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SMALL-x BEHAVIOR OF THE SLOPE dlnF2=dln(1=x)IN THE PERTURBATIVE QCD FRAMEWORKA. V. Kotikov *Bogoliubov Laboratory of Theoretial PhysisJoint Institute for Nulear Researh141980, Dubna, RussiaG. Parente **Departamento de Físia de PartíulasUniversidade de Santiago de Compostela15706, Santiago de Compostela, SpainSubmitted 8 April 2003In the leading twist approximation of the Wilson operator produt expansion, we show that using an analytiparameterization for the behavior of the x slope of the struture funtion F2 at small x in perturbative QCDand applying a �at initial ondition in the DGLAP evolution equations leads to a very good agreement with thenew preise deep inelasti sattering experimental data from HERA.PACS: 13.60.Hb, 12.38.Bx1. INTRODUCTIONMeasurements of the deep inelasti satteringstruture funtion F2 [1�3℄, and of the derivativesdF2=d ln(Q2) [1, 2, 4℄ and d lnF2=d ln(1=x) [4; 5℄in HERA have allowed aessing a very interestingkinematial range for testing theoretial ideas on thebehavior of quarks and gluons [6℄ arrying a very lowfration of the proton momentum, the so-alled small-xregion. In this limit, one expets that nonperturbativee�ets an give essential ontributions. However, areasonable agreement between the HERA data and thenext-to-leading approximation of perturbative QCDhas been observed for Q2 � 2 GeV2 (see review [7℄ andreferenes therein), and therefore perturbative QCDan desribe the evolution of F2 and its derivativesdown to very low Q2 values, traditionally explainedby soft proesses. It is fundamentally important to�nd the kinematial region where the well-establishedperturbative QCD formalism an be safely applied atsmall x.*E-mail: kotikov�thsun1.jinr.ru; present adress: Institut furTheoretishe Teilhenphysik, Universitat Karlsruhe, D-76128,Karlsruhe, Germany.**E-mail: gonzalo�gaes.us.es

The standard program to study the x behavior ofquarks and gluons is arried out by omparison of datawith the numerial solution of the Dokshitzer�Gribov�Lipatov�Altarelli�Parisi (DGLAP)1) equations [8℄ by�tting the parameters of the x pro�le of partons at someinitial Q20 and the QCD energy sale � [10, 11℄. Butfor analyzing the small-x region exlusively, there is thealternative of a simpler analysis using some of the exist-ing analyti solutions of the DGLAP equations in thesmall-x limit [12�15℄. This was done in Ref. [12℄, whereit was pointed out that the HERA small-x data an beinterpreted in terms of the so-alled doubled asymp-toti saling phenomenon related to the asymptoti be-havior of the DGLAP evolution disovered many yearsago [16℄.The study in Ref. [12℄ was extended in Ref. [13�15℄to inlude the �nite parts of anomalous dimensions ofWilson operators and Wilson oe�ients2). This has1) At small x, there is a di�erent approah based on theBalitsky�Fadin�Kuraev�Lipatov (BFKL) equation [9℄, whose ap-pliation is out of the sope of this paper. However, we sometimesuse the BFKL-based preditions below in disussions and foromparison with our results in the generalized doubled asymp-toti saling approximation.2) In the standard doubled asymptoti saling approxima-tion [16℄, only the singular parts of the anomalous dimensionsare used.963



