МЕХАНИЗМ МЕЖСЛОЕВОЙ МАГНИТНОЙ СВЯЗИ В НАНОСТРУКТУРАХ ТИПА ЖЕЛЕЗО–ХРОМ

В. Н. Меньшов^{*}, В. В. Тугушев^{**}

Российский научный центр «Курчатовский институт» 123182, Москва, Россия

Поступила в редакцию 15 мая 2003 г.

Предложен механизм межслоевой обменной связи в слоистых структурах типа Fe/Cr(001) с шероховатыми интерфейсами. Теоретическое рассмотрение базируется на модели зарядово-индуцированной волны спиновой плотности в прослойке хрома. Показано, что эффективная магнитная связь между толстыми ферромагнитными слоями осуществляется вследствие изменения ориентации вектора волны спиновой плотности в антиферромагнитной прослойке на характерной длине ζ , обусловленной обменной жесткостью хрома. Получено и численно проанализировано общее выражение для энергии $E(\psi)$ эффективной магнитной связи как функции угла ψ между моментами ферромагнитных слоев при произвольной величине $\rho\zeta$, где ρ — плотность моноатомных ступенек на интерфейсе. Зависимость $E(\psi)$ в случае $\rho\zeta \ll 1$ принимает вид, характерный для модели с «биквадратичным» взаимодействием, однако в случае $\rho\zeta \ll 1$ сильно от него отличается. На основе полученных результатов интерпретируются эксперименты по измерению межслоевой связи в системах Fe/Cr(001).

PACS: 75.70.Cn, 75.30.Fv

1. ВВЕДЕНИЕ

Качество поверхности раздела (интерфейса) между ферромагнитным (ФМ) и антиферромагнитным (АФМ) слоями, как хорошо установлено, оказывает решающее влияние на величину и характер эффективного обмена между соседними ФМ-слоями в магнитных структурах типа Fe/Cr [1-6]. Для понимания механизмов этого влияния оказывается необходимым детальное исследование как морфологии интерфейсов, так и происходящих вблизи них процессов перераспределения зарядовой и спиновой плотностей квазичастиц. При сопоставлении свойств интерфейсов в приготовленных по разной технологии образцах важно различать масштабы флуктуаций рельефа поверхности на границе Fe/Cr. Во-первых, при любой методике выращивания структур неизбежны мелкомасштабные флуктуации в пределах нескольких приграничных монослоев, обусловленные взаимной диффузией атомов контактирующих металлов и разрывом (фрустрацией) регулярных межатомных

связей [1, 2, 6]. Во-вторых, в зависимости от используемой технологии в большей или меньшей степени имеют место крупномасштабные («геометрические») флуктуации рельефа поверхности раздела, получившие в литературе название «шероховатость» (roughness) [1-3]. Для описания последней обычно вводят [1,4,5] две различные статистические характеристики: дисперсию $\sigma = \sqrt{\langle h^2 \rangle}$ (vertical roughness) и корреляционную длину R(lateral roughness) флуктуаций высоты рельефа h. Поперечная к плоскости интерфейса характеристика σ обычно составляет приблизительно 2-6 Å, а продольная характеристика R может меняться по величине на три порядка: например, от нанометров при молекулярно-лучевой эпитаксии трехслойной структуры (трислоя) Fe/Cr/Fe(001) на подложку Ag(001)/Fe/GaAs(001) [4], до микронов при послойном росте хрома на Fe(001)-вискере [1, 5].

Специфика магнитных свойств систем Fe/Cr связана с тем фактом, что хрому присущ собственный АФМ-порядок в форме волны спиновой плотности (ВСП), который в условиях слоистой геометрии очень чувствителен как к наличию самих границ раздела, так и к их структуре. Ранее [7,8] нами

^{*}E-mail: vnmenshov@mail.ru

^{**}E-mail: vvtugushev@mail.ru

была предложена модель магнитного упорядочения в структурах типа Fe/Cr с идеально гладкими интерфейсами, возникающего ниже некоторой температуры Т₀, которая существенно превышает температуру Нееля объемного хрома T_N . Эта модель (названная нами моделью «зарядово-индуцированной» волны спиновой плотности) основана на идее возникновения ближнего АФМ-порядка в прослойке хрома из-за перераспределения зарядовой плотности между железом и хромом вблизи интерфейса. Согласно полученным в работе [8] результатам, образовавшаяся в прослойке Cr ВСП выстраивает магнитные моменты соседних обкладок Fe коллинеарно друг относительно друга (параллельно или антипараллельно в зависимости от числа N монослоев Cr в прослойке). Была также рассмотрена модельная задача об оптимальной по энергии конфигурации «зарядово-индуцированной» ВСП вблизи интерфейса, содержащего одну изолированную моноатомную ступеньку (далее в тексте употребляется термин «моноступенька») [9]. Оказалось, что в случае достаточно толстых обкладок железа, исключающих образование в них ферромагнитных доменных стенок, наиболее выгодной является конфигурация, содержащая 90-градусную антиферромагнитную доменную стенку внутри прослойки хрома. При этом характер взаимной ориентации моментов в соседних обкладках Fe меняется на неколлинеарный, т. е. эти моменты предпочитают расположиться друг относительно друга под некоторым углом, не равным 0 или *п*. Возникло, таким образом, предположение, что во многих случаях именно перестройка конфигурации ВСП в структурах типа Fe/Cr с шероховатыми интерфейсами может являться причиной возникновения в них широко обсуждаемого в литературе [1-3] неколлинеарного упорядочения моментов в соседних слоях железа.

В данной работе с целью проверки этого предположения мы обобщим модель [9] на случай произвольной концентрации моноступенек и относительно тонких АФМ-прослоек (меньших удвоенной «амплитудной» корреляционной длины $\xi(T)$, на масштабе которой меняется вдоль толщины прослойки амплитуда ВСП). Для таких систем естественно предположить, что АФМ-порядок в прослойке обладает существенной продольной жесткостью, т. е. амплитуда ВСП почти постоянна по толщине прослойки. С другой стороны, направление вектора поляризации ВСП в прослойке, как показал предварительный анализ [9], меняется вдоль интерфейса на характерной «угловой» корреляционной длине $\zeta(T)$ и крайне чувствительно к флуктуациям обменной связи на поверхности раздела Fe/Cr. В данной работе мы моделируем структуру последней как набор плоских участков со средней длиной R, разделенных моноступеньками; при переходе через каждую из них поверхностный обменный потенциал скачком меняет свой знак. Варьируя отношение характерных длин $\zeta(T)$ и R, можно провести рассмотрение ситуации для интерфейсов с различной степенью шероховатости и понять, каким образом и в какой мере сформировавшаяся в прослойке равновесная конфигурация ВСП определяет относительную (в общем случае неколлинеарную) ориентацию моментов соседних слоев железа.

С уменьшением толщины ФМ-слоя становится, в принципе, возможной иная, чем предложенная в работе [9], неоднородная магнитная конфигурация системы, связанная с образованием вблизи моноступеньки 180-градусной ферромагнитной доменной стенки в слое железа; при этом 90-градусная антиферромагнитная доменная стенка в прослойке хрома уже не возникает. Ниже мы остановимся подробнее на этом важном вопросе и покажем, что геометрия системы, наряду с качеством интерфейсов, в значительной степени определяет критерии применимости нашей модели к реальным слоистым структурам железо-хром.

2. МОДЕЛЬ АНТИФЕРРОМАГНИТНЫХ ДОМЕННЫХ СТЕНОК В СТРУКТУРАХ С ОДНОРОДНОЙ НАМАГНИЧЕННОСТЬЮ ФЕРРОМАГНИТНЫХ СЛОЕВ

Как и ранее в работах [8,9], будем рассматривать простейший структурообразующий элемент системы железо-хром (тройной слой), состоящий из двух ФМ-обкладок (Fe), разделенных АФМ-прослойкой (Cr). Технологические границы раздела Fe/Cr считаем параллельными плоскости $\mathbf{n}_{u}\mathbf{n}_{z}$, нормаль к которой \mathbf{n}_x совпадает с направлением роста структуры вдоль одной из кубических осей [100] (здесь и далее $\mathbf{n}_x, \mathbf{n}_y, \mathbf{n}_z$ — базисные единичные орты). Исследуется область температур T, соответствующих ближнему антиферромагнитному порядку в прослойке хрома, т.е. $T_N < T < T_0$, причем $T_0 \ll T_C$, где T_C — температура Кюри в обкладках железа. Толщина ФМ-слоев предполагается достаточно большой, так что при $T \ll T_C$ намагниченность S внутри ФМ-обкладок можно считать однородной и не зависящей от Т величиной. В то же время толщина АФМ-слоя L может варьироваться в достаточно широких пределах, однако $L > 2\xi_0$, где ξ_0 — длина когерентности, составляющая по разным оценкам от семи до десяти монослоев хрома. В рассматриваемом диапазоне температур намагниченность подрешетки $\sigma(\mathbf{r})$ внутри АФМ-прослойки может быть в зависимости от толщины L весьма неоднородной и сильно зависящей от температуры величиной [7,8].

