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The theory of Raman scattering by the coupled electron—-phonon system in metals and heavily doped semicon-
ductors is developed with the Coulomb screening and the electron-phonon deformation interaction taken into
account. The Boltzmann equation for carriers is applied. Phonon frequencies and optic coupling constants
are renormalized due to interactions with carriers. The k-dependent semiclassical dielectric function is involved
instead of the Lindhard—Mermin expression. The results of calculations are presented for various values of the
carrier concentration and the electron—phonon coupling constant.
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1. INTRODUCTION

Recently, there has been considerable interest in the
effect of electron—phonon interactions on the optical-
phonon dispersion. This interest is stimulated by
contradictions between different approaches to the
electron—phonon interaction. The strong phonon renor-
malizations were first obtained by Migdal [1] (see
also [2]) within a consistent many-body approach based
on the Frohlich Hamiltonian. The extremely large dis-
persion of optical phonons was predicted in [3] also
using the Frohlich model. These results contradict
Born-Oppenheimer (adiabatic) concept [4] according
to which the phonon renormalizations should be small
in terms of the nonadiabatic parameter y/m/M, where
m and M are the electron and ion masses, respectively
(see also [5]). Theoretical investigations [6] of the sound
velocity and acoustic attenuation in metals confirm the
adiabatic concept. In a recent paper, Reizer [7] em-
phasized the importance of taking the screening effect
into account. To our knowledge, the Coulomb screen-
ing effect on LO phonons was first studied in [8]. Us-
ing the Boltzmann equation, we found in [9] that the
electron—phonon interaction results more considerably
in the optical-phonon damping than in the dispersion
law. In any case, the Frohlich model has the evident
shortcomings.
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From the experimental standpoint, the best op-
portunity for the investigation of interactions between
electrons and optical phonons is provided by coupled
phonon—plasmon modes in doped semiconductors (see,
e.g., [10]). Two such modes, L*, have been observed in
Raman experiments for many semiconductors. At the
early stage, the Raman results were compared with the
theory [11] based on the Drude model (see, e.g., [12]),
but the Lindhard—Mermin expression for the dielectric
function was used more recently [13].

The Lindhard-Mermin expression [14] represents a
sophisticated generalization of the Lindhard function
with the help of the electron relaxation time. The
Lindhard approach is very useful while the momentum
transfer k£ in the Raman scattering is compared with
the Fermi momentum pp. The most significant effect
of the carriers should be expected for kvp ~ w, where
vr is the Fermi velocity and w is the phonon frequency.
For solids with metalic conductivity, the Fermi velocity
can be estimated using the argument of stability under
the Coulomb interaction e? /mhvp < 1. This condition
gives vp ~ 0.7 -10% cm/s. For the typical value of the
optical phonon frequency w = 500 ecm ™!, the interest-
ing values are k < w/vr ~ 10° em™'. Therefore, the
condition k < pp is satisfied for the carrier concen-
tration larger than 3-10'7 em™3. In experiments, the
heavily doped semiconductors with large carrier con-
centration are used in order to obtain a visible effect
of carriers. The condition & < pp is then satisfied,
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and we can apply the Boltzmann equation in calcula-
tions of the electronic susceptibility and in the evalu-
ation of the Raman cross section. The method of the
Boltzmann equation is valid for the anisotropic elec-
tron plasma in solids at arbitrary temperatures. In the
present paper, we obtain the Raman efficiency applying
the Boltzmann equation for generate carriers in heavily
doped semiconductors at the temperature lower than
the Fermi energy, T' < ef.

2. EFFECTIVE HAMILTONIAN AND LIGHT
SCATTERING

For the electron—phonon system in solids, we use the
operator of particle numbers 7, the phonon displace-
ments b;, and the macroscopic electric field E that ac-
companies vibrations in polar semiconductors and acts
on the electron and ion charges. The effective Hamil-
tonian describing the inelastic light scattering in solids
can be written in the semiclassical Wigner representa-
tion as

o2

H=—
mc?

