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ELECTRONIC SPECTRUM OF THE THREE-DIMENSIONALPENROSE LATTICEYu. Kh. Vekilov *, E. I. Isaev, A. V. GodoniukTheoreti
al Physi
s Department, Mos
ow State Institute of Steel and Alloys119991, Mos
ow, RussiaSubmitted 18 Mar
h 2003Ele
troni
 spe
trum of the three-dimensional Penrose latti
e with �
entral� de
oration by atoms is investi-gated using the tight binding model with the nearest-neighbor intera
tion. Inverse parti
ipation ratios, highermoments of density probabilities, and fra
tal dimensions of the system are determined. The wave fun
tionsare 
riti
al (have a power-law dependen
e on the distan
e) at all energies in the band and are multifra
talmeasures leading to the entire spe
trum of the exponents. The results show that the system is in the 
riti
alstate of the metal�insulator transition. On 
riti
al wave fun
tions, the 
ubi
 root temperature dependen
e ofthe 
ondu
tivity is obtained.PACS: 71.23.Ft, 71.30.+h1. INTRODUCTIONMeasurements of 
ondu
tivity show that at lowtemperatures, perfe
t quasi
rystals (QC) behavesimilarly to the 
onventional disordered 
ondu
tors(disordered metals and heavily doped semi
ondu
-tors in the vi
inity of the metal�insulator transition(MIT)), and the possibility of the ele
tron lo
alization�delo
alization (LD) in QCs now is a
tively dis
ussed.It is known that in disordered 
ondu
tors, the ele
-trons 
an undergo a transition to the insulating state(Anderson lo
alization) with the in
reasing degree ofdisorder. The ele
tron di�usion 
oe�
ient takes a�nite value in the 
ondu
ting phase and vanishes inthe insulating phase, whi
h is revealed by 
rossing ofthe Fermi level at a 
ertain energy value 
alled themobility edge. Lo
alization o

urs for a su�
ientlystrong disorder be
ause of quantum interferen
e e�e
tsbrought about by randomness of the disorder. At�nite temperature, a

ording to the s
aling theoryof the Anderson transition with intera
ting ele
trons[1℄, the 
orre
tion to the 
ondu
tivity in the regionL < LT and � < LT (where L is the sample size,LT = pD~=T is the intera
tion length, and D is thedi�usion 
oe�
ient) is proportional to pT . In theregion where � � LT > L, � � T 1=3. Su�
iently*E-mail: yuri-vekilov�yahoo.
om

far on the insulating side, the 
ondu
tivity followsthe Mott law for a variable range hopping (VRH)
ondu
tivity, � = �0e�(T0=T )1=4 .Quasi
rystals have an extremly high resistivityvalue with a pronoun
ed negative temperature 
oe�-
ient and a �nite small ele
troni
 
ontribution to thespe
i�
 heat. In 
ontrast to the 
onventional disor-dered 
ondu
tors, QCs be
ome more insulating within
reasing the sample quality and annealing of defe
ts.The quality measure of a QC is the resistivity ratioR = �(4:2 K)=�(300 K). More perfe
t samples havehigher R, and R ranges from several units to two hun-dreds and even higher depending on the obje
t andsample quality.Empiri
ally, R 
an therefore serve as a parameterto 
ontrol the MIT. The highest resistivity of all theknown quasi
rystals o

