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Electronic spectrum of the three-dimensional Penrose lattice with «central» decoration by atoms is investi-
gated using the tight binding model with the nearest-neighbor interaction. Inverse participation ratios, higher
moments of density probabilities, and fractal dimensions of the system are determined. The wave functions
are critical (have a power-law dependence on the distance) at all energies in the band and are multifractal
measures leading to the entire spectrum of the exponents. The results show that the system is in the critical
state of the metal-insulator transition. On critical wave functions, the cubic root temperature dependence of

the conductivity is obtained.
PACS: 71.23.Ft, 71.30.+h
1. INTRODUCTION

Measurements of conductivity show that at low
temperatures, perfect quasicrystals (QC) behave
similarly to the conventional disordered conductors
(disordered metals and heavily doped semiconduc-
tors in the vicinity of the metal-insulator transition
(MIT)), and the possibility of the electron localization—
delocalization (LD) in QCs now is actively discussed.
It is known that in disordered conductors, the elec-
trons can undergo a transition to the insulating state
(Anderson localization) with the increasing degree of
disorder. The electron diffusion coefficient takes a
finite value in the conducting phase and vanishes in
the insulating phase, which is revealed by crossing of
the Fermi level at a certain energy value called the
mobility edge. Localization occurs for a sufficiently
strong disorder because of quantum interference effects
brought about by randomness of the disorder. At
finite temperature, according to the scaling theory
of the Anderson transition with interacting electrons
[1], the correction to the conductivity in the region
L < Ly and £ < Ly (where L is the sample size,
Ly = /DHh/T is the interaction length, and D is the
diffusion coefficient) is proportional to v/7. In the
region where &€ > Ly > L, 0 ~ T'/3. Sufficiently
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far on the insulating side, the conductivity follows
the Mott law for a variable range hopping (VRH)
conductivity, o = age’(T"/T)l/‘l.

Quasicrystals have an extremly high resistivity
value with a pronounced negative temperature coeffi-
cient and a finite small electronic contribution to the
specific heat. In contrast to the conventional disor-
dered conductors, QCs become more insulating with
increasing the sample quality and annealing of defects.
The quality measure of a QC is the resistivity ratio
R = p(4.2 K)/p(300 K). More perfect samples have
higher R, and R ranges from several units to two hun-
dreds and even higher depending on the object and
sample quality.

Empirically, R can therefore serve as a parameter
to control the MIT. The highest resistivity of all the
known quasicrystals occurs in the icosahedral i-Al-Pd-
Re QC, where the value of resistivity at 4.2 K exceeds
1 Om - cm. Recent experiments for i-Al-Pd-Re [2, 3]
show that for samples with all different ratios R, a
square root temperature dependence of conductivity
o ~ /T is ordinarily observed at T' < 20 K. For sam-
ples with R of the order 20 and higher, this depen-
dence is replaced by the o ~ TV/3 law at T < 5 K.
For samples with high R (~ 45 and higher), a vari-
able range hopping conductivity obeying the Mott law
o = agexp(—(To/T)"/*) or even the Efros-Shklowski
law 0 = o exp(—(Ty'/T)'/?) is observed. (The same
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temperature dependences of o were obtained by other
authors for samples with slightly different values of
R [4, 5].) We thus see that the obvious analogy ex-
ists in the behavior of low-temperature conductivity
in perfect QC and in disordered conductors near the
MIT, although the reasons for the electron localization
in these objects are different. This analogy is also valid
at the microscopic level.

In the theory of Anderson localization in disordered
conductors, one is interested in the effect of a ran-
dom potential on quantum-mechanical wave functions
(WF). When the randomness is weak, the WFs are ex-
tended throughout the entire system (metallic side of
the MIT), whereas at sufficiently high disorder, all WFs
become localized (insulator side of the MIT). In the
vicinity of the critical point of the MIT, the WFs are
neither extended nor exponentially decaying; as numer-
ical calculations show, they display a scaling behavior
and decrease with the distance following a power law
(«critical» WFs) [6-8].