/d3rj\/(r,t)U(r,t), (1)

where

./\/(I'.,t) = ’}/’fl(l‘,t) +gjgj(r7t) +gEE(r7t) (2)
is a linear form in the variables 7, l;]', and E. The sub-
script «j» denotes the various phonon modes, longitu-
dinal (LO) or transverse (TO). More precisely, the sub-
script «j» labels the different phonon representations,
which can be degenerate. The transformation proper-
ties of the coupling constants g; are determined by this
representation. The notation U(r,t) is introduced for
a product of the vector potentials of the incident and
scattered photons,

AD(x ) AP (x,t) = U(r,t) = expli(k - v — wt)|U (k, w),

where the momentum and frequency transfers are
k =k — k() and w = w® — w®) . The polarization
vectors of Bj (r,t), E(r,t), A (r,t), and A®)(r,t) are
included in the coupling constants.

The first term in the right-hand side of Eq. (2) de-
scibes the light scattering by electron-hole pairs with
the vertex

PP
€r(p) — en(p) — w®

PP
er(p) — en(p) + w®

-

)

i
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(4)

where the resonant term is included; eq (s)

and s
are the polarization vectors of the incident, A (r,t),
and scattered, A®)(r,t), photons. The quantum-
mechanical and statistical average of the first term in
Eq. (2),

(yi(e, 1)) = / (22‘17)’;7 3)

can be expressed in terms of the electron distribu-
tion function fp(r,t). The constants g; and gg are
the deformation-optic and electro-optic couplings with
the phonon displacements and the macroscopic elec-
tric field, respectively. The estimation gives g; ~ 1/a*,
gr ~ 1/ea, and v(p) ~ m/m*, where a is the lattice
parameter and m* is the effective mass.

The variable U(r, t) can be considered as an exter-
nal force. The generalized susceptibility y(k,w) is then
intoduced as the linear response to this force,

(NV(k,w)) = =x(k,w)U(k,w).

(p).fp(r7 t)a

(4)
According to the fluctuation—dissipation theorem,

the function

is the Fourier component of the correlation function
K(r,t;e' ') = (N (e, N (', 1)) (5)

that depends only on the differences r — r' and ¢ — ¢'.
The Raman cross section is given by

Ao
dw ) dQls) —
kgs)w(s) 2¢2 2 ,
—\ g ) KlkwUkw),  (6)
where kiS) is the normal to the sample surface compo-

nent of the scattered wave vector in vacuum.

A note should be made. Evidently, any sample has
the surface. The surface effects in the Raman scatter-
ing were considered in our paper [15]; they are omitted
in the derivation of Eq. (6). Because of the skin ef-
fect, the incident and scattered fields do not penetrate
the bulk. For the optical range of the incident light,
we have the normal skin-effect conditions. We then in-
tegrate the distribution |U(k,w)|?* in Eq. (6) over the
normal component k.. As shown in [15], the integra-
tion of |U(k,w)|? gives the factor 1/(s, where (5 is ex-
pressed in terms of the wave-vector components inside
the semiconductor, {, = Im(kii) + kgs)). The Raman
cross section (6) is dimensionless. It represents the ra-
tio of the inelastic scattered light energy to the incident
energy.
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3. BOLTZMANN EQUATION FOR CARRIERS

The problem of the evaluation of the Raman cross
section consists in the calculation of generalized sus-
ceptibility (4). We apply the Boltzmann equation for
the electron distribution function:

Ofp(x.t)  Ofp(r,t)
o Yo T
+p%;at> = 21 0) = e )] (D)

The angular brackets denote the average over the Fermi
2dSF

surface,
(...)= /('“)v(27r)3"

where the integral is performed in the momentum space
over the Fermi surface and v is the density of electron
states, defined by the condition (1) = 1. We use the
T-approximation, which is correct for the electron scat-
tering by defects and phonons at room temperatures.
The collision integral in form (7) conserves the number
of electrons in collisions. Therefore, the charge density
satisfies the equation of continuity. This ensures the
correct w-dependence of the dielectric function at low
frequencies.

In accordance with Egs. (1), (2), and (3), instead
of the unperturbed electron spectrum &¢(p), we intro-
duce the local electron spectrum in the presence of the
external force U(r,t) as

1

Vo

e(p,r,t) = co(p) +7(P)U(r, 1) + (i(P)b;(r, 1),

where the last term represents the electron—opti-
cal-phonon deformation potential and b;(r,?)
= ((b;(r,t))). We use this form of the electron-phonon
interaction instead of the polarization type interaction
((p)divb(r,t) (see [9]) because the first is larger by
the parameter 1/ka for the optical phonons.