Введем имеющий размерность энергии параметр порядка, описывающий огибающую ВСП, $\Delta(\mathbf{r}) =$ $= U\boldsymbol{\sigma}(\mathbf{r})$, где U — эффективный потенциал ВСП, явный вид которого здесь не обсуждается (см., например, обзор [10]). Далее ограничимся рассмотрением поперечно поляризованной ВСП, когда $\boldsymbol{\sigma}(\mathbf{r}) \perp \mathbf{n}_x$ (именно этот случай, соответствующий экспериментальной ситуации для не слишком толстых прослоек с $L \leq 100$ Å, обсуждается наиболее часто [1–6]). Тогда можно записать

$$\mathbf{\Delta}(\mathbf{r}) = \mathbf{n}_y \Delta_y(\mathbf{r}) + \mathbf{n}_z \Delta_z(\mathbf{r}), \qquad (1)$$

где $\mathbf{r} = (x, y, z), |x| \leq l, l$ — полутолщина прослойки $(L = 2l); |y|, |z| \leq l_{\perp}, 2l_{\perp}$ — размеры слоев в направлениях \mathbf{n}_y и \mathbf{n}_z $(l_{\perp} \gg l)$. Предполагая, что огибающая $\mathbf{\Delta}(\mathbf{r})$ — малая $(|\Delta| \ll \pi T)$ и медленно меняющаяся в пространстве $(|\partial \mathbf{\Delta}/\partial \mathbf{r}| \ll \pi T/\xi_0)$ величина, запишем термодинамический потенциал $F[\mathbf{\Delta}]$ рассматриваемого $\mathbf{A}\Phi$ М-слоя в виде разложения Гинзбурга–Ландау по степеням функции $\mathbf{\Delta}(\mathbf{r})$ и ее производных. Подробное обоснование такого подхода к решаемой задаче было изложено в работах [8, 9], поэтому приведем здесь выражение для функционала $F[\mathbf{\Delta}]$, опустив подробные комментарии:

F

$$=F_v+F_s,\qquad(2)$$

$$F_v = \frac{1}{2} \int f_v(\mathbf{r}) \, dx \, dy \, dz, \qquad (3)$$

$$f_v = c_1 \mathbf{\Delta}^2 + c_2 v_F^2 \left(\frac{\partial \mathbf{\Delta}}{\partial \mathbf{r}}\right)^2 + c_2 \mathbf{\Delta}^4, \qquad (4)$$

$$F_{s} = \frac{\nu}{4} \int dy \, dz \left(\boldsymbol{\Delta}^{2}(l, y, z) + \boldsymbol{\Delta}^{2}(-l, y, z) \right) + \\ + \frac{A}{2} \int dy \, dz \left(\eta(l, y, z) \mathbf{m}(l, y, z) \boldsymbol{\Delta}(l, y, z) + \\ + \eta(-l, y, z) \mathbf{m}(-l, y, z) \boldsymbol{\Delta}(-l, y, z) \right), \quad (5)$$

пределы интегрирования соответствуют размерам прослойки и были обозначены выше, значения аргумента $x = \pm l$ в формуле (5) означают, соответственно, правую и левую поверхности раздела. Величины F_v и F_s имеют смысл объемной и поверхностной частей полного термодинамического потенциала. Коэффициенты c_1, c_2, ν и A приведены в [9,10] и рассчитаны ранее (см., например, [10]). Всюду далее $c_1, c_2 > 0, \nu < 0, A > 0,$ что соответствует $A\Phi$ М-обмену на границе раздела Fe/Cr. Параметр A пропорционален намагниченности Φ М-слоя, величину которой будем считать постоянной по объему каждой из обкладок, но ее ориентация $\mathbf{m}(\pm l, y, z)$ ($|\mathbf{m}| = 1$), вообще говоря, есть функция координат. Величина v_F есть проекция на направление роста структуры \mathbf{n}_x скорости электронов на плоских участках поверхности Ферми хрома, ответственных за формирование ВСП в модели октаэдров [11].

Разложение (3), (4) справедливо, строго говоря, почти во всей области |x| < l за исключением участков АФМ-прослойки шириной порядка ξ_0 вблизи границ раздела, где локальное приближение (2) для функционала $F[\Delta]$ некорректно. Тонкие детали зарядового и спинового перераспределений на таких масштабах в нашем подходе не описываются, они могут считаться уже учтенными в коэффициентах ν и А. Линейное по Δ («обменное») слагаемое в (5) прямо связано с обменным взаимодействием между спинами ФМ-обкладок и АФМ-прослойки. Квадратичное по **Δ** («кулоновское») слагаемое в (5) обусловлено перетеканием заряда между слоями различных металлов (Fe и Cr) и появлением в силу этого контактной разности потенциалов между ФМ- и АФМ-слоями. Согласно приведенным в [8,9] оценкам, «кулоновское» слагаемое доминирует над «обменным» в широкой области температур $T > T_N$ и определяет характерную температуру T₀ формирования ближнего АФМ-порядка, а также амплитуду ВСП, которая индуцируется благодаря увеличению электронной спиновой восприимчивости в прослойке вблизи интерфейса. Соотношение $\xi/D = \operatorname{th}(l/\xi)$ (где $\xi = v_F \sqrt{c_2/c_1}$ — антиферромагнитная корреляционная длина, $D = 2c_2 v_F^2 / |\nu|$ — пространственный масштаб, связанный с перераспределением зарядовой плотности вблизи интерфейса) дает зависимость критической температуры $T_0(L)$ от толщины прослойки. Эта зависимость неплохо согласуется с реальной фазовой диаграммой для структуры Fe/Cr(001) [1,2]. Кроме того, не возникает затруднений при интерпретации с помощью нашей модели изменения величин критических температур T_0 и T_N с введением легирующей примеси в прослойку Cr [12].

Несмотря на относительно малую роль в формировании амплитуды ВСП, «обменное» слагаемое в значительной мере определяет детали пространственной зависимости ВСП и ее ориентацию по отношению к намагниченности $S\mathbf{m}(\pm l, y, z)$ в ФМ-обкладках. Роль данного слагаемого становится весьма важной при описании слоистой структуры с неидеально гладкими (шероховатыми) поверхностями раздела, вблизи которых неизбежны как мелко-, так и крупномасштабные флуктуации зарядового и обменного потенциалов. Усреднение по мелкомасштабным флуктуациям можно, в принципе, провести в рамках стандартной модели взаимодействия ВСП с точечными примесями [10, 11], но учет влияния крупномасштабных флуктуаций представляет более сложную проблему. Из экспериментов [4] выяснилось, что коротковолновая (с периодом в два монослоя) составляющая магнитной связи между слоями Fe существенным образом определяется компактными областями прослойки Cr постоянной толщины с характерным размером вдоль интерфейса, превышающим 3-4 нм. Действительно, обменный вклад в поверхностную энергию F_s структуры с идеально плоскими границами, в отличие от кулоновского вклада, резко меняется по знаку при изменении толщины прослойки всего на один монослой [1-3]. Такая зависимость энергии от четности или нечетности числа N монослоев в прослойке позволяет сравнительно простым образом моделировать длинноволновые флуктуации толщины прослойки для структуры с шероховатыми поверхностями раздела, вводя в выражение (5) случайные множители $\eta(\pm l, y, z)$. Представим поверхность раздела в форме идеально гладких террас, в области которых η имеет постоянное значение +1 или -1; границами между соседними террасами являются ступеньки атомной высоты — при переходе через любую из них η меняет знак на противоположный. Ступеньки случайным образом распределены на плоскости уг, но ориентированы строго вдоль осей \mathbf{n}_y и \mathbf{n}_z , которые совпадают с осями легкого намагничивания структуры Fe/Cr(100) с объемно-центрированной кубической решеткой. Это положение согласуется с эмпирическими данными по морфологии Fe/Cr(100)-интерфейсов [4].

