ZKIT®, 2003, rom 124, Boim. 5 (11), crp. 963-972

© 2003

SMALL-z BEHAVIOR OF THE SLOPE dInF,/dIn(1/z)
IN THE PERTURBATIVE QCD FRAMEWORK

A. V. Kotikov”

Bogoliubov Laboratory of Theoretical Physics
Joint Institute for Nuclear Research
141980, Dubna, Russia

G. Parente”

*

Departamento de Fisica de Particulas
Universidade de Santiago de Compostela
15706, Santiago de Compostela, Spain

Submitted 8 April 2003

In the leading twist approximation of the Wilson operator product expansion, we show that using an analytic
parameterization for the behavior of the x slope of the structure function F» at small z in perturbative QCD
and applying a flat initial condition in the DGLAP evolution equations leads to a very good agreement with the
new precise deep inelastic scattering experimental data from HERA.
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1. INTRODUCTION

Measurements of the deep inelastic scattering
structure function F» [1-3], and of the derivatives
dFy/dIn(Q?) [1, 2, 4] and dlnFy/dIn(1/x) [4,5]
in HERA have allowed accessing a very interesting
kinematical range for testing theoretical ideas on the
behavior of quarks and gluons [6] carrying a very low
fraction of the proton momentum, the so-called small-z
region. In this limit, one expects that nonperturbative
effects can give essential contributions. However, a
reasonable agreement between the HERA data and the
next-to-leading approximation of perturbative QCD
has been observed for Q? > 2 GeV? (see review [7] and
references therein), and therefore perturbative QCD
can describe the evolution of F» and its derivatives
down to very low Q? values, traditionally explained
by soft processes. It is fundamentally important to
find the kinematical region where the well-established
perturbative QCD formalism can be safely applied at
small z.
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The standard program to study the x behavior of
quarks and gluons is carried out by comparison of data
with the numerical solution of the Dokshitzer—Gribov—
Lipatov—Altarelli-Parisi (DGLAP)") equations [8] by
fitting the parameters of the x profile of partons at some
initial Q3 and the QCD energy scale A [10, 11]. But
for analyzing the small-z region exclusively, there is the
alternative of a simpler analysis using some of the exist-
ing analytic solutions of the DGLAP equations in the
small-z limit [12-15]. This was done in Ref. [12], where
it was pointed out that the HERA small-z data can be
interpreted in terms of the so-called doubled asymp-
totic scaling phenomenon related to the asymptotic be-
havior of the DGLAP evolution discovered many years
ago [16].

The study in Ref. [12] was extended in Ref. [13-15]
to include the finite parts of anomalous dimensions of
Wilson operators and Wilson coefficients?). This has

1) At small z, there is a different approach based on the
Balitsky-Fadin—-Kuraev-Lipatov (BFKL) equation [9], whose ap-
plication is out of the scope of this paper. However, we sometimes
use the BFKL-based predictions below in discussions and for
comparison with our results in the generalized doubled asymp-
totic scaling approximation.

2) In the standard doubled asymptotic scaling approxima-
tion [16], only the singular parts of the anomalous dimensions
are used.



A. V. Kotikov, G. Parente

MIOT®, vom 124, Bom. 5 (11), 2003

led to the prediction [14, 15] of the small-z asymptotic
form of parton distributions in the framework of the
DGLAP equation starting at some Q3 with the flat
function

fa(Q%) :Aaa (1)

where f, are the parton distributions multiplied by =,
A, are unknown parameters to be determined from
data, and a = ¢, g hereafter.

We refer to the approach in Ref. [13-15] as the gen-
eralized doubled asymptotic scaling approximation. In
the generalized doubled asymptotic scaling approxima-
tion, the flat initial conditions in Eq. (1) determine the
basic role of the singular parts of anomalous dimen-
sions, as in the standard case [12], while the contri-
bution from finite parts of anomalous dimensions and
from Wilson coefficients can be considered as correc-
tions, which are however important for a better agree-
ment with experimental data [14]. In the present paper,
similarly to Refs. [12-15], we neglect the contribution
from the nonsinglet quark component.

