge invarian
e that�i(0; 0) = 0; i = 1; 2; 3: (5)211 2*
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h mode, there alwaysexists a dispersion 
urve with fi(0) = 0, whi
h passesthrough the origin in the (k20 � k2k; k2?) plane. Butonly two of these three solutions may simultaneously
orrespond to physi
al massless parti
les, the photons.The third solution is a nonphysi
al degree of freedom,
hara
teristi
 of gauge theories: in a magneti
 �eld,a photon has two degrees of freedom, the same as inthe empty va
uum. Whi
h of the modes be
omes non-physi
al depends on the propagation dire
tion and onthe spe
i�
 form of the fun
tion fi(k2?) in (2). We dis-
uss this point for the super-S
hwinger �eld limit inthe next se
tion. Massive bran
hes of solutions of (1),with fi(0) > 0, may also exist, despite (5). For them,the number of physi
al degrees of freedom is three,and hen
e all the three equations (1) 
an have physi-
al solutions simultaneously (see, e.g., the positroniumbran
hes found in [7; 19; 20℄)The refra
tion index ni in mode i isni � jkjk0 = �1+�ik20�1=2 = �1+k2?�fi(k2?)k20 �1=2 : (6)Unlike �i, the refra
tion index ni is not a Lorentz s
alarand may depend on two energy-momentum variables,after it is redu
ed to dispersion law (2). Gauge invari-an
e property (5) implies that the refra
tion index (6)for parallel propagation, k? = 0, is exa
tly equal tounity for the massless (fi(0) = 0) bran
hes in everymode, nki = 1: (7)The ele
tromagneti
 wave propagating stri
tly alongthe external 
onstant and homogeneous magneti
 �eldpropagates with the velo
ity of light 
 in the va
uum,the phase and group velo
ities 
oin
iding in this 
ase.If, within a 
ertain approximation, the eigenvalue �iis a linear fun
tion of its arguments with 
ondition (5)satis�ed, refra
tion index (6) for the 
orresponding dis-persion law depends on a single 
ombination of the pho-ton energy and momentum, whi
h is the propagationdire
tion #. This happens in a nonresonant situation,for instan
e, as des
ribed in the next se
tion.The polarizations of the modes are des
ribed in anapproximation-independent way [3; 17℄ by the relationse(1) = �k?k? k0; h(1) = �k?k? � kk� ; (8)e(2)? = k?kk; e(2)k = kkkk (k2k � k20);h(2) = �k0�k? � kkkk� ; (9)

e(3) = �k0�k?k? � kkkk� ; h(3)? = �k?k? kk;hk(3) = kkkk k?; (10)where e(i) and h(i) are the ele
tri
 and magneti
 �eldsin the wave belonging to mode the number i = 1; 2; 3,the 
ross denotes the ve
tor produ
t, and boldfa
e let-ters with the subs
ripts �k� and �?� denote ve
torsalong the dire
tions parallel and perpendi
ular to theexternal magneti
 �eld respe
tively. In the mode 1wave, the ele
tri
 �eld e is parallel to k?, in mode 2 itlies in the plane 
ontaining the ve
tors k and B, andin mode 3 it is orthogonal to this plane, whi
h meansthat mode 3 is always transversely polarized.We note that the normalizations in Eqs. (8), (9),and (10) are di�erent, and we 
an therefore judgeabout vanishing of some 
omponents 
ompared to oth-ers within one equation, but not between di�erent equa-tions.Con
erning the dire
tion of propagation, two 
asesare essentially di�erent. If k? = 0, we speak aboutlongitudinal propagation. Otherwise, there exists aLorentz boost along the external (
onstant and ho-mogeneous) magneti
 �eld, whi
h does not 
hange thevalue of the magneti
 �eld and does not introdu
e anextra ele
tri
 �eld, but nulli�es kk. Hen
e, the gen-eral 
ase of nonparallel propagation k? 6= 0, kk 6= 0 isredu
ed to purely transversal propagation, kk = 0 (inthe 
orresponding referen
e frame). One should keep inmind, however, that the above transformation 
hangesthe photon energy k0 and should be treated with 
au-tion when one 
onsiders a �eld with 
urved for
e lines.For transversal propagation, k ? B (kk = 0), modes2 and 3 are transversely polarized (e(2);(3) ? k) in twomutually orthogonal planes, e(2) ? e(3), while mode 1is longitudinally polarized (e(1) k k) with no magneti
�eld in it, h(1) = 0. It is expe
ted not to 
orrespond toa photon (depending on the dispersion law).On the 
ontrary, for longitudinal propagation,k k B, (k? = 0); modes 1 and 3 are transversely polar-ized (e(1;3) ? B) and their ele
tri
 �eld ve
tors lie inmutually orthogonal planes, e(1) ? e(3), as they alwaysdo, while mode 2 is longitudinally polarized (e(2) k B)and does not 
ontain a magneti
 �eld, h(2) = 0. Mode2 is then expe
ted not to 
orrespond to a photon,whereas mode 1 is a physi
al ele
tromagneti
 wave,whi
h mat
hes the ele
tromagneti
 wave of mode 3: to-gether, they may form a 
ir
ularly polarized transversalwave be
ause of the degenera
y property�1((k20 � k2k); 0) = �3((k20 � k2k); 0): (11)212
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riti
al magneti
 �eldThis relation re�e
ts the 
ylindri
al symmetry of theproblem of a photon propagating along the externalmagneti
 �eld.Another remark of almost general 
hara
ter is in or-der. One might expe
t the possibility of the Cherenkovradiation by a 
harged parti
le moving in an opti-
ally dense medium formed by the magnetized va
uum.This e�e
t (with the Cherenkov photons softer thank0 = 2m) does not o

