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SMALL-x BEHAVIOR OF THE SLOPE dlnF2=dln(1=x)IN THE PERTURBATIVE QCD FRAMEWORKA. V. Kotikov *Bogoliubov Laboratory of Theoreti
al Physi
sJoint Institute for Nu
lear Resear
h141980, Dubna, RussiaG. Parente **Departamento de Físi
a de Partí
ulasUniversidade de Santiago de Compostela15706, Santiago de Compostela, SpainSubmitted 8 April 2003In the leading twist approximation of the Wilson operator produ
t expansion, we show that using an analyti
parameterization for the behavior of the x slope of the stru
ture fun
tion F2 at small x in perturbative QCDand applying a �at initial 
ondition in the DGLAP evolution equations leads to a very good agreement with thenew pre
ise deep inelasti
 s
attering experimental data from HERA.PACS: 13.60.Hb, 12.38.Bx1. INTRODUCTIONMeasurements of the deep inelasti
 s
atteringstru
ture fun
tion F2 [1�3℄, and of the derivativesdF2=d ln(Q2) [1, 2, 4℄ and d lnF2=d ln(1=x) [4; 5℄in HERA have allowed a

essing a very interestingkinemati
al range for testing theoreti
al ideas on thebehavior of quarks and gluons [6℄ 
arrying a very lowfra
tion of the proton momentum, the so-
alled small-xregion. In this limit, one expe
ts that nonperturbativee�e
ts 
an give essential 
ontributions. However, areasonable agreement between the HERA data and thenext-to-leading approximation of perturbative QCDhas been observed for Q2 � 2 GeV2 (see review [7℄ andreferen
es therein), and therefore perturbative QCD
an des
ribe the evolution of F2 and its derivativesdown to very low Q2 values, traditionally explainedby soft pro
esses. It is fundamentally important to�nd the kinemati
al region where the well-establishedperturbative QCD formalism 
an be safely applied atsmall x.*E-mail: kotikov�thsun1.jinr.ru; present adress: Institut furTheoretis
he Teil
henphysik, Universitat Karlsruhe, D-76128,Karlsruhe, Germany.**E-mail: gonzalo�gaes.us
.es

The standard program to study the x behavior ofquarks and gluons is 
arried out by 
omparison of datawith the numeri
al solution of the Dokshitzer�Gribov�Lipatov�Altarelli�Parisi (DGLAP)1) equations [8℄ by�tting the parameters of the x pro�le of partons at someinitial Q20 and the QCD energy s
ale � [10, 11℄. Butfor analyzing the small-x region ex
lusively, there is thealternative of a simpler analysis using some of the exist-ing analyti
 solutions of the DGLAP equations in thesmall-x limit [12�15℄. This was done in Ref. [12℄, whereit was pointed out that the HERA small-x data 
an beinterpreted in terms of the so-
alled doubled asymp-toti
 s
aling phenomenon related to the asymptoti
 be-havior of the DGLAP evolution dis
overed many yearsago [16℄.The study in Ref. [12℄ was extended in Ref. [13�15℄to in
lude the �nite parts of anomalous dimensions ofWilson operators and Wilson 
oe�
ients2). This has1) At small x, there is a di�erent approa
h based on theBalitsky�Fadin�Kuraev�Lipatov (BFKL) equation [9℄, whose ap-pli
ation is out of the s
ope of this paper. However, we sometimesuse the BFKL-based predi
tions below in dis
ussions and for
omparison with our results in the generalized doubled asymp-toti
 s
aling approximation.2) In the standard doubled asymptoti
 s
aling approxima-tion [16℄, only the singular parts of the anomalous dimensionsare used.963
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tion [14, 15℄ of the small-x asymptoti
form of parton distributions in the framework of theDGLAP equation starting at some Q20 with the �atfun
tion fa(Q20) = Aa; (1)where fa are the parton distributions multiplied by x,Aa are unknown parameters to be determined fromdata, and a = q; g hereafter.We refer to the approa
h in Ref. [13�15℄ as the gen-eralized doubled asymptoti
 s
aling approximation. Inthe generalized doubled asymptoti
 s
aling approxima-tion, the �at initial 
onditions in Eq. (1) determine thebasi
 role of the singular parts of anomalous dimen-sions, as in the standard 
ase [12℄, while the 
ontri-bution from �nite parts of anomalous dimensions andfrom Wilson 
oe�
ients 
an be 
onsidered as 
orre
-tions, whi
h are however important for a better agree-ment with experimental data [14℄. In the present paper,similarly to Refs. [12�15℄, we negle
t the 
ontributionfrom the nonsinglet quark 
omponent.The use of the �at initial 
ondition given in Eq. (1)is supported by the a
tual experimental situation:the low-Q2 data [1; 4; 17; 18℄ are well des
ribed forQ2 � 0:4 GeV2 by the Regge theory with the Pomeroninter
ept �P (0) � �P + 1 = 1:08;
lose to the standard one (�P (0) = 1). The small riseobserved in the HERA data [1; 2; 4; 18; 19℄ at low Q2
an be naturally explained by in
luding higher twistterms (see [15, 20℄). Moreover, HERA data [1, 2, 18, 19℄with Q2 > 1 GeV2 are in good agreement with thepredi
tions from the Glu
k�Reya�Vogt (GRV) partondensities [11℄, whi
h supports our aim to develop theanalyti
 form for the parton densities at small x be-
ause at least 
on
eptually, our method is very 
lose tothe GRV approa
h.The purpose of this paper is to extend the studyin Ref. [14℄ to 
ompare the predi
tions from the gener-alized doubled asymptoti
 s
aling approa
h with thenew pre
ise H1 data [5℄ for the F2 slope. The pa-per is organized as follows. In Se
. 2, we addressthe present situation with experimental data for theslope d lnF2=d ln(1=x) and brie�y review some ap-proa
hes to des
ribe them. For 
ompleteness, Se
s. 3and 4 
ontain a 
ompilation of the basi
 formulas inthe generalized doubled asymptoti
 s
aling approxima-tion from Ref. [14℄ needed for the present study. InSe
. 5, we 
ompare our predi
tions for the derivatived lnF2=d ln(1=x) with the experimental data and dis-
uss the obtained results.

