ИЗЛУЧЕНИЕ И ЭЛЕКТРОННЫЕ ПЕРЕХОДЫ ПРИ ВЗАИМОДЕЙСТВИИ АТОМА С УЛЬТРАКОРОТКИМ ИМПУЛЬСОМ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ

В. И. Матвеев*

Поморский государственный университет им. М. В. Ломоносова, Архангельский государственный технический университет 163006, Архангельск, Россия

Поступила в редакцию 27 мая 2002 г., после переработки 5 мая 2003 г.

Рассмотрены электронные переходы и излучение атома при его взаимодействии с пространственнонеоднородным ультракоротким импульсом электромагнитного поля, получены вероятности возбуждения и ионизации, а также спектры и сечения переизлучения атомом такого импульса. В качестве примера рассмотрены одноэлектронные и двухэлектронные неупругие процессы, сопровождающие взаимодействие ультракоротких импульсов с водородоподобными и гелиеподобными атомами. Развитая методика позволяет провести точный учет пространственной неоднородности поля ультракороткого импульса и импульсов фотонов в процессах переизлучения.

PACS: 32.80.Rm, 32.80.Fb

1. ВВЕДЕНИЕ

Обычно исследования процессов взаимодействия атомов с импульсами электромагнитного поля, например лазерного излучения, проводятся для импульсов длительностью, значительно превышающей характерные периоды времени атома-мишени. Взаимодействие импульсов большой протяженности с атомами порождает исключительно богатую в теоретическом и экспериментальном плане картину. Результатам исследований посвящено значительное количество обзорных статей и монографий. Проводящиеся в настоящее время теоретические исследования во многом соответствуют экспериментальным тенденциям к созданию более мощных лазеров и генерации ультракоротких импульсов. Достигнутый прогресс в технологии лазеров сделал реальными источники лазерных импульсов длительностью 20-30 фс с пиковой интенсивностью до 10^{21} Вт/см² [1, 2]. Сообщается о генерации импульсов длительностью 4 фс [3]. Следует отметить, что электромагнитные импульсы длительностью 0.25 фс недавно наблюдались [4] экспериментально. Потреб-

ности эксперимента и усложнение физической ситуации привели к дальнейшему развитию [5,6] теории Келдыша, модификации и развитию кулон-борновского приближения [7-11], позволяющего одновременный учет как сильного переменного поля, так и кулоновского поля атомного остатка; к развитию и построению релятивистских теорий туннельной и многоквантовой ионизации [12, 13]; стимулировали развитие численных подходов для расчетов вероятностей переходов атомных электронов в сильных полях (см., например, работы [14,15] и приведенные там ссылки). В то же время в литературе активно обсуждаются (см., например, работы [16-19]) способы генерации ультракоротких импульсов субфемтосекундного диапазона и более коротких — длительностью до 10⁻²¹-10⁻²² с [19]. Это может открыть новые перспективы для исследования взаимодействия ультракоротких импульсов электромагнитного поля с веществом. В частности, становятся актуальными исследования процессов, сопровождающих взаимодействие атомов с ультракороткими импульсами сильного электромагнитного поля длительностью меньшей, чем характерные атомные периоды. Оценим значения параметра Келдыша

^{*}E-mail: matveev.victor@pomorsu.ru

$$\gamma = \frac{(2\mathcal{I}m)^{1/2}\omega}{eE},$$

где \mathcal{I} — потенциал ионизации атома, m и e — масса и заряд электрона, E — напряженность внешнего поля частоты ω . Атомная единица времени равна $2.42 \cdot 10^{-17}$ с. Для импульса длительностью $(1/3) \cdot 10^{-17}$ с, энергия фотона приблизительно равна 1.24 кэВ. Пусть интенсивность падающего излучения порядка 10^{21} Br/см², тогда для атома водорода $\gamma \approx 0.4$. Такое значение параметра Келдыша говорит о неприменимости теории возмущений для описания взаимодействия атомов с ультракороткими импульсами сильного электромагнитного поля.