ur in known situations, however.We 
onsider emission of a photon by an ele
tron in amagneti
 �eld, not a

ompanied by a 
hange of its Lan-dau quantum number, n = n0 (otherwise, that would bethe 
y
lotron, and not Cherenkov, radiation). A

ord-ing to the kinemati
al analysis of the energy and mo-mentum 
onservation in [21℄ (and to the study [21℄ ofanalyti
ity regions of the one-loop photon polarizationoperator in the ele
tron-positron plasma in a magneti
�eld, 
al
ulated in [18℄), the Cherenkov photon withk0 < 2m 
an only belong to the right lower se
tork20 � k2k � 0; k2? � 0 (12)in the (k20 � k2k ; k2?) plane. The substantial reason forthis is the degeneration of the ele
tron energy with re-spe
t to the 
enter-of-orbit position in the transver-sal plane. No dynami
al 
al
ulations, hitherto known,provide penetration of photon dispersion 
urves intothis se
tor. The only ex
eption is the nonphysi
al sit-uation due to exponentially strong external �elds, tobe mentioned in Se
. 3.2 below. We 
on
lude that noCherenkov emission of a photon softer than k0 = 2m ispossible under standard 
onditions.3. PHOTON DISPERSION IN ASUPER-SCHWINGER MAGNETIC FIELD3.1. Asymptoti
 expansion of polarizationtensor eigenvaluesIn the asymptoti
 region of super
riti
al magneti
�elds B � B
r and a restri
ted energy of longitudinalmotion, k20 � k2k � (B=B
r)m2;the three eigenvalues �1;2;3(k) of the polarization ope-rator (if it is 
al
ulated within the one-loop approxima-tion as in [17; 22℄) have the following behavior, derivedfrom equations of Ref. [3℄ (see the Appendix),�1(k20 � k2k; k2?) = �k23� �ln BB
r � C � 1:21� ; (13)

�2(k20 � k2k; k2?) = �Bm2(k20 � k2k)�B
r �� exp�� k2?2m2 B
rB � 1Z�1 (1��2)d�4m2�(k20�k2k)(1��2) ; (14)�3(k20 � k2k; k2?) = �k23� �ln BB
r � C��� �3� �0:21k2? � 1:21(k20 � k2k)� : (15)Here, � = 1=137 is the �ne stru
ture 
onstant andC = 0:577 is the Euler 
onstant. Equations (13)and (15) are a

