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ELECTRON�PHONON INTERACTIONAND COUPLED PHONON�PLASMON MODESL. A. Falkovsky *Landau Institute for Theoretial Physis117337, Mosow, RussiaSubmitted 24 Marh 2003The theory of Raman sattering by the oupled eletron�phonon system in metals and heavily doped semion-dutors is developed with the Coulomb sreening and the eletron�phonon deformation interation taken intoaount. The Boltzmann equation for arriers is applied. Phonon frequenies and opti oupling onstantsare renormalized due to interations with arriers. The k-dependent semilassial dieletri funtion is involvedinstead of the Lindhard�Mermin expression. The results of alulations are presented for various values of thearrier onentration and the eletron�phonon oupling onstant.PACS: 63.20.Dj, 63.20.Kr, 71.38.-k, 72.30.+q, 78.30.-j1. INTRODUCTIONReently, there has been onsiderable interest in thee�et of eletron�phonon interations on the optial-phonon dispersion. This interest is stimulated byontraditions between di�erent approahes to theeletron�phonon interation. The strong phonon renor-malizations were �rst obtained by Migdal [1℄ (seealso [2℄) within a onsistent many-body approah basedon the Fröhlih Hamiltonian. The extremely large dis-persion of optial phonons was predited in [3℄ alsousing the Fröhlih model. These results ontraditBorn�Oppenheimer (adiabati) onept [4℄ aordingto whih the phonon renormalizations should be smallin terms of the nonadiabati parameterpm=M , wherem and M are the eletron and ion masses, respetively(see also [5℄). Theoretial investigations [6℄ of the soundveloity and aousti attenuation in metals on�rm theadiabati onept. In a reent paper, Reizer [7℄ em-phasized the importane of taking the sreening e�etinto aount. To our knowledge, the Coulomb sreen-ing e�et on LO phonons was �rst studied in [8℄. Us-ing the Boltzmann equation, we found in [9℄ that theeletron�phonon interation results more onsiderablyin the optial�phonon damping than in the dispersionlaw. In any ase, the Fröhlih model has the evidentshortomings.*E-mail: falk�itp.a.ru

From the experimental standpoint, the best op-portunity for the investigation of interations betweeneletrons and optial phonons is provided by oupledphonon�plasmon modes in doped semiondutors (see,e.g., [10℄). Two suh modes, L�, have been observed inRaman experiments for many semiondutors. At theearly stage, the Raman results were ompared with thetheory [11℄ based on the Drude model (see, e.g., [12℄),but the Lindhard�Mermin expression for the dieletrifuntion was used more reently [13℄.The Lindhard�Mermin expression [14℄ represents asophistiated generalization of the Lindhard funtionwith the help of the eletron relaxation time. TheLindhard approah is very useful while the momentumtransfer k in the Raman sattering is ompared withthe Fermi momentum pF . The most signi�ant e�etof the arriers should be expeted for kvF � !, wherevF is the Fermi veloity and ! is the phonon frequeny.For solids with metali ondutivity, the Fermi veloityan be estimated using the argument of stability underthe Coulomb interation e2=�~vF � 1. This onditiongives vF � 0:7 � 108 m/s. For the typial value of theoptial phonon frequeny ! = 500 m�1, the interest-ing values are k � !=vF � 106 m�1. Therefore, theondition k < pF is satis�ed for the arrier onen-tration larger than 3�1017 m�3. In experiments, theheavily doped semiondutors with large arrier on-entration are used in order to obtain a visible e�etof arriers. The ondition k � pF is then satis�ed,886