2. THE SLOPE dlnF2=dln(1=x):EXPERIMENTAL DATA AND QCDPHENOMENOLOGYVarious groups have been able to �t the availabledata (mostly separating the low- and high-Q2 regions)using a steep input at small x, x��; � > 0. Thisis 
learly di�erent from the �at input in the doubledasymptoti
 s
aling approa
h of Refs. [12�15℄, also de-s
ribing the experimental results reasonably well. Insome sense, this is not very surprising be
ause the mod-ern HERA data (at large Q2) 
annot distinguish be-tween the behavior from a steep input parton parame-terization at quite largeQ2 and the steep form a
quiredafter dynami
al evolution from a �at initial 
onditionat quite low values of Q2.Moreover, for the Q2-evolution based on the fullset of anomalous dimensions obtained at x ! 0 inRef. [21℄ within the Balitsky�Fadin�Kuraev�Lipatov(BFKL) formalism [9℄, the results weakly depend onthe form of the initial 
ondition [22℄, preserving thesteep ones and 
hanging the �at ones. In working withanomalous dimensions at a �xed order in �s, the initial
onditions are important when the data are 
onsideredin a wide Q2 range and it is ne
essary to adequately
hoose the form of the parton distribution asymptoti
form at some Q20.As dis
ussed in the Introdu
tion, the use of a �atinitial 
ondition leads to the (generalized) doubledasymptoti
 s
aling approximation [13�15℄. An alter-native to this is the 
hoi
e of a steep initial 
onditionat some su�
iently large Q2
 ,fa(x;Q2
) / x��
(the subs
ript 
 stands for 
onstant), whi
h leads tothe Q2-dependen
e of fa(x;Q2) [23�27℄ given by (forx��
 � 
onst)fa(x;Q2)fa(x;Q2
) � M+a (1 + �
; Q2)M+a (1 + �
; Q2
) ; (2)whereM+a (1+�
; Q2) is the analyti
 