A. V. Kotikov, G. Parente ÆÝÒÔ, òîì 124, âûï. 5 (11), 2003led to the predition [14, 15℄ of the small-x asymptotiform of parton distributions in the framework of theDGLAP equation starting at some Q20 with the �atfuntion fa(Q20) = Aa; (1)where fa are the parton distributions multiplied by x,Aa are unknown parameters to be determined fromdata, and a = q; g hereafter.We refer to the approah in Ref. [13�15℄ as the gen-eralized doubled asymptoti saling approximation. Inthe generalized doubled asymptoti saling approxima-tion, the �at initial onditions in Eq. (1) determine thebasi role of the singular parts of anomalous dimen-sions, as in the standard ase [12℄, while the ontri-bution from �nite parts of anomalous dimensions andfrom Wilson oe�ients an be onsidered as orre-tions, whih are however important for a better agree-ment with experimental data [14℄. In the present paper,similarly to Refs. [12�15℄, we neglet the ontributionfrom the nonsinglet quark omponent.The use of the �at initial ondition given in Eq. (1)is supported by the atual experimental situation:the low-Q2 data [1; 4; 17; 18℄ are well desribed forQ2 � 0:4 GeV2 by the Regge theory with the Pomeroninterept �P (0) � �P + 1 = 1:08;lose to the standard one (�P (0) = 1). The small riseobserved in the HERA data [1; 2; 4; 18; 19℄ at low Q2an be naturally explained by inluding higher twistterms (see [15, 20℄). Moreover, HERA data [1, 2, 18, 19℄with Q2 > 1 GeV2 are in good agreement with thepreditions from the Gluk�Reya�Vogt (GRV) partondensities [11℄, whih supports our aim to develop theanalyti form for the parton densities at small x be-ause at least oneptually, our method is very lose tothe GRV approah.The purpose of this paper is to extend the studyin Ref. [14℄ to ompare the preditions from the gener-alized doubled asymptoti saling approah with thenew preise H1 data [5℄ for the F2 slope. The pa-per is organized as follows. In Se. 2, we addressthe present situation with experimental data for theslope d lnF2=d ln(1=x) and brie�y review some ap-proahes to desribe them. For ompleteness, Ses. 3and 4 ontain a ompilation of the basi formulas inthe generalized doubled asymptoti saling approxima-tion from Ref. [14℄ needed for the present study. InSe. 5, we ompare our preditions for the derivatived lnF2=d ln(1=x) with the experimental data and dis-uss the obtained results.

2. THE SLOPE dlnF2=dln(1=x):EXPERIMENTAL DATA AND QCDPHENOMENOLOGYVarious groups have been able to �t the availabledata (mostly separating the low- and high-Q2 regions)using a steep input at small x, x��; � > 0. Thisis learly di�erent from the �at input in the doubledasymptoti saling approah of Refs. [12�15℄, also de-sribing the experimental results reasonably well. Insome sense, this is not very surprising beause the mod-ern HERA data (at large Q2) annot distinguish be-tween the behavior from a steep input parton parame-terization at quite largeQ2 and the steep form aquiredafter dynamial evolution from a �at initial onditionat quite low values of Q2.Moreover, for the Q2-evolution based on the fullset of anomalous dimensions obtained at x ! 0 inRef. [21℄ within the Balitsky�Fadin�Kuraev�Lipatov(BFKL) formalism [9℄, the results weakly depend onthe form of the initial ondition [22℄, preserving thesteep ones and hanging the �at ones. In working withanomalous dimensions at a �xed order in �s, the initialonditions are important when the data are onsideredin a wide Q2 range and it is neessary to adequatelyhoose the form of the parton distribution asymptotiform at some Q20.As disussed in the Introdution, the use of a �atinitial ondition leads to the (generalized) doubledasymptoti saling approximation [13�15℄. An alter-native to this is the hoie of a steep initial onditionat some su�iently large Q2 ,fa(x;Q2) / x��(the subsript  stands for onstant), whih leads tothe Q2-dependene of fa(x;Q2) [23�27℄ given by (forx�� � onst)fa(x;Q2)fa(x;Q2) � M+a (1 + �; Q2)M+a (1 + �; Q2) ; (2)whereM+a (1+�; Q2) is the analyti ontinuation (frominteger n to real 1 + �) of the �+� omponent of theMellin moment of fa(x;Q2),Ma(n;Q2) = 1Z0 dx xn�2fa(x;Q2): (3)For x�� � onst, the slope � must be Q2-in-dependent [24, 25℄ and the whole Q2-dependene offa(x;Q2) omes from the fator M+a (1 + �; Q2) infront of x�� in Eq. (2). Approximations similar to964
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ross setions for many di�erent proesses show a uni-versal rise at large energies, whih allows parameteriz-ing all these ross setions as the sum of two di�erentomponents��ptot = AP s�P (0)�1 +ARs�R(0)�1; (5)where s is the enter-of-mass energy squared. Theonstants AP and AR are proess-dependent magni-tudes and the interepts �P (0) � 1:08 and �R(0) � 0:5(see [29℄) are universal proess-independent onstants.The �rst and seond terms in Eq. (5) orrespond to(soft) Pomeron and Reggeon exhange, respetively.From Eqs. (4) and (5), we immediately obtain thatas Q2 ! 0,965