Ранее [9] нами был проведен самосогласованный расчет термодинамически равновесных состояний функционала (2)-(5) в температурной области $T > T_N$ как для случая идеально плоских границ радела, так и для случая изолированных моноступенек. В первом случае вектор поляризации ВСП в прослойке Cr и магнитные моменты обеих Fe-обкладок всегда лежат в одной плоскости (например, в плоскости xz), иными словами, предпочтительно коллинеарное состояние. Во втором случае концентрация моноступенек предполагалась предельно малой, так чтобы можно было пренебречь вкладом индуцируемых этими неоднородностями поперечных (по отношению к направлению \mathbf{n}_x) деформаций ВСП в полную энергию системы. Было показано, что такого рода флуктуации толщины прослойки ведут к возникновению неколлинеарной конфигурации магнитных моментов обкладок.

В настоящей работе мы обобщим полученные ранее результаты на случай сравнительно тонкой прослойки ($\xi_0 < l \ll \xi(T)$) при произвольной концентрации моноступенек в плоскости yz.

Нахождение равновесных трехмерных конфигураций системы, описываемой функционалом (2)-(5), — дело в общем случае крайне сложное, если не безнадежное. Поэтому придется сделать ряд допущений, позволяющих упростить проблему до приемлемого уровня и одновременно сохранить физический смысл получаемых результатов. Речь пойдет только о компланарных магнитных конфигурациях, когда векторы $\Delta(\mathbf{r})$ и $\mathbf{m}(\pm l, y, z)$ лежат в плоскости интерфейсов. В первую очередь нас интересует предел толстых обкладок, когда каждую из них можно считать однородно намагниченной, т.е. $\mathbf{m}(\pm l, y, z) = \mathbf{m}(\pm l)$, хотя при этом в общем случае $\mathbf{m}(l) \neq \pm \mathbf{m}(-l)$. Обратим внимание, что в отсутствие обменного взаимодействия на границах раздела (A = 0) имеется точное описание основного состояния системы в виде скалярной ВСП с одномерной симметричной огибающей $\Delta(\mathbf{r}) = \Delta_+(x)$ [9]. Включение слабого обмена $(A \ll 1)$ может повлиять на структуру и параметры основного состояния системы с идеально гладкими поверхностями раздела только в случае толстых прослоек (l > D) или (и) при достаточно высоких температурах $T > T_0$; в области $\{l < D, T < T_0\}$ имеется лишь малая поправка, пропорциональная A^2 , к величине $\Delta_+(x)$. Поэтому в дальнейшем при анализе структуры Fe/Cr с шероховатыми границами мы ограничимся той областью толщин и температур $\{l < D, T < T_0\},\$ где можно считать амплитуду ВСП не зависящей от А и почти постоянной по всей толщине прослойки |x| < l величиной, равной [9]

$$\Delta(\mathbf{r}) = \Delta_{+}(x) = \frac{v_F}{\sqrt{2}} \left(\frac{1}{lD} - \frac{1}{\xi^2}\right)^{1/2}, \quad l/D \ll 1.$$
(6)

С другой стороны, как уже говорилось выше, ориентация ВСП весьма чувствительна к вызванным флуктуациями толщины прослойки скачкам обменного потенциала. В используемом приближении изменение поперечных координат y, z сопровождается по всей толщине прослойки лишь поворотом вектора $\Delta(\mathbf{r})$ (1) без изменения его модуля. Термодинамический потенциал (2)–(5) сводится к эффективному однопараметрическому функционалу для статических ориентационных флуктуаций ВСП, а именно:

$$F = F_A + F_\phi, \tag{7}$$

$$F_A = -c_2 v_F^4 / 4l D^2, (8)$$

Рис.1. Схематическое изображение геометрической и магнитной структур тройного слоя Fe/Cr/Fe(001) вблизи моноступеньки. Большие («объемные») стрелки показывают ориентацию магнитных моментов ФМ-обкладок. Ряды маленьких тонких стрелок иллюстрируют изменение направления локальной намагниченности в АФМ-прослойке. Зависимость угла вектора поляризации ВСП $\phi(z)$ качественно представлена в нижней части рисунка для случая широких террас. Все векторы лежат в плоскости yz

$$F_{\phi} = lc_2 v_F^2 \Delta^2 \int_{\{total\}} dy \, dz \left(\left(\frac{\partial \phi}{\partial y} \right)^2 + \left(\frac{\partial \phi}{\partial z} \right)^2 \right) - A\Delta \left[\cos \left(\frac{\psi}{2} \right) \int_{\{odd\}} dy \, dz \cos \phi + \sin \left(\frac{\psi}{2} \right) \int_{\{even\}} dy \, dz \sin \phi \right].$$
(9)

Здесь F_A — не зависящая от угла поворота векто-

ра ВСП $\phi = \phi(y, z)$ часть функционала, функция $\phi(y, z)$ введена следующим образом:

$$\Delta_x(r) = 0, \quad \Delta_z(r) = -\Delta \cos \phi(y, z), \Delta_y(r) = -\Delta \sin \phi(y, z),$$
(10)

где величина Δ имеет значение (6). Вектор $\mathbf{m}(\pm l)$ задается в виде

$$m_x(\pm l) = 0, \quad m_y(\pm l) = \pm \sin\left(\frac{\psi}{2}\right),$$

$$m_z(\pm l) = \cos\left(\frac{\psi}{2}\right),$$

(11)

где ψ — угол между направлениями намагниченностей в ФМ-обкладках. В формуле (9) в первом слагаемом интегрирование осуществляется по всей плоскости интерфейсов, во втором и в третьем — по фрагментам интерфейсов, отвечающим сечениям соответственно с нечетным и четным числом N монослоев хрома в прослойке. Схематическое изображение геометрической и магнитной структур тройного слоя Fe/Cr/Fe(001) вблизи моноступеньки представлено на рис. 1.

3. СТРУКТУРА БЛИЖНЕГО АНТИФЕРРОМАГНИТНОГО ПОРЯДКА ПРИ ПРОИЗВОЛЬНОЙ КОНЦЕНТРАЦИИ МОНОСТУПЕНЕК

Несложно записать уравнения минимизации функционала (7)–(9). Однако даже если бы можно было построить их точные решения для заданной конфигурации $\eta(\pm l, y, z)$, определяющей границы между фрагментами с четным и нечетным N, то провести усреднение межслоевой обменной связи по случайному распределению { $\eta(\pm l, y, z)$ } является задачей практически невыполнимой. Сделаем дополнительные упрощающие предположения. Пусть, во-первых, один из интерфейсов будет идеально гладким, во-вторых, предположим, что толщина прослойки меняется только вдоль одного направления \mathbf{n}_z , в-третьих, эти изменения периодические, а именно, если

то

$$n(l_o + l_e) < z < l_o + n(l_o + l_e),$$

 $\eta(-l, y, z) = 1, \quad \eta(l, y, z) = 1,$

если

 $l_o + n(l_o + l_e) < z < n(l_o + l_e),$

то

$$\eta(l, y, z) = -1,$$

где n — целое число, l_o и l_e — длины фрагментов соответственно с нечетным и четным N. Данные предположения позволяют сделать задачу одномерной, ограничить изменение аргумента отрезком $-l_e \leq z \leq l_o$, а изменение функции $\phi(z)$ — интервалом $0 < \phi < \pi/2$; роль флуктуирующих величин играют при этом длины l_o и l_e . Заметим, что если бы шероховатыми оставались обе границы, то пределы изменения угла ϕ были бы, вообще говоря, иными.

