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ELECTRON�PHONON INTERACTIONAND COUPLED PHONON�PLASMON MODESL. A. Falkovsky *Landau Institute for Theoreti
al Physi
s117337, Mos
ow, RussiaSubmitted 24 Mar
h 2003The theory of Raman s
attering by the 
oupled ele
tron�phonon system in metals and heavily doped semi
on-du
tors is developed with the Coulomb s
reening and the ele
tron�phonon deformation intera
tion taken intoa

ount. The Boltzmann equation for 
arriers is applied. Phonon frequen
ies and opti
 
oupling 
onstantsare renormalized due to intera
tions with 
arriers. The k-dependent semi
lassi
al diele
tri
 fun
tion is involvedinstead of the Lindhard�Mermin expression. The results of 
al
ulations are presented for various values of the
arrier 
on
entration and the ele
tron�phonon 
oupling 
onstant.PACS: 63.20.Dj, 63.20.Kr, 71.38.-k, 72.30.+q, 78.30.-j1. INTRODUCTIONRe
ently, there has been 
onsiderable interest in thee�e
t of ele
tron�phonon intera
tions on the opti
al-phonon dispersion. This interest is stimulated by
ontradi
tions between di�erent approa
hes to theele
tron�phonon intera
tion. The strong phonon renor-malizations were �rst obtained by Migdal [1℄ (seealso [2℄) within a 
onsistent many-body approa
h basedon the Fröhli
h Hamiltonian. The extremely large dis-persion of opti
al phonons was predi
ted in [3℄ alsousing the Fröhli
h model. These results 
ontradi
tBorn�Oppenheimer (adiabati
) 
on
ept [4℄ a

ordingto whi
h the phonon renormalizations should be smallin terms of the nonadiabati
 parameterpm=M , wherem and M are the ele
tron and ion masses, respe
tively(see also [5℄). Theoreti
al investigations [6℄ of the soundvelo
ity and a
ousti
 attenuation in metals 
on�rm theadiabati
 
on
ept. In a re
ent paper, Reizer [7℄ em-phasized the importan
e of taking the s
reening e�e
tinto a

ount. To our knowledge, the Coulomb s
reen-ing e�e
t on LO phonons was �rst studied in [8℄. Us-ing the Boltzmann equation, we found in [9℄ that theele
tron�phonon intera
tion results more 
onsiderablyin the opti
al�phonon damping than in the dispersionlaw. In any 
ase, the Fröhli
h model has the evidentshort
omings.*E-mail: falk�itp.a
.ru

From the experimental standpoint, the best op-portunity for the investigation of intera
tions betweenele
trons and opti
al phonons is provided by 
oupledphonon�plasmon modes in doped semi
ondu
tors (see,e.g., [10℄). Two su
h modes, L�, have been observed inRaman experiments for many semi
ondu
tors. At theearly stage, the Raman results were 
ompared with thetheory [11℄ based on the Drude model (see, e.g., [12℄),but the Lindhard�Mermin expression for the diele
tri
fun
tion was used more re
ently [13℄.The Lindhard�Mermin expression [14℄ represents asophisti
ated generalization of the Lindhard fun
tionwith the help of the ele
tron relaxation time. TheLindhard approa
h is very useful while the momentumtransfer k in the Raman s
attering is 
ompared withthe Fermi momentum pF . The most signi�
ant e�e
tof the 
arriers should be expe
ted for kvF � !, wherevF is the Fermi velo
ity and ! is the phonon frequen
y.For solids with metali
 
ondu
tivity, the Fermi velo
ity
an be estimated using the argument of stability underthe Coulomb intera
tion e2=�~vF � 1. This 
onditiongives vF � 0:7 � 108 
m/s. For the typi
al value of theopti
al phonon frequen
y ! = 500 
m�1, the interest-ing values are k � !=vF � 106 
m�1. Therefore, the
ondition k < pF is satis�ed for the 
arrier 
on
en-tration larger than 3�1017 
m�3. In experiments, theheavily doped semi
ondu
tors with large 
arrier 
on-
entration are used in order to obtain a visible e�e
tof 
arriers. The 
ondition k � pF is then satis�ed,886