urs in the i
osahedral i-Al-Pd-Re QC, where the value of resistivity at 4.2 K ex
eeds1 Om � 
m. Re
ent experiments for i-Al-Pd-Re [2, 3℄show that for samples with all di�erent ratios R, asquare root temperature dependen
e of 
ondu
tivity� � pT is ordinarily observed at T < 20 K. For sam-ples with R of the order 20 and higher, this depen-den
e is repla
ed by the � � T 1=3 law at T < 5 K.For samples with high R (� 45 and higher), a vari-able range hopping 
ondu
tivity obeying the Mott law� = �0 exp(�(T0=T )1=4) or even the Efros�Shklowskilaw � = �0 exp(�(T00=T )1=2) is observed. (The same11 ÆÝÒÔ, âûï. 5 (11) 1121
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es of � were obtained by otherauthors for samples with slightly di�erent values ofR [4, 5℄.) We thus see that the obvious analogy ex-ists in the behavior of low-temperature 
ondu
tivityin perfe
t QC and in disordered 
ondu
tors near theMIT, although the reasons for the ele
tron lo
alizationin these obje
ts are di�erent. This analogy is also validat the mi
ros
opi
 level.In the theory of Anderson lo
alization in disordered
ondu
tors, one is interested in the e�e
t of a ran-dom potential on quantum-me
hani
al wave fun
tions(WF). When the randomness is weak, the WFs are ex-tended throughout the entire system (metalli
 side ofthe MIT), whereas at su�
iently high disorder, all WFsbe
ome lo
alized (insulator side of the MIT). In thevi
inity of the 
riti
al point of the MIT, the WFs areneither extended nor exponentially de
aying; as numer-i
al 
al
ulations show, they display a s
aling behaviorand de
rease with the distan
e following a power law(�
riti
al� WFs) [6�8℄.Dis
ussions of the problem of lo
alization of ele
-troni
 states in QCs began immediately after their dis-
overy (see, e.g., [9℄). High-resistive QCs are usuallyattributed to the existen
e of a deep pseudogap in thedensity of ele
troni
 states (DOS) at the Fermi level(DOS at the Fermi level in QC is low but �nite) and tothe tenden
y of the ele
trons at the Fermi level to belo
alized. But the presen
e of a pseudogap is not suf-�
ient to explain the high value of resistivity; its mainreasons are seen in the low ele
tron mobility, whi
h isobviously 
aused by the spe
i�
 symmetry of QC. Fromthe general standpoint, one 
an 
on
lude that due toself-invariant stru
ture of QCs, the WFs must be 
riti-
al. The 
riti
al behavior of the wave fun
tions in QCshas been well established in the 
ases of one- and two-dimensional QCs [10; 11�13℄. But for three-dimensionalsystems (i
osahedral quasi
rystals), the �rst publi
a-tions were 
ontroversial [14�16℄, and even some re-
ent publi
ations 
ontain the 
laim that in the three-dimensional 
ase, the 
riti
al nature of wave fun
tionsmay be lost to some extent [17, 18℄. At the same time,other numeri
al investigations of the ele
tron spe
traof low-order periodi
 approximants of i
osahedral QCsshow that most of the WFs are still 
riti
al, althoughthe ele
tron spe
trum does not 
ontain a hierar
hi
algap stru
ture typi
al of the Cantor set of measure zeroin one-dimensional QCs [19�21℄. Thus, the problem ex-ists and more information on the ele
tron spe
tra andWFs is required in order to judge about the ele
tronlo
alization in three-dimensional (i
osahedral) QCs.In this paper, we present the results of a numer-i
al investigation of the s
aling behavior of the ele
-

tron spe
trum and WFs of the three-dimensional Pen-rose latti
e. The main information needed to 
har-a
terize the LD transition in QCs is obtained. Theinverse parti
ipation numbers (the se
ond momentsof the density probabilities) and the generalized in-verse parti
ipation numbers (higher moments) are ob-tained. Fra
tal dimensions of the spe
trum are ob-tained and 
riti
al behavior of the WFs is studied.The results are important for understanding the ele
-tron lo
alization�delo
alization transition in i
osahe-dral QCs. This work is a 
ontinuation of the previ-ous ones [19, 20℄, where the singularities of the ele
tronspe
trum of i
osahedral QCs and the e�e
t of small per-turbations on it have been studied using tight-bindingand level-statisti
 methods. In [19℄, singularities of theele
tron spe
trum were analized, and it was shown thatthe spe
trum is not Cantorian, but 
ontains a singularpart. In [20℄, we studied the in�uen
e of 
hemi
al disor-der and phasons on the ele
tron spe
trum by 
hangingon-site energies and transfer integrals.This paper is organized as follows. In Se
. 2, we
onsider the main model approximations and 
al
ula-tion te
hnique. In Se
. 3, the results of investigationof the s
aling behavior of the ele
tron spe
trum aredis
ussed. Se
tion 4 
ontains 
on
lusions.2. MODEL APPROXIMATIONS ANDCALCULATION TECHNIQUESThe ele
troni
 spe
trum of the three-dimensionalPenrose latti
e (the Amman�Kramer network) treatedas a stru
tural limit of a sequen
e of periodi
 