ÆÝÒÔ, òîì 124, âûï. 4 (10), 2003 Eletron�phonon interation : : :and we an apply the Boltzmann equation in alula-tions of the eletroni suseptibility and in the evalu-ation of the Raman ross setion. The method of theBoltzmann equation is valid for the anisotropi ele-tron plasma in solids at arbitrary temperatures. In thepresent paper, we obtain the Raman e�ieny applyingthe Boltzmann equation for generate arriers in heavilydoped semiondutors at the temperature lower thanthe Fermi energy, T � "F .2. EFFECTIVE HAMILTONIAN AND LIGHTSCATTERINGFor the eletron�phonon system in solids, we use theoperator of partile numbers n̂, the phonon displae-ments b̂j , and the marosopi eletri �eld E that a-ompanies vibrations in polar semiondutors and atson the eletron and ion harges. The e�etive Hamil-tonian desribing the inelasti light sattering in solidsan be written in the semilassial Wigner representa-tion as H = e2m2 Z d3rN (r; t)U(r; t); (1)where N (r; t) = n̂(r; t) + gj b̂j(r; t) + gEE(r; t) (2)is a linear form in the variables n̂, b̂j , and E. The sub-sript �j� denotes the various phonon modes, longitu-dinal (LO) or transverse (TO). More preisely, the sub-sript �j� labels the di�erent phonon representations,whih an be degenerate. The transformation proper-ties of the oupling onstants gj are determined by thisrepresentation. The notation U(r; t) is introdued fora produt of the vetor potentials of the inident andsattered photons,A(i)(r; t)A(s)(r; t) = U(r; t) = exp[i(k � r�!t)℄U(k; !);where the momentum and frequeny transfers arek = k(i) � k(s) and ! = !(i) � !(s). The polarizationvetors of b̂j(r; t), E(r; t), A(i)(r; t), and A(s)(r; t) areinluded in the oupling onstants.The �rst term in the right-hand side of Eq. (2) de-sibes the light sattering by eletron�hole pairs withthe vertex(p) = e(i)� e(s)� "Æ�� + 1m ��Xn  p�fnp�nf�f (p)� �n(p) + !(i) + p�fnp�nf�f (p)� �n(p)� !(s)!# ;

where the resonant term is inluded; e(i)� and e(s)�are the polarization vetors of the inident, A(i)(r; t),and sattered, A(s)(r; t), photons. The quantum-mehanial and statistial average of the �rst term inEq. (2), hhn̂(r; t)ii = Z 2d3p(2�)3 (p)fp(r; t); (3)an be expressed in terms of the eletron distribu-tion funtion fp(r; t). The onstants gj and gE arethe deformation-opti and eletro-opti ouplings withthe phonon displaements and the marosopi ele-tri �eld, respetively. The estimation gives gj � 1=a4,gE � 1=ea, and (p) � m=m�, where a is the lattieparameter and m� is the e�etive mass.The variable U(r; t) an be onsidered as an exter-nal fore. The generalized suseptibility �(k; !) is thenintodued as the linear response to this fore,hhN (k; !)ii = ��(k; !)U(k; !): (4)Aording to the �utuation�dissipation theorem,the funtionK(k; !) = 21� e�!=T Im�(k; !)is the Fourier omponent of the orrelation funtionK(r; t; r0; t0) = hhN y(r; t)N (r0; t0)ii (5)that depends only on the di�erenes r� r0 and t � t0.The Raman ross setion is given byd�d!(s)d
(s) == k(s)z !(s)� � 2e2~m!(i)�2K(k; !)jU(k; !)j2; (6)where k(s)z is the normal to the sample surfae ompo-nent of the sattered wave vetor in vauum.A note should be made. Evidently, any sample hasthe surfae. The surfae e�ets in the Raman satter-ing were onsidered in our paper [15℄; they are omittedin the derivation of Eq. (6). Beause of the skin ef-fet, the inident and sattered �elds do not penetratethe bulk. For the optial range of the inident light,we have the normal skin-e�et onditions. We then in-tegrate the distribution jU(k; !)j2 in Eq. (6) over thenormal omponent kz . As shown in [15℄, the integra-tion of jU(k; !)j2 gives the fator 1=�2, where �2 is ex-pressed in terms of the wave-vetor omponents insidethe semiondutor, �2 = Im(k(i)z + k(s)z ). The Ramanross setion (6) is dimensionless. It represents the ra-tio of the inelasti sattered light energy to the inidentenergy.887