ÆÝÒÔ, òîì 124, âûï. 4 (10), 2003 Ele
tron�phonon intera
tion : : :and we 
an apply the Boltzmann equation in 
al
ula-tions of the ele
troni
 sus
eptibility and in the evalu-ation of the Raman 
ross se
tion. The method of theBoltzmann equation is valid for the anisotropi
 ele
-tron plasma in solids at arbitrary temperatures. In thepresent paper, we obtain the Raman e�
ien
y applyingthe Boltzmann equation for generate 
arriers in heavilydoped semi
ondu
tors at the temperature lower thanthe Fermi energy, T � "F .2. EFFECTIVE HAMILTONIAN AND LIGHTSCATTERINGFor the ele
tron�phonon system in solids, we use theoperator of parti
le numbers n̂, the phonon displa
e-ments b̂j , and the ma
ros
opi
 ele
tri
 �eld E that a
-
ompanies vibrations in polar semi
ondu
tors and a
tson the ele
tron and ion 
harges. The e�e
tive Hamil-tonian des
ribing the inelasti
 light s
attering in solids
an be written in the semi
lassi
al Wigner representa-tion as H = e2m
2 Z d3rN (r; t)U(r; t); (1)where N (r; t) = 
n̂(r; t) + gj b̂j(r; t) + gEE(r; t) (2)is a linear form in the variables n̂, b̂j , and E. The sub-s
ript �j� denotes the various phonon modes, longitu-dinal (LO) or transverse (TO). More pre
isely, the sub-s
ript �j� labels the di�erent phonon representations,whi
h 
an be degenerate. The transformation proper-ties of the 
oupling 
onstants gj are determined by thisrepresentation. The notation U(r; t) is introdu
ed fora produ
t of the ve
tor potentials of the in
ident ands
attered photons,A(i)(r; t)A(s)(r; t) = U(r; t) = exp[i(k � r�!t)℄U(k; !);where the momentum and frequen
y transfers arek = k(i) � k(s) and ! = !(i) � !(s). The polarizationve
tors of b̂j(r; t), E(r; t), A(i)(r; t), and A(s)(r; t) arein
luded in the 
oupling 
onstants.The �rst term in the right-hand side of Eq. (2) de-s
ibes the light s
attering by ele
tron�hole pairs withthe vertex
(p) = e(i)� e(s)� "Æ�� + 1m ��Xn  p�fnp�nf�f (p)� �n(p) + !(i) + p�fnp�nf�f (p)� �n(p)� !(s)!# ;

where the resonant term is in
luded; e(i)� and e(s)�are the polarization ve
tors of the in
ident, A(i)(r; t),and s
attered, A(s)(r; t), photons. The quantum-me
hani
al and statisti
al average of the �rst term inEq. (2), hh
n̂(r; t)ii = Z 2d3p(2�)3 
(p)fp(r; t); (3)
an be expressed in terms of the ele
tron distribu-tion fun
tion fp(r; t). The 
onstants gj and gE arethe deformation-opti
 and ele
tro-opti
 
ouplings withthe phonon displa
ements and the ma
ros
opi
 ele
-tri
 �eld, respe
tively. The estimation gives gj � 1=a4,gE � 1=ea, and 
(p) � m=m�, where a is the latti
eparameter and m� is the e�e
tive mass.The variable U(r; t) 
an be 
onsidered as an exter-nal for
e. The generalized sus
eptibility �(k; !) is thenintodu
ed as the linear response to this for
e,hhN (k; !)ii = ��(k; !)U(k; !): (4)A