We linearize Eq. (7), seeking its solution in the form

dfo
T (8)

where fole(p,r,t) — p is the Fermi-Dirac local distri-
bution function. It is important that the collision term
in the Boltzmann equation is canceled if this local dis-
tribution function is only used.

We impose the number conservation condition on
the chemical potential,

.fp(r'/t) = fO[E(pvr-,t) - :u] 6.f10(r7t)7

d? a3
/ﬁfok(p?r,t) -l = / ﬁf{)(fo — o),
and obtain

p= o + (y(P)U(r,t) + (;(p))b;(r,1).
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The condition implies the renormalization of vertices

G = ¢P)=(GP), 9)

and this substitution is to be made in what follows.
The linearized Boltzmann equation in the Fourier
components is given by

7(p) = v(p)—-{(7(p)),

—i(w—k - v+i/T)d fp(k. w) = ¢p(k,w)+(3fp(k,w))/T,
where
Up(k,w) =ev-E(k,w) -
—iwly(P)U(k,w) + ¢;(p)b; (k, w)].
The solution to this equation is casily obtained as
6 fp(k,w) = i[p(k,w) + (0 fp(k,w))/T]/Ap,

where we designate A, = w —k-v +i/7. We now
obtain

(10)

i - )

(11)

Notice that in accordance with the adiabatic con-
cept, no additional contribution comes from the lo-
cal equilibrium distribution function fole(p,r,¢)] in
Eq. (8).

4. EQUATION OF MOTION FOR PHONONS
INTERACTING WITH CARRIERS

In the long-wave approximation (k < 1/a, where
a is the lattice parameter), we write the equation of
motion for the phonon displacement field as

Z gU(k7UJ)
A v e

- 577 | ek, (12)

(WI% - w2)b]'(kaw) =

where N is the number of unit cells in 1 cm?, M’ is
the reduced mass of the unit cell, and 7 is the effective
ionic charge. The nonperturbed phonon frequency wy,
must be considered in the absence of the electric field
and without any electron—phonon interactions. In the
long-wave limit, we can expand it as w} = wi + s2k?
with the value of the dispersion parameter s of the or-
der of the typical sound velocity in solids. We note that
the optical phonons always have the so-called natural
width Tm% ~ woy/m/M. The natural width results
from decay processes into two or more acoustic and
optical phonons. In the final expressions, we will sub-

stitute w? — w? = w? — Wl — W2
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Equation (12) is applied to both the longitudinal
and transverse phonons. It follows from the Maxwell
equations that the electric field is longitudinal, E || k,
in the optical region k > w/c. If the excited phonons
propagate in the symmetric direction, the TO and LO
phonons are separated. Therefore, the electric field is
involved only in Eq. (12) for the LO phonon. In addi-
tion, the coupling (;(p) depends on the phonon repre-
sentation j.

Using solution (10), we rewrite Eq. (12) as

~ Z gU(ka w)
(UJ? _w2)b](k7w) - M/E](k’w) = - ]M,N 1 (13)
where the phonon frequency
2 . 2
o oo, wn ([GP)\ i{G(P)/Ap)
WJ_W+AWN<<AP Ay ) M

the effective ionic charge

Z=17-—

(

and the deformation-optic coupling
9i =9i +
(¢ (P)/Ap)(1(P)/Ap)

v (( S+ HURERERI) q

are renormalized because of the electron—phonon inter-
action (;(p).

ey

N

Uz CJ (p)
Ap

P)Y(pP)
AI’

5. POISSON EQUATION FOR THE
MACROSCOPIC FIELD

We consider the longitudinal electric induction D
that accompanies lattice vibrations. There are sev-
eral contributions to the field: (1) the polarization
aFE(r,t) of the filled electron bands; (2) the lattice
polarization NZbro(r,t); (3) the contribution of the
free carrier density p —divP,; and (4) the term
P = —9H/OE = —ggU that explicitly results from
Hamiltonian (1), (2). Collecting all these terms into
the Poisson equation divD = 0 we find

e E(k,w) + 47N Zbpo (k, w) +
2d3p
(2m)?