The use of the flat initial condition given in Eq. (1)
is supported by the actual experimental situation:
the low-Q? data [1,4,17,18] are well described for
Q? < 0.4 GeV? by the Regge theory with the Pomeron
intercept

Oép(O) =Ap+1=1.08,

close to the standard one (ap(0) = 1). The small rise
observed in the HERA data [1,2,4,18,19] at low Q®
can be naturally explained by including higher twist
terms (see [15, 20]). Moreover, HERA data [1, 2, 18, 19]
with Q2 > 1 GeV? are in good agreement with the
predictions from the Gluck—Reya—Vogt (GRV) parton
densities [11], which supports our aim to develop the
analytic form for the parton densities at small x be-
cause at least conceptually, our method is very close to
the GRV approach.

The purpose of this paper is to extend the study
in Ref. [14] to compare the predictions from the gener-
alized doubled asymptotic scaling approach with the
new precise H1 data [5] for the Fy slope. The pa-
per is organized as follows. In Sec. 2, we address
the present situation with experimental data for the
slope dln Fy/dIn(1/z) and briefly review some ap-
proaches to describe them. For completeness, Secs. 3
and 4 contain a compilation of the basic formulas in
the generalized doubled asymptotic scaling approxima-
tion from Ref. [14] needed for the present study. In
Sec. 5, we compare our predictions for the derivative
dln F5/dIn(1/x) with the experimental data and dis-
cuss the obtained results.
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2. THE SLOPE dInF,/dIn(1/x):
EXPERIMENTAL DATA AND QCD
PHENOMENOLOGY

Various groups have been able to fit the available
data (mostly separating the low- and high-Q? regions)
using a steep input at small z, 2=, X > 0. This
is clearly different from the flat input in the doubled
asymptotic scaling approach of Refs. [12-15], also de-
scribing the experimental results reasonably well. In
some sense, this is not very surprising because the mod-
ern HERA data (at large %) cannot distinguish be-
tween the behavior from a steep input parton parame-
terization at quite large Q2 and the steep form acquired
after dynamical evolution from a flat initial condition
at quite low values of Q2.

Moreover, for the Q?-evolution based on the full
set of anomalous dimensions obtained at z — 0 in
Ref. [21] within the Balitsky—Fadin-Kuraev-Lipatov
(BFKL) formalism [9], the results weakly depend on
the form of the initial condition [22], preserving the
steep ones and changing the flat ones. In working with
anomalous dimensions at a fixed order in ag, the initial
conditions are important when the data are considered
in a wide Q2 range and it is necessary to adequately
choose the form of the parton distribution asymptotic
form at some Q.

As discussed in the Introduction, the use of a flat
initial condition leads to the (generalized) doubled
asymptotic scaling approximation [13-15]. An alter-
native to this is the choice of a steep initial condition
at some sufficiently large Q?,

fal(@,Q2) cca™

(the subscript ¢ stands for constant), which leads to
the Q-dependence of f,(z,Q?) [23-27] given by (for
272 > const)

falz, Q2) -
fa(z, Q)

where M (1+)., Q?) is the analytic continuation (from
integer n to real 1 + A.) of the «+» component of the
Mellin moment of f,(x, Q?),

M (14X, Q%)
My (1+ X, Q%)

(2)

M,(n,Q*%) = /dxx"72fa(x,Q2). (3)

For 2=*¢ > const, the slope ). must be Q*-in-
dependent [24, 25] and the whole Q?-dependence of
fa(z,Q%) comes from the factor M (1 + \.,Q?) in
front of x7*< in Eq. (2). Approximations similar to



MIT®, Tom 124, Bomn. 5 (11), 2003

Small-z behavior of the slope dInF;/dln(1/x) ...

A 2
0502

L Q% =2IsB? I Q?=25I5B?
0.6F T
0.4F 1

0.2

?