ording to the �u
tuation�dissipation theorem,the fun
tionK(k; !) = 21� e�!=T Im�(k; !)is the Fourier 
omponent of the 
orrelation fun
tionK(r; t; r0; t0) = hhN y(r; t)N (r0; t0)ii (5)that depends only on the di�eren
es r� r0 and t � t0.The Raman 
ross se
tion is given byd�d!(s)d
(s) == k(s)z !(s)�
 � 2e2
~m!(i)�2K(k; !)jU(k; !)j2; (6)where k(s)z is the normal to the sample surfa
e 
ompo-nent of the s
attered wave ve
tor in va
uum.A note should be made. Evidently, any sample hasthe surfa
e. The surfa
e e�e
ts in the Raman s
atter-ing were 
onsidered in our paper [15℄; they are omittedin the derivation of Eq. (6). Be
ause of the skin ef-fe
t, the in
ident and s
attered �elds do not penetratethe bulk. For the opti
al range of the in
ident light,we have the normal skin-e�e
t 
onditions. We then in-tegrate the distribution jU(k; !)j2 in Eq. (6) over thenormal 
omponent kz . As shown in [15℄, the integra-tion of jU(k; !)j2 gives the fa
tor 1=�2, where �2 is ex-pressed in terms of the wave-ve
tor 
omponents insidethe semi
ondu
tor, �2 = Im(k(i)z + k(s)z ). The Raman
ross se
tion (6) is dimensionless. It represents the ra-tio of the inelasti
 s
attered light energy to the in
identenergy.887



L. A. Falkovsky ÆÝÒÔ, òîì 124, âûï. 4 (10), 20033. BOLTZMANN EQUATION FOR CARRIERSThe problem of the evaluation of the Raman 
rossse
tion 
onsists in the 
al
ulation of generalized sus-
eptibility (4). We apply the Boltzmann equation forthe ele
tron distribution fun
tion:�fp(r; t)�t + v�fp(r; t)�r ++ _p�fp(r; t)�p = �1� [fp(r; t)� hfp(r; t)i℄: (7)The angular bra
kets denote the average over the Fermisurfa
e, h: : : i = 1�0 Z (: : : ) 2dSFv(2�)3 ;where the integral is performed in the momentum spa
eover the Fermi surfa
e and �0 is the density of ele
tronstates, de�ned by the 
ondition h1i = 1. We use the� -approximation, whi
h is 
orre
t for the ele
tron s
at-tering by defe
ts and phonons at room temperatures.The 
ollision integral in form (7) 
onserves the numberof ele
trons in 
ollisions. Therefore, the 
harge densitysatis�es the equation of 
ontinuity. This ensures the
orre
t !-dependen
e of the diele
tri
 fun
tion at lowfrequen
ies.In a

ordan
e with Eqs. (1), (2), and (3), insteadof the unperturbed ele
tron spe
trum "0(p), we intro-du
e the lo
al ele
tron spe
trum in the presen
e of theexternal for
e U(r; t) as"(p; r; t) = "0(p) + 
(p)U(r; t) + �j(p)bj(r; t);where the last term represents the ele
tron�opti-
al-phonon deformation potential and bj(r; t) == hhb̂j(r; t)ii. We use this form of the ele
tron�phononintera
tion instead of the polarization type intera
tion�(p)divb(r; t) (see [9℄) be
ause the �rst is larger bythe parameter 1=ka for the opti
al phonons.We linearize Eq. (7), seeking its solution in the formfp(r; t) = f0["(p; r; t)� �℄� df0d" Æfp(r; t); (8)where f0["(p; r; t) � �℄ is the Fermi�Dira
 lo
al distri-bution fun
tion. It is important that the 
ollision termin the Boltzmann equation is 
an
eled if this lo
al dis-tribution fun
tion is only used.We impose the number 
onservation 
ondition onthe 
hemi
al potential,Z d3p(2�)3 f0["(p; r; t)� �℄ = Z d3p(2�)3 f0("0 � �0);and obtain� = �0 + h
(p)iU(r; t) + h�j(p)ibj(r; t):