Discussions of the problem of localization of elec-
tronic states in QCs began immediately after their dis-
covery (see, e.g., [9]). High-resistive QCs are usually
attributed to the existence of a deep pseudogap in the
density of electronic states (DOS) at the Fermi level
(DOS at the Fermi level in QC is low but finite) and to
the tendency of the electrons at the Fermi level to be
localized. But the presence of a pseudogap is not suf-
ficient to explain the high value of resistivity; its main
reasons are seen in the low electron mobility, which is
obviously caused by the specific symmetry of QC. From
the general standpoint, one can conclude that due to
self-invariant structure of QCs, the WFs must be criti-
cal. The critical behavior of the wave functions in QCs
has been well established in the cases of one- and two-
dimensional QCs [10, 11-13]. But for three-dimensional
systems (icosahedral quasicrystals), the first publica-
tions were controversial [14-16], and even some re-
cent publications contain the claim that in the three-
dimensional case, the critical nature of wave functions
may be lost to some extent [17, 18]. At the same time,
other numerical investigations of the electron spectra
of low-order periodic approximants of icosahedral QCs
show that most of the WFs are still critical, although
the electron spectrum does not contain a hierarchical
gap structure typical of the Cantor set of measure zero
in one-dimensional QCs [19-21]. Thus, the problem ex-
ists and more information on the electron spectra and
WFs is required in order to judge about the electron
localization in three-dimensional (icosahedral) QCs.

In this paper, we present the results of a numer-
ical investigation of the scaling behavior of the elec-

tron spectrum and WFs of the three-dimensional Pen-
rose lattice. The main information needed to char-
acterize the LD transition in QCs is obtained. The
inverse participation numbers (the second moments
of the density probabilities) and the generalized in-
verse participation numbers (higher moments) are ob-
tained. Fractal dimensions of the spectrum are ob-
tained and critical behavior of the WFs is studied.
The results are important for understanding the elec-
tron localization—delocalization transition in icosahe-
dral QCs. This work is a continuation of the previ-
ous ones [19, 20], where the singularities of the electron
spectrum of icosahedral QCs and the effect of small per-
turbations on it have been studied using tight-binding
and level-statistic methods. In [19], singularities of the
electron spectrum were analized, and it was shown that
the spectrum is not Cantorian, but contains a singular
part. In [20], we studied the influence of chemical disor-
der and phasons on the electron spectrum by changing
on-site energies and transfer integrals.

This paper is organized as follows. In Sec. 2, we
consider the main model approximations and calcula-
tion technique. In Sec. 3, the results of investigation
of the scaling behavior of the electron spectrum are
discussed. Section 4 contains conclusions.

2. MODEL APPROXIMATIONS AND
CALCULATION TECHNIQUES

The electronic spectrum of the three-dimensional
Penrose lattice (the Amman—Kramer network) treated
as a structural limit of a sequence of periodic cubic
approximants with increasing period has been studied
in the framework of the tight-binding approximation
(TBA). The first five cubic approximants to the icosa-
hedral QCs (1/1, 2/1, 3/2, 5/3, and 8/5) were investi-
gated. We considered the central decoration of approx-
imants with «atomsy» of one type, namely atoms with
one s-orbital per atom located at rombohedral centers.
The unit cells of these approximants contained 32, 136,
576, 2440, and 10330 atoms respectively. The projec-
tion technique for construction of approximants was
described previously [19]. To minimize the number of
adjustable parameters of the model, we used a Hamil-
tonian with constant hopping integrals between nearest
neighbors (atoms).

The Hamiltonian was expressed as

H =Y [i)eili] + D ity (il (1)
i i#]

If atoms of only one type are present, the diagonal ele-

ments ¢; can be omitted. In this case, the Schrodinger
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equation in the tight-binding approximation can be
written as

>t U, = B, (2)
ij
where the transfer integrals are set equal to a nonzero
constant ¢;;; = —1 only in the case of the nearest-
neighbor atoms. The periodic boundary conditions
have been used to help reduce the size-dependence ef-
fects.