urate up to terms de
reasing with Bas (B
r=B) ln(B=B
r) and faster. Equation (14) is a
-
urate up to terms logarithmi
ally growing with B. In�1;3, we also took the limitk2? � (B=B
r)m2;whi
h is not the 
ase for �2, where the fa
torexp(�k2?B
r=2m2B) is kept di�erent from unity, be-
ause it is important near the 
y
lotron resonan
e, asexplained in Se
. 3.2 below. The integral in (14) 
anreadily be 
al
ulated, but we do not need its expli
itform here.The parts growing with B in �1;2;3 were writtenin [16℄, their derivation from equations of Ref. [3℄ istra
ed in detail in [19; 20℄. The linearly growing termin Eq. (14) was obtained in [15℄ in a di�erent way usinga two-dimensional (one time, one spa
e) diagram te
h-nique developed to serve the asymptoti
 magneti
 �eldregime. The logarithmi
 terms in the expressions abovedo not dominate over the 
onstant terms unless expo-nentially large magneti
 �elds are in
luded into 
onsid-eration1). The derivation of all terms in Eqs. (13), (14),and (15), in
luding those that do not grow with B, isgiven in the Appendix using a straightforward methoddi�erent from the one applied earlier in [19; 20℄. Theasymptoti
 expressions used in [13℄ do not 
oin
ide withours, ex
ept for the term linear in B.The limiting expressions (13), (14), and (15) do sat-isfy the exa
t properties (11) and (5).In this paper, we only deal with the transparen
y re-gion, k20 � k2k � 4m2 (i.e., with the kinemati
al domain1) That would be unreasonable not only be
ause su
h �eldsare hardly expe
ted to exist in nature, but mainly be
ause their
onsideration is beyond the s
ope of quantum ele
trodynami
s:the logarithmi
ally growing terms in (13) and (15) are asso
iatedwith the absen
e of asymptoti
 freedom in QED (
f . analogousasymptoti
 behavior [23℄ in the Euler�Heisenberg e�e
tive La-grangian).213
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ause we are interested in pho-tons with k0 < 2m, or even k0 � 2m, whi
h never rea
hthe free pair 
reation threshold k20 � k2k = 4m2. Theeigenvalue �2 in (14) has a singular bran
hing pointin the 
omplex plane of the variable (k20 � k2k) nearthe lowest pair 
reation threshold (k20 � k2k)thr = 4m2.Thresholds of 
reation of e+e�-pairs with the ele
tronand the positron on ex
ited Landau levels n; n0 6= 0,(k20 � k2k)n;n0thr == m2 "�1 + n BB
r�1=2 +�1 + n0 BB
r�1=2#2 ; (16)are shifted in the asymptoti
 regime to the in�nitely re-mote region. Therefore, the eigenvalues �1;3, whi
h areresponsible for photons of su
h polarizations that 
anonly 
reate e+e�-pairs with at least one 
harged par-ti
le in an ex
ited Landau state, do not 
ontain imagi-nary parts or singular bran
hing points in this regime.On the other hand, the eigenvalue �2 has only one sin-gular bran
hing point, 
orresponding to the possibilityof 
reation of the ele
tron and positron in the lowestLandau states by the photon polarized as in mode 2.The singular threshold behavior of (14) near the pointk20 � k2k = 4m2 � �; � > 0; �! 0is �2(k) � 2�Bm3B
r exp�� k2?2m2 B
rB ��� �4m2 � k20 + k2k��1=2 : (17)As 
ould be expe
ted, this is the same as the behaviorof the exa
t one-loop expression for �2(k) [3℄ near thisthreshold, before the limiting transition to large �eldshas been performed.3.2. Propagation of eigenmodes in thesuper-S
hwinger �eld limitIf Eq. (13) for �1 is taken as the right-hand side ofEq. (1), the latter has only one solution, whi
h is thetrivial dispersion law k2 = 0. With the relation k2 = 0satis�ed, however, the 4-potential 
orresponding to theele
tromagneti
 �eld of mode 1 be
omes proportionalto the photon 4-momentum ve
tor k�, unless kk = 0(see [3; 19; 20℄). Therefore, for nonparallel propagation,mode 1 
orresponds to only the gauge degree of free-dom dis
ussed in Se
. 2, with no real ele
tromagneti
�eld asso
iated with it.
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⊥A family of dispersion 
urves for mode 2 (solutions ofEq. (1) with Eq. (14) taken for the right-hand side)below the threshold k20 � k2k = 4m2. The values ofthe external magneti
 �eld 
orresponding to the 
urvesare (from left to right) B = 10B
r ; 100B
r; 1000B
r .The straight line is the light 
one dispersion 
urve forB = 0. The dashed horizontal line marks the maximumto whi
h the photon with the energy k0 may pro
eedif k0 < 2m. The variables along the axes are plottedin the units of 4m2 � 1 MeV2Solutions of Eq. (1) for the se
ond mode i = 2 withEq. (14) taken for �2 are plotted in the Figure for threevalues of the �eld B using MATHCAD 
ode. Thesesolutions are dominated by 
y
lotron resonan
e (17),whi
h 
auses a strong deviation of the dispersion 
urvesin the Figure from the shape k2 = 0 (the light 
one). Ask2? ! 1 near the threshold on the dispersion 
urves,the quantity k2?B
r=m2B must be kept di�erent fromzero even in the large-�eld limit under 
onsideration.Behavior of the dispersion 
urves of mode 2 near thethreshold for super-S
hwinger magneti
 �elds B � B
ris the same as for the �moderate� �elds B � B
r, andtherefore it also presents the photon 
apture e�e
t forphotons harder than 2m, known for su
h �elds [4℄: ifwe 
al
ulate (4) near the threshold k20�k2k = 4m2 usingEq. (17) as �2 to obtaintg � = k?kk B
rBm2 (4m2 � k20 + k2k); (18)we 
on
lude that the angle � between the external mag-neti
 �eld and the dire
tion of the wave pa
ket propa-gation in mode 2 tends to zero, the faster, the strongerthe �eld. If the photon energy k0 is slightly less than2m, the photon may be 
lose to the threshold when itskk disappears. At this upper point, the wave pa
ket214
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riti
al magneti
 �eldstops, be
ause the group velo
ity lengthv2? + v2k = v2k(1 + tg2 �);equal to k2k=k20 a