Дополнительную возможность [20] (см. также [21]) для изучения процессов взаимодействия атомов с ультракороткими импульсами электромагнитного поля и непосредственное экспериментальное подтверждение исследуемых процессов можно получить, используя столкновительные эксперименты. Например, в экспериментах, описанных в работе [20], исследовалась двойная и однократная ионизация атома гелия ударом иона урана U⁹²⁺ с энергией 1 ГэВ/нуклон и моделировался сверхинтенсивный импульс $(I > 10^{19} \text{ Bt/cm}^2)$ длительностью 10⁻¹⁸ с. Получение таких параметров импульса электромагнитного поля другими методами в настоящее время крайне затруднительно. Известно [22], что поля, создаваемые релятивистскими и ультрарелятивистскими заряженными частицами близки по своим свойствам к полю световой волны. Именно это обстоятельство позволяет использовать так называемый метод эквивалентных фотонов [22, 23], основанный на замене виртуальных фотонов на реальные кванты светового поля. Для полей, создаваемых достаточно большими зарядами (Z > 72), теория возмущений неприменима [24] даже при сколь угодно больших энергиях столкновения, что вызывает необходимость описывать процессы в таких полях непертурбативными методами. Один из наиболее современных подходов состоит в следующем. Хорошо известно [25], что поле заряда, движущегося равномерно и прямолинейно с ультрарелятивистской скоростью, сосредоточено в плоскости, перпендикулярной направлению движения заряда и проходящей через точку расположения заряда в данный момент времени. Однако в явной форме это обстоятельство проявляется [26] лишь после выполнения сингулярного калибровочного преобразования, предложенного ранее в работе [27] (см. также [28]), когда потенциалы поля записываются [26] в виде функции, пропорциональной дельта-функции Дирака, сосредоточенной в указанной плоскости. Последнее позволяет говорить о мгновенном воздействии такого поля на атом и точно решить [29] уравнение Дирака для атомных электронов в ультрарелятивистском пределе. Кроме того, эффективные напряженности полей, создаваемых высокозарядными ионами, могут достигать значений 10¹¹ В/см (для сравнения, характерная атомная напряженность электрического поля имеет порядок 5 · 10⁹ B/см). Дополнительное к этому значительное [26] усиление поля также происходит из-за релятивистского сжатия.

Следует отметить, что непертурбативный учет взаимодействия атомов с импульсами сильного электромагнитного поля длительностью, превышающей характерные атомные периоды времени, часто затруднен и требует применения численных методов. В качестве примера приведем работу [30], в которой рассматривается возбуждение и ионизация атомов гелия короткими импульсами сильного электромагнитного поля длительностью 3.8-15.2 фс (см. также работы [14, 15, 31, 32] и приведенные в них ссылки). Дополнительную трудность вызывает необходимость учета пространственной неоднородности (на размерах атома-мишени) импульса электромагнитного поля, требующая выход за рамки дипольного приближения. К настоящему времени в данном направлении выполнено сравнительно небольшое количество работ (см., например, [33–36] и приведенные там ссылки), в которых проводился учет лишь первой поправки к дипольному приближению.

Во многих практически важных случаях возмущение не является достаточно малым для применения теории возмущений. Однако часто [29, 37–44] встречаются ситуации, когда время действия возмущения значительно меньше характерных атомных периодов времени, что позволяет решать задачу, не ограничивая величину возмущения, и выполнять расчеты аналитически. В рассматриваемых нами ниже случаях характерное атомное время τ_a считается значительно большим длительности ультракоротких импульсов τ . Поэтому общей основой для решения может служить приближение внезапных возмущений [37], не ограничивающее возмущение по величине и требующее для своей применимости лишь выполнение неравенства $\tau/\tau_a \ll 1$.

В настоящей работе рассмотрены возбуждение и ионизация легких (нерелятивистских) атомов при взаимодействии с пространственно-неоднородным ультракоротким импульсом электромагнитного поля, получены вероятности возбуждения и ионизации, а также спектры и сечения переизлучения атомом такого импульса. Развитая методика позволяет провести точный учет как пространственной неоднородности поля ультракороткого импульса, так и импульсов фотонов в процессах переизлучения.

Часто потенциалы электромагнитных волн векторный **A** и скалярный φ — выбираются так, чтобы скалярный потенциал был равен нулю. В такой калибровке потенциал взаимодействия электрона с внешним электромагнитным полем имеет вид (здесь и везде ниже используются атомные единицы)

$$V(\mathbf{r},t) = -\frac{1}{c}(\hat{\mathbf{p}} \cdot \mathbf{A} + \mathbf{A} \cdot \hat{\mathbf{p}}) + \frac{1}{c^2}\mathbf{A}^2, \qquad (1)$$

где $\hat{\mathbf{p}}$ — оператор импульса электрона, c = 137 ат. ед. — скорость света. Будем считать, что векторный потенциал поля волны следующим образом зависит от координат \mathbf{r} и времени t: $\mathbf{A}(\mathbf{r},t) = \mathbf{A}(\eta)$, где фаза волны $\eta = \omega_0 t - \mathbf{k}_0 \cdot \mathbf{r}$. Здесь волновой вектор \mathbf{k}_0 такой, что $|\mathbf{k}_0| = \omega_0/c$, ω_0 — круговая частота. Проведем калибровочное преобразование

$$\mathbf{A}' = \mathbf{A} + \nabla f, \quad \varphi' = \varphi - \frac{1}{c} \frac{\partial f}{\partial t},$$

где $f = \mathbf{A} \cdot \mathbf{r}$. В результате

$$\mathbf{A}' = -\mathbf{k}_0 \left(\mathbf{r} \cdot \frac{d\mathbf{A}}{d\eta} \right), \quad \varphi' = -\mathbf{E} \cdot \mathbf{r},$$