We study the localization problem in the TBA
by calculating the inverse participation numbers (mo-
ments or 2¢-norms of the wave function) defined by the
relation

Pt = (||l = I 3)

O ZIDTN

from which «participation ratios» and fractal dimen-
sions D, can be determined. P is called the participa-
tion number because it is the measure of the number
of sites that contribute to a state of a given energy FE;.
The corresponding fraction p = P/N of all the sites is
called the participation ratio. The value of p for ¢ = 2 is
frequently used in the problem of electron localization.

The WFs were classified in accordance with their
normalization integrals. They are considered delocal-
ized if

/ |T(r)2dr ~ R,
r|<R

where d is the space dimensionality. They are as-
sumed localized when their finite norms exist, and are
defined as «criticaly, ¥ ~ r%, when they cannot be
normalized in an infinite space and are not delocal-
ized. Strongly localized WFs correspond to the case
where a = oo and freely extended wave functions cor-
respond to the case where a = 0; ¥ can be normalized
in three-dimensional case only for a > 3/2. For ex-
tended states, the moments of the WF depend on the
system size as |[@[[sztended ~ N174 as follows from
Eq. (3). For exponentially decaying localized functions,
we have H\IlH;zp'loc ~ NY. We can therefore obtain the
exponent of the wave functions by analyzing the sys-
tem size dependence of the moments calculated in the
system of a sufficient size. For the relative number of
states with moments ||¥||5, < N7, the integrated dis-
tribution function defined as

N
1
by(v) = > 0(y — logn || ®]]s,)
n=1

gives the integrated distribution of the exponents of a
power-law decay for a specified system if the finite-size
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Fig.1. Inverse participation numbers P~ ! and the par-

ticipation ratio (¢ = 2) for the first five rational approx-
imants
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Fig.2. Fractal dimensionality (g,) for different mo-
ments (2¢g-norms) of the spectrum (Dp—o = 3 for all
approximants)

correction is negligible. The procedure of finding the
exponent a has been described in [19] (also see [13]
for two-dimensional Penrose lattice), and we here note
that the behavior of the function v(¢, a) was analyzed
for the first five approximants, and as a result, the «lo-
calization» exponent o was found for each approximant
under investigation.

From the relation P, ~ N~Pa(¢=1) which is ap-
plied near the «critical» point, we obtained the fractal
dimensions D, of the system (here, N is the number of
atoms in the unit cell of an approximant).

3. RESULTS AND DISCUSSIONS

The results of calculations are presented in Figs. 1-
4. The behavior of the inverse participation numbers,
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Distribution of the localization exponent o (¥ ~ r~“) on the energy band. The eigenstates are critical at all

energies

participation ratios (Fig. 1), and fractal dimensions
(Fig. 2) shows that the electronic states are neither
localized nor delocalized in all the considered approx-
imants (the first five approximants were considered).
Indeed, the inverse participation numbers P are pro-
portional to N7, where v must vanish for localized
states because they fit into a sample of a given size,
and v = 1 for states uniformly extended over the en-
tire sample. Because the calculated value of P does
not satisfy both these limits, we can assume that the
WF or rather its envelope fall as an inverse power of
the distance, ¥ ~ r~®. We next see (Fig. 2) that the
calculated dimensions D, of the system satisfy the in-
equalities Dg > Dy > Dy > ..., where for all approxi-
mants, Dy is equal to topological dimension (3), and
the dimensions are therefore not simple fractal, but
multifractal. The multifractality regime means that
the system is in the critical state, and the WFs at crit-
icality are multifractal measures leading to the entire
spectrum of critical exponents. The spectrum of mul-
tifractal dimensions has universal features for states in
the vicinity of the MIT. We can therefore conclude that
the ground state of the three-dimensional perfect QC
is a critical state of the MIT.