ording to the se
ond line in (3)and (18), disappears together with kk.Applied to the 
onventional pattern of a pulsar mag-netosphere, this e�e
t a
ts as follows [4℄. A 
urvature
-quantum emitted tangentially to the magneti
 for
eline, i.e., pla
ed initially at the origin in the Figure,then evolves along its dispersion 
urve as it propa-gates in the dipole magneti
 �eld with its for
e line
urved, be
ause the 
omponents kk and k? are 
hang-ing. The maximum value of the ordinate k20 � k2k o
-
urs at kk = 0, and it is the photon energy squared,k20 . If the latter is greater than 4m2, the photon mayrea
h the horizontal asymptote in the Figure. Here, itsgroup velo
ity dk0=dk? a
ross the magneti
 �eld dis-appears, dk0=dk? ! 0, and hen
e it propagates alongthe magneti
 �eld and does not 
ross the threshold, be-
ause the other bran
h of the dispersion 
urve, whi
hpasses above the threshold, is separated from the initialbran
h by a gap. A mixed state � photon-pair � isa
tually formed [4℄, analogous to the polariton knownin 
ondensed matter physi
s. The massless part of itsspe
trum is presented by the dispersion 
urves in theFigure. The photon gradually turns into the e+e� pairand exists mostly in that form when it is �nally prop-agating along the magneti
 for
e lines. This 
apturinge�e
t is important for the formation of radiation of pul-sars with the �elds B > 0:1B
r, be
ause it prevents thes
reening of the a

elerating ele
tri
 �eld in the polargap (if the binding of the ele
tron�positron pair into apositronium atom is taken into a

ount [5�9℄). It mayalso be essential for magnetars with their �elds approx-imately 1014�1015 Gs.The new features introdu
ed by super-S
hwinger�elds are that the dispersion 
urves for mode 2 in theFigure already step aside from the light 
one far fromthe resonan
e region. This means that although thephotons softer than 2m = 1 MeV 
annot pro
eed tothe values of the ordinate in the Figure higher thantheir energy squared (
orresponding to kk = 0), they
an still rea
h the region where the transversal groupvelo
ity dk0=dk? be
omes mu
h less than unity and aretherefore 
aptured to the traje
tory almost parallel tothe magneti
 �eld. This is how the 
apture e�e
t ex-tends to the photon energies below the border k0 = 2m.The 
y
lotron singularity at the pair-
reation thresholdin su
h �elds is so strong that even low-energy photonsthat are unable to 
reate a pair are sensitive to it, pro-vided that they belong to mode 2!

In addition to extension of the photon 
apture ef-fe
t to softer photons, the in
lusion of super-S
hwinger�elds into 
onsideration has another impa
t. It leads toa large dire
tion-dependent refra
tion of mode 2 ele
-tromagneti
 waves of low frequen
y. To see this, we
onsider the limit k20 � k2k � 4m2 (19)in Eq. (14), whi
h redu
es to negle
ting k20 � k2k in theintegrand in (14). Then (14) be
omes�2(k) = �3� (k20 � k2k) BB
r exp�� k2?2m2 B
rB � : (20)The exponential fa
tor in (20) 
annot be essentialwithin region (19). Dispersion equation (1) for mode2 (i = 2) then has solutions expressing the photon en-ergy k0 as a fun
tion of its transversal and longitudinalmomentum,k20 = k2k + k2?�1 + �3� BB
r��1 : (21)Equation (21) analyti
ally presents the straight lineparts of the dispersion 
urves in the Figure adja
entto the origin for various values of B. The 
omponentsv?;k of the group velo
ity, Eq. (3), 
al
ulated from (21)are v? = k?k0 �1 + �3� BB
r��1 ; vk = kkk0 : (22)The modulus of the group velo
ity squared is nowgiven byv2? + v2k = 11 + �3� BB
r + �3� BB
r 
os2 #1 + �3� BB
r 
os2 #; (23)where # is the angle between the photon momentumand the �eld, tg # = k?=kk. Equation (23) has themaximum value of unity for the parallel propagation,# = 0, in a