ontinuation (frominteger n to real 1 + �
) of the �+� 
omponent of theMellin moment of fa(x;Q2),Ma(n;Q2) = 1Z0 dx xn�2fa(x;Q2): (3)For x��
 � 
onst, the slope �
 must be Q2-in-dependent [24, 25℄ and the whole Q2-dependen
e offa(x;Q2) 
omes from the fa
tor M+a (1 + �
; Q2) infront of x��
 in Eq. (2). Approximations similar to964
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tive slope �) as a fun
tion of x for di�erent values of Q2. Data points arefrom H1 [5℄. Only statisti
al un
ertainties are shown. The solid line is the result of a �t using �effF2 in Eq. (15) with �xedQ20 = 1 GeV2 and x0 = 1. The dotted line is the same but with the parameters from a �t to the F2 data in Ref. [14℄. Thedashed line 
orresponds to the asymptoti
 expression �eff;asF2 in Eq. (16)Eq. (2) have been su

essfully applied in studying theQ2-dependen
e of HERA data at largeQ2 (see Ref. [28℄and referen
es therein).Considering the low-Q2 region separately, it is alsopossible to have a good agreement between the F2 dataand its Regge-like behavior [4℄. Indeed, at Q2 ! 0, F2
an be determined by the relationF2 = Q24��em�
�ptot ; (4)where �em is the ele
tromagneti
 
oupling 
onstant and�
�ptot is the total (virtual) photoprodu
tion 
ross se
-tion.A large amount of experimental data on hadroni



ross se
tions for many di�erent pro
esses show a uni-versal rise at large energies, whi
h allows parameteriz-ing all these 
ross se
tions as the sum of two di�erent
omponents�
�ptot = AP s�P (0)�1 +ARs�R(0)�1; (5)where s is the 
enter-of-mass energy squared. The
onstants AP and AR are pro
ess-dependent magni-tudes and the inter
epts �P (0) � 1:08 and �R(0) � 0:5(see [29℄) are universal pro
ess-independent 
onstants.The �rst and se
ond terms in Eq. (5) 
orrespond to(soft) Pomeron and Reggeon ex
hange, respe
tively.From Eqs. (4) and (5), we immediately obtain thatas Q2 ! 0,965
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efa(x;Q2) / x�"; " = �P (0)� 1 � 0:08be
ause s = Q2=x at small x.There have been many attempts to study the en-tire Q2 region in the Regge-asymptoti
 framework (see,e.g., the reviews in Ref. [7℄). The reports in Ref. [7℄ 
on-tain a great number of models, but we restri
t ourselvesto only two of them.In Ref. [30℄, the �t to F2 experimental data wassought with fa(x;Q2) / x��(Q2); (6)and rapidly 
hanging �(Q2) was found in the transi-tion range Q2 � 5�10 GeV2. Unfortunately, it is ratherdi�
ult to re
on
ile the Regge-like behavior given byEq. (6) with DGLAP evolution in the entire Q2 range.Some progress along this line a
hieved in Ref. [27℄ isalso based on the �at initial 
onditions given by Eq. (1).But the parton distribution stru
ture in Ref. [27℄ is lim-ited by the Regge-like form of Eq. (6), whi
h allowsre
on
iling it with DGLAP evolution only separatelyat low Q2, where �(Q2) is 
lose to 0 (or to "), and atlarge Q2, where �(Q2) � �
. The stru
ture fun
tionF2 and parton distributions were obtained in Ref. [27℄for the entire Q2 range only as a 
ombination of thesetwo representations.For other types of models (see [32, 33℄), the phe-nomenologi
al Q2-dependen
e of �(Q2) is given by�(Q2) = "�1 + Q2Q2 + 
�with a �tted 
onstant 
. This produ
es soft values ofthe slope �(Q2) 
lose to " at low Q2 and hard ones,�(Q2) � �
 � 0:2�0.3, at Q2 � 20 GeV2.New pre
ise experimental data on �(Q2) have be-
ome available very re
ently [5℄. The H1 data pointsare shown in Fig. 1, where one 
an observe that for a�xed Q2, � is independent of x in the range x < 0:01within the experimental un
ertainties. Indeed, H1 dataare well des
ribed by the power behavior [5℄F2(x;Q2) = Cx��(Q2); (7)where �(Q2) = â ln(Q2=�2)
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10 100 10001 5 50 500Fig. 2. The derivative d lnF2=d ln(1=x) (the e�e
tiveslope �) as a fun
tion of Q2. Data points are fromH1 [5℄. Outer error bars in
lude statisti
al and system-ati
 errors added in quadrature. Inner bars 
orrespondto statisti
al errors. The solid line 
orresponds to theH1 parameterization [5℄ given in Eq. (7). Dotted anddashed 
urves are produ
ed as in Fig. 1. For the lower(upper) 
urves, the value x = 10�4 (x = 10�2) wasusedwith C � 0:18, â � 0:048, and � = 292 MeV. The lin-ear rise of � with lnQ2 given by Eq. (7) is plotted inFig. 2.As a fun
tion of x, �(Q2) was found by the ZEUSCollaboration similarly. As 
an be seen in Fig. 8 inRef. [4℄, the ZEUS data for �(Q2) are 
ompatible witha 
onstant value of the order 0:1 at Q2 < 0:6 GeV2,as it is expe
ted under the assumption of a single softPomeron ex
hange within the framework of Regge phe-nomenology. In the 
ase of H1, this behavior 
an alsobe inferred from the new preliminary H1 data [34℄ atquite low values of Q2.We point out that even though our results obtainedin the framework of the generalized doubled asymp-toti
 s
aling approximation (Eqs. (8)�(11) below) donot have an expli
it power-like behavior, they a
tuallymimi
 a power-law shape over a limited region of x andQ2 (see Se
. 4). In adition, we have observed earlier [14℄that in the generalized doubled asymptoti
 s
aling ap-proximation, the x dependen
e of the e�e
tive slopes isnot strong and the F2 e�e
tive slope is in good agree-ment with old (less pre
ise) H1 data [1℄. In Se
. 5, werepeat the analysis performed in Ref. [14℄, but with thenew pre
ise H1 data for the slope [5℄.966