The 
ondition implies the renormalization of verti
es
(p)! 
(p)�h
(p)i; �j(p)! �j(p)�h�j(p)i; (9)and this substitution is to be made in what follows.The linearized Boltzmann equation in the Fourier
omponents is given by�i(!�k � v+i=�)Æfp(k; !) =  p(k; !)+hÆfp(k; !)i=�;where p(k; !) = ev �E(k; !)�� i![
(p)U(k; !) + �j(p)bj(k; !)℄:The solution to this equation is easily obtained asÆfp(k; !) = i[ p(k; !) + hÆfp(k; !)i=� ℄=�p; (10)where we designate �p = ! � k � v + i=� . We nowobtain hÆfp(k; !)i = ih p(k; !)=�pi1� ih��1=�pi : (11)Noti
e that in a

ordan
e with the adiabati
 
on-
ept, no additional 
ontribution 
omes from the lo-
al equilibrium distribution fun
tion f0["(p; r; t)℄ inEq. (8).4. EQUATION OF MOTION FOR PHONONSINTERACTING WITH CARRIERSIn the long-wave approximation (k � 1=a, wherea is the latti
e parameter), we write the equation ofmotion for the phonon displa
ement �eld as(!2k � !2)bj(k; !) = ZM 0Ej(k; !)� gjU(k; !)M 0N �� 1M 0N Z 2dSFv(2�)3 �j(p)Æfp(k; !); (12)where N is the number of unit 
ells in 1 
m3, M 0 isthe redu
ed mass of the unit 
ell, and Z is the e�e
tiveioni
 
harge. The nonperturbed phonon frequen
y !kmust be 
onsidered in the absen
e of the ele
tri
 �eldand without any ele
tron�phonon intera
tions. In thelong-wave limit, we 
an expand it as !2k = !20 � s2k2with the value of the dispersion parameter s of the or-der of the typi
al sound velo
ity in solids. We note thatthe opti
al phonons always have the so-
alled naturalwidth �nat � !0pm=M . The natural width resultsfrom de
ay pro
esses into two or more a
ousti
 andopti
al phonons. In the �nal expressions, we will sub-stitute !2k � !2 ! !2k � i!�nat � !2.888



ÆÝÒÔ, òîì 124, âûï. 4 (10), 2003 Ele
tron�phonon intera
tion : : :Equation (12) is applied to both the longitudinaland transverse phonons. It follows from the Maxwellequations that the ele
tri
 �eld is longitudinal, E k k,in the opti
al region k � !=
. If the ex
ited phononspropagate in the symmetri
 dire
tion, the TO and LOphonons are separated. Therefore, the ele
tri
 �eld isinvolved only in Eq. (12) for the LO phonon. In addi-tion, the 
oupling �j(p) depends on the phonon repre-sentation j.Using solution (10), we rewrite Eq. (12) as(~!2j � !2)bj(k; !)� ~ZM 0Ej(k; !) = � ~gjU(k; !)M 0N ; (13)where the phonon frequen
y~!2j = !2k + !�0M 0N  *�2j (p)�p ++ ih�j(p)=�pi2� � hi=�pi ! ; (14)the e�e
tive ioni
 
harge~Z = Z �� ie�0N ��vz�j(p)�p �+ ihvz=�pih�j(p)=�pi��hi=�pi � ; (15)and the deformation-opti
 
oupling~gj = gj ++!�0�� �j(p)
(p)�p �+ ih�j(p)=�pih
(p)=�pi� � hi=�pi � (16)are renormalized be
ause of the ele
tron�phonon inter-a
tion �j(p).5. POISSON EQUATION FOR THEMACROSCOPIC FIELDWe 
onsider the longitudinal ele
tri
 indu
tion Dthat a