L. A. Falkovsky ÆÝÒÔ, òîì 124, âûï. 4 (10), 20033. BOLTZMANN EQUATION FOR CARRIERSThe problem of the evaluation of the Raman rosssetion onsists in the alulation of generalized sus-eptibility (4). We apply the Boltzmann equation forthe eletron distribution funtion:�fp(r; t)�t + v�fp(r; t)�r ++ _p�fp(r; t)�p = �1� [fp(r; t)� hfp(r; t)i℄: (7)The angular brakets denote the average over the Fermisurfae, h: : : i = 1�0 Z (: : : ) 2dSFv(2�)3 ;where the integral is performed in the momentum spaeover the Fermi surfae and �0 is the density of eletronstates, de�ned by the ondition h1i = 1. We use the� -approximation, whih is orret for the eletron sat-tering by defets and phonons at room temperatures.The ollision integral in form (7) onserves the numberof eletrons in ollisions. Therefore, the harge densitysatis�es the equation of ontinuity. This ensures theorret !-dependene of the dieletri funtion at lowfrequenies.In aordane with Eqs. (1), (2), and (3), insteadof the unperturbed eletron spetrum "0(p), we intro-due the loal eletron spetrum in the presene of theexternal fore U(r; t) as"(p; r; t) = "0(p) + (p)U(r; t) + �j(p)bj(r; t);where the last term represents the eletron�opti-al-phonon deformation potential and bj(r; t) == hhb̂j(r; t)ii. We use this form of the eletron�phononinteration instead of the polarization type interation�(p)divb(r; t) (see [9℄) beause the �rst is larger bythe parameter 1=ka for the optial phonons.We linearize Eq. (7), seeking its solution in the formfp(r; t) = f0["(p; r; t)� �℄� df0d" Æfp(r; t); (8)where f0["(p; r; t) � �℄ is the Fermi�Dira loal distri-bution funtion. It is important that the ollision termin the Boltzmann equation is aneled if this loal dis-tribution funtion is only used.We impose the number onservation ondition onthe hemial potential,Z d3p(2�)3 f0["(p; r; t)� �℄ = Z d3p(2�)3 f0("0 � �0);and obtain� = �0 + h(p)iU(r; t) + h�j(p)ibj(r; t):

The ondition implies the renormalization of verties(p)! (p)�h(p)i; �j(p)! �j(p)�h�j(p)i; (9)and this substitution is to be made in what follows.The linearized Boltzmann equation in the Fourieromponents is given by�i(!�k � v+i=�)Æfp(k; !) =  p(k; !)+hÆfp(k; !)i=�;where p(k; !) = ev �E(k; !)�� i![(p)U(k; !) + �j(p)bj(k; !)℄:The solution to this equation is easily obtained asÆfp(k; !) = i[ p(k; !) + hÆfp(k; !)i=� ℄=�p; (10)where we designate �p = ! � k � v + i=� . We nowobtain hÆfp(k; !)i = ih p(k; !)=�pi1� ih��1=�pi : (11)Notie that in aordane with the adiabati on-ept, no additional ontribution omes from the lo-al equilibrium distribution funtion f0["(p; r; t)℄ inEq. (8).4. EQUATION OF MOTION FOR PHONONSINTERACTING WITH CARRIERSIn the long-wave approximation (k � 1=a, wherea is the lattie parameter), we write the equation ofmotion for the phonon displaement �eld as(!2k � !2)bj(k; !) = ZM 0Ej(k; !)� gjU(k; !)M 0N �� 1M 0N Z 2dSFv(2�)3 �j(p)Æfp(k; !); (12)where N is the number of unit ells in 1 m3, M 0 isthe redued mass of the unit ell, and Z is the e�etiveioni harge. The nonperturbed phonon frequeny !kmust be onsidered in the absene of the eletri �eldand without any eletron�phonon interations. In thelong-wave limit, we an expand it as !2k = !20 � s2k2with the value of the dispersion parameter s of the or-der of the typial sound veloity in solids. We note thatthe optial phonons always have the so-alled naturalwidth �nat � !0pm=M . The natural width resultsfrom deay proesses into two or more aousti andoptial phonons. In the �nal expressions, we will sub-stitute !2k � !2 ! !2k � i!�nat � !2.888



