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Complete screening of the negative dust grain charge by a cloud of trapped ions in plasmas is investigated.
In the plasma electric field, the compound dust particle — «dust grain + ion cloud» — acquires a dipole
moment due to displacement of the centers of positive and negative charges in the opposite directions within
the compound particle. By analogy to the Van der Waals attractive interaction potential, the dipole—dipole
interactions of the compound dust particle can have an attractive behavior. It is shown that for the electric
field strengths typically observed in experiments, the dipole—dipole attractive force exceeds the shadowing force
that is connected with the reciprocal interception of ions by the neighboring dust grains.

PACS: 52.27.Lw, 34.70.+e, 52.27.-h, 61.25.Hq

1. INTRODUCTION

A cloud of dust particles in plasmas, confined by the
walls (electrodes), is characterized by a self-organizing
property that reveals itself by as capability of dust
grains to form ordered spatial structures in the vicinity
of electrodes [1-12]. The dust grains in a cloud usually
have the electric charge of the same sign (negative); ac-
cording to the general consideration, at large intergrain
distances, such a capability of self-organization implies
the existence of an attractive force between the dust
grains that have the same polarity. In the past, differ-
ent mechanisms have been proposed for the dust grain
attraction in dusty plasmas. These are:

(i) The attraction of dust grains in the wake po-
tential [13-16]: the ions are focused in the negative
potential region of the wake field behind a moving dust
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grain and provide a possibility for attracting the follow-
ing negatively charged grain in a linear chain [17, 18];

(ii) The shadowing force [19, 20]: the reciprocal
shadowing of a pair of dust grains in a nonstreaming
plasma and, as a result, reciprocal interception of ions
moving from the outside of the system of the grain pair,
leading to a net momentum transfer that pushes the
grains to meet each other. This, in effect, represents
an attractive force between two dust grains.

(iii) Placed into an external electric field (for in-
stance, in the field of another charged dust particle),
the dust grain, considered as a conductor, is polarized.
The excess of charges with definite sign on one side
leads to an anisotropy of the plasma particle flows to
the dust particle surface. Even at the equality of the
ion and electron currents to the dust particle surface,
the momentum transferred to the dust particle by the
ions incident on the surface considerably exceeds the
momentum brought by electrons. Therefore, an addi-
tional force exerted by the plasma flow acts on a dust
particle in the electric field. This additional force has
the same direction as the electric field and can exceed
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the electrostatic force acting on the dust particle in the
electric field [21]. The force is proportional to the elec-
tric field strength. If the given grain is placed into the
electric field of another grain and the distance between
the grains is much larger than the Debye radius (which
is the most interesting case for investigating the grain—
grain interactions), then the electric field and the force
become very small because of the Debye shielding.

Furthermore, at the volume distribution of dust
particles, the neighboring dust grains surrounding the
given grain from every side can intercept the ions flow-
ing towards the grain, and the attractive forces de-
scribed in items (ii) and (iii) must be substantially re-
duced.

It looks more consistent to relate the creation of the
attractive force to the screening of the dust charge by
a cloud of trapped ions [22]. Below, we assume that
the dust electric charge is completely screened by an
ion cloud. Such a possibility is investigated and pre-
dicted in Refs. [23, 24]. Considering large distances
between the grains instead of bare dust grains, we can
operate with the grains «dressed» in the jacket of an
ion cloud. The system «grain + ion cloud» is said to
be a compound (dust) particle in what follows. In an
external electric field, the centers of the negative and
positive charges within the compound particle are dis-
placed from each other and the compound particle ac-
quires a dipole moment. The dipole—dipole interactions
of the compound dust particle can have an attractive
nature by analogy with the Van der Waals interaction
in solid state physics.