где

$$\mathbf{E} = \mathbf{E}(\mathbf{r}, t) = -|\mathbf{k}_0| \frac{d\mathbf{A}}{d\eta}.$$

В такой калибровке потенциал взаимодействия электрона с электромагнитным полем $V(\mathbf{r},t)$ примет вид

$$V(\mathbf{r},t) = -\frac{1}{c}(\hat{\mathbf{p}} \cdot \mathbf{A'} + \mathbf{A'} \cdot \hat{\mathbf{p}}) + \frac{1}{c^2}(\mathbf{A'})^2 + \mathbf{E} \cdot \mathbf{r}.$$
 (2)

Будем считать, что для нерелятивистского электрона справедливы оценки (очевидные, например, для электрона в атоме водорода или в атомах с небольшими, порядка единицы, зарядами ядер) $p \sim 1$ и $r \sim 1$, тогда в выражении (2) можно пренебречь первыми двумя слагаемыми по сравнению с третьим, в результате потенциал взаимодействия электрона с электромагнитным полем примет простой вид

$$V(\mathbf{r},t) = \mathbf{r} \cdot \mathbf{E}(\mathbf{r},t). \tag{3}$$

Потенциал взаимодействия атомных электронов с импульсом электромагнитного поля гауссовой формы,

5 ЖЭТФ, вып.5(11)

$$\mathbf{E}(\mathbf{r},t) = \mathbf{E}_0 \exp\left[-\alpha^2 \left(t - \frac{\mathbf{k}_0 \cdot \mathbf{r}}{\omega_0}\right)^2\right] \times \\ \times \cos(\omega_0 t - \mathbf{k}_0 \cdot \mathbf{r}), \quad (4)$$

запишем в виде

$$V(t) \equiv V(\{\mathbf{r}_a\}, t) = \sum_{a=1}^{a=N} \mathbf{E}(\mathbf{r}_a, t) \cdot \mathbf{r}_a, \qquad (5)$$

где $\{\mathbf{r}_a\}$ — совокупность координат атомных электронов (a = 1, ..., N), N — число атомных электронов. Пусть α в формуле (4) принимает такие значения, что V(t) эффективно отличается от нуля только в течение времени $\tau \sim \alpha^{-1}$, много меньшего характерных периодов невозмущенного атома, описываемого гамильтонианом H_0 . Тогда амплитуда перехода атома из начального состояния φ_0 в какое-либо конечное состояние φ_n в результате действия внезапного возмущения V(t) будет иметь вид [38]

$$a_{0n} = \langle \varphi_n | \exp\left(-i \int_{-\infty}^{\infty} V(t) \, dt\right) | \varphi_0 \rangle, \qquad (6)$$

где φ_0 и φ_n принадлежат полной ортонормированной системе собственных функций невозмущенного гамильтониана H_0 . Выбор возмущения в виде (5), согласно соотношению (6), позволяет выразить вероятности $w_{0n} = |a_{0n}|^2$ через хорошо известные [45, 46] неупругие атомные формфакторы:

$$w_{0n} = |\langle \varphi_n| \exp\left(-i\mathbf{q} \cdot \sum_a \mathbf{r}_a\right) |\varphi_0\rangle|^2, \qquad (7)$$

где

$$\mathbf{q} = \int_{-\infty}^{\infty} dt \mathbf{E}(\mathbf{r}, t) = \frac{\sqrt{\pi}}{\alpha} \mathbf{E}_{\mathbf{0}} \exp\left(-\frac{\omega_0^2}{4\alpha^2}\right). \quad (8)$$

Приведенные формулы позволяют легко рассчитать вероятности w_{0n} возбуждения или ионизации атома. Таким образом, вероятности возбуждения и ионизации атома пространственно-неоднородным импульсом оказываются формально такими же, как и вероятности возбуждения и ионизации пространственно-однородным (формула (4) при формальном равенстве $\mathbf{k}_0 \cdot \mathbf{r} = 0$) импульсом электромагнитного поля. Для вероятностей переизлучения падающего на атом импульса пространственно-неоднородный и пространственно-иеоднородный случаи приводят к различным результатам.