0F

Q? = 3.5TsB?

08 :"""'I R IR IR B ':: RN IR BELELELRALLL BRI B

0.6

0.4F +

T
=T
1k
&
h

1

T

HL=a

S

0.2

OF i

0.6f
0_45_ 1
0.2F

0F +

Q° Q°

0.6F

o4F e | f@i‘—ﬁ

0.2f 8% 1

0F T

RETRTTY ETRTIRTTTY TR BT e o
107% 1072 1072 107*

PRI R RTTT BEETERTTTY R ETIT R o
107% 1072 1072 107*

PRI BRI BRI R T BRI R TTTT B ST T AT R TTTT TR BT R e
107% 107% 1072 107 107* 107® 1072 107

Fig.1. The derivative dIn F»/dIn(1/x) (the effective slope \) as a function of z for different values of Q. Data points are

from H1 [5]. Only statistical uncertainties are shown. The solid line is the result of a fit using A%] in Eq. (15) with fixed

Q3 =1 GeV? and 29 = 1. The dotted line is the same but with the parameters from a fit to the F» data in Ref. [14]. The
dashed line corresponds to the asymptotic expression /\;fé’“s in Eq. (16)

Eq. (2) have been successfully applied in studying the
(Q*-dependence of HERA data at large Q? (see Ref. [28]
and references therein).

Considering the low-Q? region separately, it is also
possible to have a good agreement between the F; data
and its Regge-like behavior [4]. Indeed, at Q% — 0, Fy
can be determined by the relation

2
o

4T e,

Y'p
Otot >

(4)

where gy, is the electromagnetic coupling constant and
o) F is the total (virtual) photoproduction cross sec-
tion.

A large amount of experimental data on hadronic

cross sections for many different processes show a uni-
versal rise at large energies, which allows parameteriz-
ing all these cross sections as the sum of two different
components

oll = Aps®?O71 4 Apgn071, (5)
where s is the center-of-mass energy squared. The
constants Ap and Ap are process-dependent magni-
tudes and the intercepts ap(0) ~ 1.08 and ar(0) ~ 0.5
(see [29]) are universal process-independent constants.
The first and second terms in Eq. (5) correspond to
(soft) Pomeron and Reggeon exchange, respectively.

From Eqs. (4) and (5), we immediately obtain that
as Q% = 0,
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FQ(x'/QQ) X xisv

and hence

fo(2,Q*) x27%, e=ap(0)—1~0.08

because s = Q?/z at small z.

There have been many attempts to study the en-
tire Q2 region in the Regge-asymptotic framework (see,
e.g., the reviews in Ref. [7]). The reports in Ref. [7] con-
tain a great number of models, but we restrict ourselves
to only two of them.

In Ref. [30], the fit to Fy experimental data was
sought with

fal@,Q?) o a™N@), (6)
and rapidly changing \(Q?) was found in the transi-
tion range Q? ~ 5-10 GeV2. Unfortunately, it is rather
difficult to reconcile the Regge-like behavior given by
Eq. (6) with DGLAP evolution in the entire Q? range.
Some progress along this line achieved in Ref. [27] is
also based on the flat initial conditions given by Eq. (1).
But the parton distribution structure in Ref. [27] is lim-
ited by the Regge-like form of Eq. (6), which allows
reconciling it with DGLAP evolution only separately
at low Q2, where \(Q?) is close to 0 (or to ), and at
large Q2, where A\(Q?) ~ MX.. The structure function
F5 and parton distributions were obtained in Ref. [27]
for the entire ()? range only as a combination of these
two representations.

For other types of models (see [32, 33]), the phe-
nomenological @>-dependence of \(Q?) is given by

)

with a fitted constant c¢. This produces soft values of
the slope A\(Q?) close to ¢ at low % and hard ones,
AQ?) ~ X ~0.2-0.3, at Q2 > 20 GeV2.