The present paper is devoted to a quantitative anal-
ysis of the attractive force acting between the com-
pound dust particles. It is shown below that the
attractive force connected with dipole—dipole interac-
tions of compound particles can exceed the shadow-
ing force [19, 20]. Hence, a special feature of the in-
teraction potential of dust particles in plasmas must
be the existence of some equilibrium distance between
dust grains at which the forces of attraction and re-
pulsion balance each other. This paper is organized as
follows. In Sec. 2, we discuss the theory of ion trap-
ping in the potential well and calculate the induced
dipole moment in a self-consistent electric field in plas-
mas. An expression for the attractive force associated
with dipole—dipole interactions is obtained. For typical
laboratory conditions, the newly found dipole—dipole
attractive force dominates over the shadowing force.
Section 3 contains a summary and approximations re-
quired for developing the present theory.
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2. THEORY

We assume plasma to be collisionless, which means
that the ion mean free path is much larger than the
plasma Debye length, A\, s > Ap. In Ref. [25], the cap-
ture of particles by a nonstationary potential well in a
collisionless plasma was proposed. A brief description
of this nonstationary capture is given in Ref. [26]. The
nonstationarity of the potential well means that the
height of the walls forming the well increases in time
and is saturated at some stationary value. Therefore,
initially free particles, passing a distance of the order
of magnitude of the well’s extent, can collide with the
growing wall. After reflection, a particle can meet the
analogous obstacle at the movement in the opposite
direction. At the time of establishment of a station-
ary well, a definite number of particles is captured by
the well. The distribution function of trapped particles
can be found from the continuity condition for the dis-
tribution function at the limiting level of the trapped
particle energy. At this level, the distribution function
of trapped particles must be equal to the distribution
function of free particles. In our case, capturing of ions
by the potential well occurs during the process of dust
grain charging. The adiabaticity condition [25, 26],
(i.e., the condition that the creation of the well goes
slowly), which is necessary for the analytic description
of nonstationary particle trapping, is fulfilled: if the
Debye radius Ap exceeds the dust grain size a, then
the characteristic time 7 & Ap/aw,; of the dust grain
charging (which is the same as the characteristic time
of creation of the potential well) is much larger than the
time 7; necessary for an ion to pass the width of the
well (here, wp; is the ion plasma frequency). As shown
below, the width of the well is of the order of A\p. The
time 7; can be estimated as follows: the potential of the
grain is usually given by |¢o| ~ T /e, where T, is the
electron temperature and e > 0 is the ion charge. For
the average velocity of ions in the well, we then have

~ €|(po|~ Te
R o RV

(where m is the ion mass), whence

~
~

Therefore, the condition of the adiabaticity of ion cap-
turing, 7 > 7, is fulfilled at Ap > a.

According to Refs. [25] and [26], at the adiabatic
creation of the well, the distribution function of trapped
particles (ions) is constant and equals the value of the
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Fig.1. A qualitative plot of the auxiliary function

r3dU/dr vs. r

distribution function of free particles (ions) at the lim-
iting energy level of the trapped particles. The physi-
cal reason of this result is as follows: in a collisionless
plasma, the trapped particles do not leave the well and
the probability of finding them in the well is one.

To analyze the dust cloud formation, we consider
the motion of ions in the field of a negatively charged
dust grain. Dust grains are assumed to be absolutely
absorbed and are considered spherical with the radius
a much smaller than the Debye radius, a < Ap [27-
30]. At the spherical symmetry of the grain field, the
dependence of the ion effective potential energy on the
distance r to the center of force, r = 0, is

2

2mr?2

Ueg(r; L) = +U(r), (1)

where
U(r) = ep(r) = —elp(r)|

is the ion potential energy and p(r) is the electric po-
tential. The angular momentum L is an integral of
motion. From the equality

L_2: 5dU(r)
dr

= (2)
we can find the extremum values of Uesy(r;L). The
qualitative dependence of r3dU/dr on r is depicted in
Fig. 1. It is due to the specific dependence of the po-
tential energy U(r) on r (see pp. 255-266 in Ref. [31]).
At short distances (for  smaller than the Debye radius
Ap), the potential energy U(r) decreases as 1/r, i.e.,
slower than 1/r%. For r > Ap, U(r) decreases exponen-
tially due to the Debye screening, i.e., faster than 1/r2.
The behavior of U(r) at large distances (r > Ap) sig-
nificantly depends on the conditions at the dust grain
surface. If the dust grain surface absorbs electrons
and ions, the potential energy U(r) decays as 1/r? at
r — oo (see [32,33], and pp. 140-141 in Ref. [31]). In
Fig. 1, the intersection points of the curve with the
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dashed horizontal lines indicate the extremum points
of Uesr(r; L). The characteristic values Lg, Ly, and Ly
are determined as follows.