ubi
approximants with in
reasing period has been studiedin the framework of the tight-binding approximation(TBA). The �rst �ve 
ubi
 approximants to the i
osa-hedral QCs (1/1, 2/1, 3/2, 5/3, and 8/5) were investi-gated. We 
onsidered the 
entral de
oration of approx-imants with �atoms� of one type, namely atoms withone s-orbital per atom lo
ated at rombohedral 
enters.The unit 
ells of these approximants 
ontained 32, 136,576, 2440, and 10330 atoms respe
tively. The proje
-tion te
hnique for 
onstru
tion of approximants wasdes
ribed previously [19℄. To minimize the number ofadjustable parameters of the model, we used a Hamil-tonian with 
onstant hopping integrals between nearestneighbors (atoms).The Hamiltonian was expressed asH =Xi jii"ihij+Xi6=j jiitijhjj: (1)If atoms of only one type are present, the diagonal ele-ments "i 
an be omitted. In this 
ase, the S
hrödinger1122
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troni
 spe
trum of the three-dimensional Penrose latti
eequation in the tight-binding approximation 
an bewritten as Xij tij	j = Ei	i; (2)where the transfer integrals are set equal to a nonzero
onstant tij = �1 only in the 
ase of the nearest-neighbor atoms. The periodi
 boundary 
onditionshave been used to help redu
e the size-dependen
e ef-fe
ts.We study the lo
alization problem in the TBAby 
al
ulating the inverse parti
ipation numbers (mo-ments or 2q-norms of the wave fun
tion) de�ned by therelation P�1 = jj	jj2q = Pj j	j j2q(Pj j	j j2)q ; (3)from whi
h �parti
ipation ratios� and fra
tal dimen-sions Dq 
an be determined. P is 
alled the parti
ipa-tion number be
ause it is the measure of the numberof sites that 
ontribute to a state of a given energy Ei.The 
orresponding fra
tion p = P=N of all the sites is
alled the parti
ipation ratio. The value of p for q = 2 isfrequently used in the problem of ele
tron lo
alization.The WFs were 
lassi�ed in a