Вариация функционала F_{ϕ} (9) приводит к уравнениям синус-Гордона:

$$\frac{d^2\phi}{dz^2} - \frac{\sin\phi}{\zeta_o^2} = 0, \quad \frac{d^2\phi}{dz^2} + \frac{\cos\phi}{\zeta_e^2} = 0, \quad (12)$$

первое из которых описывает поведение угловой фазы $\phi(z)$ параметра порядка для фрагментов прослойки с нечетным N, второе — с четным N, а также к условию непрерывности производной $d\phi/dz$ на границах этих фрагментов, которое мы дополним естественным требованием непрерывности самой функции $\phi(z)$, имеющей период $l_o + l_e$. Здесь введены обозначения

$$\zeta^{2} = \frac{2lc_{2}v_{F}^{2}\Delta}{A}, \quad \left(\frac{\zeta}{\zeta_{o}}\right)^{2} = \cos\left(\frac{\psi}{2}\right), \\ \left(\frac{\zeta}{\zeta_{e}}\right)^{2} = \sin\left(\frac{\psi}{2}\right).$$
(13)

Величину ζ назовем «угловой» корреляционной длиной (в отличие от «амплитудной» корреляционной длины ξ), она является определяющей характеристикой ориентационных флуктуаций ВСП для тонкой АФМ-прослойки в структуре Fe/Cr/Fe с толстыми обкладками.

Решения уравнений (13) имеют вид

$$\phi(z) = \begin{cases} 2 \arcsin\left[\operatorname{dn}\left(\frac{z+z_o}{\zeta_o}, k_o\right)\right], & 0 \le z \le l_o, \\ \frac{\pi}{2} - 2 \arcsin\left[\operatorname{dn}\left(\frac{z-z_e}{\zeta_e}, k_e\right)\right], & -l_e \le z \le 0, \end{cases}$$
(14)

где dn — эллиптическая функция Якоби с модулем k. Граничные условия определяют неизвестные параметры решений $\{z_o, z_e, k_o, k_e\}$ через следующую систему уравнений:

$$\frac{2z_o + l_o}{\zeta_o} = 2K(k_o), \quad \frac{2z_e + l_e}{\zeta_e} = 2K(k_e),$$

$$k_o k_e \operatorname{cn}\left(\frac{l_o}{2\zeta_o}, k_o\right) \operatorname{cn}\left(\frac{l_e}{2\zeta_e}, k_e\right) - \tag{15}$$

$$-\frac{1}{\sqrt{2}} \operatorname{dn}\left(\frac{l_o}{2\zeta_o}, k_o\right) \operatorname{dn}\left(\frac{l_e}{2\zeta_e}, k_e\right) = k'_o k'_e,$$

$$\frac{k_o k'_o}{\zeta_o} \frac{\operatorname{sn}\left(\frac{l_o}{2\zeta_o}, k_o\right)}{\operatorname{dn}\left(\frac{l_o}{2\zeta_o}, k_o\right)} = \frac{k_e k'_e}{\zeta_e} \frac{\operatorname{sn}\left(\frac{l_e}{2\zeta_e}, k_e\right)}{\operatorname{dn}\left(\frac{l_e}{2\zeta_e}, k_e\right)}, \qquad (16)$$

где sn и dn — также эллиптические функции Якоби, K(k) — полный эллиптический интеграл первого рода, $k' = \sqrt{1 - k^2}$ — дополнительный модуль [13].

Уравнения (14)–(16) полностью определяют распределение спиновой плотности в прослойке при заданных значениях $\{l_o, l_e\}$ и ψ . Теперь важно понять, шероховатости какого масштаба R вносят основной вклад в интенсивность межслоевого взаимодействия, иными словами, необходимо найти оптимальные значения l_o, l_e и соответствующий им угол ψ_0 .

В пределе широких террас $(l_o, l_e \gg \zeta_o, \zeta_e$ и $k_o, k_e \rightarrow 1$) ВСП почти во всей прослойке имеет постоянную фазу ϕ , равную 0 при нечетном N и $\pi/2$ при четном N, и перестраивается вблизи редких моноступенек с образованием тонких доменных стенок на масштабе угловой корреляционной длины ζ . Такое состояние можно рассматривать как решетку независимых топологических кинков вида

$$\phi(z) = \begin{cases} 2 \arcsin\left[\operatorname{sech}\left(\frac{z+z_o}{\zeta_o}\right)\right], & z > 0, \\ \frac{\pi}{2} - 2 \arcsin\left[\operatorname{sech}\left(\frac{z_e-z}{\zeta_e}, k_e\right)\right], & z < 0, \end{cases}$$
(17)
$$\operatorname{sh}\left(\frac{z_o}{\zeta_o}\right) = 1 + \sqrt{2\operatorname{ctg}\left(\frac{\psi}{2}\right)}, \\ \operatorname{sh}\left(\frac{z_e}{\zeta_e}\right) = 1 + \sqrt{2\operatorname{tg}\left(\frac{\psi}{2}\right)}, \end{cases}$$

каждый из которых несет топологический заряд Q = 1/4 [14]. Размер области неоднородной поляризации ВСП ζ (13) является характеристикой структуры Fe/Cr. Параметры «сшивки» решения (17) зависят только от значения ψ ; отклонение угла ψ от $\pi/2$ ведет к сдвигу «центра тяжести» («перекосу») доменной стенки (17) относительно точки z = 0. Именно в том пределе, когда вклад доменных стенок в полную энергию системы пренебрежимо мал, в работе [9] была рассчитана энергия эффективного обмена и было обосновано существование неколлинеарных состояний в структурах Fe/Cr с углом ψ_0 (таким, что $\cos(\psi_0/2) = l_o/\sqrt{l_o^2 + l_e^2}$) между моментами ФМ-обкладок.

Наш подход принципиально отличается от предложенного Слончевским в известной торсионной модели (или модели близости) [15], которая была применена Фишманом [16] к системам типа Fe/Cr. В [16] для объяснения неколлинеарности намагниченности соседних ФМ-слоев вводилось сильное обменное взаимодействие на границе между компонентами мультиструктуры, которое влечет разделение АФМ-прослойки вдоль моноступеньки на домены с геликоидальной конфигурацией ВСП противоположной ориентации. Однако оценки на основе зонной теории АФМ с ВСП дают малую величину обмена ($A \ll 1$) для мультислоев Fe/Cr [7,8] и, как

следствие, состояние с геликоидальной структурой ВСП энергетически менее выгодно в них, чем состояние (14) [9]. Характерно, что в случае широких террас, когда реализуется состояние (17), угол между моментами железных обкладок и приграничных монослоев хрома отнюдь не равен 180°. Например, при $l_o = l_e$, когда $\psi_0 = 90^\circ$, вдали от доменной стенки этот угол составляет 135°, т.е. обменные связи на интерфейсе частично фрустрированы (см. рис. 1). Ниже мы вычислим энергию обменной связи между соседними ФМ-слоями для случая произвольной концентрации моноступенек.

4. ЭНЕРГИЯ ОБМЕННОЙ СВЯЗИ МЕЖДУ СОСЕДНИМИ ФЕРРОМАГНИТНЫМИ СЛОЯМИ

Оставим в силе сделанные выше предположения относительно морфологии границ раздела. Подставляя в термодинамический потенциал (9) функции (14) и проводя интегрирование, получим выражение для зависящей от угла ψ составляющей полной энергии системы (энергии эффективного обмена) в расчете на единицу площади поверхности раздела $(2l_{\perp})^2$:

$$E(\psi) = -A\Delta \left[\Lambda \cos\left(\frac{\psi}{2}\right) + (1-\Lambda)\sin\left(\frac{\psi}{2}\right) + 2\left(\Lambda(k'_0)^2 \cos\left(\frac{\psi}{2}\right) + (1-\Lambda)(k'_e)^2 \sin\left(\frac{\psi}{2}\right)\right) - 4\left[\Lambda \frac{\zeta_o}{l_o} \cos\left(\frac{\psi}{2}\right) \left(E\left(\frac{l_o}{\zeta_o},k_o\right) - k_o^2 \sin\left(\frac{l_o}{\zeta_o},k_o\right) \operatorname{cd}^2\left(\frac{l_o}{2\zeta_o},k_o\right)\right) + (1-\Lambda)\frac{\zeta_e}{l_e} \sin\left(\frac{\psi}{2}\right) \left(E\left(\frac{l_e}{\zeta_e},k_e\right) - k_e^2 \sin\left(\frac{l_e}{\zeta_e},k_e\right) \operatorname{cd}^2\left(\frac{l_e}{2\zeta_e},k_e\right)\right)\right], \quad (18)$$

где

$$\Lambda = \frac{l_o}{l_o + l_e}, \quad 1 - \Lambda = \frac{l_e}{l_o + l_e}$$

E(u, k) — неполный эллиптический интеграл второго рода [13]. Здесь в процессе преобразований мы исключили параметры z_o , z_e , воспользовавшись уравнениями (15), оставшиеся в $E(\psi)$ (18) параметры k_o , k_e вычисляются из пары уравнений (16).