1) Far from the grain, » > Ap, the potential energy
U(r) can be written as [31, 32]

v = U (2,

where Uy, is a constant. We then have

(3)

LE=m <r3%> =2ma® Uy . (4)
r—00
At L < Lo, the effective potential energy Uess has only
one extremum point, which corresponds to a minimum.
2) The characteristic angular momentum L, is de-
termined from the condition that the maximum value
of the effective potential energy is equal to the value
of the effective potential energy on the grain surface,
r = a [33, 34]. L, and the corresponding point 7,4, of
the maximum of the effective potential energy can be
found from the system of equations

Uets (Tmaz (Lp)§ Lp)a

Uets (a; Lyp)

(¢

Equation (5) yields

(5)

L,

m

au(r)

— : (6)
dr > P=Pmaz(Lyp)

1 = |U(rmaz)|/|U(a)| ~
1- a2/7‘12nax

~ 2ma® |U(a)|.

2 . 2
Ly ~ 2ma* |U(a)|

(7)

Usually, 702 > Ap. As the angular momentum
L increases, the minimum point of Ugpp(r; L) moves
away from the center and the distance between the ex-
tremum points decreases. We stress that only those
trapped ions that have the angular momentum L < L,
can reach the grain surface and can be absorbed. At
L > L,, the edge of the well is far from the grain sur-
face.

3) The maximum value of r3dU/dr is reached at a
certain point r; (> Ap) where

222 -

and 7y, is always between the maximum and minimum
points. The characteristic angular momentum Lj, is

defined as
L2 =m <r3@> .
dT T=Tk

(8)

(9)
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Fig.2. A qualitative plot of U (r; L) vs. r for diffe-

rent values of the angular momentum: 1 — L < Lo,

2— L=1IL,3—L=1IL, 4—1L, <L < Ly,
5— L =1L

At L = Ly, the extremum points coincide and the func-
tion Uess (r; L) has an inflection at this point. If L > Ly,
the function Ugss (r; L) decreases monotonically with in-
creasing r.

4) At L > Lg, Eq. (2) has two roots. For a more
detailed description of ion motion, we must also deter-
mine the angular momentum L, at which the small root
(corresponding to the minimum of Ugpy (r; L)) coincides
with the radius a of the grain,

L 3dU(r)
—a — ) 10
m <T dr r=a ( )
Hence, if the angular momentum is in the range
Lo < L< Ly, (11)

then Ugp(r; L) has both maximum and minimum
points. The qualitative dependence of Uess(r; L) on r
for various values of the angular momentum is shown
in Fig. 2. We can now determine the surface that sepa-
rates the regions of infinite and finite motion of ions in
the velocity space (v, vg), where v, and vy are the ve-
locity components along and across the radial direction.

The standard definition of the angular momentum is
L = mugr. (12)

The ions with the angular momentum L < Lo (or with

the velocity component vy < (a/r)y/2|Us|/m) and

with a negative total energy

E(vp,vg,r) <0, (13)
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2

- _r

2

can be trapped in the potential well. The ions with the
angular momentum in the range Lo < L < Lj can be
trapped if their total energy satisfies the condition

E(vy,vg,71) + Upgss(r; L) (14)

E(vr,09,7) < Ueff (Fmaz; L) (15)

The ions with the angular momentum larger than Ly
(L > L) are not trapped. The dependence of |Us|
on the grain surface potential |U(a)| for equal electron
and ion temperatures (T, ~ T;) is depicted on p. 317
in Ref. [31], and shows that one always has

Vsl _1
Ul © 3

~

With increasing |U(a)|, this ratio decreases. A more
precise relation between |Us| and |U(a)| can be es-
tablished from the quasineutrality condition, in the
case where the ion and electron densities are roughly
equal. This occurs far from the grain (r > Ap). Under
this condition, a calculation quite similar to that given
in Ref. [34] shows that for a nonisothermal plasma,
T. > T, the inequality

Vsl < 5 U (@) (16)

is satisfied for the absorbing grains if

U@l 1

T. 2
The latter relation is usually fulfilled with a great
reserve both in laboratory and space plasmas [28§].
From (13) and (16), it follows that the zero point 7
of the effective potential energy Ugps(r; L) at L < Lo is
always close to the center (r = 0) in comparison with
the grain surface, rg < a. Indeed, we find from Eq. (1)
that Ugs(r; L) at » = a is negative (see curve 1 in
Fig. 2)

3

Ueff(a; LU) < |UOO| - |U(a)‘ < 07 L < L0~ (17)

Consequently, when L is smaller than a certain criti-
cal value Lg, the dust grain surface is within the well
and the ions falling into the potential well are therefore
immediately lost due to absorption onto the dust grain
surface. Hence, the formation of trapped ion clouds
that can shield the grain electric field is possible only
for L > L,.