A. V. Kotikov, G. Parente ÆÝÒÔ, òîì 124, âûï. 5 (11), 2003F2(x;Q2) / x�";and henefa(x;Q2) / x�"; " = �P (0)� 1 � 0:08beause s = Q2=x at small x.There have been many attempts to study the en-tire Q2 region in the Regge-asymptoti framework (see,e.g., the reviews in Ref. [7℄). The reports in Ref. [7℄ on-tain a great number of models, but we restrit ourselvesto only two of them.In Ref. [30℄, the �t to F2 experimental data wassought with fa(x;Q2) / x��(Q2); (6)and rapidly hanging �(Q2) was found in the transi-tion range Q2 � 5�10 GeV2. Unfortunately, it is ratherdi�ult to reonile the Regge-like behavior given byEq. (6) with DGLAP evolution in the entire Q2 range.Some progress along this line ahieved in Ref. [27℄ isalso based on the �at initial onditions given by Eq. (1).But the parton distribution struture in Ref. [27℄ is lim-ited by the Regge-like form of Eq. (6), whih allowsreoniling it with DGLAP evolution only separatelyat low Q2, where �(Q2) is lose to 0 (or to "), and atlarge Q2, where �(Q2) � �. The struture funtionF2 and parton distributions were obtained in Ref. [27℄for the entire Q2 range only as a ombination of thesetwo representations.For other types of models (see [32, 33℄), the phe-nomenologial Q2-dependene of �(Q2) is given by�(Q2) = "�1 + Q2Q2 + �with a �tted onstant . This produes soft values ofthe slope �(Q2) lose to " at low Q2 and hard ones,�(Q2) � � � 0:2�0.3, at Q2 � 20 GeV2.New preise experimental data on �(Q2) have be-ome available very reently [5℄. The H1 data pointsare shown in Fig. 1, where one an observe that for a�xed Q2, � is independent of x in the range x < 0:01within the experimental unertainties. Indeed, H1 dataare well desribed by the power behavior [5℄F2(x;Q2) = Cx��(Q2); (7)where �(Q2) = â ln(Q2=�2)
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ÆÝÒÔ, òîì 124, âûï. 5 (11), 2003 Small-x behavior of the slope dlnF2=dln(1=x) : : :3. Q2-DEPENDENCE OF F2 AND PARTONDISTRIBUTIONS IN THE GENERALIZEDDOUBLED ASYMPTOTIC SCALINGAPPROXIMATIONWe brie�y reall the results of the generalized dou-bled asymptoti saling approximation �rst presentedin Ref. [14℄. The small-x behavior of the parton densi-ties and F2 at the next-to-leading order approximationis given by3)fa(z;Q2) = f+a (z;Q2) + f�a (z;Q2);f�a (z;Q2) � exp(�d�(1)s�D�(1)p) +O(z); (8)f+g (z;Q2) � I0(�) exp(�d+(1)s�D+(1)p)+O(�); (9)f+q (z;Q2) � f+g (z;Q2)�(1� �dq+�(1)as(Q2))�� �I1(�)I0(�) + 20as(Q2)�+O(�); (10)F2(z;Q2) = e�fq(z;Q2)+23fas(Q2)fg(z;Q2)�; (11)where e = Pfi e2ifis the average harge square of f e�etive quarks,as = �s=4�;s = ln�as(Q20)as(Q2)� ; p = as(Q20)� as(Q2);D� = d�� � �1�0 d�; � = 2q(d̂+s+ D̂+p) ln z;� =s (d̂+s+ D̂+p)ln z = �2 ln(1=z) ; (12)and �0 and �1 are the �rst two terms of the QCD�-funtion.The omponents of the leading order anomalousdimension d�(n) and the singular (d̂+) and regular(d+(n)) parts of the leading order anomalous dimensiond+(n) = d̂+=(n� 1) + d+(n) are given by (at n! 1):3) Hereafter, z = x=x0, where x0 is a free parameter that limitsthe appliability range of Eqs. (8)�(11) and an be �tted fromexperimental data together with the magnitudes of gluon and seaquark distributions at Q20. As shown in Ref. [14℄, the �ts to theF2 HERA data depend very slightly on the spei� x0 value.