New precise experimental data on A\(Q?) have be-
come available very recently [5]. The H1 data points
are shown in Fig. 1, where one can observe that for a
fixed Q?, X is independent of z in the range = < 0.01
within the experimental uncertainties. Indeed, H1 data
are well described by the power behavior [5]

2

Q2 +c

MY =¢ <1 +

Fy(z,Q%) = Ca~ @), (7)

where

MQ?) = aln(Q*/A%)
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Fig.2. The derivative dln F>/dIn(1/x) (the effective
slope \) as a function of Q2. Data points are from
H1 [5]. Outer error bars include statistical and system-
atic errors added in quadrature. Inner bars correspond
to statistical errors. The solid line corresponds to the
H1 parameterization [5] given in Eq. (7). Dotted and
dashed curves are produced as in Fig. 1. For the lower
(upper) curves, the value 2 = 107* (2 = 107?) was
used

with C' &~ 0.18, a ~ 0.048, and A = 292 MeV. The lin-
ear rise of A with In Q? given by Eq. (7) is plotted in
Fig. 2.

As a function of z, \(Q?) was found by the ZEUS
Collaboration similarly. As can be seen in Fig. 8 in
Ref. [4], the ZEUS data for \(Q?) are compatible with
a constant value of the order 0.1 at Q> < 0.6 GeV?,
as it is expected under the assumption of a single soft
Pomeron exchange within the framework of Regge phe-
nomenology. In the case of H1, this behavior can also
be inferred from the new preliminary H1 data [34] at
quite low values of Q2.

We point out that even though our results obtained
in the framework of the generalized doubled asymp-
totic scaling approximation (Egs. (8)—(11) below) do
not have an explicit power-like behavior, they actually
mimic a power-law shape over a limited region of z and
Q? (see Sec. 4). In adition, we have observed earlier [14]
that in the generalized doubled asymptotic scaling ap-
proximation, the # dependence of the effective slopes is
not strong and the Fy effective slope is in good agree-
ment with old (less precise) H1 data [1]. In Sec. 5, we
repeat the analysis performed in Ref. [14], but with the
new precise H1 data for the slope [5].
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3. Q*-DEPENDENCE OF F> AND PARTON
DISTRIBUTIONS IN THE GENERALIZED
DOUBLED ASYMPTOTIC SCALING
APPROXIMATION

We briefly recall the results of the generalized dou-
bled asymptotic scaling approximation first presented
in Ref. [14]. The small-z behavior of the parton densi-
ties and F5 at the next-to-leading order approximation
is given by?)

fa(2,Q) = [ (2,Q%) + fa (2,Q%),

fo(2,Q%) ~exp(=d_(1)s = D_(1)p) + O(z), (8

i (2,Q%) ~ Io(0) exp(=d4 (1)s=D(1)p)+0(p), (9)

Q%) ~ FH (2 Q7) {(1 _ & (1ay(@Y)

pli (o)

) Iy(o)

4 m(@?)} 100, (10)

R0 = e+ 310 (@1, (.00 (1)

where ;
_ >
f

is the average charge square of f effective quarks,

(&

s = as/47T7

aS(Q(%)
as(Q?)

s=1n<

) b= as(Q) — ay(@?),

3 —
Dy =dyy — B—;di., o= 2\/(d+5 +Dip)lnz, (12)
_ (dys+ Dyp) _ o
P= In z ~ 2In(1/2)’

and [y and Sy are the first two terms of the QCD
[S-function.

The components of the leading order anomalous
dimension d_(n) and the singular (d;) and regular
(d4(n)) parts of the leading order anomalous dimension
dy(n) =dy/(n—1) +dy(n) are given by (at n — 1):

3) Hereafter, z = x/®0, where xg is a free parameter that limits
the applicability range of Eqgs. (8)—(11) and can be fitted from
experimental data together with the magnitudes of gluon and sea
quark distributions at Q2. As shown in Ref. [14], the fits to the
F; HERA data depend very slightly on the specific x¢ value.