ÆÝÒÔ, òîì 124, âûï. 4 (10), 2003 Eletron�phonon interation : : :Equation (12) is applied to both the longitudinaland transverse phonons. It follows from the Maxwellequations that the eletri �eld is longitudinal, E k k,in the optial region k � !=. If the exited phononspropagate in the symmetri diretion, the TO and LOphonons are separated. Therefore, the eletri �eld isinvolved only in Eq. (12) for the LO phonon. In addi-tion, the oupling �j(p) depends on the phonon repre-sentation j.Using solution (10), we rewrite Eq. (12) as(~!2j � !2)bj(k; !)� ~ZM 0Ej(k; !) = � ~gjU(k; !)M 0N ; (13)where the phonon frequeny~!2j = !2k + !�0M 0N  *�2j (p)�p ++ ih�j(p)=�pi2� � hi=�pi ! ; (14)the e�etive ioni harge~Z = Z �� ie�0N ��vz�j(p)�p �+ ihvz=�pih�j(p)=�pi��hi=�pi � ; (15)and the deformation-opti oupling~gj = gj ++!�0�� �j(p)(p)�p �+ ih�j(p)=�pih(p)=�pi� � hi=�pi � (16)are renormalized beause of the eletron�phonon inter-ation �j(p).5. POISSON EQUATION FOR THEMACROSCOPIC FIELDWe onsider the longitudinal eletri indution Dthat aompanies lattie vibrations. There are sev-eral ontributions to the �eld: (1) the polarization�E(r; t) of the �lled eletron bands; (2) the lattiepolarization NZbLO(r; t); (3) the ontribution of thefree arrier density � = �divPe; and (4) the termP = ��H=�E = �gEU that expliitly results fromHamiltonian (1), (2). Colleting all these terms intothe Poisson equation divD = 0 we �nd"1E(k; !) + 4�NZbLO(k; !) ++ 4�iek Z 2d3p(2�)3 Æfp(k; !)� 4�gEU(k; !) = 0; (17)

where the high-frequeny permittivity "1 = 1 + 4��.Using the solution of the Boltzmann equation, werewrite the Poisson equation in the form"e(k; !)E(k; !) + 4�N �ZbLO(k; !) == 4�~gEU(k; !); (18)where the eletroni dieletri funtion"e(k; !) = "1 + "1 k20k2 �1� h!=�p(k)i1� hi=�p(k)i=� � (19)ontains the Thomas�Fermi parameter k20 == 4�e2�0="1.Beause of the eletron�phonon interations�LO(p), the ioni harge obtains an additional term,�Z = Z + ie�0N ����vz�LO(p)�p �+ ihvz=�pih�LO(p)=�pi� � hi=�pi � ; (20)of the opposite sign ompared with that in Eq. (15).The eletro-opti oupling in Eq. (17) also hanges, butbeause of the light sattering by arriers (p):~gE = gE �� ie�0��vz(p)�p �+ ihvz=�pih(p)=�pi� � hi=�pi � : (21)6. RAMAN SCATTERING BYELECTRON�HOLE PAIRS, PHONONS, ANDCOUPLED MODESWe are now in a position to alulate suseptibil-ity (4). Using Eqs. (3), (10), (11), (16), and (21), weobtainhhN (k; !)ii = ��e(k; !)U(k; !) ++ ~gjbj(k; !) + �gEE(k; !); (22)where�e(k; !) = �!�0��2(p)�p �+ ih(p)=�pi2� � hi=�pi �gives the light sattering with the exitation ofeletron�hole pairs. We note that the renormalizedoupling �gE entering here di�ers from ~gE in (21) bythe sign of the seond term:�gE = gE + ie�0��vz(p)�p �+ ihvz=�pih(p)=�pi� � hi=�pi � :To �nd E(k; !) and bj(k; !), we must solve the systemof algebrai equations (13) and (18). Using Eq. (22),we then obtain the generalized suseptibility889



L. A. Falkovsky ÆÝÒÔ, òîì 124, âûï. 4 (10), 2003�(k; !) = �e(k; !) + ~g2j "e(k; !)=NM 0 � 4�~gE�gE(~!2j � !2)� 4�~gj(~gE eZ + �gE �Z)=M 0(~!2j � !2)"e(k; !) + 4�N eZ �Z=M 0 : (23)Expression (23) is our main result. The poles of theseond term give the spetrum of olletive exitationsof the eletron�phonon system. We disuss Eq. (23) invarious limiting ases.6.1. The eletroni satteringWe obtain the Raman eletroni sattering fromEq. (23) if we set ~gj = gE = eZ = �Z = 0. We thenhave �(k; !) = �e(k; !) + 4�~g2E"e(k; !) ; (24)where ~gE is given by Eq. (21) with gE = 0.For the isotropi Fermi surfae, we alulate thedieletri funtion in Eq. (19) by performing the inte-gration:� 1�p(k)� = 12kvF ln 1 + �1� �; � = kvF! + i��1 ; (25)where we must take the branh of ln x that is real forpositive real values of x.For the anisotropi Fermi surfae, the alulationsan be done in limiting ases. For j�j � 1, we use theexpansion for eletroni dieletri funtion (19),"e(k; !) == "1(1 +�k0k �2 �1 + i��0!k �1v Æ(�)��) ; (26)where � = v � k=vk and Æ(x) is the Dira delta fun-tion. In this ase, the Raman e�ieny has a �tail�due to the Landau damping,Im�(k; !) = ��0!k �2(p)v Æ(�)� : (27)We see that the Raman ross setion vanishes for theisotropi vertex (p) beause of Eq. (9). This is a resultof the Coulomb sreening. It was �rst obtained in [16℄for the Raman sattering in semiondutors (see [17℄).In the opposite ase where j�j � 1, the �rst termin Eq. (24) gives the resultIm�e(k; !) = �0h2(p)i !�(!�)2 + 1 ; (28)