The results in Fig. 3 show that the WFs are crit-
ical at all energies in the band. The dependence
U ~ r~® is typical of the critical state of the sys-
tem. It is known that systems without characteris-
tic intrinsic length scales obey homogeneity laws un-
der rescaling. The absence of length scales means that

some observable F' shows a typical homogeneity law
F(sx) = s*F(z), where k is called the homogeneity ex-
ponent and s is a real number. This implies that the
rescaling of z can be compensated by a rescaling of the
observable F. For real-valued functions F'(z), the solu-
tion of the homogeneity equation is a power-law func-
tion F(x) ~ z¥. The function ¥ ~ r~? is therefore a
solution of the homogeneity equation with the homo-
geneity exponent £ = a, and we have a scale-invariant
behavior of the system, typical of the critical states. If
F(z) is a functional of powers ¢ of those observables
that are involved in the definition of F'(z) (i.e., mo-
ments in our case), F(z)=F4(z), then in the simplest

situation, k(q) defined by
F[q](sx) — gk(a) pld] (z)

is a linear function of ¢q. If k(q) significantly deviates
from linearity, the scaling behavior of F(x) is anoma-
lous, and the system therefore shows the multifractal
behavior [22]. Calculations show that the multifractal
behavior of the system becomes pronouncedly apparent
for higher-order approximants (5/3).

Considering the behavior of the localization expo-
nent «, we see that a tends to a certain value in the
thermodynamic limit (N — o0). It is known from the
theory of Anderson transitions that near the transition
into the dielectric (metallic) state, the correlation (lo-
calization) length ¢ tends to infinity. As mentioned
above, the Anderson localization theory for interacting
electrons implies that o oc T'/3 at the critical point
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Fig.4. The localization exponent o (averaged over the
band) for different approximants

of the MIT, where £ > Ly > L, with Ly = \/Dh/T
being the «interaction» length [3]. For QCs, the con-
ventional picture of the Anderson localization in disor-
dered systems is not relevant. In QCs, the electronic
states can be localized by the quasiperiodic potential
itself, and as we have shown (Fig. 3), the WFs in the
three-dimensional QC behave as in the critical state
of the MIT for conventional disordered systems. As
shown in [23], it is possible to obtain the o oc T"/3
dependence by considering a variable range hopping
conductivity (VRH) on the critical WFs. Following the
Mott procedure, we define the tunneling integral on the
critical WFs as

I~ |¥]? ~|R™? = exp(-2aIn R). (4)
We then define the conductivity
o x Texp (—AE)/EkT),

where AE = 3/(4nR®* N(Er)) is the minimal activation
energy for hopping over the distance R. The expression

exp(—2aln R)exp(—AE/kT) (5)

has a maximum when the exponent
(=2aln R — AE/kKT) has a minimum. Substituting
AE and finding this minimum, we obtain o o T2%/3,
In order to obtain o o T1/3, the exponent o must be
equal to 0.5. The results of calculations of a (Fig. 4)
show that a decreases as the order of the approximant
increases. It is difficult to say to what value a tends in
the thermodynamic limit, but the tendency is obvious.
The results of calculations also show that the value
of a depends on the moment number, and the last

expression for ¢ should involve some realization of a.
Therefore, the result coincides with the experiment
and predictions of the scaling theory of localization for
the «critical» region of MIT.

4. CONCLUSION

The result of investigating scaling behavior of
the electron spectrum for the first several periodic
approximants (1/1, 2/1, 3/2, 5/3, 8/5) of the three-
dimensional Penrose lattice with central decoration
have been presented. The critical behavior effects
are visible even for these low-order approximants.
The calculated WFs are «criticaly for all energies
in the band and are multifractal measures with the
entire spectrum of «criticaly exponents. The elec-
tronic states are more localized at the Fermi level
than at the bottom of the band. The results show
that the background state of the perfect regular
icosahedral QC should be the «criticaly state of the
localization—delocalization transition. The nature
of electron localization in icosahedral quasicrystals
has been discussed previously [9, 19, 20], and it was
shown that this localization is unstable under small
perturbations (phasons, chemical disorder, and the
magnetic fields). The «critical» behavior of the WFs
can explain the experimentally observed power-law
dependence of conductivity, ¢ o« T*/3. Calculating the
VRH probability on «critical» WFs, we immediately
obtain the o o< T2%/3 law. For coincidence with the
experiment, the realization of the exponent a should
be equal to 0.5 in the thermodynamic limit. At the
same time, it is impossible to obtain the Mott law on
«critical» WFs for the VRH conductivity on insulating
side of the MIT, and new ideas are necessary.
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