4dmie

k

6.fp(k7w) —4rgpU(k,w) =0, (17)
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where the high-frequency permittivity e, = 1 + 4mwa.
Using the solution of the Boltzmann equation, we
rewrite the Poisson equation in the form

ce(k,w)E(k,w) + 47N Zbro (k,w)

= 47T§EU(k7 CU), (18)
where the electronic dielectric function
ko (w/Ap(k))
k,w)= MR I [ o e A S 19
s = st tea [T g, 0]
contains the Thomas-Fermi parameter k3 =
= 4me?vy /0.
Because of the electron—phonon interactions

Cro(p), the ionic charge obtains an additional term,

Z=7+2X2
(o) e/ oYY

of the opposite sign compared with that in Eq. (15).
The electro-optic coupling in Eq. (17) also changes, but
because of the light scattering by carriers v(p):

9 = 9E —

() ).

6. RAMAN SCATTERING BY
ELECTRON-HOLE PAIRS, PHONONS, AND
COUPLED MODES

i(v:/Ap)(V(P)/Ap)
7= (i/Ap)

v.7(p)
AP

We are now in a position to calculate susceptibil-
ity (4). Using Egs. (3), (10), (11), (16), and (21), we
obtain

((V(k,w))) = =xe(k,w)U(k,w) +

+ gjbj (k, w) + gEE(k, w)7 (22)
where
_ )\ | i(v(p)/Ay)?
vl = - (T3 + TG

gives the light scattering with the excitation of
electron—hole pairs. We note that the renormalized
coupling gg entering here differs from gg in (21) by

the sign of the second term:
_ . v:7(P) i{v:/Ap)(v(P)/Ap)
95 = g e << Ap > - T —(i/Ap) ‘

To find E(k,w) and b;(k,w), we must solve the system
of algebraic equations (13) and (18). Using Eq. (22),
we then obtain the generalized susceptibility
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X(k,&)) = Xe(k7w) +

Fee(k,w)/NM' — dnjpip(@? — w?) — 475;(G5Z + GuZ) /M

~2
(@;

Expression (23) is our main result. The poles of the‘
second term give the spectrum of collective excitations
of the electron—phonon system. We discuss Eq. (23) in
various limiting cases.

6.1. The electronic scattering

We obtain the Raman electronic scattering from
Eq. (23) if we set §; = gg = Z = Z = 0. We then
have

47 g%,
ce(k,w)’

x(k,w) = xe(k,w) + (24)
where gg is given by Eq. (21) with gg = 0.

For the isotropic Fermi surface, we calculate the
dielectric function in Eq. (19) by performing the inte-

gration:
(sm)

where we must take the branch of Inz that is real for
positive real values of x.

For the anisotropic Fermi surface, the calculations
can be done in limiting cases. For |k| > 1, we use the
expansion for electronic dielectric function (19),

ge(k,w) =

< () P ()]} oo

—0(u)
where = v -k/vk and 6(z) is the Dirac delta func-
tion. In this case, the Raman efficiency has a «tail»
due to the Landau damping,

1
N Qk?)F

1+ k&
n b
11—k

kUF

wHirl’

1 (25)

ko

k

tin () = 20 (P50,

v
We see that the Raman cross section vanishes for the
isotropic vertex v(p) because of Eq. (9). This is a result
of the Coulomb screening. It was first obtained in [16]
for the Raman scattering in semiconductors (see [17]).

In the opposite case where |k| < 1, the first term
in Eq. (24) gives the result

(27)

tove(l,w) =P @) oy (29

w)ee(k,w) +4rNZZ /M’

(23)
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which was first found in [18] with the help of the
Green’s function technique. The second term in
Eq. (24) reveals a plasmon pole at small values of k.
The k-expansion of the dielectric function reads

) ; (29)

where the k-independent term represents the Drude
conductivity and the electron plasma frequency is given

2 2
Wye + k*w

w(w+ir1)

ce(k,w) = e (1 —

by the integral over the Fermi surface, w3, = kg(v2).
The complex coefficient
kg ((v2) +i(v2)? Jw)
w = : .
(wHir=1)?
For the quadratic electron spectrum, (v?) = v%/3 and

(v1) = v /5.
The k-expansion of g gives
?)