ordan
e with theirnormalization integrals. They are 
onsidered delo
al-ized if Zjrj<R j	(r)j2dr � Rd;where d is the spa
e dimensionality. They are as-sumed lo
alized when their �nite norms exist, and arede�ned as �
riti
al�, 	 � r�, when they 
annot benormalized in an in�nite spa
e and are not delo
al-ized. Strongly lo
alized WFs 
orrespond to the 
asewhere � = 1 and freely extended wave fun
tions 
or-respond to the 
ase where � = 0; 	 
an be normalizedin three-dimensional 
ase only for � � 3/2. For ex-tended states, the moments of the WF depend on thesystem size as jj	jjextended2q � N1�q , as follows fromEq. (3). For exponentially de
aying lo
alized fun
tions,we have jj	jjexp:lo
2q � N0. We 
an therefore obtain theexponent of the wave fun
tions by analyzing the sys-tem size dependen
e of the moments 
al
ulated in thesystem of a su�
ient size. For the relative number ofstates with moments jj	jj2q � N
 , the integrated dis-tribution fun
tion de�ned asI2q(
) = 1N NXn=1 �(
 � logN jj	jj2q)gives the integrated distribution of the exponents of apower-law de
ay for a spe
i�ed system if the �nite-size
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Fig. 1. Inverse parti
ipation numbers P�1 and the par-ti
ipation ratio (q = 2) for the �rst �ve rational approx-imants
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tal dimensionality (qp) for di�erent mo-ments (2q-norms) of the spe
trum (Dp=0 = 3 for allapproximants)
orre
tion is negligible. The pro
edure of �nding theexponent � has been des
ribed in [19℄ (also see [13℄for two-dimensional Penrose latti
e), and we here notethat the behavior of the fun
tion 
(q; �) was analyzedfor the �rst �ve approximants, and as a result, the �lo-
alization� exponent � was found for ea
h approximantunder investigation.From the relation Pq � N�Dq(q�1), whi
h is ap-plied near the �
riti
al� point, we obtained the fra
taldimensions Dq of the system (here, N is the number ofatoms in the unit 
ell of an approximant).3. RESULTS AND DISCUSSIONSThe results of 
al
ulations are presented in Figs. 1�4. The behavior of the inverse parti
ipation numbers,1123 11*
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Fig. 3. Distribution of the lo
alization exponent � (	 � r��) on the energy band. The eigenstates are 
riti
al at allenergiesparti
ipation ratios (Fig. 1), and fra
tal dimensions(Fig. 2) shows that the ele
troni
 states are neitherlo
alized nor delo
alized in all the 
onsidered approx-imants (the �rst �ve approximants were 
onsidered).Indeed, the inverse parti
ipation numbers P are pro-portional to N
 , where 
 must vanish for lo
alizedstates be
ause they �t into a sample of a given size,and 
 = 1 for states uniformly extended over the en-tire sample. Be
ause the 
al
ulated value of P doesnot satisfy both these limits, we 
an assume that theWF or rather its envelope fall as an inverse power ofthe distan
e, 	 � r��. We next see (Fig. 2) that the
al
ulated dimensions Dq of the system satisfy the in-equalities D0 > D1 > D2 > : : : , where for all approxi-mants, D0 is equal to topologi
al dimension (3), andthe dimensions are therefore not simple fra
tal, butmultifra
tal. The multifra
tality regime means thatthe system is in the 
riti
al state, and the WFs at 
rit-i
ality are multifra
tal measures leading to the entirespe
trum of 
riti
al exponents. The spe
trum of mul-tifra
tal dimensions has universal features for states inthe vi
inity of the MIT. We 
an therefore 
on
lude thatthe ground state of the three-dimensional perfe
t QCis a 
riti
al state of the MIT.The results in Fig. 3 show that the WFs are 
rit-i
al at all energies in the band. The dependen
e	 � r�� is typi
al of the 
riti
al state of the sys-tem. It is known that systems without 
hara
teris-ti
 intrinsi
 length s
ales obey homogeneity laws un-der res
aling. The absen
e of length s
ales means that