According to the general theory [25, 26], for the sta-
tionary well, the distribution function of the trapped
particles f;;, is constant and the value of f;, is de-
fined by the value of the distribution function of un-
trapped particles at the limiting energy — in our case,
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by the energy level Uefs (maz; L). Considering the dis-
tribution function of untrapped ions as a Maxwell-
Boltzmann one, we obtain

fitr =MNo (m/27rTi)3/2 X
x exp (=Uepf ("maa (L); L)/T3) . (18)

We emphasize that r,,,, here depends on the angular
momentum L (see Eq. (2)). Because we are interested
in distances not very large compared to Ap, r < Fimag
(see also Eq. (21)) we can choose the Debye-Hiickel
form

U =-wlrew (-520) (9
r /\D

for the potential energy of ion interactions with the
dust grain. It should be stressed that the Debye-Hiickel
law holds even in the nonlinear regime [23]. It is some-
what modified by the ion flow [16]. The latter also pro-
duces a wake field, which is not the focus of this paper.
The dependence of U(r) on r definitely corresponds to
the dependences that are necessary for the classification
of ion motion according to the angular momentum (see
Sec. 1). We note that dependence (3) is valid only for
very large distances r, r > Ap. From (2), (6), and (19),
we find the critical value of the angular momentum L,
and the corresponding maximum point r,,,, of the ef-
fective potential energy

L2 = ma?|U(a)| (1 + %) : (20)

as

o {22 [1 (22) 1w (22)).

Comparing (4) and (20) by means of (16), we find that
L, > Lg, and consequently the effective potential en-
ergy has both a minimum and a maximum for L > L,.
At L = L,, the minimum point of the effective poten-
tial energy coincides with the dust grain radius. For
L < L,, the distance of the minimum point of Uess (r; L)
from the center (r = 0) is smaller than the grain radius
and all trapped ions are absorbed by the dust grain sur-
face. From (2) and (4), it follows that at L = Ly, the
point of the minimum of the effective potential energy
is given by [9]

(22)

Tmino = 20

For |Ux| < (1/2) |U(a)|, we have 7m0 < a (see Fig. 2).
This result is physically expected, because the ions with
small angular momenta impact the dust grain surface
and are absorbed. We can therefore restrict ourselves
by considering the ion angular momenta L > L, and
distances r < Tpee(Lg), defined by (21). Obviously,
the Debye—Hiickel potential (19) is applicable for such
distances, and we use it for estimations in what follows.
For instance, using the Debye—Hiickel shielded poten-
tial for the critical distance r defined by (8), we obtain
T R 161/\D

Different kinds of potential wells that give a contri-
bution to ion trapping can be gathered in two groups.
For the angular momentum in the range

L, <L <Ly, (23)

or
ma® |U (a) (1 ; %) <L <oma U],  (24)
D

the distribution function is defined by (18) (with the
corresponding 7,4, (L)) and only the ions with the en-

ergy
E < Uyy(a: I) (25)

can take part in forming the cloud shielding the grain
field. The ions with larger energy E > Uesr(a; L) dis-
appear due to absorption on the dust surface. Condi-
tions (25), (12), and (14) allow us to define the limiting
value for the velocity component along the radial direc-
tion,

m?2 a2 r2

x[O(r—a)—0O(r—7(L)], (26)

i< |5 (5-5) - Zwei-wm)]

where ©(z) is the step function, (@(z) = 1if z > 0
and O(x) = 0 if # < 0). The turning point 7(L) is the
solution of the equation

= (F-7) - = W@l-weh=0. e

m?2 \ a2 72

It turns out that for a given L, the distance r can
change in the range

a<r <L) (28)

defined by the energy level Ugss(a). According to the
general definition, the number density of trapped ions
in the angular momentum range (23) is

ny(r) = QW/UodvgdUTfitr, (29)