ordan
e with the general statement inSe
. 2, and is minimum for perpendi
ular propagation,# = �=2.Expression (4) for the angle � between the dire
tionof the ele
tromagneti
 energy propagation and the ex-ternal magneti
 �eld in the super-S
hwinger limit formode 2 be
omesv?vk = tg � = k?kk �1 + �3� BB
r��1 == tg #�1 + �3� BB
r��1 : (24)215
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ause tg � < tg #, the photon emitted tangentiallyto 
urved for
e lines bends towards these lines. This isalso related to low-frequen
y radiation.The refra
tion index (6) in mode 2 for k20 � k2k �� 4m2 and B � B
r is given byn2 = 0BB� 1 + �3� BB
r1 + �3� BB
r 
os2 #1CCA1=2 : (25)The refra
tion index obtained depends on the dire
-tion of the photon momentum, 
hara
terized by theangle #, but does not depend on its energy. In otherwords, there is no frequen
y dispersion in a wide rangefrom slow radio waves up to soft 
-rays with k0 � 2m.This is a 
onsequen
e of the fa
t that only linear partsin momenta squared were a
tually left in �2 (
orre-spondingly, f(k2?) in (2) is proportional to k2? a

ord-ing to (21)).Refra
tion index (25) rea
hes its maximum fortransversal propagation (kk = 0, # = �=2),n?2 = �1 + �3� BB
r�1=2 == �1 + 7:7 � 10�4 BB
r�1=2 : (26)For B � 10B
r, the deviation of refra
tion index (26)from unity ex
eeds that value for gases at atmospheri
pressure in the opti
 range by an order of magnitude;for B � 1000B
r, it rea
hes the value 
hara
teris-ti
 of transparent liquids and glass; the refra
tion in-dex (26) be
omes equal to that of diamond (n = 2:4)for B = 27 � 1016 Gs.Contrary to the 
ase of mode 2 just 
onsidered, thepolarization tensor eigenvalue �3 in (15) 
ontains nei-ther the 
ontribution linearly growing with the external�eld nor the resonan
e. For mode 3, dispersion equa-tion (1) with its right-hand side given as (15) has thesolution k20 = k2k + k2?Z � �=3�Z ; (27)where Z = 1� �3� �ln BB
r � C � 1:21� : (28)The known absen
e of the asymptoti
 freedom inQED manifests itself in the negative sign in front ofthe logarithm in (28). This results in pathologi
al 
on-sequen
es for the �elds as large as B
r exp(3�=�). In

this domain, the 
oe�
ient of k2? in (27) �rst be
omesless than zero and then greater than unity as the �eldgrows. The 
orresponding dispersion laws are nonphys-i
al be
ause they lead to the group velo
ity greater thanunity. In the negative slope 
ase in (27),e > BB
r exp(�0:21� C � 3�=�) > 1;the dispersion 
urve enters the se
tor (12) a

eptablefor the Cherenkov radiation. But this is the Cherenkovemission of ta
hyons! It is also odd that in the latter
ase, ele
tromagneti
 waves 
an only propagate insidethe 
one 0 < tg # < �1 + �3�Zwith its axis along the external �eld, irrespe
tive of theway they are produ
ed. This domain of exponentiallylarge external �elds is not of our interest in this paper.For the �elds that are not exponentially large, withthe logarithmi
 terms of the order of unity, one shouldtreat all the terms marked by the 
oe�
ient �=3�in (27) as small. Then, �nally, the dispersion law formode 3 be
omesk20 = k2k + k2? �1� �3�� : (29)Notably, the �eld-
ontaining logarithmi
 terms have
an
elled here. Therefore, dispersion law (29) of mode3 is saturated in the sense that unlike Eq. (21) for mode2, it has rea
hed the universal form, independent of theexternal �eld in the super-S
hwinger limit. The refra
-tion index of mode 3 
orresponding to (29) isn3 = 1+ �6� sin2 #: (30)Again, similarly to (26), the maximum refra
tionin mode 3 is a
hieved at perpendi
ular propagation,# = �=2: n?3 = 1 + 3:8 � 10�4: (31)This refra
tion index is of the order of that of gaseousammonia and 
annot be made larger by in
reasing theexternal �eld any further.4. CONCLUSIONWe have found that in the asymptoti
 