3. ПЕРЕИЗЛУЧЕНИЕ УЛЬТРАКОРОТКОГО ИМПУЛЬСА АТОМОМ

В приближении внезапных возмущений эволюция начального состояния φ₀ имеет вид

$$\Psi_0(t) = \exp\left[-i \int_{-\infty}^t V(t') dt'\right] \varphi_0, \qquad (9)$$

причем $\Psi_0(t) \to \varphi_0$ при $t \to -\infty$. Введем полную и ортонормированную систему функций

$$\Phi_n(t) = \exp\left[i\int_t^{\infty} V(t')dt'\right]\varphi_n,$$
(10)

причем $\Phi_n(t) \to \varphi_n$ при $t \to \infty$. Очевидно, что амплитуду (6) можно переписать в виде

$$a_{0n} = \langle \Phi_n(t) | \Psi_0(t) \rangle. \tag{11}$$

Поэтому амплитуду излучения фотона будем вычислять в первом порядке теории возмущений как поправки к состояниям (9) и (10) по взаимодействию атомных электронов с электромагнитным полем $[22]^{1}$:

$$U = -\sum_{a,\mathbf{k},\sigma} \left(\frac{2\pi}{\omega}\right)^{1/2} \times \mathbf{u}_{\mathbf{k}\sigma} \left[a^+_{\mathbf{k}\sigma} \exp\left(-i\mathbf{k}\cdot\mathbf{r}_a\right) + a_{\mathbf{k}\sigma} \exp\left(i\mathbf{k}\cdot\mathbf{r}_a\right)\right] \hat{\mathbf{p}}_a.$$
 (12)

Здесь $a_{\mathbf{k}\sigma}^+$ и $a_{\mathbf{k}\sigma}$ — операторы рождения и уничтожения фотона с частотой ω , импульсом \mathbf{k} и поляризацией σ ($\sigma = 1, 2$), $\mathbf{u}_{\mathbf{k}\sigma}$ — единичные векторы поляризации, \mathbf{r}_a — координаты атомных электронов ($a = 1, \ldots, N$), $\hat{\mathbf{p}}_a$ — операторы импульса атомных электронов. Тогда амплитуда испускания фотона с одновременным переходом атома из состояния φ_0 в состояние φ_n имеет вид

$$b_{0n}(\omega) = i \left(\frac{2\pi}{\omega}\right)^{1/2} \mathbf{u}_{\mathbf{k}\sigma} \int_{-\infty}^{\infty} dt \exp(i\omega t) \langle \Phi_n(t) | \times \sum_a \exp(-i\mathbf{k} \cdot \mathbf{r}_a) \hat{\mathbf{p}}_a | \Psi_0(t) \rangle.$$
(13)

Отсюда после интегрирования по частям по времени и опускания членов, исчезающих при исключении (при $t \to \pm \infty$) взаимодействия с электромагнитным полем, получаем

$$b_{0n}(\omega) = -\left(\frac{2\pi}{\omega}\right)^{1/2} \mathbf{u}_{\mathbf{k}\sigma} \int_{-\infty}^{\infty} dt \frac{\exp(i\omega t)}{i\omega} \langle \varphi_n | \times \sum_{a} \exp(-i\mathbf{k} \cdot \mathbf{r}_a) \frac{\partial V(t)}{\partial \mathbf{r}_a} \times \exp\left[-i\int_{-\infty}^{\infty} V(t') dt'\right] |\varphi_0\rangle.$$
(14)

Представив элемент интегрирования по импульсу фотона в виде

$$(2\pi)^{-3}d\mathbf{k} = (c2\pi)^{-3}d\Omega_{\mathbf{k}}\omega^2 d\omega$$

и выполнив суммирование $|b_{0n}(\omega)|^2$ по поляризациям, получим соответствующий спектр испускания фотона в единицу телесного угла $d\Omega_{\mathbf{k}}$ с одновременным переходом атома из состояния φ_0 в состояние φ_n :

$$\frac{d^2 W_{0n}}{d\Omega_{\mathbf{k}} d\omega} = \frac{1}{(2\pi)^2 c^3 \omega} \left| \langle \varphi_n | \sum_a \exp(-i\mathbf{k} \cdot \mathbf{r}_a) \times \left[\frac{\partial \widetilde{V}(\omega)}{\partial \mathbf{r}_a} \times \mathbf{n} \right] \exp\left[-i \int_{-\infty}^{\infty} V(t') \, dt' \right] \left| \varphi_0 \right\rangle \right|^2.$$
(15)

Здесь $\tilde{V}(\omega)$ — фурье-образ функции V(t), определяемый согласно (5):

$$\widetilde{V}(\omega) = \int_{-\infty}^{\infty} V(t) \exp(i\omega t) dt =$$
$$= \sum_{a=1}^{N} \mathbf{E}_{0} \cdot \mathbf{r}_{a} \exp\left(i\frac{\omega}{\omega_{0}}\mathbf{k}_{0} \cdot \mathbf{r}_{a}\right) f_{0}(\omega), \quad (16)$$

$$f_0(\omega) = \frac{\sqrt{\pi}}{2\alpha} \times \left\{ \exp\left[-\frac{(\omega - \omega_0)^2}{4\alpha^2}\right] + \exp\left[-\frac{(\omega + \omega_0)^2}{4\alpha^2}\right] \right\}, \quad (17)$$