ompanies latti
e vibrations. There are sev-eral 
ontributions to the �eld: (1) the polarization�E(r; t) of the �lled ele
tron bands; (2) the latti
epolarization NZbLO(r; t); (3) the 
ontribution of thefree 
arrier density � = �divPe; and (4) the termP = ��H=�E = �gEU that expli
itly results fromHamiltonian (1), (2). Colle
ting all these terms intothe Poisson equation divD = 0 we �nd"1E(k; !) + 4�NZbLO(k; !) ++ 4�iek Z 2d3p(2�)3 Æfp(k; !)� 4�gEU(k; !) = 0; (17)

where the high-frequen
y permittivity "1 = 1 + 4��.Using the solution of the Boltzmann equation, werewrite the Poisson equation in the form"e(k; !)E(k; !) + 4�N �ZbLO(k; !) == 4�~gEU(k; !); (18)where the ele
troni
 diele
tri
 fun
tion"e(k; !) = "1 + "1 k20k2 �1� h!=�p(k)i1� hi=�p(k)i=� � (19)
ontains the Thomas�Fermi parameter k20 == 4�e2�0="1.Be
ause of the ele
tron�phonon intera
tions�LO(p), the ioni
 
harge obtains an additional term,�Z = Z + ie�0N ����vz�LO(p)�p �+ ihvz=�pih�LO(p)=�pi� � hi=�pi � ; (20)of the opposite sign 
ompared with that in Eq. (15).The ele
tro-opti
 
oupling in Eq. (17) also 
hanges, butbe
ause of the light s
attering by 
arriers 
(p):~gE = gE �� ie�0��vz
(p)�p �+ ihvz=�pih
(p)=�pi� � hi=�pi � : (21)6. RAMAN SCATTERING BYELECTRON�HOLE PAIRS, PHONONS, ANDCOUPLED MODESWe are now in a position to 
al
ulate sus
eptibil-ity (4). Using Eqs. (3), (10), (11), (16), and (21), weobtainhhN (k; !)ii = ��e(k; !)U(k; !) ++ ~gjbj(k; !) + �gEE(k; !); (22)where�e(k; !) = �!�0��
2(p)�p �+ ih
(p)=�pi2� � hi=�pi �gives the light s
attering with the ex
itation ofele
tron�hole pairs. We note that the renormalized
oupling �gE entering here di�ers from ~gE in (21) bythe sign of the se
ond term:�gE = gE + ie�0��vz
(p)�p �+ ihvz=�pih
(p)=�pi� � hi=�pi � :To �nd E(k; !) and bj(k; !), we must solve the systemof algebrai
 equations (13) and (18). Using Eq. (22),we then obtain the generalized sus
eptibility889



L. A. Falkovsky ÆÝÒÔ, òîì 124, âûï. 4 (10), 2003�(k; !) = �e(k; !) + ~g2j "e(k; !)=NM 0 � 4�~gE�gE(~!2j � !2)� 4�~gj(~gE eZ + �gE �Z)=M 0(~!2j � !2)"e(k; !) + 4�N eZ �Z=M 0 : (23)Expression (23) is our main result. The poles of these
ond term give the spe
trum of 
olle
tive ex
itationsof the ele
tron�phonon system. We dis
uss Eq. (23) invarious limiting 
ases.6.1. The ele
troni
 s
atteringWe obtain the Raman ele
troni
 s
attering fromEq. (23) if we set ~gj = gE = eZ = �Z = 0. We thenhave �(k; !) = �e(k; !) + 4�~g2E"e(k; !) ; (24)where ~gE is given by Eq. (21) with gE = 0.For the isotropi
 Fermi surfa
e, we 
al
ulate thediele
tri
 fun
tion in Eq. (19) by performing the inte-gration:� 1�p(k)� = 12kvF ln 1 + �1� �; � = kvF! + i��1 ; (25)where we must take the bran
h of ln x that is real forpositive real values of x.For the anisotropi
 Fermi surfa
e, the 
al
ulations
an be done in limiting 
ases. For j�j � 1, we use theexpansion for ele
troni
 diele
tri
 fun
tion (19),"e(k; !) == "1(1 +�k0k �2 �1 + i��0!k �1v Æ(�)��) ; (26)where � = v � k=vk and Æ(x) is the Dira
 delta fun
-tion. In this 
ase, the Raman e�
ien
y has a �tail�due to the Landau damping,Im�(k; !) = ��0!k �
2(p)v Æ(�)� : (27)We see that the Raman 
ross se
tion vanishes for theisotropi
 vertex 
(p) be
ause of Eq. (9). This is a resultof the Coulomb s
reening. It was �rst obtained in [16℄for the Raman s
attering in semi
ondu
tors (see [17℄).In the opposite 
ase where j�j � 1, the �rst termin Eq. (24) gives the resultIm�e(k; !) = �0h
2(p)i !�(!�)2 + 1 ; (28)