_iergk(y(p)v

Z
(w+ir 1)

9 =

because gg = 0 and the zero-order term in the k-
expansion vanishes due to the time invariance v — —v.
The intensity of the plasmon peak is then proportional
to k%, in accordance with the known behavior of the
dynamical structure factor.

6.2. The Raman scattering by TO phonons

The second term in Eq. (23) gives the TO-phonon
scattering if we set Z = 7 = jg = 0:
Jro/NM'

— w2 — jwnat’

X(kvw) = =3 (30)

wro
where @ro and gro are defined in Eqgs. (14) and (16)
with ¢;(p) = (ro(p); we add the phonon width I
mentioned above.

Two points must be noted here. First, the TO-
resonance occurs at the renormalized frequency wro.
Taking the real and imaginary parts of (14), we obtain
the TO-phonon shift and width due to the deformation

interaction ((p) with carriers:
Awp = Re(@3o — wi) /2w, T =T"" —Tm @k, /wy.

Second, because of the interaction with carriers, the
coupling gro in (16) has an imaginary part. Therefore,
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the line shape of the resonance becomes asymmetric
(the Fano resonance),

_ 1

- NM!

wlg7o + (Re@fo — w?) Im g7,
(Re @25 — w?)? + (wI')?

Im y(k,w) X

(31)

The line shape asymmetry depends on the sign of
Regro. For instance, if Img2, < 0, the high-
frequency wing of the resonance line drops more slowly
than the low-frequency one. In the limiting case where

k> 1, we expand
gro = gro +
(<ir+ 7)) @2

<7(p)CTo(p)

v
and for k < 1 we have

Vow

T

L2
kv

~ Wl

gro =970 T T

k2 (v2y(p)Cro(p))
(wHir—1)?

x <<’7(P)CT0(P)> n

) . (33)

Notice, that the electron—phonon interaction
(ro(p) and the light scattering v(p) by carriers jointly

73 02e(0,w)/NM' — dng% (¢ — iwl™ — w?) — 8ngpgroZ/M’

renormalize the coupling gro. The frequency renor-
malization @%, (see Eq. (14)) results only from the
electron—phonon interaction (ro(p). The correspond-
ing expressions can be obtained from Eqs. (32) and (33)
by the substitution v(p) — (ro(p). We see that the
TO phonons become broader and harder because of the
interaction with carriers.

Emphasize that the phonon renormalizations de-
pend on the carrier density vy and the average coupling
¢i(p) — (¢j(p)). They vanish for the isotropic Fermi
surface. The maximum value of the relative renor-
malization has the order of Aaprm*w/m|w + it~ at
kv ~ |w+iT 7|, where )\ is the dimensionless electron—
phonon coupling and m* is the effective electron mass.

6.3. The Raman scattering by
LO-phonon—plasmon coupled modes

In this case, the carriers interact with each other
and the ion vibrations via both the macroscopic elec-
tric field E(r,t) and the deformation potential (7,o(p).
In the long-wave limit & — 0, Egs. (15), (20),
and (21) show no renormalization of the ionic charge,
7 = 7 = Z, and of the electro-optic constant, jr = gg.
Equation (23) then becomes

X(0,w) = xe(0,w) +

where the first term is given in Eq. (28). The defor—‘
mation potential (;,o(p) renormalizes the phonon fre-
quency @y in (14), as well as the deformation-optic con-
stant o in (16). The corresponding expansions in the
limiting cases are similar to Eqgs. (32) and (33). All
mentioned above about the TO line asymmetry also
applies to the LO line.

Because the dielectric function of the electron—ion
system is given by

A7 N Z?

M' (@2 — iwlnat — w2)’

e(0,w) = e.(0,w) + (35)
the second term in the right-hand side of Eq. (34) has
poles at the points where £(0,w) = 0. This condi-
tion defines the frequency of coupled phonon—plasmon
modes in the long-wave limit.