а векторное произведение

$$\frac{\partial \widetilde{V}(\omega)}{\partial \mathbf{r}_{a}} \times \mathbf{n} = f_{0}(\omega) \exp\left(-i\frac{\omega}{\omega_{0}}\mathbf{k}_{0}\cdot\mathbf{r}_{a}\right) \times \\ \times \left(\mathbf{E}_{0} \times \mathbf{n} + i\frac{\omega}{\omega_{0}}(\mathbf{E}_{0}\cdot\mathbf{r}_{a})[\mathbf{k}_{0}\times\mathbf{n}]\right). \quad (18)$$

Формула (15) описывает спектр излучения фотона с одновременным переходом атома из состояния φ_0 в состояние φ_n , т. е. парциальный спектр. После суммирования (15) по всем конечным состояниям атома φ_n находим полный спектр излучения

¹⁾ Внезапное возмущение V(t) учтено в функциях $\Phi_n(t)$ и $\Psi_0(t)$ без ограничений на величину V(t).

$$\frac{d^2 W}{d\Omega_{\mathbf{k}} d\omega} = \frac{1}{(2\pi)^2} \frac{1}{c^3 \omega} \langle \varphi_0 | \sum_{a,a'} \exp\left[-i\mathbf{k} \cdot (\mathbf{r}_a - \mathbf{r}_{a'})\right] \times \\ \times \left[\frac{\partial \widetilde{V}(\omega)}{\partial \mathbf{r}_a} \times \mathbf{n}\right] \cdot \left[\frac{\partial \widetilde{V}^*(\omega)}{\partial \mathbf{r}_{a'}} \times \mathbf{n}\right] |\varphi_0\rangle.$$
(19)

Таким образом, нами получен полный спектр излучения атома в течение времени действия внезапного возмущения V(t).

В случае одноэлектронного водородоподобного атома формула (19) упрощается и принимает вид

$$\frac{d^2 W}{d\Omega_{\mathbf{k}} d\omega} = \frac{1}{(2\pi)^2} \frac{1}{c^3 \omega} \times \\ \times \langle \varphi_0 | \left[\frac{\partial \widetilde{V}(\omega)}{\partial \mathbf{r}} \times \mathbf{n} \right] \cdot \left[\frac{\partial \widetilde{V}^*(\omega)}{\partial \mathbf{r}} \times \mathbf{n} \right] | \varphi_0 \rangle. \quad (20)$$

Выполняя в этой формуле интегрирование по углам вылета фотона $d\Omega_{\mathbf{k}}$, получаем

$$\frac{dW}{d\omega} = \frac{2}{3\pi} \frac{1}{c^3 \omega} \langle \varphi_0 | \frac{\partial \widetilde{V}(\omega)}{\partial \mathbf{r}} \cdot \frac{\partial \widetilde{V}^*(\omega)}{\partial \mathbf{r}} | \varphi_0 \rangle.$$
(21)

Среднее по основному состоянию водородоподобного атома легко вычисляется. В результате полный спектр излучения водородоподобного атома с зарядом ядра Z равен

$$\frac{dW}{d\omega} = \frac{2}{3\pi} \frac{1}{c^3 \omega} |f_0(\omega)|^2 \mathbf{E}_0^2 \left(1 + \frac{\omega^2}{Z^2 c^2}\right).$$
 (22)

Поскольку спектр (22) пропорционален $|f_0(\omega)|^2$, постольку, согласно (17), атом преимущественно испускает фотоны, принадлежащие непрерывному спектру с характерными частотами $|\omega - \omega_0| \leq 1/\tau$.

Для вычисления полного спектра излучения двухэлектронного гелиеподобного атома в формуле (19) отдельно рассмотрим слагаемые с a = a' и с $a \neq a'$, соответственно представим спектр в виде

$$\frac{d^2 W}{d\Omega_{\mathbf{k}} d\omega} = \frac{d^2 W_1}{d\Omega_{\mathbf{k}} d\omega} + \frac{d^2 W_2}{d\Omega_{\mathbf{k}} d\omega},\tag{23}$$

где

$$\frac{d^2 W_1}{d\Omega_{\mathbf{k}} d\omega} = \frac{1}{(2\pi)^2} \frac{1}{c^3 \omega} \times \\
\times \langle \varphi_0 | \sum_a \left[\frac{\partial \widetilde{V}(\omega)}{\partial \mathbf{r}_a} \times \mathbf{n} \right] \cdot \left[\frac{\partial \widetilde{V}^*(\omega)}{\partial \mathbf{r}_a} \times \mathbf{n} \right] | \varphi_0 \rangle, \quad (24)$$

$$\frac{d^2 W_2}{d\Omega_{\mathbf{k}} d\omega} = \frac{1}{(2\pi)^2} \frac{1}{c^3 \omega} \times$$

$$\times \langle \varphi_{0} | \sum_{a,a'(a \neq a')} \exp\left[-i\mathbf{k} \cdot (\mathbf{r}_{a} - \mathbf{r}_{a'})\right] \times \\\times \left[\frac{\partial \widetilde{V}(\omega)}{\partial \mathbf{r}_{a}} \times \mathbf{n}\right] \cdot \left[\frac{\partial \widetilde{V}^{*}(\omega)}{\partial \mathbf{r}_{a'}} \times \mathbf{n}\right] |\varphi_{0}\rangle. \quad (25)$$