ÆÝÒÔ, òîì 124, âûï. 5 (11), 2003 Small-x behavior of the slope dlnF2=dln(1=x) : : :3. Q2-DEPENDENCE OF F2 AND PARTONDISTRIBUTIONS IN THE GENERALIZEDDOUBLED ASYMPTOTIC SCALINGAPPROXIMATIONWe brie�y re
all the results of the generalized dou-bled asymptoti
 s
aling approximation �rst presentedin Ref. [14℄. The small-x behavior of the parton densi-ties and F2 at the next-to-leading order approximationis given by3)fa(z;Q2) = f+a (z;Q2) + f�a (z;Q2);f�a (z;Q2) � exp(�d�(1)s�D�(1)p) +O(z); (8)f+g (z;Q2) � I0(�) exp(�d+(1)s�D+(1)p)+O(�); (9)f+q (z;Q2) � f+g (z;Q2)�(1� �dq+�(1)as(Q2))�� �I1(�)I0(�) + 20as(Q2)�+O(�); (10)F2(z;Q2) = e�fq(z;Q2)+23fas(Q2)fg(z;Q2)�; (11)where e = Pfi e2ifis the average 
harge square of f e�e
tive quarks,as = �s=4�;s = ln�as(Q20)as(Q2)� ; p = as(Q20)� as(Q2);D� = d�� � �1�0 d�; � = 2q(d̂+s+ D̂+p) ln z;� =s (d̂+s+ D̂+p)ln z = �2 ln(1=z) ; (12)and �0 and �1 are the �rst two terms of the QCD�-fun
tion.The 
omponents of the leading order anomalousdimension d�(n) and the singular (d̂+) and regular(d+(n)) parts of the leading order anomalous dimensiond+(n) = d̂+=(n� 1) + d+(n) are given by (at n! 1):3) Hereafter, z = x=x0, where x0 is a free parameter that limitsthe appli
ability range of Eqs. (8)�(11) and 
an be �tted fromexperimental data together with the magnitudes of gluon and seaquark distributions at Q20. As shown in Ref. [14℄, the �ts to theF2 HERA data depend very slightly on the spe
i�
 x0 value.

d̂+ = �12�0 ; d+(1) = 1 + 20f27�0 ;d�(1) = 16f27�0 : (13)The 
orresponding 
omponents in the next-to-leading order 
an be represented asd̂++ = 41227�0 f; d̂q+� = �20; d̂g+� = 0;d++(1) = 8�0�36�3 + 33�2 � 164312 ++ 29fh689 � 4�2 � 13243fi�;dq+�(1) = 23� 12�2 � 1381f; dg+�(1) = 8081f;d��(1) = 169�0�2�3 � 3�2 + 134 ++ fh4�2 � 2318 + 13243fi�;dq�+(1) = 0; dg�+(1) = �3�1 + f81�:
(14)