whih was �rst found in [18℄ with the help of theGreen's funtion tehnique. The seond term inEq. (24) reveals a plasmon pole at small values of k.The k-expansion of the dieletri funtion reads"e(k; !) = "1 1� !2pe + k2w!(! + i��1)! ; (29)where the k-independent term represents the Drudeondutivity and the eletron plasma frequeny is givenby the integral over the Fermi surfae, !2pe = k20hv2zi.The omplex oe�ientw = k20(hv4zi+ ihv2zi2=!�)(! + i��1)2 :For the quadrati eletron spetrum, hv2zi = v2F =3 andhv4zi = v4F =5.The k-expansion of ~gE gives~gE = � ie�0kh(p)v2zi(! + i��1)2beause gE = 0 and the zero-order term in the k-expansion vanishes due to the time invariane v! �v.The intensity of the plasmon peak is then proportionalto k2, in aordane with the known behavior of thedynamial struture fator.6.2. The Raman sattering by TO phononsThe seond term in Eq. (23) gives the TO-phononsattering if we set eZ = �Z = ~gE = 0:�(k; !) = ~g2TO=NM 0~!2TO � !2 � i!�nat ; (30)where ~!TO and ~gTO are de�ned in Eqs. (14) and (16)with �j(p) = �TO(p); we add the phonon width �natmentioned above.Two points must be noted here. First, the TO-resonane ours at the renormalized frequeny ~!TO.Taking the real and imaginary parts of (14), we obtainthe TO-phonon shift and width due to the deformationinteration �(p) with arriers:�!k = Re(~!2TO � !2k)=2!k; � = �nat � Im ~!2TO=!k:Seond, beause of the interation with arriers, theoupling ~gTO in (16) has an imaginary part. Therefore,890



ÆÝÒÔ, òîì 124, âûï. 4 (10), 2003 Eletron�phonon interation : : :the line shape of the resonane beomes asymmetri(the Fano resonane),Im�(k; !) = 1NM 0 �� !�g2TO + (Re ~!2TO � !2) Im ~g2TO(Re ~!2TO � !2)2 + (!�)2 : (31)The line shape asymmetry depends on the sign ofRe gTO. For instane, if Im ~g2TO < 0, the high-frequeny wing of the resonane line drops more slowlythan the low-frequeny one. In the limiting ase where�� 1, we expand~gTO = gTO ++ �0!k �(p)�TO(p)v ��i� + 2!kv� Æ(�)� ; (32)and for �� 1 we have~gTO = gTO + !�0! + i��1 ���h(p)�TO(p)i+ k2hv2z(p)�TO(p)i(! + i��1)2 � : (33)Notie, that the eletron�phonon interation�TO(p) and the light sattering (p) by arriers jointly