whi
h was �rst found in [18℄ with the help of theGreen's fun
tion te
hnique. The se
ond term inEq. (24) reveals a plasmon pole at small values of k.The k-expansion of the diele
tri
 fun
tion reads"e(k; !) = "1 1� !2pe + k2w!(! + i��1)! ; (29)where the k-independent term represents the Drude
ondu
tivity and the ele
tron plasma frequen
y is givenby the integral over the Fermi surfa
e, !2pe = k20hv2zi.The 
omplex 
oe�
ientw = k20(hv4zi+ ihv2zi2=!�)(! + i��1)2 :For the quadrati
 ele
tron spe
trum, hv2zi = v2F =3 andhv4zi = v4F =5.The k-expansion of ~gE gives~gE = � ie�0kh
(p)v2zi(! + i��1)2be
ause gE = 0 and the zero-order term in the k-expansion vanishes due to the time invarian
e v! �v.The intensity of the plasmon peak is then proportionalto k2, in a

ordan
e with the known behavior of thedynami
al stru
ture fa
tor.6.2. The Raman s
attering by TO phononsThe se
ond term in Eq. (23) gives the TO-phonons
attering if we set eZ = �Z = ~gE = 0:�(k; !) = ~g2TO=NM 0~!2TO � !2 � i!�nat ; (30)where ~!TO and ~gTO are de�ned in Eqs. (14) and (16)with �j(p) = �TO(p); we add the phonon width �natmentioned above.Two points must be noted here. First, the TO-resonan
e o

urs at the renormalized frequen
y ~!TO.Taking the real and imaginary parts of (14), we obtainthe TO-phonon shift and width due to the deformationintera
tion �(p) with 
arriers:�!k = Re(~!2TO � !2k)=2!k; � = �nat � Im ~!2TO=!k:Se
ond, be
ause of the intera
tion with 
arriers, the
oupling ~gTO in (16) has an imaginary part. Therefore,890



ÆÝÒÔ, òîì 124, âûï. 4 (10), 2003 Ele
tron�phonon intera
tion : : :the line shape of the resonan
e be
omes asymmetri
(the Fano resonan
e),Im�(k; !) = 1NM 0 �� !�g2TO + (Re ~!2TO � !2) Im ~g2TO(Re ~!2TO � !2)2 + (!�)2 : (31)The line shape asymmetry depends on the sign ofRe gTO. For instan
e, if Im ~g2TO < 0, the high-frequen
y wing of the resonan
e line drops more slowlythan the low-frequen
y one. In the limiting 
ase where�� 1, we expand~gTO = gTO ++ �0!k �
(p)�TO(p)v ��i� + 2!kv� Æ(�)� ; (32)and for �� 1 we have~gTO = gTO + !�0! + i��1 ���h
(p)�TO(p)i+ k2hv2z
(p)�TO(p)i(! + i��1)2 � : (33)Noti
e, that the ele
tron�phonon intera
tion�TO(p) and the light s
attering 
(p) by 
arriers jointly