In the absence of the electron and phonon collisions
(r=! = e = (), and without the electron—phonon in-
teraction (¢(p) = 0), we obtain a biquadratic equation
using Eq. (29). It gives the frequencies of the coupled
phonon—plasmon modes at k = 0,

891

34
(02 —iwlnat — w2)e (0, w) + 4T N Z2 /M’ (34)
wj: = §(w12)e + W%O) +
1 1/2
+ - [(w;[z)e + W%O)Z - 40‘);[2)60‘)%"0] ) (36)

2

where wpp = wy is the TO-mode frequency at k = 0,
wip = Wrotwy, and w?; = 4rNZ? /e, M'. These fre-
quencies (related to wro) are shown in Fig. 1 as func-
tions of the electron concentration, namely, wpe /wro.
The upper line begins at wro and tends to the elec-
tron plasma frequency wp.. The lower frequency starts
as wpewro/wro and then approaches wro. In other
words, observing the longitudinal phonon mode in the
optic range and adding electrons, we see a transition of
the longitudinal phonon frequency from wro to wro.
This is a result of the Coulomb screening.

We can compare Eq. (34) with the theory of Hon
and Faust [11]. Because the electron—phonon interac-
tion, (1o (p), as well as the electronic scattering, v(p),
were ignored in their theory, the phonon frequency and
the deformation-optic constant were not renormalized.
Equation (34) can then be rewritten as
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N (47TgE)2
X(va) - 5006(07&))
0
MAQXI _fe 2Axr|, (37)
oo 47
where

x1 = NZ? M (wky — iwl™ — w?),

Cw2oM'es
ArNZ2

A= _ _9roZ

QEMOJ%O '

C' is the Faust—Henry coefficient. We now see that ex-
pression (37) coincides with the result of Hon and Faust
(see, e.g. Eq. (3.1) in [13]).

For k # 0, Eq. (23), first, includes the dielectric
function (19) that differs from the Lindhard-Mermin
expression. Second, the condition determining fre-
quencies and damping of the phonon—plasmon coupled
modes,

(&7 — Wl = w?)e,(k,w) +47NZZ/M' =0, (38)

2.5

2.0f

2
E15¢ 1
3
-
.
[$)
g Wpe
=10t 1
[}
-
=
W=
0.5t 1
0 1.0 2.0

Wpe, rel. units

Fig.1. Frequencies (in units of wro) of the phonon—

plasmon modes at k& = 0 versus the free-carrier con-

centration, namely, the electron plasma frequency (in

units of wrp). We set the ion plasma frequency

wpi = wro in the absence of the free carriers. Then
wro/wro = V2

892

contains the phonon frequency @ and the ionic charge
renormalized by the electron—phonon interaction
Cro(p). Third, the electro-optic coupling ¢gg in
Eq. (21) is modified because of the light scattering
7(p) from the electron-hole pairs. This effect is not
canceled in the product grogr in Eq. (23) even in the
absence of the electron—phonon interaction (o(p).
The expansion of gg has the form

ievok(v27(p))

(w4 ir=1)? (39)

JE = g —

for |k| < 1 and

dr = gr + evok 2 (w +it7") x

(1P (2 -2V o) o

v
for |k| > 1. We note that the term §,0gr has the
largest imaginary part for wr = 1 and then results
most significantly in the line shape asymmetry.
Schematicly, the dispersion of the phonon—plasmon

modes is shown in Fig. 2. There are two main pecu-
larities in this figure. First, the behavior of the up-
per mode near the line w = kvp. Around this line
(17! < w—kvp < kvp), dielectric function (19) has a
singularity,

k

{-
-1

4k>v% T

(w—kvp)2+7172 _Zw—kvp

w

kv

™

2

2 w

QkUF

Ee(k,o.)) =fx tEx X

| I

Because of this singularity, the upper mode approaches
the asymptote w = kvp as the wave vector k increases.
Second, in the region kvp > w, there is always one
mode that has a predominantly phonon character. The
reason is the decrease with k of the imaginary part of
dielectric function (26).