renormalize the oupling gTO . The frequeny renor-malization ~!2TO (see Eq. (14)) results only from theeletron�phonon interation �TO(p). The orrespond-ing expressions an be obtained from Eqs. (32) and (33)by the substitution (p) ! �TO(p). We see that theTO phonons beome broader and harder beause of theinteration with arriers.Emphasize that the phonon renormalizations de-pend on the arrier density �0 and the average oupling�j(p) � h�j(p)i. They vanish for the isotropi Fermisurfae. The maximum value of the relative renor-malization has the order of �apFm�!=mj! + i��1j atkv � j!+ i��1j, where � is the dimensionless eletron�phonon oupling and m� is the e�etive eletron mass.6.3. The Raman sattering byLO-phonon�plasmon oupled modesIn this ase, the arriers interat with eah otherand the ion vibrations via both the marosopi ele-tri �eld E(r; t) and the deformation potential �LO(p).In the long-wave limit k ! 0, Eqs. (15), (20),and (21) show no renormalization of the ioni harge,eZ = �Z = Z, and of the eletro-opti onstant, ~gE = gE .Equation (23) then beomes�(0; !) = �e(0; !) + ~g2LO"e(0; !)=NM 0 � 4�g2E(~!20 � i!�nat � !2)� 8�gE~gLOZ=M 0(~!20 � i!�nat � !2)"e(0; !) + 4�NZ2=M 0 ; (34)where the �rst term is given in Eq. (28). The defor-mation potential �LO(p) renormalizes the phonon fre-queny ~!0 in (14), as well as the deformation-opti on-stant ~gLO in (16). The orresponding expansions in thelimiting ases are similar to Eqs. (32) and (33). Allmentioned above about the TO line asymmetry alsoapplies to the LO line.Beause the dieletri funtion of the eletron�ionsystem is given by"(0; !) = "e(0; !) + 4�NZ2M 0(~!20 � i!�nat � !2) ; (35)the seond term in the right-hand side of Eq. (34) haspoles at the points where "(0; !) = 0. This ondi-tion de�nes the frequeny of oupled phonon�plasmonmodes in the long-wave limit.In the absene of the eletron and phonon ollisions(��1 = �nat = 0), and without the eletron�phonon in-teration (�(p) = 0), we obtain a biquadrati equationusing Eq. (29). It gives the frequenies of the oupledphonon�plasmon modes at k = 0,

!2� = 12(!2pe + !2LO)�� 12 �(!2pe + !2LO)2 � 4!2pe!2TO�1=2 ; (36)where !TO = !k is the TO-mode frequeny at k = 0,!2LO = !2TO+!2pi, and !2pi = 4�NZ2="1M 0. These fre-quenies (related to !TO) are shown in Fig. 1 as fun-tions of the eletron onentration, namely, !pe=!TO.The upper line begins at !LO and tends to the ele-tron plasma frequeny !pe. The lower frequeny startsas !pe!TO=!LO and then approahes !TO. In otherwords, observing the longitudinal phonon mode in theopti range and adding eletrons, we see a transition ofthe longitudinal phonon frequeny from !LO to !TO.This is a result of the Coulomb sreening.We an ompare Eq. (34) with the theory of Honand Faust [11℄. Beause the eletron�phonon intera-tion, �LO(p), as well as the eletroni sattering, (p),were ignored in their theory, the phonon frequeny andthe deformation-opti onstant were not renormalized.Equation (34) an then be rewritten as891



L. A. Falkovsky ÆÝÒÔ, òîì 124, âûï. 4 (10), 2003
�(0; !) = (4�gE)2"1"(0; !) �� �"e(0; !)"1 A2�I � "14� � 2A�I� ; (37)where �I = NZ2=M 0(!2TO � i!�nat � !2);A = C!2TOM 0"14�NZ2 ; C = gLOZgEM!2TO ;C is the Faust�Henry oe�ient. We now see that ex-pression (37) oinides with the result of Hon and Faust(see, e.g. Eq. (3.1) in [13℄).For k 6= 0, Eq. (23), �rst, inludes the dieletrifuntion (19) that di�ers from the Lindhard�Merminexpression. Seond, the ondition determining fre-quenies and damping of the phonon�plasmon oupledmodes,(~!2j � i!�nat � !2)"e(k; !) + 4�N eZ �Z=M 0 = 0; (38)