d̂+ = �12�0 ; d+(1) = 1 + 20f27�0 ;d�(1) = 16f27�0 : (13)The orresponding omponents in the next-to-leading order an be represented asd̂++ = 41227�0 f; d̂q+� = �20; d̂g+� = 0;d++(1) = 8�0�36�3 + 33�2 � 164312 ++ 29fh689 � 4�2 � 13243fi�;dq+�(1) = 23� 12�2 � 1381f; dg+�(1) = 8081f;d��(1) = 169�0�2�3 � 3�2 + 134 ++ fh4�2 � 2318 + 13243fi�;dq�+(1) = 0; dg�+(1) = �3�1 + f81�:
(14)

Some interesting features of the results inEqs. (8)�(12) are summarized below.1) Both the gluon and quark singlet densities givenabove are presented in terms of two omponents (�+�and ���) that are obtained from the analyti Q2-de-pendent expressions of the orresponding (�+� and���) omponents of parton distribution moments.2) The ��� omponent is onstant at small x,whereas the �+� omponent grows at Q2 � Q20 asexp�, where � ontains the positive leading-order termjd̂+js ln(1=z) and the negative next-to-leading orderone jD̂+jp ln(1=z) (see Eq. (12)). The most importantpart of the next-to-leading order orretions (i.e., thesingular part at x! 0) is therefore properly taken intoaount: it diretly enters the argument of the Besselfuntions and does not spoil the appliability of per-turbation theory at low values of x.4. Q2-DEPENDENCE OF THE SLOPEd ln F2=d ln (1=x) IN THE GENERALIZEDDOUBLED ASYMPTOTIC SCALINGAPPROXIMATIONBehavior of the parton densities and the struturefunion F2 within the generalized doubled asymptotisaling approah, given by Eqs. (8)�(11), an be repre-sented by a power-law shape over a limited region of xand Q2 [14, 15℄,fa(x;Q2) / x��effa (x;Q2); F2(x;Q2) / x��effF2(x;Q2):967



A. V. Kotikov, G. Parente ÆÝÒÔ, òîì 124, âûï. 5 (11), 2003Beause dd lnx = dd ln z ; the e�etive slopes an be obtained diretly fromEqs. (8)�(11) as�effg (z;Q2) = f+g (z;Q2)fg(z;Q2) �I1(�)I0(�) ;�effq (z;Q2) = f+q (z;Q2)fq(z;Q2) �I2(�)(1 � dq+�(1)as(Q2)) + 20as(Q2)I1(�)=�I1(�)(1 � dq+�(1)as(Q2)) + 20as(Q2)I0(�)=� ;�effF2(z;Q2) = �effq (z;Q2)f+q (z;Q2) + (2f)=3as(Q2)�effg (z;Q2)f+g (z;Q2)fq(z;Q2) + (2f)=3as(Q2)fg(z;Q2) : (15)
We emphasize that the gluon e�etive slope �effgobtained from Eq. (15) is larger than the quark slope�effq [14℄, whih is in exellent agreement with Martin�Stirling�Roberts [35℄ and Gluk�Reya�Vogt [11℄ anal-yses (see also Ref. [10℄).On the other hand, the e�etive slopes �effa and �effF2

in Eq. (15) depend on the magnitudes Aa of the initialparton distribution and on the hosen input values Q20and �. But at quite large Q2, where the ��� ompo-nent is negligible, the dependene on the initial partondistribution disappears, and the asymptoti behavioris then given by4)�eff;asg (z;Q2) = � I1(�)I0(�) � �� 14 ln (1=z) ;�eff;asq (z;Q2) = �I2(�)(1 � dq+�(1)as(Q2)) + 20as(Q2)I1(�)=�I1(�)(1 � dq+�(1)as(Q2)) + 20as(Q2)I0(�)=� �� �� 34 ln (1=z) + 10as(Q2)� ln(1=z) ;�eff;asF2 (z;Q2) = �eff;asq (z;Q2)1 + 6as(Q2)=�eff;asq (z;Q2)1 + 6as(Q2)=�eff;asg (z;Q2) +O(a2s(Q2)) � �eff;asq (z;Q2) + 3as(Q2)� ln(1=z) ; (16)
where the symbol ��� denotes that an approximationwas made in the expansion of the modi�ed Bessel fun-tions In(�) (n = 0; 1; 2). These approximations are a-urate only at large values of � (i.e., at large Q2 and/orsmall x).Finally, we note that at the leading order, the F2slope �eff;asF2 is equal to the quark slope �eff;asq and oin-ides with the result in Ref. [36℄ for very large values of� and a �at input (see also the �rst paper in Ref. [7℄).At the next-to-leading order, �eff;asF2 lies between thequark and gluon slopes but loser to the former (seeFig. 3 in Ref. [14℄).