ase ofexternal magneti
 �elds B that 
an be orders of mag-nitude larger than the S
hwinger value 4:4 � 1013 Gs,the refra
tive 
apa
ity of the magnetized va
uumgrows unlimitedly with this �eld for ele
tromagneti
radiation belonging to polarization mode 2, but 
omes216
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riti
al magneti
 �eldto saturation at a moderate level of 
orre
tions of theorder of �=3� for mode 3. For the �parallel energy�of the photon not 
lose to the 
y
lotron resonan
e,k20 � k2k � 4m2, the refra
tion e�e
ts for mode 2essentially ex
eed the above small 
orre
tions, typi
alof the nonasymptoti
 domain, already for B � 10B
r.In the range of photon frequen
ies/energies extendingfrom zero to soft 
-rays, a regime is established forwhi
h the dispersive properties of the magnetized va
-uum are independent of the photon frequen
y/energyin ea
h mode, but do depend on the dire
tion of itspropagation. Apart from the fa
t that the refra
tionindex in mode 2 for the propagation nonparallel to theexternal �eld grows numeri
ally with the �eld, it isremarkable that the angle between the group velo
ityand the dire
tion of the photon momentum also grows,the wave pa
ket being attra
ted by the for
e line ofthe external �eld. The e�e
t of 
-quantum 
aptureby a strong magneti
 �eld, known to exist due toresonan
e phenomena asso
iated with free and boundpair 
reation, is thus extended to lower energy ranges.Therefore, not only hard 
-rays, but also X-rays, lightand radio-waves undergo strong dispersive in�uen
eof the magnetized va
uum when the magneti
 �eldsare of the order of magnitude of those estimated toexist in magnetars. In view of this, the ele
tromag-neti
 energy 
analization phenomena may be
omeimportant not only within the traditional 
ontextdes
ribed in Se
. 3.2 above, but also in appli
ation tothe s
attering of ele
tromagneti
 waves falling ontothe magneti
 �eld from outside [2℄. These may be, forinstan
e, the X-rays emitted from the a

retion diskor from the pulsar surfa
e outside the region where themagneti
 �eld enters it. The problem of the bendingof ele
tromagneti
 radiation by the dipole magneti
�eld of a neutron star was re
ently addressed in [24℄,and the 
ompetition of this pro
ess with the e�e
tsof gravity was 
onsidered2). We insist, however, thatsu
h e�e
ts 
annot be adequately treated disregardingthe refra
tion index dependen
e on the dire
tionof propagation and using the quadrati
-in-the-�eldexpressions for the polarization operator, only valid inthe low-�eld limit, as is the 
ase in Ref. [24℄.I am indebted to Professor Hugo P�erez Rojas forthe hospitality extended to me during the Workshopon Strong Magneti
 Fields and Neutron Stars at ICI-MAF in Havana and for en
ouraging me to refreshthe study of magneti
 opti
s of the va
uum. I a
-2) The author is indebted to H. Mosquera Cuesta who at-tra
ted his attention to that work.
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s(ICTP). APPENDIXIn this Appendix, the asymptoti
 expansion pre-sented in Se
. 3.1 is derived from expressions inRef. [3; 19; 20℄.The three eigenvalues �i, i = 1; 2; 3, of the pho-ton polarization operator in the one-loop approxima-tion, 
al
ulated using the exa
t ele
tron propagator inan external magneti
 �eld, 
an be expressed as linear
ombinations of the three fun
tions �i,�1 = �12 (z1 + z2) �1;�2 = �12 (z1�2 + z2�1) ;�3 = �12 (z2�3 + z1�1) ; (A.1)where the new notationz1 = k2k � k20 ; z2 = k2? (A.2)is introdu
ed for the momentum variables, with k2 == z1 + z2. Here, �i are dimensionless fun
tions ofthe three ratios B
r=B, z2B
r=m2B, and z1B
r=m2B;given by �i = �(1)i +�(2)i ; (A.3)�(1)i �B
rB � = 2�� 1Z0 dt exp�� tB
rB ��� 1Z�1 d� ��i(t; �)sh t � limt!0 �i(t; �)sh t � ; (A.4)�(2)i �B
rB ; z2B
rm2B ; z1B
rm2B � == 2�� 1Z0 dt exp�� tB
rB � 1Z�1 d��i(t; �)sh t �� �exp��z2M(t; �)eB � z1 1� �24eB t�� 1� ; (A.5)217
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h t� 
h t�2 sh t (A.6)and �1(t; �) = 1� �2 sh(1 + �)t2 sh t ; (A.7)�2(t; �) = 1� �24 
h t; (A.8)�3(t; �) = 
h t� 
h �t2 sh2 t : (A.9)The notation �lim� in (A.4) stands for the asymptoti
limit limt!0 �i(t; �)sh t = 1� �24t ; i = 1; 2; 3: (A.10)The fa
t that �i are independent of the fourth pos-sible dimensionless variable z1=z2 seems to be anapproximation-independent manifestation of analyt-i
ity properties due to dispersion relations of theKramers�Kronig nature.We �rst 
onsider �(1)i . It is independent of the pho-ton energy and momentum. With the notationgi(t) = 1Z�1 �i(t; �) d�; (A.11)Eq. (A.4) 
an be represented as�(1)i = 2�� 1Z0 exp�� tB
rB ��gi(t)sh t � 13t� dt: (A.12)The integrals in (A.11) are expli
itly 
al
ulated to giveg1(t) = 14t sh t � sh 2tt � 2� ; g2(t) = 
h t3 ;g3(t) = 1sh2 t �
h t� sh tt � : (A.13)Our goal is now to �nd the asymptoti
 behaviorof (A.12) as BB
r !1: (A.14)The integrands in (A.12) do not 
ontain singularitiesat t = 0, but would 
ause divergen
e at t ! 1 if wejust set the limiting valueexp(�tB
r=B) = 1:

We must therefore divide the integration domain intotwo parts. In addition,3g2(t)sh t ! 1as t!1, and hen
e we have to add and subtra
t thislimit beforehand in the integrand of �(1)2 . This is notrequired in handling the 
ases of i = 1; 3, be
auseg1;3sh t ! 0su�
iently fast. We thus have3�2��(1)i = 1Z0 exp�� tB
rB ��3gi(t)sh t �1t � Æi2� dt++ Æi2 1Z0 exp�� tB
rB � dt == TZ0 exp�� tB
rB ��3gi(t)sh t �1t�Æi2� dt+ BB
r Æi2++ 1ZT exp�� tB
rB ��3gi(t)sh t � Æi2� dt�� 1ZT exp�� tB
rB � dtt == TZ0 �3gi(t)sh t �1t� dt�Æi2T+ 1ZT �3gi(t)sh t �Æi2� dt++ BB
r Æi2 + ln�B
rB �+ C + lnT; (A.15)where T is an arbitrary positive number, Æi2 is the Kro-ne
ker delta, and C is the Euler 
onstant. We haveomitted the exponentials in the �rst two integrals afterthe se
ond equality sign in (A.15) be
ause the resultingintegrals 
onverge. We then used the known asymp-toti
 expansion of the standard exponential-integralfun
tion, whi
h is given by (up to terms linearly de-
reasing with B=B
r) [25℄� 1ZT exp�� tB
rB � dtt = ln B
rB + lnT + C: (A.16)The most slowly de
reasing term negle
ted in3 1ZT dt exp (�tB
r=B) gi(t)sh t218
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riti
al magneti
 �eldis Æi1 3B
r4B ln B
rB ;be
ause g1(t)sh t � 14t2as t ! 1. Other negle
ted terms de
rease at leastas fast as B
r=B, be
ause 3gi(t)= sh t � Æi2 de
reasesexponentially, as exp(�2t), for i = 2; 3 when t is large.Numeri
al 
al
ulations using MATHCAD 
ode al-low evaluating the 
onstants (dhi=dT = 0)hi = TZ0 dt�3gi(t)sh t � 1t�++ 1ZT �3gi(t)sh t � Æ1;2� dt+ lnT � Æi2T (A.17)involved in (A.15) ash1 = 1:21; h2 = �0:69; h3 = 0:21: (A.18)Finally, in the asymptoti
 regime B=B
r � 1, we have�(1)i = 2�3� �ln B
rB + C + hi + BB
r Æi2� (A.19)up to terms de
reasing at least as fast as integral pow-ers of the ratio B
r=B and to the slower term�2� B
rB ln B
rB ;omitted in �(1)1 .We now turn to �(2)i in Eq. (A.5). This dependson the three arguments as indi
ated in (A.5). We areinterested in the asymptoti
 domain des
ribed by 
on-dition (A.14) and 2eBz1 !1: (A.20)We keep the ratio 2eB=z2 �nite whenever it makessense.The asymptoti
 expansion of (A.7), (A.8), and(A.9) in powers of exp(�t) and exp(�t) produ
es anexpansion of (A.5) into a sum of 
ontributions 
om-ing from thresholds (16), the singular behavior at thethreshold points originating from the divergen
es of thet-integration in (A.5) near t =1 (see [3; 19; 20℄ for thedetails). The leading terms in the expansion of (A.7),(A.8), and (A.9) at t!1 are��1(t; �)sh t ����� t!1 = 1� �2 exp(t(� � 1))); (A.21)