Frequeny,rel.
units

!pi = !TO !+
!�!pe

2:5

1:0 2:00
1:52:01:00:5

!pe ; rel. unitsFig. 1. Frequenies (in units of !TO) of the phonon�plasmon modes at k = 0 versus the free-arrier on-entration, namely, the eletron plasma frequeny (inunits of !TO). We set the ion plasma frequeny!pi = !TO in the absene of the free arriers. Then!LO=!TO = p2

ontains the phonon frequeny ~! and the ioni hargerenormalized by the eletron�phonon interation�LO(p). Third, the eletro-opti oupling gE inEq. (21) is modi�ed beause of the light sattering(p) from the eletron�hole pairs. This e�et is notaneled in the produt gLO~gE in Eq. (23) even in theabsene of the eletron�phonon interation �LO(p).The expansion of ~gE has the form~gE = gE � ie�0khv2z(p)i(! + i��1)2 (39)for j�j � 1 and~gE = gE + e�0k�2(! + i��1)���(p)v ���2 � i!kv� Æ(�)� (40)for j�j � 1. We note that the term ~gLO�gE has thelargest imaginary part for !� � 1 and then resultsmost signi�antly in the line shape asymmetry.Shematily, the dispersion of the phonon�plasmonmodes is shown in Fig. 2. There are two main peu-larities in this �gure. First, the behavior of the up-per mode near the line ! = kvF . Around this line(��1 < ! � kvF � kvF ), dieletri funtion (19) has asingularity,"e(k; !) = "1 + "1 k20k2 �1� !2kvF �� �12 ln 4k2v2F(!�kvF )2+��2�i ��1!�kvF �� : (41)Beause of this singularity, the upper mode approahesthe asymptote ! = kvF as the wave vetor k inreases.Seond, in the region kvF � !, there is always onemode that has a predominantly phonon harater. Thereason is the derease with k of the imaginary part ofdieletri funtion (26).7. DISCUSSIONWe now onsider the obtained results in a simplestway. We assume that the eletroni sattering is negli-gibly small, (p) = 0. The seond term in the paren-theses in Eq. (14) is less than the �rst one in bothlimiting ases, �� 1 and �� 1. We neglet this termat all. We also do not take the ion harge renormal-ization into aount beause it vanishes at small valuesof �. We an then use expression (25) not only for thedieletri funtion "e(k; !), Eq. (19), but also for therenormalized phonon frequeny ~!, Eq. (14).In suh an approximation, solving Eq. (38), we �ndthe frequeny and damping of the phonon-like mode forthe limiting ases of the parameter � = kvF =(! + i=�)and for low and large arrier onentration.892
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Fig. 3. Raman spetra from a semiondutor with low arrier onentration as a funtion of the frequeny transfer ! forthe indiated values of the momentum transfer k, the Thomas�Fermi parameter k0 (in units of !TO=vF ), and the eletron�phonon oupling onstant �eph = 0 (a) and �eph = 0:1 (b). We set the ion plasma frequeny !pi = !TO, the phononnatural width �nat=!TO = 10�2, and the arrier relaxation rate ��1=�nat = 101) Low arrier onentration, !pe < !O:j�j � 1,!2 = !2LO � i!�nat ++�eph!!2TO!� �1+�23 �+(!pi!pe)2!!� �1+ i�23!� � ;
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L. A. Falkovsky ÆÝÒÔ, òîì 124, âûï. 4 (10), 2003
0