some observable F shows a typi
al homogeneity lawF (sx) = skF (x), where k is 
alled the homogeneity ex-ponent and s is a real number. This implies that theres
aling of x 
an be 
ompensated by a res
aling of theobservable F . For real-valued fun
tions F (x), the solu-tion of the homogeneity equation is a power-law fun
-tion F (x) � xk. The fun
tion 	 � r�� is therefore asolution of the homogeneity equation with the homo-geneity exponent k = �, and we have a s
ale-invariantbehavior of the system, typi
al of the 
riti
al states. IfF (x) is a fun
tional of powers q of those observablesthat are involved in the de�nition of F (x) (i.e., mo-ments in our 
ase), F (x)=F [q℄(x), then in the simplestsituation, k(q) de�ned byF [q℄(sx) = sk(q)F [q℄(x)is a linear fun
tion of q. If k(q) signi�
antly deviatesfrom linearity, the s
aling behavior of F (x) is anoma-lous, and the system therefore shows the multifra
talbehavior [22℄. Cal
ulations show that the multifra
talbehavior of the system be
omes pronoun
edly apparentfor higher-order approximants (5/3).Considering the behavior of the lo
alization expo-nent �, we see that � tends to a 
ertain value in thethermodynami
 limit (N ! 1). It is known from thetheory of Anderson transitions that near the transitioninto the diele
tri
 (metalli
) state, the 
orrelation (lo-
alization) length � tends to in�nity. As mentionedabove, the Anderson lo
alization theory for intera
tingele
trons implies that � / T 1=3 at the 
riti
al point1124
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troni
 spe
trum of the three-dimensional Penrose latti
eLo
alization exponent �
0:4
1:61:41:21:00:80:6 2 51 43 Approximant's orderFig. 4. The lo
alization exponent � (averaged over theband) for di�erent approximantsof the MIT, where � � LT > L, with LT = pD~=Tbeing the �intera
tion� length [3℄. For QCs, the 
on-ventional pi
ture of the Anderson lo
alization in disor-dered systems is not relevant. In QCs, the ele
troni
states 
an be lo
alized by the quasiperiodi
 potentialitself, and as we have shown (Fig. 3), the WFs in thethree-dimensional QC behave as in the 
riti
al stateof the MIT for 
onventional disordered systems. Asshown in [23℄, it is possible to obtain the � / T 1=3dependen
e by 
onsidering a variable range hopping
ondu
tivity (VRH) on the 
riti
al WFs. Following theMott pro
edure, we de�ne the tunneling integral on the
riti
al WFs asI � j	j2 � jR��j2 � exp(�2� lnR): (4)We then de�ne the 
ondu
tivity� / I exp (��E)=kT );where�E = 3=(4�R3N(EF )) is the minimal a
tivationenergy for hopping over the distan
e R. The expressionexp(�2� lnR) exp(��E=kT ) (5)has a maximum when the exponent(�2� lnR � �E=kT ) has a minimum. Substituting�E and �nding this minimum, we obtain � / T 2�=3.In order to obtain � / T 1=3, the exponent � must beequal to 0.5. The results of 
al
ulations of � (Fig. 4)show that � de
reases as the order of the approximantin
reases. It is di�
ult to say to what value � tends inthe thermodynami
 limit, but the tenden
y is obvious.The results of 
al
ulations also show that the valueof � depends on the moment number, and the last

expression for � should involve some realization of �.Therefore, the result 
oin
ides with the experimentand predi
tions of the s
aling theory of lo
alization forthe �
riti
al� region of MIT.4. CONCLUSIONThe result of investigating s
aling behavior ofthe ele
tron spe
trum for the �rst several periodi
approximants (1/1, 2/1, 3/2, 5/3, 8/5) of the three-dimensional Penrose latti
e with 
entral de
orationhave been presented. The 
riti
al behavior e�e
tsare visible even for these low-order approximants.The 
al
ulated WFs are �
riti
al� for all energiesin the band and are multifra
tal measures with theentire spe
trum of �
riti
al� exponents. The ele
-troni
 states are more lo
alized at the Fermi levelthan at the bottom of the band. The results showthat the ba
kground state of the perfe
t regulari
osahedral QC should be the �
riti
al� state of thelo
alization�delo
alization transition. The natureof ele
tron lo
alization in i
osahedral quasi
rystalshas been dis
ussed previously [9, 19, 20℄, and it wasshown that this lo
alization is unstable under smallperturbations (phasons, 
hemi
al disorder, and themagneti
 �elds). The �
riti
al� behavior of the WFs
an explain the experimentally observed power-lawdependen
e of 
ondu
tivity, � / T 1=3. Cal
ulating theVRH probability on �
riti
al� WFs, we immediatelyobtain the � / T 2�=3 law. For 
oin
iden
e with theexperiment, the realization of the exponent � shouldbe equal to 0.5 in the thermodynami
 limit. At thesame time, it is impossible to obtain the Mott law on�
riti
al� WFs for the VRH 
ondu
tivity on insulatingside of the MIT, and new ideas are ne
essary.We are grateful to the Russian Foundation for Basi
Resear
h (grant � 03-02-16970) and the Royal SwedishA
ademy of S
ien
es for �nan
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