Зависимость (18) удается упростить только в предельных ситуациях. Для случая почти изолированных моноступенек, не приводя длинных промежуточных выкладок, представим окончательный результат:

$$E(\psi) = -A\Delta \left(\Lambda \cos\left(\frac{\psi}{2}\right) + (1 - \Lambda)\sin\left(\frac{\psi}{2}\right)\right) + 4A\Delta\zeta\rho \left(\sqrt{\cos\left(\frac{\psi}{2}\right)} + \sqrt{\sin\left(\frac{\psi}{2}\right)} - \sqrt{\cos\left(\frac{\psi}{2}\right) + \sqrt{\sin\psi} + \sin\left(\frac{\psi}{2}\right)}\right), \quad (19)$$

справедливый при выполнении условия

$$\frac{l_o}{\zeta_o} \gg 1, \quad \frac{l_e}{\zeta_e} \gg 1,$$

иными словами, при хорошем качестве поверхности раздела и при углах ψ , не слишком близких к 0 или π (см. (13)). Первый член в зависимости энергии обмена от угла ψ (19) совпадает с выражением, полученным ранее в [9], второй (поправочный в меру $\zeta \rho \ll 1$) есть положительная энергия уединенной 90-градусной доменной стенки (17) в хроме, умноженная на линейную концентрацию моноступенек $\rho = 2/(l_o + l_e)$. Следующим малым слагаемым, пропорциональным

$$(k'_{o,e})^2 \propto \exp(-l_{o,e}/\zeta_{o,e}),$$

связанным с перекрытием хвостов соседних доменных стенок, мы пренебрегли. Любопытно отметить, что поскольку $\zeta \sim \sqrt{\Delta}$ (13), условие применимости приближения широких террас несколько улучшается при повышении температуры или при уменьшении толщины АФМ-слоя, хотя величина взаимодействия (19) при этом, конечно, сама по себе убывает:

$$|E(\psi)| \propto A\Delta$$
.

Таким образом, при обработке экспериментальных данных для эффективной связи в структурах Fe/Cr с хорошим качеством интерфейсов и с толстыми слоями железа можно было бы воспользоваться формулой (19).

В пределе близко расположенных моноступенек фаза ВСП $\phi(z)$ в прослойке испытывает слабые осцилляции вблизи угла $\phi(0)$:

$$\phi(z) = \phi(0) + \delta(z), \quad |\delta| \propto (\rho\zeta)^{-2},$$

$$\phi(0) = 2 \arcsin\left(\sqrt{\frac{1}{2}\left(1 - \left(1 + \left(\frac{l_e}{l_o} \operatorname{tg}\left(\frac{\psi}{2}\right)\right)^2\right)^{-1/2}\right)}\right).$$

Во втором порядке малости по отношению $(l_{o,e}/\zeta) \ll$ $\ll 1$ (громоздкие вычисления опускаем) получим

$$E(\psi) =$$

$$= -\frac{A\Delta}{2} \left[1 + (2\Lambda - 1)^2 + 2(2\Lambda - 1)\cos\psi \right]^{1/2} -$$

$$- \frac{A\Delta}{6\zeta^2 \rho^2} \left[\left(\Lambda\cos\left(\frac{\psi}{2}\right) \right)^{-2} + \left((1 - \Lambda)\sin\left(\frac{\psi}{2}\right) \right)^{-2} \right]^{-1}.$$
 (20)

Если рельеф границы раздела представляет собой плоскость с отдельными узкими холмиками атомной высоты (для последних считаем $(\zeta \rho)^2 \gg 1$ и, для определенности, $l_o \gg l_e$, или $\Lambda \to 1$), то в (20) доминирует первое слагаемое и магнитные моменты соседних ФМ-обкладок в структуре Fe/Cr в равновесном состоянии параллельны друг другу $(\psi = 0)$. При $l_o \ll l_e$, или $\Lambda \to 0$, естественно, получаем $\psi = \pi/2$, т. е. магнитные моменты соседних ФМ-обкладок антипараллельны друг другу.

Более интересна, однако, ситуация сильно шероховатого (изрезанного моноатомными ступеньками) интерфейса Fe/Cr, когда интегральная характеристика флуктуаций толщины прослойки $\Lambda \approx 1/2$ (или $l_o \approx l_e$). В том случае, если

$$2\sqrt{6} |2\Lambda - 1|\zeta \rho \ll 1,$$

зависимость энергии межслоевой магнитной связи от угла ψ (20) принимает вид, соответствующий эффективному обмену с «биквадратичным» взаимодействием [1–3]:

$$E(\psi) - E(\pi/2) = J_1 \cos \psi + J_2 \cos^2 \psi, \qquad (21)$$
$$J_1 = -A\Delta \left(\Lambda - \frac{1}{2}\right), \quad J_2 = \frac{A\Delta}{96\rho^2 \zeta^2},$$
$$E\left(\frac{\pi}{2}\right) = -\frac{A\Delta}{2} - J_2.$$

Полученные коэффициенты межслоевого взаимодействия (21) имеют довольно простую форму, поэтому несложно дать оценки их зависимости от толщины прослойки L и от температуры T. Примечательно, что $J_1(L,T) \sim \Delta(L,T)$, в то же время коэффициент J_2 не связан явным образом с амплитудой ВСП, поскольку $\zeta^2 \sim \Delta$. В этом смысле поведение коэффициента биквадратичной связи $J_2(L,T) \sim (c_2(T)L)^{-1}$ носит универсальный характер, не зависящий от конкретной модельной формы $\Delta = \Delta(L,T)$ (например, (6)) АФМ-параметра порядка в тонкой прослойке хрома.

Рис.2. Угловая зависимость энергии эффективной межслоевой связи $E(\psi)$ при $\Lambda = 1/2$ (*a*) и $\Lambda = 1/4$ (б) для различных значений $(\rho\zeta)^{-1}$. Угол ψ измеряется в радианах, энергия — в безразмерных единицах $E = E(\psi)/A\Delta$. Сплошные кривые получены с помощью численного анализа точных формул (18) и (16), точечные кривые рассчитаны по приближенной формуле (19) при $(\rho\zeta)^{-1} = 8$ (*a*) и $(\rho\zeta)^{-1} = 16$ (б)

Реализующееся при условии $|J_1| < 2J_2$ равновесное неколлинеарное состояние имеет угол между моментами ФМ-обкладок, который зависит от параметров морфологии интерфейса:

$$\cos\psi_0 = 24(2\Lambda - 1)\rho^2\zeta^2,$$

при этом

$$E(\psi_0) - E(\pi/2) = -6A\Delta(2\Lambda - 1)^2 \rho^2 \zeta^2.$$

Если величина

$$24(2\Lambda - 1)\rho^2\zeta^2 \rightarrow 0$$

то моменты ФМ-обкладок выстраиваются перпендикулярно друг другу ($\psi_0 = \pi/2$) и вектор поляризации ВСП практически не реагирует на флуктуации толщины прослойки ($\phi(z) \approx \pi/4$).