967

5o 120 < _ 20 f

+ =75 d(1) 1+2750’ i~
16f

d-(1) = 375

The corresponding components in the next-to-
leading order can be represented as

diy = %f’ 14 =-20, d%_=0,

dy(1) = %(3643 +33( — % +
#3151~ 3]

To()=23-12G - of E_()=5 (4

d-_(1) = 91—;’;) (243 3G+
+f[4cz—f—2+2% ])

A (1)=0, d, (1) = —3(1 + 8f—1)

Some interesting features of the results in

Eqs. (8)—(12) are summarized below.

1) Both the gluon and quark singlet densities given
above are presented in terms of two components («+»
and «—») that are obtained from the analytic Q-de-
pendent expressions of the corresponding («+» and
«—») components of parton distribution moments.

2) The «—» component is constant at small x,
whereas the «+» component grows at Q% > Q2 as
exp o, where ¢ contains the positive leading-order term
dy|sIn(1/z) and the negative next-to-leading order
one | D, |pln(1/z) (see Eq. (12)). The most important
part of the next-to-leading order corrections (i.e., the
singular part at & — 0) is therefore properly taken into
account: it directly enters the argument of the Bessel
functions and does not spoil the applicability of per-
turbation theory at low values of x.

4. Q*-DEPENDENCE OF THE SLOPE
dIn Fy/d In (1/x) IN THE GENERALIZED
DOUBLED ASYMPTOTIC SCALING
APPROXIMATION

Behavior of the parton densities and the structure
funcion F» within the generalized doubled asymptotic
scaling approach, given by Eqs. (8)—(11), can be repre-
sented by a power-law shape over a limited region of x
and Q? [14, 15],

. e 2 eff 2
fa(z,Q2) o 2™ @R Fy(2,Q?) o M2 (@7,
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Because

the effective slopes can be obtained directly from

dlix - dliz | Has. (B)-(11) as
f+(QO2) 11(0')
eff - 2y ‘Y9
M) = T o)
FF(5Q°) L)1~ (1)a(QY) +20a,(Q) (o) /p
eff (» 0% = T4 G-
) = )  ho) 1 =T (e @) + 200:(@)1o(0) (18)
1ty = MO (10 + ()3 (@ (2. Q)5 (2.Q°)
ra(® 11O & @) B (@), (5, %) '

\
We emphasize that the gluon effective slope /\;ff

obtained from Eq. (15) is larger than the quark slope
AT [14], which is in excellent agreement with Martin—
Stirling-Roberts [35] and Gluck-Reya—Vogt [11] anal-
yses (see also Ref. [10]).

On the other hand, the effective slopes A&/ and /\iff’;

in Eq. (15) depend on the magnitudes A, of the initial
parton distribution and on the chosen input values Q3
and A. But at quite large Q?, where the «—» compo-
nent is negligible, the dependence on the initial parton
distribution disappears, and the asymptotic behavior
is then given by*

2 [1 g 1
X8 (2,Q%) = p IOEU; ~p— 741n(1/z)’
Nfas (5 02 = L(o)(1 —d;_(1)as(Q) +20a5(@*) i (0) /p
! Ii(0)(1 = di_(1)as(Q?)) + 20a5(Q*)Io (o) /p 16)
N 3 10a,(Q?)
ST n(1/2) " pln(1/z)
a 2 eff,as > 2 a

\
where the symbol «a» denotes that an approximation

was made in the expansion of the modified Bessel func-
tions I, (o) (n = 0,1,2). These approximations are ac-
curate only at large values of o (i.e., at large Q2 and/or
small z).

Finally, we note that at the leading order, the Fj
slope A\41** is equal to the quark slope A2 and coin-
cides with the result in Ref. [36] for very large values of
o and a flat input (see also the first paper in Ref. [7]).
At the next-to-leading order, \%/-%% lies between the
quark and gluon slopes but closer to the former (see
Fig. 3 in Ref. [14]).

5. COMPARISON WITH EXPERIMENTAL
DATA

Using the results in the previous section, we have
analyzed HERA data from the H1 Collaboration® [5]
for the slope dIn F5/dIn(1/z) at small .