5*
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where f;, is defined by (18) and the limits of in-
tegration over vy and v, must be chosen according
o (12), (23), and (26). Introducing the variable

s = L?*/2ma* |U(a)|

3

we find
m) = s <U7(“?)|>3/2 )
X ( /1 | ds exp {Uj(;lﬂ r%l:lj(s)sﬂU(rn}jx(S)q "
(1455
(-5 - ()]

(30)

where 7pqz () and 7(s) are to be found from (2), (19),
and (27). In what follows, we assume the grain size to
be so small that the inequality

U 2
I;?);t_%«l

(31)

is fulfilled. In accordance with (2) and (19), the expo-
nential function in the integrand of (30) can then be
replaced by 1 and we obtain after integration that

(5"

][] )

(r) = 4 a?
mir) = 3ﬁn0r2

. {1_ [ E

a2

r2

x[O(r—a)—0(r-7(1)], (32)
where
7(1) = Apln [)\TDIH </\7D1n )\FD)} . (33)

Similar calculations can be performed for ions with
the angular momentum in the range

L, <L <Ly, (34)
or
2ma®|U(a)] < L? < 0.419 - 2maXp|U(a)|.  (35)

In this range, the surface of the grain is outside the

well.  The energy border of the well is defined by
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Ueff (Tmaz; L) and for the limiting value of the veloc-
ity component along the radial direction, we have

ﬁg&@WPWWMWW
ﬁ(l_#

Wwﬂx

x [O(r —7(L)) = O(r — rmaz(L))],

(36)

where 7#(L)(# rmaz (L)) is the solution of the equation

%(\U(fﬂ ~ U (Fmas (D)) -
L2 (1 1
‘W(ﬁ‘@) =0, (37)

and 7,4, (L), which is again the maximum point, also
satisfies this equation. The procedure, quite analogous
to that used above, gives the following expression for
the number density ns(r) of the trapped ions with the
angular momentum in the range (34):

_ 2t (U@
ng(r)—ﬁ 0r2< T ) X
0.4192D
a? |U(a)|
% / dsexp{_mzmz(s) T; o
+g%§ﬁme_w%mMMw—

a2 a2 1/2
- sl == X
(F-mm)

X [O(r —7(s)) — O(r — Tmaz(8))] . (38)
Here, rmaqz(s) is again defined by (2), (19) and #(s) is
the root of the expression under the radical (cf. (19)
and (37)). From (30) and (38) (and also from the de-
pendence of the wells on the angular momentum, de-
scribed in Secs. 2 and 3), it follows that a cloud of the
trapped ions is localized in a spherical layer restricted
by the spheres with the radii @ and 7(1) (the latter
is defined by (33)). Integrating the sum of n;(r) and
ny(r) over the space, we find the total number N of
the trapped ions, which we assume to be equal to the
charge number Z of the grain,
3/2
} =7 (39)

(50)

In estimating (39), we have used the condition of the
smallness of the dust grain, a < Ap. The possibility of
such a compensation of charges was recently predicted

4 /2

3V 3

a |U(a)|

N ~
Ap T;
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in [23, 24]. In our model, therefore, the electric charge
of a dust grain is screened by the trapped ion cloud
and the interaction of the compound particles («dust
grain + ion cloud») at large distances cannot be real-
ized as an interaction of charges. In the external (or
the induced) electric field, the centers of positive and
negative charges within such a compound particle can
be shifted, and the particles acquire a dipole moment
that can lead to dipole—dipole interactions of the com-
pound particles. Below, we find the electric field that
is necessary for shifting the centers of charges over a
distance r, with

a<<r<Ap, (40)

and determine the corresponding induced dipole mo-
ment. At shifting distances r < Ap (much less than
the size of the trapped ion cloud, cf. (33)), we can
assume that the form of the dust cloud remains un-
changed under shifting. From (32) and (38), the total
ion number density at r < Ap is given by

4 [U(a)]

3/2
3\/7_?n0[ T; } -

x g,/g 1 (2 +1)71@(r—a). (41)