Из формулы (21) следует, что ухудшение технологического качества поверхности раздела $(\Lambda \to 1/2, (\rho \zeta)^2 \to \infty)$ должно приводить к заметному падению (по сравнению с характерной для предела широких террас величиной около $A\Delta$) величины межслоевой связи в структурах Fe/Cr. Данный вывод подтверждается также численным анализом зависимости $E(\psi)$ (18), который мы провели, одновременно решая уравнения (16) относительно k_o, k_e и меняя параметры шероховатости межслоевых границ ($\zeta \rho, \Lambda$) в широких пределах. На рис. 2а представлены результаты этих вычислений при $\Lambda = 1/2$ и $(\rho \zeta)^{-1} = 0.1, 1, 2, 3, 4, 8, \infty$; точечная кривая соответствует расчету по приближенной формуле (19) при $(\rho\zeta)^{-1} = 8$; показана только область 0 \leq ψ \leq $\pi/2$, поскольку при Λ = 1/2зависимость $E(\psi)$ симметрична относительно точки $\psi = \pi/2$. На рис. 26 отражена ситуация при $\Lambda = 1/4$ и $(\rho\zeta)^{-1} = 1, 2, 4, 8, 16, \infty$; точечная кривая соответствует расчету по приближенной формуле (19) при $(\rho\zeta)^{-1} = 16$; картина обменной связи $E(\psi)$ при $\Lambda = 3/4$ может быть легко получена зеркальным отражением рис. 26 относительно вертикальной оси с абсциссой $\psi = \pi/2$. Из рис. 26 видно, что при $\rho\zeta \geq 1/8$ функция $E(\psi)$ имеет только тривиальный минимум в точке $\psi = \pi$. Тенденция к переходу от неколлинеарной конфигурации ФМ-слоев к коллинеарной с ухудшением качества интерфейса является общей, если Λ ≠ 1/2. Сравнение семейств кривых $E(\psi)$, построенных при различных значениях параметра Л, показывает, что именно при $\Lambda = 1/2$ амплитуда осцилляций обменной связи является наименьшей, кроме того, она заметно падает с ростом беспорядка на границе. Однако уже при $\Lambda = 1/4$ амплитуда осцилляций обменной связи очень слабо зависит от величины $\rho\zeta$.

5. АЛЬТЕРНАТИВНЫЙ ПОДХОД: МОДЕЛЬ ФЕРРОМАГНИТНЫХ ДОМЕННЫХ СТЕНОК

Рассмотренная выше модель антиферромагнитных доменных стенок при ее использовании для описания магнитного упорядочения в некоторых реальных структурах имеет ряд ограничений как физического, так и геометрического характера. Так, в частности, мы предполагали, что ФМ-слои являются однородно намагниченными, и это предположение представляется разумным в случае их достаточно большой толщины. Однако, поскольку железо само по себе имеет конечную величину магнитной жесткости γ , в случае тонких ФМ-слоев может оказаться энергетически выгодным их разбиение на домены, что в свою очередь существенно меняет и структуру ВСП в прослойке хрома. Самосогласованно рассчитать распределение спиновой плотности во всей системе при произвольной толщине и геометрии слоев Fe и Cr не представляется возможным, поэтому ниже рассмотрим только ситуацию, в определенном смысле противоположную исследованной ранее и, по-видимому, более соответствующую пределу тонких ФМ-слоев. При этом, однако, следует четко определить, в какой конкретной геометрической, а не только магнитной, конфигурации проводится рассмотрение.

Обсудим, например, часто исследуемую в экспериментах асимметричную трехслойную систему, состоящую из тонкого («верхнего») и толстого («нижнего») ФМ-слоев железа, разделенных АФМ-прослойкой хрома. Сохраним сделанные выше в разд. 2 и 3 предположения о морфологии интерфейсов в системе Fe/Cr. Однако теперь постулируем, что параметр порядка в АФМ-прослойке имеет постоянное направление (соответствующее максимальному выигрышу в обменной энергии на «нижней» границе, которая считается абсолютно гладкой), а шероховатость «верхней» (при x = l) межфазной границы вызывает неоднородное перераспределение намагниченности в тонкой обкладке, вследствие чего последняя распадается вдоль моноступенек на ФМ-домены.

Если в прослойке существует однородно поляризованная ВСП с амплитудой $\Delta(\mathbf{r}) = -\mathbf{n}_z \Delta(x)$, то магнитные моменты «верхней» обкладки испытывают действие обменного поля $\pm \Delta(l)$, меняющего знак при переходе через моноступеньку. В результате ориентация вектора $\mathbf{m}(l, y, z)$ плавно меняется в ФМ-слое на характерной длине ζ , подстраиваясь под «внешнее» поле $\pm \Delta(l)$. В «нижней» обкладке намагниченность постоянна, и ее значение равно $\mathbf{m}(-l) = \mathbf{n}_z$. Термодинамический потенциал (2)–(5) теперь принимает вид следующего эффективного функционала:

$$F = F_A + F_{\varphi}, \tag{22}$$

10 ЖЭТФ, вып. 1

$$F_{\varphi} = d\gamma \int_{\{total\}} dy \, dz \left(\left(\frac{\partial \varphi}{\partial y} \right)^2 + \left(\frac{\partial \varphi}{\partial z} \right)^2 \right) - A\Delta \left[\int_{\{odd\}} dy \, dz \cos \varphi - \int_{\{even\}} dy \, dz \cos \varphi \right] - A\Delta (2l_{\perp})^2. \quad (23)$$

Заметим, что фигурирующие здесь энергия F_A и амплитуда ВСП Δ сводятся в исследуемом пределе $(l/D) \rightarrow 0$ к выражениям (8) и (6), соответственно. Величина F_{φ} есть функционал статических ориентационных флуктуаций намагниченности в «верхней» обкладке плюс обменная энергия на «нижней» границе железо-хром (последнее слагаемое). Функция $\varphi = \varphi(y, z)$ введена следующим образом:

$$m_x(l, y, z) = 0, \quad m_z(l, y, z) = \cos \varphi(y, z),$$

$$m_y(l, y, z) = \sin \varphi(y, z).$$
(24)

В приближении одномерной периодической структуры моноступенек на «верхнем» интерфейсе вариация функционала F_{φ} (23) приводит к уравнениям синус-Гордона

$$\frac{d^2\varphi}{dz^2} - \frac{\sin\varphi}{\zeta^2} = 0, \quad \frac{d^2\varphi}{dz^2} + \frac{\sin\varphi}{\zeta^2} = 0.$$
(25)

Первое и второе из этих соотношений описывают поведение угловой фазы $\varphi(z)$ намагниченности в тех частях ФМ-обкладки, которые граничат с фрагментами прослойки соответственно с нечетным и четным N. Введем также естественные требования непрерывности функции $\varphi(z)$ и ее производной $d\varphi/dz$ на моноступеньке. Величина ζ — корреляционная длина ориентационных флуктуаций намагниченности в слое железа толщиной d в структуре Fe/Cr — определена следующим образом:

$$\zeta^2 = \frac{2d\gamma}{A\Delta} \,. \tag{26}$$

Структура и энергия состояний функционала (22), (23) и их изменение с изменением параметров l_o/ζ , l_e/ζ могут быть получены и подробно исследованы аналогично тому, как это было сделано выше для функционала (9). Однако мы не будем детально останавливаться на данном вопросе, отметим только характерные особенности состояний.

В случае сравнительно малого расстояния между ступеньками $(l_o, l_e < \zeta)$ область изменения функции (25) ограничена интервалом $0 < \varphi(z) < \pi$. Как можно показать, при условии высокой плотности моноступенек $\rho^2 \zeta^2 \gg 1$ и $\Lambda \approx 1/2$ направление на-

магниченности ФМ-слоя слабо осциллирует вблизи среднего значения:

$$\varphi\left(\pm\frac{l_o}{2}\right) = \frac{\pi}{2} \mp \left(\frac{l_o}{4\zeta}\right)^2.$$
 (27)

Иными словами, намагниченность «верхнего» слоя железа практически целиком ориентируется под углом 90° к намагниченности «нижнего» слоя:

$$\langle m_y \rangle = 1, \quad \langle m_z \rangle = 0.$$

При этом энергия трислоя, приходящаяся на единицу площади интерфейса, равна

$$E = -A\Delta - \frac{A\Delta}{24\rho^2\zeta^2}.$$
 (28)