��2(t; �)sh t �����t!1 = 1��24 (1+2 exp(�2t)) ; (A.22)��3(t; �)sh t ����� t!1 = 2 exp(�2t): (A.23)Changing the variable as � = t=eB and taking intoa

ount that M(1; �) = 1=2 (see (A.6)), we eva-luate (A.5) near the lowest singular thresholds (n = 0;n0 = 1 or n0 = 0; n = 1 for i = 1 in (16), n = n0 = 1for i = 3, and n = n0 = 0 and n = n0 = 1 for i = 2) as�(2)i = 2�eB� 1Z�1 d� 1Z0 d� exp(�m2�)�� ��i(eB�; �)sh eB� ����� t!1 �� �exp�� z22eB � z1(1� �2)4 �� � 1� : (A.24)After integration over � we obtain, e.g.,�(2)1 = 4�eB� 1Z�1 d�(1� �)��� exp (�z2=2eB)4m2 + 4(1� �)eB + z1(1� �2)�� 14m2 + 4(1� �)eB� : (A.25)The pole in the above expression, 
aused by the inte-gration over t, turns into the inverse square root sin-gularity after the integration over � (
f. the derivationof (17) from (14)). In the limit (A.14), (A.20) whenB � m2, B � jz1j, no singularity remains in this ex-pression (it is shifted to the in�nitely remote region)and we are left with�(2)1 = 2�� �exp�� z22eB�� 1� :The same situation o

urs for �(2)3 and for higherthresholds (also for 
ontributions into �(2)2 other thanthose 
oming from the �rst term in (A.22)). The resultof the 
al
ulation analogous to (A.25) is�(2)3 = 4�� �exp�� z22eB�� 1� :We 
on
lude that in the limit (A.14), (A.20), there areno 
y
lotron resonan
es in the eigenvalues �1; 3 a

ord-ing to (A.1), and that �(2)1 does not introdu
e a singular
ontribution into �2. Consequently, there is no reason219
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ause z2 may grow in�nitely on the dispersion 
urveonly when there is a resonan
e.We must therefore 
onsider only the limit when allthe three arguments in �(2)1;3 tend to zero. Handling thislimit in (A.5) is straightforward:lim�(2)1;3 = �2��eB 1Z0 dt�� 1Z�1 d� �1;3(t; �)sh t �z2M(t; �) + z1 1� �24 t� : (A.26)Both integrations here 
onverge, and hen
e this 
ontri-bution de
reases as z1=eB and z2=eB when B ! 1.This is to be negle
ted within our s
ope of a

ura
y.The situation is di�erent with �(2)2 . The resonan
ebehavior is here present due to the 
ontribution of theleading asymptoti
 term (1 � �2)=4 in (A.22). It isresponsible for the �rst threshold at �z1 = 4m2 (theground Landau state n = n0 = 0 in (16)), whi
h re-mains in its pla
e as B !1. We must therefore keepthe ratio z2=eB nonzero in passing to the limit of large�elds (be
ause z2 ! 1 near the singular threshold onthe dispersion 
urve) for the 
ontribution of this terminto �(2)2 . The 
ontributions of nonleading terms inexpansion (A.22) to �(2)2 are nonsingular and shouldbe treated along the same lines as �1;3 above. Theyde
rease as z1=eB, z2=eB and are to be negle
ted. Fi-nally, for (A.5) we are left in the limit (A.14), (A.20)with�(2)2 = 2�� 1Z0 dt exp�� tB
rB � 1Z�1 d� 1� �24 �� �exp��z2M(t; �)eB � z1 1� �24eB t�� 1� : (A.27)Changing the integration variable as t = eB� and usingthe asymptoti
 form M(eB�; �) = 1=2, eB� � 1, we�nally obtain (after the � integration) the leading 
on-tribution to �(2)2 in the limit (A.14), (A.20),�(2)2 = 2�eB� 1Z�1 d� (1� �2)�� exp (�z2=2eB)4m2 + z1(1� �2) � 2�eB3�m2 : (A.28)Combining Eqs. (A.28) and (A.19) in a

ordan
ewith (A.1), and bearing (A.2) and (A.3) in mind, we

obtain expressions (13), (14), and (15) for the polariza-tion operator eigenvalues if we also negle
t the 
onstantand logarithmi
 terms in �2 
oming from �(1)1;2 in (A.19)as 
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