Some interesting features of the results inEqs. (8)�(12) are summarized below.1) Both the gluon and quark singlet densities givenabove are presented in terms of two 
omponents (�+�and ���) that are obtained from the analyti
 Q2-de-pendent expressions of the 
orresponding (�+� and���) 
omponents of parton distribution moments.2) The ��� 
omponent is 
onstant at small x,whereas the �+� 
omponent grows at Q2 � Q20 asexp�, where � 
ontains the positive leading-order termjd̂+js ln(1=z) and the negative next-to-leading orderone jD̂+jp ln(1=z) (see Eq. (12)). The most importantpart of the next-to-leading order 
orre
tions (i.e., thesingular part at x! 0) is therefore properly taken intoa

ount: it dire
tly enters the argument of the Besselfun
tions and does not spoil the appli
ability of per-turbation theory at low values of x.4. Q2-DEPENDENCE OF THE SLOPEd ln F2=d ln (1=x) IN THE GENERALIZEDDOUBLED ASYMPTOTIC SCALINGAPPROXIMATIONBehavior of the parton densities and the stru
turefun
ion F2 within the generalized doubled asymptoti
s
aling approa
h, given by Eqs. (8)�(11), 
an be repre-sented by a power-law shape over a limited region of xand Q2 [14, 15℄,fa(x;Q2) / x��effa (x;Q2); F2(x;Q2) / x��effF2(x;Q2):967
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ause dd lnx = dd ln z ; the e�e
tive slopes 
an be obtained dire
tly fromEqs. (8)�(11) as�effg (z;Q2) = f+g (z;Q2)fg(z;Q2) �I1(�)I0(�) ;�effq (z;Q2) = f+q (z;Q2)fq(z;Q2) �I2(�)(1 � dq+�(1)as(Q2)) + 20as(Q2)I1(�)=�I1(�)(1 � dq+�(1)as(Q2)) + 20as(Q2)I0(�)=� ;�effF2(z;Q2) = �effq (z;Q2)f+q (z;Q2) + (2f)=3as(Q2)�effg (z;Q2)f+g (z;Q2)fq(z;Q2) + (2f)=3as(Q2)fg(z;Q2) : (15)
We emphasize that the gluon e�e
tive slope �effgobtained from Eq. (15) is larger than the quark slope�effq [14℄, whi
h is in ex
ellent agreement with Martin�Stirling�Roberts [35℄ and Glu
k�Reya�Vogt [11℄ anal-yses (see also Ref. [10℄).On the other hand, the e�e
tive slopes �effa and �effF2

in Eq. (15) depend on the magnitudes Aa of the initialparton distribution and on the 
hosen input values Q20and �. But at quite large Q2, where the ��� 
ompo-nent is negligible, the dependen
e on the initial partondistribution disappears, and the asymptoti
 behavioris then given by4)�eff;asg (z;Q2) = � I1(�)I0(�) � �� 14 ln (1=z) ;�eff;asq (z;Q2) = �I2(�)(1 � dq+�(1)as(Q2)) + 20as(Q2)I1(�)=�I1(�)(1 � dq+�(1)as(Q2)) + 20as(Q2)I0(�)=� �� �� 34 ln (1=z) + 10as(Q2)� ln(1=z) ;�eff;asF2 (z;Q2) = �eff;asq (z;Q2)1 + 6as(Q2)=�eff;asq (z;Q2)1 + 6as(Q2)=�eff;asg (z;Q2) +O(a2s(Q2)) � �eff;asq (z;Q2) + 3as(Q2)� ln(1=z) ; (16)
where the symbol ��� denotes that an approximationwas made in the expansion of the modi�ed Bessel fun
-tions In(�) (n = 0; 1; 2). These approximations are a
-
urate only at large values of � (i.e., at large Q2 and/orsmall x).Finally, we note that at the leading order, the F2slope �eff;asF2 is equal to the quark slope �eff;asq and 
oin-
ides with the result in Ref. [36℄ for very large values of� and a �at input (see also the �rst paper in Ref. [7℄).At the next-to-leading order, �eff;asF2 lies between thequark and gluon slopes but 
loser to the former (seeFig. 3 in Ref. [14℄).