В формуле (24) можно в общем виде выполнить интегрирование по углам вылета фотона, в результате

$$\frac{dW_1}{d\omega} = \frac{2}{3\pi} \frac{1}{c^3 \omega} \langle \varphi_0 | \sum_a \frac{\partial \widetilde{V}(\omega)}{\partial \mathbf{r}_a} \cdot \frac{\partial \widetilde{V}^*(\omega)}{\partial \mathbf{r}_a} | \varphi_0 \rangle.$$
(26)

Входящее сюда среднее по основному состоянию гелиеподобного атома вычислим, описывая волновую функцию основного состояния в виде произведения одноэлектронных водородоподобных волновых функций с эффективным зарядом Z. В результате

$$\frac{dW_1}{d\omega} = 2\frac{2}{3\pi} \frac{1}{c^3\omega} |f_0(\omega)|^2 \mathbf{E}_0^2 \left(1 + \frac{\omega^2}{Z^2 c^2}\right).$$
(27)

Сравнивая выражения (27) с (22), приходим к выводу, что эта часть спектра излучения двухэлектронного атома соответствует некогерентному излучению двух электронов, поскольку формула (27) может быть получена из (22) умножением на число слагаемых в формуле (26), равное в данном случае числу излучающих электронов N = 2. Часть спектра, представленная формулой (25), содержит $N(N-1) = N^2 - N$ слагаемых и соответствует смешанному (когерентному и некогерентному) характеру излучения.

В формуле (25) провести интегрирование по углам вылета фотона в общем виде затруднительно, поэтому, используя (18), представим ее в виде

$$\frac{d^2 W_2}{d\Omega_{\mathbf{k}} d\omega} = \frac{1}{(2\pi)^2} \frac{1}{c^3 \omega} |f_0(\omega)|^2 \times \\
\times \langle \varphi_0 | \sum_{a,a'(a \neq a')} \exp\left[-i\mathbf{k} \cdot (\mathbf{r}_a - \mathbf{r}_{a'})\right] \left\{ [\mathbf{E}_0 \times \mathbf{n}]^2 + i\frac{\omega}{\omega_0} \left([\mathbf{E}_0 \times \mathbf{n}] \cdot [\mathbf{k}_0 \times \mathbf{n}] \right) \mathbf{E}_0 \cdot (\mathbf{r}_a - \mathbf{r}_{a'}) + \\
+ \left(\mathbf{E}_0 \cdot \mathbf{r}_a \right) \left(\mathbf{E}_0 \cdot \mathbf{r}_{a'} \right) \frac{\omega^2}{\omega_0^2} [\mathbf{k}_0 \times \mathbf{n}]^2 \right\} |\varphi_0\rangle. \quad (28)$$

Входящее сюда среднее по основному состоянию атома гелия легко вычисляется, в результате

$$\frac{d^2 W_2}{d\Omega_{\mathbf{k}} d\omega} = \frac{2}{(2\pi)^2} \frac{1}{c^3 \omega} |f_0(\omega)|^2 \times \\
\times \left[\frac{16Z^4}{4Z^2 + (\mathbf{k} - \mathbf{k}_0 \omega / \omega_0)^2} \right]^2 \left\{ [\mathbf{E}_0 \times \mathbf{n}]^2 - \\
- \frac{\omega}{\omega_0} [\mathbf{E}_0 \times \mathbf{n}] \cdot [\mathbf{k}_0 \times \mathbf{n}] \frac{8\mathbf{E}_0 \cdot (\mathbf{k} - \mathbf{k}_0 \omega / \omega_0)}{4Z^2 + (\mathbf{k} - \mathbf{k}_0 \omega / \omega_0)^2} + \\
+ \left[\frac{4\mathbf{E}_0 \cdot (\mathbf{k} - \mathbf{k}_0 \omega / \omega_0)}{4Z^2 + (\mathbf{k} - \mathbf{k}_0 \omega / \omega_0)^2} \frac{\omega}{\omega_0} \mathbf{k}_0 \times \mathbf{n} \right]^2 \right\}. \quad (29)$$