For the electric field strength, which is defined as

n(r) =ni(r) + na(r) =

= —47r/dr'r'26n (42)
we then obtain
_ 8 (4r \[a [U@]] (43)
“3/A\3 ) r T *

Equation (43) represents the electric field within the
cloud of trapped ions generated by these ions. Placing
a charged grain at the distance r from the center, in
order to keep it in equilibrium, one needs to apply an
external electric field whose value can be found from
Eq. (43). The direction of the external field must be
opposite to the displacement of the centers of the pos-
itive and negative charges [35, 36, 37].
Inequalities (40) and relation (39) give the following
restriction on the electric field:
6 e22> 6 e2Z% \p

— < E?’ <
AD Ab

(44)

According to (39) and (43), the induced dipole moment
and the polarizability of the compound particle («dust
grain + ion cloud») are given by

P = Zer = o(E)E, (45)
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where
Ze

6 3
=7 (8)

Due to the specific dependence of the electric field
within the compound particle at a distance r from the
centre, Eq. (43), the polarizability reveals a nonlinear
behavior. At large distances, the interaction energy
between the compound particle in the external electric
field can be interpreted as the dipole—dipole interaction

(46)

V:%[Pl-P2—3(n~P1)-(n~P2)], (47)
where R(>> Ap) is the distance between the dust parti-
cles, n = R/R, and Py and P are the dipole moments
of the dust particles. Depending on the orientation of
the dipole moments, the potential energy can acquire
an attractive character. For identical dust particles,
the attractive force becomes maximum when the dipole
moments are parallel to each other and to n. Accord-

ing to Eqgs. (47) and (46), this attractive force is given
Z _

by
Fo 1 NG e \°
g ( /\DE> R' R’
In Refs. [19, 20], the effective attractive force between
two isolated dust grains due to their reciprocal shad-
owing in the plasma has been investigated. According
to Ref. [29], the value of the shadowing force is
3 a® <Z e>2
8\, \ R
Comparison of Eqgs. (48) and (49) reveals that the shad-
owing force is smaller than the force due to dipole—
dipole interactions for electric field strengths that are
typical in laboratory experiments [38—40]. Indeed, re-
lation |F| > Fgy, is identical to the inequality

E?’ R

(48)

Fsp = (49)

E* < 10E;, (50)
where
Ap Ap\'? Ze
Ey= (76— = 51
0 < Ta R) A\ (51)

For E = Ey, conditions (44) and (50) can be satisfied
if A3 /aR > 1 (A\p/R < 1). Taking a ~ 10~* cm,
Z ~ 10*, \p ~ 1.4-1072 cm, and R ~ 107! cm,
we have E = Ey ~ 50 V/em. According to Eq. (46),
the potential energy and the interacting force decrease
as the electric field strength increases. Apparently,
the dipole—dipole interaction potential energy, as dis-
cussed here, may be responsible for the formation of
many-layer structures that have been observed in labo-
ratory experiments [8-11] where the behavior of a dust
particle cloud in the plasma discharge has been inves-
tigated.

~
~
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3. SUMMARY AND CONCLUSIONS

We have considered complete shielding of the dust
grain charge by the trapped ions in plasmas.
the plasma electric field, a neutral compound particle
(«dust grain + ion cloud») acquires dipole moments,
which can lead to their interaction by the potential en-
ergy of the dipole—dipole type. We note that our cal-
culations for dipole—dipole interactions are valid under
the following assumptions.

1) The surface of the dust grain is absolutely ab-
sorbing.

2) For the distances in which we are interested,
the spatial dependence of the ion potential energy in
the field of a dust grain follows the Debye—Hiickel law
(see (19)). The latter holds even in the nonlinear
regime, as demonstrated in Ref. [23]. The ion flow
slightly affects the Debye—Hiickel potential [16], and in
addition generates a wake field, which is not the topic
of the present paper.

3) It is assumed that in a collisionless plasma, ion
trapping is the result of adiabatic change of the poten-
tial well shape in time [25, 26]. Therefore, the steady
state is reached before dust-neutral interactions take
place.

4) The number density of trapped ions is small com-
pared to the total ion number density. The trapped
ions do not take part in the formation of the potential
well.

In

In conclusion, we mention that some aspects of
the interaction observed experimentally [8-11], for
example, formation of regular equidistant layers of
dust grains, can be explained by the theory developed
here. Finally, the present dipole—dipole attractive force
can be incorporated in molecular dynamics simulation
studies of charged dust particle behavior in dusty plas-
mas.
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