В пределе таких широких террас, что

$$k'_{o,e} \approx 2 \exp\left(-l_{o,e}/2\zeta\right) \to 0,$$

имеем иную картину. Вдали от моноступеньки намагниченность ориентирована почти антипараллельно спинам ближайшего прилегающего к границе раздела монослоя хрома. Для определенности примем $\varphi = 0$ при нечетном N и $\varphi = \pi$ при четном N; вблизи моноступеньки на масштабе угловой корреляционной длины ζ (26) вектор $\mathbf{m}(x = l, z)$ поворачивается на 180°. Такое состояние можно рассматривать как систему почти изолированных друг от друга топологических доменных стенок вида

$$\varphi(z) = \begin{cases} \operatorname{arcsin}\left[\operatorname{sech}\left(\frac{z+z_o}{\zeta}\right)\right], & z > 0, \\ \pi - \operatorname{arcsin}\left[\operatorname{sech}\left(\frac{z_e-z}{\zeta}\right)\right], & z < 0. \end{cases}$$
(29)

Условие «сшивки» этого решения при *z* = 0 выглядит следующим образом:

$$\operatorname{sh}\left(\frac{z_o}{\zeta}\right) = \operatorname{sh}\left(\frac{z_e}{\zeta}\right) = 1.$$
 (30)

Видно, что намагниченность «верхнего» ФМ-слоя $\mathbf{m}(x = l, z)$ (24) вблизи моноступеньки локально ориентируется неколлинеарным образом по отношению к однородной намагниченности «нижнего» слоя, поэтому уединенной доменной стенке (29), (30) можно приписать компоненту намагниченности вдоль оси \mathbf{n}_y :

$$\int_{-\infty}^{\infty} m_y(z) \, dz = 2\sqrt{2} \, \zeta. \tag{31}$$

Заменив в (25) угол $\varphi(z)$ на $\varphi(z) \pm \pi$, можно описать доменную стенку с противоположным (отрицательным) знаком намагниченности.

В случае предельно низкой плотности моноступенек, $\rho \zeta \rightarrow 0$, система представляет собой набор изолированных 180-градусных доменных стенок различного знака и обладает энергией

$$E = -2A\Delta \left(1 - 4\rho\zeta \left(1 - \frac{1}{\sqrt{2}} \right) \right).$$
 (32)

Если учесть экспоненциально малое, пропорциональное $\exp(-l_{o,e}/\zeta)$, взаимодействие соседних доменных стенок, то можно сделать заключение, что энергетически выгодной является магнитная структура с монотонно возрастающей (или убывающей) угловой функцией $\varphi(z)$, по форме подобной так называемой «чертовой лестнице». Для этой структуры характерно наличие широких (почти во всю ширину соответствующей террасы) плато с постоянным направлением намагниченности вдоль оси \mathbf{n}_z , а именно: $\varphi(z) = (2n+1)\pi$ для четного N и $\varphi(z) = 2n\pi$ для нечетного N, где n — целое число. Эти плато разделены строго чередующимися по знаку поляризации вдоль оси \mathbf{n}_{u} тонкими ферромагнитными доменными стенками. Поэтому усреднение по всей площади интерфейса дает

$$\langle m_z \rangle = 2\Lambda - 1, \quad \langle m_y \rangle = 0.$$

В общем случае, когда соотношения между параметрами модели не столь простые, например, когда $l_o < \zeta < l_e$ или, наоборот, $l_e < \zeta < l_o$, даже в рамках принятой здесь упрощенной схемы шероховатости границы раздела требуется трудоемкий анализ, выходящий далеко за рамки данной работы. Можно показать, что имеет место переход по параметрам $\rho\zeta$, Λ между двумя качественно различными режимами распределения намагниченности в тонкой ФМ-обкладке, кратко описанными выше соответственно в пределе $l_o, l_e \ll \zeta$ и в пределе $l_o, l_e \gg \zeta$.

Как уже отмечалось выше, расчеты в разд. 3 и 4 проводились в предположении о толщине «верхнего» ФМ-слоя, совершенно противоположном предположению, сделанному в разд. 5, поэтому сравнение выражений для энергий в моделях антиферромагнитных и ферромагнитных доменных стенок с точки зрения их относительной выгодности является некорректным. Более общее, чем представленное выше, теоретическое рассмотрение возможных магнитных конфигураций в системе при произвольном соотношении геометрических параметров слоев железа и хрома выходит за рамки одномерного приближения и его, к сожалению, пока не удалось провести. Тем не менее в Заключении мы попытаемся на основе уже полученных результатов сделать ряд выводов относительно характера эффективной межслоевой магнитной связи в реальных структурах с различной геометрией и качеством интерфейсов.

6. ЗАКЛЮЧЕНИЕ

Присутствие структурных дефектов на границе раздела между ФМ- и АФМ-слоями приводит как к фрустрации межслоевых обменных связей, так и к образованию неоднородных спиновых конфигураций внутри самих слоев. Это утверждение представляется справедливым для широкого класса магнитных наноструктур обсуждаемого типа (Fe/Cr, Co/Cr, Fe/Mn и т. п.), но требующим конкретизации механизмов образования неоднородности и фрустрации для каждой системы. В данной работе предложена теоретическая схема, учитывающая оба названных фактора и предназначенная для описания эффективной связи ФМ-слоев железа в структуре Fe/Cr, которую принято считать модельной и одной из наиболее перспективных для практического использования в устройствах сверхплотной магнитной записи.

Экспериментальные исследования магнитной конфигурации системы железо-хром даже в самой простой геометрии — будь то слой Cr на вискере Fe(001) [1,5] или же, наоборот, тонкая пленка Fe на массивном монокристалле Cr [17, 18] — обнаруживают высокую чувствительность этой конфигурации к структурным параметрам интерфейса и к изменению температуры. Магнитная связь между ФМ-слоями в более сложных Fe/Cr системах (тройные слои, сверхрешетки и т.п.) также является важным индикатором качества границ раздела, которое определяется технологией приготовления образцов. Для эпитаксиально выращенных на GaAs/Fe/Ag(001)-подложке симметричных тройных слоев Fe/Cr/Fe с клинообразной прослойкой и довольно толстыми (5 нм) обкладками Шмидт и соавторы [4] провели исследование межслоевой связи посредством магнитооптического эффекта Керра, а морфологии интерфейсов — методом сканирующей туннельной микроскопии (СТМ). Наблюдалось явное (в несколько раз) изменение амплитуды коротковолновой компоненты потенциала эффективного межслоевого обмена при варьировании температурного режима роста трислоев. С другой стороны, подробный статистический анализ СТМ-изображений фронта роста тех же структур позволил выявить прямую корреляцию между амплитудой коротковолновых осцилляций межслоевой связи и продольной характеристикой шероховатости интерфейсов (при этом значение Rв лучшем случае составляло около 22 нм). Было установлено, что в эффективном взаимодействии между ФМ-обкладками доминирующую роль играют особые области прослойки Сг постоянной толщины (т. е. N = const) и поперечным размером не менее 3–4 нм («pillars» по терминологии [4]), другие области прослойки («edges») с быстрыми монослойными флуктуациями толщины практически не участвуют в межслоевом взаимодействии.

Развитый в основной части нашей статьи подход по сути дела подводит теоретическую базу под эмпирические выводы работы [4]. Более строгое описание системы заключалось бы в самосогласованном (вообще говоря, трехмерном) расчете параметра порядка $\Delta(\mathbf{r})$ в случайном поле флуктуаций толщины прослойки с последующим усреднением по ним. Тем не менее даже простейшая модель морфологии границ раздела, использующая минимум параметров (Λ и ρζ), и аппроксимация магнитных неоднородностей одномерными вариациями вектора ВСП наподобие доменных стенок позволяют выявить основные особенности межслоевого взаимодействия. Из формул (19)-(21) и рис. 2а, б следует, что именно длинноволновые компоненты флуктуаций шероховатости должны были бы дать основной вклад в межслоевую связь. С другой стороны, также понятно, что этот вклад ограничен малым статистическим весом таких компонент. Следовательно, должна существовать оптимальная флуктуация с некоторой характерной длиной R_0 , которую вполне естественно связать с понятием «pillars» из работы [4].