5. COMPARISON WITH EXPERIMENTALDATAUsing the results in the previous setion, we haveanalyzed HERA data from the H1 Collaboration5) [5℄for the slope d lnF2=d ln(1=x) at small x.Initially, our results for �effF2 depend on the �ve pa-rameters Q20, x0, Aq , Ag, and �MS (f = 4). In ourprevious paper [14℄, we �xed �MS (f = 4) = 250 MeV,whih was a reasonable value extrated from the tra-ditional (higher-x) experiments. All the other parame-ters were �tted and good agreement with the F2 HERAdata was found for Q20 � 1 GeV2 (all results depend onx0 very slightly).4) The asymptoti formulas in Eq. (16) work quite well at any values of Q2 � Q20, beause the values of �effa and �effF2 are equal tozero at Q2 = Q20. The use of approximations in Eq. (16) instead of the exat results in Eq. (15) underestimates (overestimates) thegluon (quark) slope at Q2 � Q20 only slightly. For F2, the similarity of the values of �effF2 and �eff;asF2 is shown in Fig. 1.5) In this paper, we only use the H1 data [5℄. The preliminary ZEUS data for the slope d lnF2=d ln(1=x) are only available throughpoints in Figs. 8 and 9 of Ref. [4℄. They shown quite similar properties in omparison with the H1 data [5℄. Unfortunately, the ZEUSnumerial values are still unavailable and we annot analyze them in the present paper.968
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it for two representative values of x.Visual inspetion of Fig. 1 shows that the bound-aries and mean values of the experimental x ranges [5℄inrease proportionally to Q2, whih is related to thekinematial restritions x � 10�4Q2 in the HERA ex-periments (see Refs. [1�3; 18℄ and, e.g., Fig. 1 in [4℄).Figure 3 shows the H1 experimental data [5℄ for �effF2and the H1 parameterization (Eq. (7)) as in Fig. 2,but this time in omparison with the asymptoti val-ues �eff;asF2 alulated from Eq. (16) using x = a10�4Q2with a = 0:1; 1, and 10. There is a reasonable agree-ment with the H1 data for Q2 > 2 GeV2 with a between0:1 and 1 (the two lower dashed urves in Fig. 3), whihapproximately orresponds to the middle points of themeasured x range.6. CONCLUSIONSWe have studied the Q2-dependene of the slope�effF2 = d lnF2=d ln(1=x)at small x in the framework of perturbative QCD. Ourresults are in good agreement with the new preise ex-perimental H1 data [5℄ at Q2 � 2 GeV2, where pertur-bation theory an be appliable.Although our approah, whih an be alled thegeneralized doubled asymptoti saling approximation,is based on pure perturbative grounds, a �at initialonditions at Q20 � 1 GeV2 and dynamial evolution toQ2 � Q20, and is oneptually very lose to the GRVapproah but involves the exat analyti Q2-evolution,it an be reasonably applied for the new preise dataof the slope �effF2 .The agreement between �effF2 data and perturbativeQCD has already been observed by the H1 [2℄ andZEUS [4℄ ollaborations. The obtained linear rise of�(Q2) with lnQ2 (see, e.g., Figs. 2 and 3), parameter-ized by H1 as in Eq. (7), an naively be interpreted ina strongly nonperturbative way, i.e.,�(Q2) / 1�s(Q2) :Our analysis, however, demonstrates that the rise anbe explained as being proportional to ln lnQ2, whihis natural in the perturbative QCD at low x (see [12�16℄, and referenes therein): when the oupling on-stant is running, the renormalization group leads tothe small-x behavior of the parton distribution propor-tional to ln(�s(Q2)) at the leading order of perturba-tion theory and proportional to �s(Q2) at the next-to-leading order (see Eqs. (8)�(12) and disussions afterEq. (14)).969
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