 5^{*}

Теперь мы можем выполнить интегрирование по углам вылета фотона, выбирая ось z направленной по вектору \mathbf{k}_0 , тогда

$$\frac{dW_2}{d\omega} = \frac{1}{2\pi} \frac{1}{c^3 \omega} |f_0(\omega)|^2 \times \\
\times \mathbf{E}_0^2 \int_{-1}^1 dx \left[\frac{16Z^4}{(4Z^2 + 2\omega^2 c^{-2}(1+x))^2} \right]^2 \times \\
\times \left[1 + x^2 + \frac{8\omega^2 c^{-2}(1-x^2)x}{4Z^2 + 2\omega^2 c^{-2}(1+x)} + \frac{16\omega^4 c^{-4}(1-x^2)^2}{(4Z^2 + 2\omega^2 c^{-2}(1+x))^2} \right]. \quad (30)$$

Входящий в правую часть формулы (30) интеграл по dx обозначим через $I(\alpha)$, где $\alpha = \omega^2/2c^2Z^2$. Его вычисление элементарно, но громоздко, и в результате может быть получено следующее выражение:

$$I(\alpha) = \frac{2 - 2\alpha + 8\alpha^2}{15\alpha^3} - \frac{2 + 18\alpha + 68\alpha^2 + 120\alpha^3 + 80\alpha^4}{15\alpha^3(1 + 2\alpha)^5}.$$
 (31)

Согласно соотношению (23), полный спектр представляется в виде

$$\frac{dW}{d\omega} = \frac{dW_1}{d\omega} + \frac{dW_2}{d\omega},\tag{32}$$

где $dW_1/d\omega$ выражается с помощью формулы (27), а

$$\frac{dW_2}{d\omega} = \frac{1}{2\pi} \frac{1}{c^3 \omega} |f_0(\omega)|^2 \mathbf{E}_0^2 I(\alpha).$$
(33)

4. ЗАКЛЮЧЕНИЕ

Таким образом, нами вычислены полные спектры переизлучения ультракороткого импульса электромагнитного поля водородоподобными и гелиеподобными атомами. При этом мы смогли точно учесть как пространственную неоднородность поля импульса на размерах атома, так и импульсы испускаемых фотонов. Используя выражения (27), (33) и введя число N электронов в атоме, представим формулу (32) для полного спектра $dW/d\omega$ в виде

$$\frac{dW}{d\omega} = \frac{2}{3\pi} \frac{1}{c^3 \omega} |f_0(\omega)|^2 \times \mathbf{E}_0^2 \left[N \left(1 + \frac{\omega^2}{c^2 Z^2} \right) + N(N-1) \frac{3}{8} I(\alpha) \right]. \quad (34)$$

Такая форма записи выражения для спектра представляется удобной, поскольку формула (34) при

N = 1 совпадает с (22) и тем самым описывает спектр излучения водородоподобного атома с эффективным зарядом ядра Z, а при N = 2 -спектр излучения гелиеподобного атома. Для атомов с произвольным числом электронов $(N \ge 2)$ формула (34) в соответствии с рассуждениями, приведенными после формулы (27), может служить основой для качественного описания и оценок зависимости спектра переизлучения пространственно-неоднородного импульса от числа атомных электронов. Спектр (34) переизлучения пространственно-неоднородного импульса состоит из некогерентной (пропорциональной N) и когерентной (пропорциональной N^2) частей. Причем, поскольку $I(\alpha) \rightarrow 8/3$ при $\omega \rightarrow 0$, в области низких частот (когда $\omega^2/Z^2c^2 \ll 1$) спектр переизлучения прямо пропорционален N^2 и имеет когерентный характер. Очевидно, случай низких частот соответствует когерентному характеру процесса переизлучения многоэлектронными атомами пространственно-однородного импульса, тогда как в области высоких частот (когда $\omega^2/Z^2c^2 \gg 1$ и $I(\alpha) \to 0$) спектр пропорционален N и имеет некогерентный характер.

Для получения сечений переизлучения импульса, согласно работе [25], необходимо спектры, определяемые формулами (19) и (34), умножить на ω и разделить на поток энергии *I*, выражаемый через интеграл по времени от абсолютной величины вектора Пойнтинга $S(t) = c(4\pi)^{-1}\mathbf{E}^2$,

$$I = \int_{-\infty}^{\infty} dt S(t) =$$
$$= \frac{c}{4\pi} \mathbf{E}_0^2 \frac{\sqrt{\pi}}{2\sqrt{2\alpha}} \left[\exp\left(-\frac{\omega_0^2}{2\alpha^2}\right) + 1 \right]. \quad (35)$$

Работа выполнена при финансовой поддержке Министерства образования Российской Федерации (грант № E02-3.2-512) и РФФИ (грант № 01-02-17047).

ЛИТЕРАТУРА

- G. A. Mourou, Ch. P. J. Barty, and M. D. Perry, Phys. Today 51, 22 (1998).
- T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
- N. Zhavoronkov and G. Korn, Phys. Rev. Lett. 88, 203901 (2002).