1:00:80:60:40:2�0:2�0:4
! = kvF

0
1:00:80:60:4

�0:2�0:4
0:2

! = kvF b k0 = 1�eph = 0:1a k0 = 1�eph = 0
0 0:60:40:2 Wave vetor, rel. units

Line widthLine asymmetry
Line peak

0 0:60:40:2 Wave vetor, rel. unitsLine asymmetryLine widthLine peak

Fig. 4. The plasmon dispersion as a funtion of k in units of !TO=vF (the position in units of !TO of the line peak ofRaman spetra; upper part of the �gure, solid line) for k0 = 1 and �eph = 0 (a) and �eph = 0:1 (b). In the bottom, the linewidth (the full width at half maximum, dashed line) and the line asymmetry (the di�erene between the right and left wingsat half maximum, dash-dotted line) in units of !TO. The Landau damping exists to the right of the dotted line ! = kvF
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j�j � 1,!2 = !2TO � i!�nat ++�eph!!2TOkvF ��i�2+1��+(!pikvF )23!2pe �1� i�!2kvF � ;where we substitute ! ! !TO . The de�nition of �ephdepends on �,�eph = �0h�2(p)iM 0N!2TO ; �� 1;�eph = �0v2F h�2(p)=v2ziM 0N!2TO ; �� 1;but gives the same order of value, �eph � pFam�=m.Results of the numerial alulations of the Ramanspetra, Eq. (23), in this approximation are shown inFig. 3 for two values of the eletron�phonon oupling�eph. We take the value of the Faust�Henry oe�-ient C = �0:5 and the phonon natural width �nat == 10�2!TO. The eletron ollision rate is taken as��1 = 10�1!TO , whih is the usual value for heavilydoped semiondutors [13; 19℄. In Fig. 3, the wave ve-tor k and the Thomas�Fermi parameter k0 are given inunits of !TO=vF , and the frequeny ! in units of !TO.Both these �gures orrespond to the ase of small ar-rier numbers !pe < !TO (see Fig. 2b; for the quadratieletron spetrum, !pe = k0vF =p3). The left peakmainly has a plasmon harater and the right peak ismainly the LO phonon. We put the ion plasmon fre-queny !pi = !TO, therefore !LO = p2!TO . As the894
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and asymmetry beome muh larger while the plasmonpeak is immersed in the eletron�hole ontinuum. Themaximum in this region of the spetra is nothing butthe eletron�hole ontribution. In Fig. 4b, we see howlose this maximum is loated to the line ! = kvF for�eph = 0:1.The behavior of the phonon peak around ! = !LOas k inreases is shown in Fig. 5. As the wave vetorinreases from k = 0 to k = 1:7, the phonon peak isevidently shifted to the higher frequeny and beomesbroader. This is an e�et of the Landau damping (seeFig. 2b). But for k > 1:75, this peak appears at alower frequeny, ! � 1:4, and beomes sharper for895
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Fig. 9. Dispersion of the plasmon peak in heavily dopedsemiondutorsk > 2:2 beause the Landau damping dereases withk (see Eq. (26)).The Raman spetra for heavily doped semiondu-tors and metals are shown in Fig. 6 (see also Fig. 2a).The phonon peak is now loated around ! � !TO in-stead of ! � !LO. This is an e�et of the Coulombsreening: arriers derease the frequeny of the LOmode from !LO to !TO . We also see that the eletron�phonon interation suppresses the phonon peak.The e�et of the Coulomb sreening and the elet-

ron�phonon interation on the phonon mode is learlyseen in Fig. 7, where the phonon part of the spetra isshown in detail. The lines are very asymmetri. Thephonon dispersion, the line width, and the line asym-metry as funtions of k are shown in Fig. 8. We see asingularity at k � !=vF . It is interesting to estimatethe value of the phonon dispersion. With the help ofFig. 7b, we �nd d!=dk � 10�1vF . On the other hand,using Eqs. (26) and (29), we �nd for the phonon dis-persion !2 = !2TO + !2pik2=k20, whih orresponds wellwith the previous estimate for our values of k0 and!pi. We note that these estimates on�rm the adia-bati approximation, beause the value of dispersions = !pi=k0 � vFpm=M ontains the adiabati param-eter.In Fig. 9, the dispersion, the line width, and the lineasymmetry are shown for the plasmon peak in heavilydoped semiondutors. Here, the e�et of the eletron�phonon interation on the phonon dispersion is weakand no in�uene on the width and asymmetry of theline is seen. 8. CONCLUSIONSIn onlusion, we �rst emphasize that our re-sult (23) desribes the renormalization of the phononfrequenies, the e�etive ion harge, and the ouplingonstants due to the eletron�phonon deformationinteration �j(p). Seond, this result involves thek-dependent semilassial dieletri funtion insteadof the Lindhard�Mermin expression. Finally, the lightsattering vertex (p) with exitations of the eletron�hole pairs not only gives an additional ontribution �ein Eq. (23), but also modi�es the eletro-opti gE anddeformation-opti gj oupling onstants, whih beomedependent on the frequeny and momentum transfers.The author aknowledges the kind hospitality ofthe Max-Plank-Institut für Physik komplexer Systeme(Dresden), where this work was ompleted. The workwas partially supported by the RFBR (grant � 01-02-16211). REFERENCES1. A. B. Migdal, Zh. Eksp. Teor. Fiz. 34, 1438 (1958)[Sov. Phys. JETP 7, 996 (1958)℄.2. A. A. Abrikosov, L. P. Gor'kov, and I. Ye. Dzyaloshin-skii, Methods of Quantum Field Theory in StatistialPhysis, Prentie-Hall, Englewood Cli�s, NJ (1963).896
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