renormalize the 
oupling gTO . The frequen
y renor-malization ~!2TO (see Eq. (14)) results only from theele
tron�phonon intera
tion �TO(p). The 
orrespond-ing expressions 
an be obtained from Eqs. (32) and (33)by the substitution 
(p) ! �TO(p). We see that theTO phonons be
ome broader and harder be
ause of theintera
tion with 
arriers.Emphasize that the phonon renormalizations de-pend on the 
arrier density �0 and the average 
oupling�j(p) � h�j(p)i. They vanish for the isotropi
 Fermisurfa
e. The maximum value of the relative renor-malization has the order of �apFm�!=mj! + i��1j atkv � j!+ i��1j, where � is the dimensionless ele
tron�phonon 
oupling and m� is the e�e
tive ele
tron mass.6.3. The Raman s
attering byLO-phonon�plasmon 
oupled modesIn this 
ase, the 
arriers intera
t with ea
h otherand the ion vibrations via both the ma
ros
opi
 ele
-tri
 �eld E(r; t) and the deformation potential �LO(p).In the long-wave limit k ! 0, Eqs. (15), (20),and (21) show no renormalization of the ioni
 
harge,eZ = �Z = Z, and of the ele
tro-opti
 
onstant, ~gE = gE .Equation (23) then be
omes�(0; !) = �e(0; !) + ~g2LO"e(0; !)=NM 0 � 4�g2E(~!20 � i!�nat � !2)� 8�gE~gLOZ=M 0(~!20 � i!�nat � !2)"e(0; !) + 4�NZ2=M 0 ; (34)where the �rst term is given in Eq. (28). The defor-mation potential �LO(p) renormalizes the phonon fre-quen
y ~!0 in (14), as well as the deformation-opti
 
on-stant ~gLO in (16). The 
orresponding expansions in thelimiting 
ases are similar to Eqs. (32) and (33). Allmentioned above about the TO line asymmetry alsoapplies to the LO line.Be
ause the diele
tri
 fun
tion of the ele
tron�ionsystem is given by"(0; !) = "e(0; !) + 4�NZ2M 0(~!20 � i!�nat � !2) ; (35)the se
ond term in the right-hand side of Eq. (34) haspoles at the points where "(0; !) = 0. This 
ondi-tion de�nes the frequen
y of 
oupled phonon�plasmonmodes in the long-wave limit.In the absen
e of the ele
tron and phonon 
ollisions(��1 = �nat = 0), and without the ele
tron�phonon in-tera
tion (�(p) = 0), we obtain a biquadrati
 equationusing Eq. (29). It gives the frequen
ies of the 
oupledphonon�plasmon modes at k = 0,

!2� = 12(!2pe + !2LO)�� 12 �(!2pe + !2LO)2 � 4!2pe!2TO�1=2 ; (36)where !TO = !k is the TO-mode frequen
y at k = 0,!2LO = !2TO+!2pi, and !2pi = 4�NZ2="1M 0. These fre-quen
ies (related to !TO) are shown in Fig. 1 as fun
-tions of the ele
tron 
on
entration, namely, !pe=!TO.The upper line begins at !LO and tends to the ele
-tron plasma frequen
y !pe. The lower frequen
y startsas !pe!TO=!LO and then approa
hes !TO. In otherwords, observing the longitudinal phonon mode in theopti
 range and adding ele
trons, we see a transition ofthe longitudinal phonon frequen
y from !LO to !TO.This is a result of the Coulomb s
reening.We 
an 
ompare Eq. (34) with the theory of Honand Faust [11℄. Be
ause the ele
tron�phonon intera
-tion, �LO(p), as well as the ele
troni
 s
attering, 
(p),were ignored in their theory, the phonon frequen
y andthe deformation-opti
 