Initially, our results for /\;f’; depend on the five pa-
rameters Q3. xo, Ay, Ag, and Ag;g (f = 4). In our
previous paper [14], we fixed Aq;5 (f = 4) = 250 MeV,
which was a reasonable value extracted from the tra-
ditional (higher-x) experiments. All the other parame-
ters were fitted and good agreement with the F, HERA
data was found for Q3 ~ 1 GeV? (all results depend on
xo very slightly).

) The asymptotic formulas in Eq. (16) work quite well at any values of Q2 > QZ, because the values of 2SS and )\iilé are equal to

zero at Q2

= Q2. The use of approximations in Eq. (16) instead of the exact results in Eq. (15) underestimates (overestimates) the

gluon (quark) slope at Q2 > Q2 only slightly. For Fy, the similarity of the values of X;‘vfg and )\;fé’as is shown in Fig. 1.

%) In this paper, we only use the H1 data [5]. The preliminary ZEUS data for the slope d1n Fy/dIn(1/z) are only available through
points in Figs. 8 and 9 of Ref. [4]. They shown quite similar properties in comparison with the H1 data [5]. Unfortunately, the ZEUS
numerical values are still unavailable and we cannot analyze them in the present paper.
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Fig.3. The derivative dln F>/dIn(1/z) (the effective
slope \) as a function of Q2. Data points are from
H1 [5]. Error bars and solid line are as in Fig. 2.
The dashed lines were calculated via Eq. (16) using

z=ua-10"*Q?* with a = 0.1,1, and 10. Upper curves
correspond to larger z

In this paper, we take Ay (f = 4) = 292 MeV
in agreement with the more recent H1 results [5] and
other analyses (see Ref. [37] and references therein) and
we directly fit the slope dln F5/dIn(1/x) data using
Eq. (15). The result is shown in Fig. 1. For compari-
son, we also plot the curves from a fit to the F5 data
in Ref. [14], where the value 250 MeV was used. The
results are very similar and demonstrate the very im-
portant feature of an approximate z-independence of
/\iff’; given by Eq. (15), which is in agreement with the
H1 data [5].

Figure 1 also gives the asymptotic values for the
slope A%I%% obtained from Eq. (16). The agreement
with the data and with the other curves is also rather
good if we take in consideration that no fit is involved in
this case because the only parameters entering Eq. (16)
are the fixed values Ay (f = 4) = 292 MeV and
Tro = 1.

Thus, the extremely weak = dependence of the slope
A(@?) in the considered region of z and Q supports the
possibility to successfully use our generalized doubled
asymptotic scaling approximation in the z-independent
analysis of the F5 slope.

Figure 2 shows the experimental data for /\;f’;
and the corresponding H1 parameterization [5] writ-
ten above in Eq. (7). We have also plotted the result
from Eqs. (16) and (15) using the parameters from our
previous paper [14] as in Fig. 1. In both cases, we give

969

it for two representative values of .

Visual inspection of Fig. 1 shows that the bound-
aries and mean values of the experimental z ranges [5]
increase proportionally to @2, which is related to the
kinematical restrictions z ~ 1074Q? in the HERA ex-
periments (see Refs. [1-3,18] and, e.g., Fig. 1 in [4]).

Figure 3 shows the H1 experimental data [5] for /\;f’;
and the H1 parameterization (Eq. (7)) as in Fig. 2,
but this time in comparison with the asymptotic val-
ues A9 calculated from Eq. (16) using = a10*Q?
with a = 0.1,1, and 10. There is a reasonable agree-
ment with the H1 data for Q2 > 2 GeV? with a between
0.1 and 1 (the two lower dashed curves in Fig. 3), which
approximately corresponds to the middle points of the
measured z range.

6. CONCLUSIONS

We have studied the Q2-dependence of the slope

A4 = din Fy/dIn(1/x)

at small 2 in the framework of perturbative QCD. Our
results are in good agreement with the new precise ex-
perimental H1 data [5] at Q2 > 2 GeV?, where pertur-
bation theory can be applicable.