5. COMPARISON WITH EXPERIMENTALDATAUsing the results in the previous se
tion, we haveanalyzed HERA data from the H1 Collaboration5) [5℄for the slope d lnF2=d ln(1=x) at small x.Initially, our results for �effF2 depend on the �ve pa-rameters Q20, x0, Aq , Ag, and �MS (f = 4). In ourprevious paper [14℄, we �xed �MS (f = 4) = 250 MeV,whi
h was a reasonable value extra
ted from the tra-ditional (higher-x) experiments. All the other parame-ters were �tted and good agreement with the F2 HERAdata was found for Q20 � 1 GeV2 (all results depend onx0 very slightly).4) The asymptoti
 formulas in Eq. (16) work quite well at any values of Q2 � Q20, be
ause the values of �effa and �effF2 are equal tozero at Q2 = Q20. The use of approximations in Eq. (16) instead of the exa
t results in Eq. (15) underestimates (overestimates) thegluon (quark) slope at Q2 � Q20 only slightly. For F2, the similarity of the values of �effF2 and �eff;asF2 is shown in Fig. 1.5) In this paper, we only use the H1 data [5℄. The preliminary ZEUS data for the slope d lnF2=d ln(1=x) are only available throughpoints in Figs. 8 and 9 of Ref. [4℄. They shown quite similar properties in 
omparison with the H1 data [5℄. Unfortunately, the ZEUSnumeri
al values are still unavailable and we 
annot analyze them in the present paper.968
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10 100 10001 5 50 500Fig. 3. The derivative d lnF2=d ln(1=x) (the e�e
tiveslope �) as a fun
tion of Q2. Data points are fromH1 [5℄. Error bars and solid line are as in Fig. 2.The dashed lines were 
al
ulated via Eq. (16) usingx = a � 10�4Q2 with a = 0:1; 1, and 10. Upper 
urves
orrespond to larger xIn this paper, we take �MS (f = 4) = 292 MeVin agreement with the more re
ent H1 results [5℄ andother analyses (see Ref. [37℄ and referen
es therein) andwe dire
tly �t the slope d lnF2=d ln(1=x) data usingEq. (15). The result is shown in Fig. 1. For 
ompari-son, we also plot the 
urves from a �t to the F2 datain Ref. [14℄, where the value 250 MeV was used. Theresults are very similar and demonstrate the very im-portant feature of an approximate x-independen
e of�effF2 given by Eq. (15), whi
h is in agreement with theH1 data [5℄.Figure 1 also gives the asymptoti
 values for theslope �eff;asF2 obtained from Eq. (16). The agreementwith the data and with the other 
urves is also rathergood if we take in 
onsideration that no �t is involved inthis 
ase be
ause the only parameters entering Eq. (16)are the �xed values �MS (f = 4) = 292 MeV andx0 = 1.Thus, the extremely weak x dependen
e of the slope�(Q2) in the 
onsidered region of x andQ2 supports thepossibility to su

essfully use our generalized doubledasymptoti
 s
aling approximation in the x-independentanalysis of the F2 slope.Figure 2 shows the experimental data for �effF2and the 
orresponding H1 parameterization [5℄ writ-ten above in Eq. (7). We have also plotted the resultfrom Eqs. (16) and (15) using the parameters from ourprevious paper [14℄ as in Fig. 1. In both 
ases, we give