1

—1In
2

7. DISCUSSION

We now consider the obtained results in a simplest
way. We assume that the electronic scattering is negli-
gibly small, v(p) = 0. The second term in the paren-
theses in Eq. (14) is less than the first one in both
limiting cases, k < 1 and & > 1. We neglect this term
at all. We also do not take the ion charge renormal-
ization into account because it vanishes at small values
of k. We can then use expression (25) not only for the
dielectric function e.(k,w), Eq. (19), but also for the
renormalized phonon frequency @, Eq. (14).

In such an approximation, solving Eq. (38), we find
the frequency and damping of the phonon-like mode for
the limiting cases of the parameter k = kvp /(w + i/7)
and for low and large carrier concentration.
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Wpe < WTO

Fig.2. Schematic representation of the dispersion of phonon-plasmon modes (a) for metallic (wpe > wro) and (b) for
semiconducting (wpe < wro) carrier concentrations. The dashed straight lines separate the domain kvg > w where the
Landau damping exists; the dashed curves represent damped modes there

/L
T 1/ T

a b
ko = ko =1
)\F,ph =0 Aeph =0.1
. k=08 & k=08
£ £
Sl— T~ 05 i 0.6
0.2 0.2
0.2 0.4 0.6 1.4 1.6 0.2 0.4 06 1.4 1.6
Frequency, rel. units

Frequency, rel. units

Fig.3. Raman spectra from a semiconductor with low carrier concentration as a function of the frequency transfer w for

the indicated values of the momentum transfer k, the Thomas—Fermi parameter ko (in units of wro /vr), and the electron—
phonon coupling constant Acp, = 0 (a) and A.pp = 0.1 (b). We set the ion plasma frequency wpi = wro, the phonon
natural width T /wro = 1072, and the carrier relaxation rate 77!/ = 10

1) Low carrier concentration, wpe < wo: || > 1,

z = W%o — jwlm

o<1 .
Aephwwre (.1 1\ 3(wpiwpe)? imw
2 _ 2 . ¢ ZQeph®™0 (T 2 : 1
W =Wro — qwl™® + + kvp Z2+h} (k’UF)Z +2k1)p ’
2 2 2 2
n AephWWro 1+ 4 (wpitpe) 1+ 5. where w* = w+i/7 and instead of w we must substitute
w* 3 ww* 3wt )’ W= Wro.
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Fig.4. The plasmon dispersion as a function of k in units of wro/vr (the position in units of wro of the line peak of
Raman spectra; upper part of the figure, solid line) for kg = 1 and Acpr = 0 (a) and Acpp, = 0.1 (b). In the bottom, the line
width (the full width at half maximum, dashed line) and the line asymmetry (the difference between the right and left wings
at half maximum, dash-dotted line) in units of wro. The Landau damping exists to the right of the dotted line w = kvr

ko =1
Aeph = 0.1

1.7 1.8 1.9
Frequency, rel. units

Fig.5. The LO phonon Raman spectra for large mo-
mentum transfers k

2) Large carrier concentration, Wpe > WTO:

Kl < 1,

2

w? = wio — iwl™ 4
2 2 2 * )
4 AephWro (KT Wit (KT
w* 3 wZ, 3wt )’

5> 1,
w? = Wiy — W™ 4

() (i),

K
where we substitute w — wro. The definition of A.pp,
depends on x,

ImTw
QkUF

(wpikvp)?

AephWw? T
+M Z§+

2
kvp 3wpe

1/0<C2 (p))
AEph = 7M’NW%O7 K<< 1,
2 2 2
vuE (¢ (p)/vz)
/\eph = ]I\:/[’Nw%o , kK>,

but gives the same order of value, Aepn, ~ pram™*/m.
Results of the numerical calculations of the Raman
spectra, Eq. (23), in this approximation are shown in
Fig. 3 for two values of the electron-phonon coupling
Aeph- We take the value of the Faust-Henry coeffi-
cient C' = —0.5 and the phonon natural width I'"%! =
= 10"%2wro. The electron collision rate is taken as
77! = 10~ 'wro, which is the usual value for heavily
doped semiconductors [13,19]. In Fig. 3, the wave vec-
tor k and the Thomas—Fermi parameter kg are given in
units of wyro /vr, and the frequency w in units of wye.
Both these figures correspond to the case of small car-
rier numbers wp. < wro (see Fig. 2b; for the quadratic
electron spectrum, wp. = k‘o?)F/\/g). The left peak
mainly has a plasmon character and the right peak is
mainly the LO phonon. We put the ion plasmon fre-