Although our approach, which can be called the
generalized doubled asymptotic scaling approximation,
is based on pure perturbative grounds, a flat initial
conditions at Q2 ~ 1 GeV? and dynamical evolution to
Q? > @2, and is conceptually very close to the GRV
approach but involves the exact analytic Q%-evolution,
it can be reasonably applied for the new precise data
of the slope A%

The agreement between \; data and perturbative
QCD has already been observed by the H1 [2] and
ZEUS [4] collaborations. The obtained linear rise of
A(Q?) with In Q? (see, e.g., Figs. 2 and 3), parameter-
ized by H1 as in Eq. (7), can naively be interpreted in
a strongly nonperturbative way, i.e.,

Q) x —

eff
F2

as(Q?) .

Our analysis, however, demonstrates that the rise can
be explained as being proportional to Inln Q?, which
is natural in the perturbative QCD at low = (see [12-
16], and references therein): when the coupling con-
stant is running, the renormalization group leads to
the small-z behavior of the parton distribution propor-
tional to In(a,(Q?)) at the leading order of perturba-
tion theory and proportional to as(Q?) at the next-to-
leading order (see Eqgs. (8)—(12) and discussions after
Eq. (14)).
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The good agreement between the perturbative QCD
and the experiments obtained here and in Ref. [14, 15]
demonstrates that for Q2 > 2 GeV?2, nonperturbative
contributions such as shadowing effects [38], higher
twist effects [39], and others either are quite small
(see also Ref. [40] and references therein) or cancel
between themselves and/or with In(1/x) terms con-
tained in the higher orders of perturbation theory. We
note, however, that higher twist corrections are impor-
tant at Q%> < 1 GeV?2, as has been demonstrated in
Refs. [15, 20, 37]. Further efforts in the development
of theoretical approaches are needed to isolate the cor-
rect contributions from nonperturbative dynamics and
higher orders containing strong In(1/x) terms.

Moreover, the good agreement between perturba-
tive QCD and experimental data at low Q> can be
explained with a larger effective scale for the QCD
coupling constant [14, 15]. A similar behavior has al-
ready been observed in the framework of perturbative
QCD [41] and in Brodsky—-Fadin—Kim-Lipatov (BFKL)
motivated approaches [42—44] (see the recent review in
Ref. [45] and discussions therein).

We note that large next-to-leading order corrections
calculated recently in the BFKL framework [46] (see
also [47]) lead to a strong suppression of the leading-or-
der BFKL results for the high-energy asymptotic be-
havior of the cross section (see, e.g., [42,43]). A careful
inclusion of the next-to-leading order corrections leads
to results that are quite close to those obtained in the
pure perturbative QCD [43]. This can give an addi-
tional support for the good applicability of perturba-
tion theory in the small-z range, where, as was ex-
pected before, nonperturbative effects should give an
essential contribution.

As the next step, it could be very useful to apply
the generalized doubled asymptotic scaling approach
to perform a combined analysis of the HERA data
for Fy, dFy/dIn(Q?), dln Fy/dIn(1/x), and Fy. We
hope to consider this in a forthcoming paper, including
higher-twist corrections in the @Q2-evolution approach
given by Eqs. (8)—(11). It would also be interesting to
consider additional terms in the initial condition given
by Eq. (1) proportional to In(1/z) and In*(1/z).

We hope that this analysis will be relevant in fin-
ding the kinematical region where the well-established
perturbative QCD formalism can be safely applied
at small z. Moreover, the study should clear up the
reason of the good agreement between the small-z re-
lation of Fy, Fy, and dFy/dIn(Q?) obtained in the
pure perturbative QCD in Ref. [48] (based on previous
works [26, 49]), the experimental data for these struc-
ture functions [2,50], and the predictions in Ref. [51]
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in the framework of k;-factorization [21, 22, 52].
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