it for two representative values of x.Visual inspe
tion of Fig. 1 shows that the bound-aries and mean values of the experimental x ranges [5℄in
rease proportionally to Q2, whi
h is related to thekinemati
al restri
tions x � 10�4Q2 in the HERA ex-periments (see Refs. [1�3; 18℄ and, e.g., Fig. 1 in [4℄).Figure 3 shows the H1 experimental data [5℄ for �effF2and the H1 parameterization (Eq. (7)) as in Fig. 2,but this time in 
omparison with the asymptoti
 val-ues �eff;asF2 
al
ulated from Eq. (16) using x = a10�4Q2with a = 0:1; 1, and 10. There is a reasonable agree-ment with the H1 data for Q2 > 2 GeV2 with a between0:1 and 1 (the two lower dashed 
urves in Fig. 3), whi
happroximately 
orresponds to the middle points of themeasured x range.6. CONCLUSIONSWe have studied the Q2-dependen
e of the slope�effF2 = d lnF2=d ln(1=x)at small x in the framework of perturbative QCD. Ourresults are in good agreement with the new pre
ise ex-perimental H1 data [5℄ at Q2 � 2 GeV2, where pertur-bation theory 
an be appli
able.Although our approa
h, whi
h 
an be 
alled thegeneralized doubled asymptoti
 s
aling approximation,is based on pure perturbative grounds, a �at initial
onditions at Q20 � 1 GeV2 and dynami
al evolution toQ2 � Q20, and is 
on
eptually very 
lose to the GRVapproa
h but involves the exa
t analyti
 Q2-evolution,it 
an be reasonably applied for the new pre
ise dataof the slope �effF2 .The agreement between �effF2 data and perturbativeQCD has already been observed by the H1 [2℄ andZEUS [4℄ 
ollaborations. The obtained linear rise of�(Q2) with lnQ2 (see, e.g., Figs. 2 and 3), parameter-ized by H1 as in Eq. (7), 
an naively be interpreted ina strongly nonperturbative way, i.e.,�(Q2) / 1�s(Q2) :Our analysis, however, demonstrates that the rise 
anbe explained as being proportional to ln lnQ2, whi
his natural in the perturbative QCD at low x (see [12�16℄, and referen
es therein): when the 
oupling 
on-stant is running, the renormalization group leads tothe small-x behavior of the parton distribution propor-tional to ln(�s(Q2)) at the leading order of perturba-tion theory and proportional to �s(Q2) at the next-to-leading order (see Eqs. (8)�(12) and dis
ussions afterEq. (14)).969



A. V. Kotikov, G. Parente ÆÝÒÔ, òîì 124, âûï. 5 (11), 2003The good agreement between the perturbative QCDand the experiments obtained here and in Ref. [14, 15℄demonstrates that for Q2 > 2 GeV2, nonperturbative
ontributions su
h as shadowing e�e
ts [38℄, highertwist e�e
ts [39℄, and others either are quite small(see also Ref. [40℄ and referen
es therein) or 
an
elbetween themselves and/or with ln(1=x) terms 
on-tained in the higher orders of perturbation theory. Wenote, however, that higher twist 
orre
tions are impor-tant at Q2 � 1 GeV2, as has been demonstrated inRefs. [15, 20, 37℄. Further e�orts in the developmentof theoreti
al approa
hes are needed to isolate the 
or-re
t 
ontributions from nonperturbative dynami
s andhigher orders 
ontaining strong ln(1=x) terms.Moreover, the good agreement between perturba-tive QCD and experimental data at low Q2 
an beexplained with a larger e�e
tive s
ale for the QCD
oupling 
onstant [14, 15℄. A similar behavior has al-ready been observed in the framework of perturbativeQCD [41℄ and in Brodsky�Fadin�Kim�Lipatov (BFKL)motivated approa
hes [42�44℄ (see the re
ent review inRef. [45℄ and dis
ussions therein).We note that large next-to-leading order 
orre
tions
al
ulated re
ently in the BFKL framework [46℄ (seealso [47℄) lead to a strong suppression of the leading-or-der BFKL results for the high-energy asymptoti
 be-havior of the 
ross se
tion (see, e.g., [42; 43℄). A 
arefulin
lusion of the next-to-leading order 
orre
tions leadsto results that are quite 
lose to those obtained in thepure perturbative QCD [43℄. This 
an give an addi-tional support for the good appli
ability of perturba-tion theory in the small-x range, where, as was ex-pe
ted before, nonperturbative e�e
ts should give anessential 
ontribution.As the next step, it 
ould be very useful to applythe generalized doubled asymptoti
 s
aling approa
hto perform a 
ombined analysis of the HERA datafor F2, dF2=d ln(Q2), d lnF2=d ln(1=x), and FL. Wehope to 
onsider this in a forth
oming paper, in
ludinghigher-twist 
orre
tions in the Q2-evolution approa
hgiven by Eqs. (8)�(11). It would also be interesting to
onsider additional terms in the initial 
ondition givenby Eq. (1) proportional to ln(1=x) and ln2(1=x).We hope that this analysis will be relevant in �n-ding the kinemati
al region where the well-establishedperturbative QCD formalism 
an be safely appliedat small x. Moreover, the study should 
lear up thereason of the good agreement between the small-x re-lation of FL, F2, and dF2=d ln(Q2) obtained in thepure perturbative QCD in Ref. [48℄ (based on previousworks [26, 49℄), the experimental data for these stru
-ture fun
tions [2; 50℄, and the predi
tions in Ref. [51℄
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