quency wp; = wro, therefore wro = V2wro. As the
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as in Fig. 1
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Fig.7. The LO phonon part of the Raman spectra from heavily doped semiconductor for various momentum transfers
without (a) and with (b) electron—phonon interaction taken into account

wave vector k approaches the boundary of the Landau
damping region kvp > w, the plasmon peak becomes
broader and almost disappears at k = 0.8. The broad
continuum in the region kvp > w results from the exci-
tation of electron—hole pairs. The intensity of the plas-
mon peak becomes larger in comparison to the phonon
peak as the electron—phonon interaction A,y increases.

The k-dispersion of the plasmon (the peak posi-
tion of the Raman spectra as a function of k), the line
width (the full width at half maximum), and the line
asymmetry (the frequency difference between the right
and left wings of the resonance line at half maximum)
are shown in Fig. 4, all in units of wpp. The width

and asymmetry become much larger while the plasmon
peak is immersed in the electron—hole continuum. The
maximum in this region of the spectra is nothing but
the electron—hole contribution. In Fig. 4b, we see how
close this maximum is located to the line w = kv for
Aeph = 0.1.

The behavior of the phonon peak around w = wro
as k increases is shown in Fig. 5. As the wave vector
increases from k& = 0 to k& = 1.7, the phonon peak is
evidently shifted to the higher frequency and becomes
broader. This is an effect of the Landau damping (see
Fig. 2b). But for &£ > 1.75, this peak appears at a
lower frequency, w ~ 1.4, and becomes sharper for
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Fig.8. Dispersion of the phonon peak (upper), the line

width, and the line asymmetry (bottom). The bound-

ary of the Landau damping region is shown with a dot-
ted line
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Fig.9. Dispersion of the plasmon peak in heavily doped
semiconductors

k > 2.2 because the Landau damping decreases with
k (see Eq. (26)).

The Raman spectra for heavily doped semiconduc-
tors and metals are shown in Fig. 6 (see also Fig. 2a).
The phonon peak is now located around w ~ wro in-
stead of w ~ wrp. This is an effect of the Coulomb
screening: carriers decrease the frequency of the LO
mode from wro to wro. We also see that the electron—
phonon interaction suppresses the phonon peak.

The effect of the Coulomb screening and the elect-

ron—phonon interaction on the phonon mode is clearly
seen in Fig. 7, where the phonon part of the spectra is
shown in detail. The lines are very asymmetric. The
phonon dispersion, the line width, and the line asym-
metry as functions of k£ are shown in Fig. 8. We see a
singularity at k ~ w/vp. It is interesting to estimate
the value of the phonon dispersion. With the help of
Fig. 7b, we find dw/dk < 10~ !vr. On the other hand,
using Eqgs. (26) and (29), we find for the phonon dis-
persion w? = wh, + wgikQ/kg, which corresponds well
with the previous estimate for our values of kg and
wpi- We note that these estimates confirm the adia-
batic approximation, because the value of dispersion
s = wpi/ko ~ vpy/m/M contains the adiabatic param-
eter.

In Fig. 9, the dispersion, the line width, and the line
asymmetry are shown for the plasmon peak in heavily
doped semiconductors. Here, the effect of the electron—
phonon interaction on the phonon dispersion is weak
and no influence on the width and asymmetry of the
line is seen.

8. CONCLUSIONS

In conclusion, we first emphasize that our re-
sult (23) describes the renormalization of the phonon
frequencies, the effective ion charge, and the coupling
constants due to the electron—phonon deformation
interaction (;(p). Second, this result involves the
k-dependent semiclassical dielectric function instead
of the Lindhard—Mermin expression. Finally, the light
scattering vertex v(p) with excitations of the electron—
hole pairs not only gives an additional contribution y,
in Eq. (23), but also modifies the electro-optic gg and
deformation-optic g; coupling constants, which become
dependent on the frequency and momentum transfers.

The author acknowledges the kind hospitality of
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(Dresden), where this work was completed. The work
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