- 4. E. Hertz, N. A. Papadogiannis, G. Nersisyan et al., Phys. Rev. A 64, 051801 (2001).
- V. I. Usachenko and V. A. Pazdzersky, J. Phys. B 35, 761 (2002).
- K. Mishima, M. Hayashi, J. Yi et al., Phys. Rev. A 66, 033401 (2002).
- S. Basile, F. Trombetta, G. Ferrante et al., Phys. Rev. A 37, 1050 (1988).
- C. Leone, S. Bivona, R. Burlon et al., Phys. Rev. A 40, 1828 (1989).
- L. Rosenberg and F. Zhou, Phys. Rev. A 46, 7093 (1992).
- 10. H. S. Reiss and V. P. Krainov, Phys. Rev. A 50, R910 (1994).
- 11. G. Duchateau, E. Cormier, and R. Gayet, Phys. Rev. A 66, 023412 (2002).
- 12. N. Milosevic, V. P. Krainov, and T. Brabec, J. Phys. B 35, 3515 (2002).
- 13. H. K. Avetissian, A. G. Markossian, and G. F. Mkrtchian, Phys. Rev. A 64, 053404 (2001).
- 14. A. D. Kondorskiy and L. P. Presnyakov, J. Phys. B 34, L663 (2001).
- 15. J. B. West, J. Phys. B 34, R45 (2001).
- 16. S. E. Harris and A. V. Sokolov, Phys. Rev. Lett. 81, 2894 (1998).
- 17. I. P. Christov, M. M. Murnane, and H. C. Kapteyn, Opt. Comm. 148, 75 (1998).
- 18. A. V. Sokolov, D. D. Yavuz, and S. E. Harris, Opt. Lett. 24, 557 (1999).
- A. E. Kaplan and P. L. Shkolnikov, Phys. Rev. Lett. 88, 074801 (2002).
- 20. R. Moshammer, W. Schmitt, J. Ullrich et al., Phys. Rev. Lett. 79, 3621 (1997).
- 21. A. V. Selin, A. M. Ermolaev, and C. J. Joachain, Phys. Rev. A 67, 012709 (2003).
- 22. В. Б. Берестецкий, Е. М. Лифшиц, Л. П. Питаевский, *Квантовая электродинамика*, Наука, Москва (1989).
- 23. C. A. Bertulani and G. Baur, Phys. Rep. 163, 209 (1998).

- 24. J. Eichler and W. E. Meyrhof, *Relativistic Atomic Collisions*, Academ. Press Inc., New York (1995).
- 25. Л. Д. Ландау, Е. М. Лифшиц, *Теория поля*, Наука, Москва (1988).
- 26. A. J. Baltz, Phys. Rev. A 52, 4970 (1995).
- 27. N. Toshima and J. Eichler, Phys. Rev. A 42, 3896 (1990).
- 28. В. И. Матвеев, М. М. Мусаханов, ЖЭТФ 105, 280 (1994).
- 29. A. J. Baltz, Phys. Rev. Lett. 78, 1231 (1997).
- 30. A. Scrinzi and B. Piraux, Phys. Rev. A 56, R13 (1997).
- 31. J. Bauer, J. Plucinski, B. Piraux et al., J. Phys. B 34, 2245 (2001).
- 32. G. Lagmago Kamta, T. Grosges, B. Piraux et al., J. Phys. B 34, 857 (2001).
- 33. C. C. Chirilă, N. J. Kylstra, R. M. Potvliege et al., Phys. Rev. A 66, 063411 (2002).
- 34. M. W. Walser, C. H. Keitel, A. Scrinzi et al., Phys. Rev. Lett. 85, 5082 (2000).
- 35. D. B. Miločevič, S. Hu, and W. Becker, Phys. Rev. A 63, 011403(R) (2001).
- 36. N. J. Kylstra, R. M. Potvliege, and C. J. Joachain, J. Phys. B 34, L55 (2001).
- **37**. А. М. Дыхне, Г. Л. Юдин, УФН **125**, 377 (1978).
- 38. В. И. Матвеев, Э. С. Парилис, УФН 138, 583 (1982).
- **39**. J. Eichler, Phys. Rev. A **15**, 1856 (1997).
- 40. Г. Л. Юдин, ЖЭТФ 80, 1026 (1981).
- 41. В. И. Матвеев, ЭЧАЯ 26, 780 (1995).
- 42. И. С. Персиваль, в кн. Атомы в астрофизике, под ред. Ф. Г. Берка, В. Б. Эйспера, Д. Г. Хаммера, И. С. Персиваля, Мир, Москва (1998), с. 87.
- **43**. В. И. Матвеев, ЖЭТФ **121**, 260 (2002).
- 44. А. Б. Мигдал, Качественные методы в квантовой теории, Наука, Москва (1975).
- 45. Л. Д. Ландау, Е. М. Лифщиц, *Квантовая механика*, Наука, Москва (1989).
- 46. A. R. Holt, J. Phys. B 2 1209 (1969).