Обратим внимание на то, что полученная выше зависимость (21) формально аналогична традиционной феноменологической модели с билинейным и биквадратичным слагаемыми. Можно предположить, что именно в тех структурах Fe/Cr, которые выращены в оптимизированном режиме, следует ожидать отклонений в поведении межслоевой связи от (21) в сторону (19). Авторы работы [19] утверждают, что биквадратичная модель не способна объяснить наблюдаемую ими в гистерезисе намагниченности остаточную 50-градусную связь между соседними Φ M-слоями в сверхрешетке [Fe(52 Å)/Cr(17 Å)], имеющей интерфейсы с довольно широкими террасами $R \geq 100$ Å. Многие другие опытные факты (см., например, [6, 12, 20] и дискуссию в обзоре [3]) также не поддаются удовлетворительной интерпретации в рамках биквадратичной модели. По нашим грубым оценкам длина ζ , на которой меняется направление вектора ВСП в прослойке хрома, составляет около 1–5 нм, поэтому можно ожидать обнаружения близкой к (19) зависимости $E(\psi)$ в экспериментах на выращенных послойной эпитаксией тройных слоях. При ухудшении качества интерфейсов (в нашей схеме это означает $\Lambda \to 1/2$, $\rho \alpha \to \infty$) вероятность появления достаточно широких областей прослойки с N = const становится пренебрежимо малой и межслоевая связь принимает традиционную форму (21).

Обсудим кратко зависимость межслоевого взаимодействия от толщины прослойки и температуры. В работе [20] экспериментальные результаты керровской магнитометрии и бриллюэновского рассеяния света на симметричных тройных структурах Fe(100 Å)/Cr(0-20 Å)/Fe(100 Å) с довольно толстыми обкладками обрабатывались на основе билинейно-биквадратичной модели. Отметим, что авторы [20], предполагая слабое искажение магнитной структуры хрома в прослойке и считая обкладки железа однородно намагниченными, на основе качественных оценок обосновали эту модель и получили угловую зависимость энергии межслоевой связи, которая фактически совпадает с полученной нами в пределе $\zeta \rho \ll 1$ и $\Lambda \approx 1/2$ формулой (21). Экспериментально было показано, что величина параметра биквадратичного взаимодействия убывает обратно пропорционально толщине прослойки и уменьшается линейно с ростом температуры в интервале 77–473 К. Такое поведение величины $J_2(L,T)$ неплохо согласуется с предсказанной нами в разд. 4 оценкой $J_2(L,T) \sim (c_2(T)L)^{-1}$ (зависимость коэффициента $c_2(T)$ можно найти, например, в [10]).

В структурах с тонкими (не более 20 Å) слоями железа и при очень высоком качестве интерфейсов Fe/Cr, когда применимо представление о почти изолированных моноступеньках, состояние со 180-градусной ферромагнитной доменной стенкой, описываемое формулами (29), (30), оказывается, судя по всему, наиболее выгодным по энергии. Именно это состояние непосредственно наблюдалось в известных экспериментах по сканирующей электронной микроскопии с поляризационным анализом в уникальных структурах, выращенных на толстом слое железа (вискере) по оптимальной технологии [1]. Поверхность вискера является практически идеально гладкой ($\rho \approx 1$ мкм⁻¹). Использование прослойки Cr клинообразной формы позволяет (в пределах одного образца) искусственным образом сформировать на границе хрома с тонкой пленкой железа последовательность очень широких ($l_o = l_e = R = 10$ мкм) и почти идеально плоских террас правильной формы, покрывающих фрагменты прослойки с различным числом монослоев хрома N. В соответствии с результатами разд. 5 при межслоевой магнитной связи по механизму 180-градусных ферромагнитных доменных стенок лишь в узкой области (порядка ζ) намагниченность тонкого слоя Fe неколлинеарно ориентирована относительно намагниченности вискера. Авторы обзора [1] отмечают, что неколлинеарная связь между ФМ-слоями резко уменьшается при толщине прослойки хрома, близкой к 24 монослоям, т.е. когда имеет место проскальзывание фазы (phase slip) межслоевой связи. Наш подход позволяет предположить, что отмеченный факт связан со сложной перестройкой пространственной структуры ВСП в прослойке хрома при вариации ее толщины L = 2l, о чем ранее уже шла речь в работе [21]. Эта перестройка, естественно, приводит к изменению амплитуды ВСП на границе Fe/Cr, которая в свою очередь определяет согласно формуле (26), масштаб $\zeta \sim \Delta(l)^{-1/2}$ ориентационных флуктуаций намагниченности в слое железа.

Отметим в заключение, что зависимость $E(\psi)$, похожая на (19) при $\Lambda \equiv 1/2$ и $\zeta \rho \equiv 0$, была получена в работе [22] с использованием совершенно иной, чем наша, микроскопической модели.

По нашему мнению, в большинстве экспериментов, как на тройных слоях Fe/Cr/Fe(001), так и на сверхрешетках [Fe/Cr](001), эффективная обменная связь осуществляется из-за изменения ориентации вектора ВСП в прослойке хрома, как описано выше в разд. 3 и 4. Ситуацию с возникновением 180-градусных ферромагнитных доменных стенок, рассмотренную в разд. 5, следует скорее считать исключением, чем правилом. Грубая качественная оценка той области параметров нашей модели, где реализуется состояние с неоднородной намагниченностью слоев железа, дается соотношением $d\gamma < \delta L$, где величину $\delta = c_2 v_F^2 \Delta^2/2$ естественно назвать обменной жесткостью тонкого слоя хрома.

Авторы выражают благодарность Ю. В. Копаеву и участникам руководимого им семинара в Физическом институте им. П. Н. Лебедева РАН за обсуждение результатов работы, а также Н. М. Крейнес и Д. И. Холину за подробное разъяснение экспериментальной ситуации.

Работа выполнена при частичной финансовой поддержке РФФИ (проект № 01-02-16175).

ЛИТЕРАТУРА

- D. T. Pierce, J. Unguris, R. J. Celotta, and M. D. Stiles, J. Magn. Magn. Mater. 200, 290 (1999).
- 2. H. Zabel, J. Phys.: Cond. Matt. 11, 9303 (1999).
- 3. R. S. Fishman, J. Phys.: Cond. Matt. 13, R235 (2001).
- 4. C. M. Schmidt, D. E. Burgler, D. M. Schaller, F. Meisinger, and H.-J. Guntherodt, Phys. Rev. B 60, 4158 (1999).
- D. T. Pierce, J. A. Stroscio, J. Unguris, and R. J. Celotta, Phys. Rev. B 49, 14564 (1994).
- B. Heinrich, J. F. Cohran, T. Monchesky, and R. Urban, Phys. Rev. B 59, 14520 (1999).
- 7. M. Avignon, V. Men'shov, and V. Tugushev, Europhys. Lett. 56, 132 (2001).
- В. Н. Меньшов, В. В. Тугушев, ЖЭТФ 120, 899 (2001).
- В. Н. Меньшов, В. В. Тугушев, ЖЭТФ 122, 1044 (2002).
- 10. V. V. Tugushev, in *Electronic Phase Transitions*, ed. by W. Hanke and Yu. V. Kopaev, Modern Problems in Condensed Matter Sciences, Vol. 32, North Holland, Amsterdam (1992), p. 239.

- 11. Н. И. Куликов, В. В. Тугушев, УФН 144, 643 (1984).
- E. E. Fullerton, C. H. Sowers, and S. D. Bader, Phys. Rev. B 56, 5468 (1997).
- Справочник по специальным функциям, под. ред. М. Абрамовица и И. Стиган, Наука, Москва (1979), с. 1.
- 14. Р. Раджараман, Солитоны и инстантоны в квантовой теории поля, Мир, Москва (1985).
- 15. J. C. Slonczewski, J. Magn. Magn. Mater. 150, 13 (1995).
- 16. R. S. Fishman, Phys. Rev. Lett. 81, 4979 (1998).
- E. J. Escorcia-Aparicio, Hyuk J. Choi, W. L. Ling, R. K. Kawakami, and Z. Q. Qiu, Phys. Rev. Lett. 81, 2144 (1998).
- 18. H. Hopster, Phys. Rev. Lett. 83, 1227 (1999).
- 19. A. Schreyer et al., Phys. Rev. B 52, 16066 (1995).
- 20. С. О. Демокритов, А. Б. Дровосеков, Н. М. Крейнес, Х. Нембах, М. Рикарт, Д. И. Холин, ЖЭТФ 122, 1233 (2002).
- 21. В. Н. Меньшов, В. В. Тугушев, ФТТ 44, 1650 (2002).
- 22. А. И. Морозов, С. С. Сигов, ФТТ 41, 1130 (1999).