onstant were not renormalized.Equation (34) 
an then be rewritten as891
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�(0; !) = (4�gE)2"1"(0; !) �� �"e(0; !)"1 A2�I � "14� � 2A�I� ; (37)where �I = NZ2=M 0(!2TO � i!�nat � !2);A = C!2TOM 0"14�NZ2 ; C = gLOZgEM!2TO ;C is the Faust�Henry 
oe�
ient. We now see that ex-pression (37) 
oin
ides with the result of Hon and Faust(see, e.g. Eq. (3.1) in [13℄).For k 6= 0, Eq. (23), �rst, in
ludes the diele
tri
fun
tion (19) that di�ers from the Lindhard�Merminexpression. Se
ond, the 
ondition determining fre-quen
ies and damping of the phonon�plasmon 
oupledmodes,(~!2j � i!�nat � !2)"e(k; !) + 4�N eZ �Z=M 0 = 0; (38)

Frequen
y,rel.
units

!pi = !TO !+
!�!pe

2:5

1:0 2:00
1:52:01:00:5

!pe ; rel. unitsFig. 1. Frequen
ies (in units of !TO) of the phonon�plasmon modes at k = 0 versus the free-
arrier 
on-
entration, namely, the ele
tron plasma frequen
y (inunits of !TO). We set the ion plasma frequen
y!pi = !TO in the absen
e of the free 
arriers. Then!LO=!TO = p2


ontains the phonon frequen
y ~! and the ioni
 
hargerenormalized by the ele
tron�phonon intera
tion�LO(p). Third, the ele
tro-opti
 
oupling gE inEq. (21) is modi�ed be
ause of the light s
attering
(p) from the ele
tron�hole pairs. This e�e
t is not
an
eled in the produ
t gLO~gE in Eq. (23) even in theabsen
e of the ele
tron�phonon intera
tion �LO(p).The expansion of ~gE has the form~gE = gE � ie�0khv2z
(p)i(! + i��1)2 (39)for j�j � 1 and~gE = gE + e�0k�2(! + i��1)���
(p)v ���2 � i!kv� Æ(�)� (40)for j�j � 1. We note that the term ~gLO�gE has thelargest imaginary part for !� � 1 and then resultsmost signi�
antly in the line shape asymmetry.S
hemati
ly, the dispersion of the phonon�plasmonmodes is shown in Fig. 2. There are two main pe
u-larities in this �gure. First, the behavior of the up-per mode near the line ! = kvF . Around this line(��1 < ! � kvF � kvF ), diele
tri
 fun
tion (19) has asingularity,"e(k; !) = "1 + "1 k20k2 �1� !2kvF �� �12 ln 4k2v2F(!�kvF )2+��2�i ��1!�kvF �� : (41)Be
ause of this singularity, the upper mode approa
hesthe asymptote ! = kvF as the wave ve
tor k in
reases.Se
ond, in the region kvF � !, there is always onemode that has a predominantly phonon 
hara
ter. Thereason is the de
rease with k of the imaginary part ofdiele
tri
 fun
tion (26).7. DISCUSSIONWe now 
onsider the obtained results in a simplestway. We assume that the ele
troni
 s
attering is negli-gibly small, 
(p) = 0. The se
ond term in the paren-theses in Eq. (14) is less than the �rst one in bothlimiting 
ases, �� 1 and �� 1. We negle
t this termat all. We also do not take the ion 
harge renormal-ization into a

ount be
ause it vanishes at small valuesof �. We 
an then use expression (25) not only for thediele
tri
 fun
tion "e(k; !), Eq. (19), but also for therenormalized phonon frequen
y ~!, Eq. (14).In su
h an approximation, solving Eq. (38), we �ndthe frequen
y and damping of the phonon-like mode forthe limiting 
ases of the parameter � = kvF =(! + i=�)and for low and large 
arrier 
on
entration.892



ÆÝÒÔ, òîì 124, âûï. 4 (10), 2003 Ele
tron�phonon intera
tion : : :
a b

k

ω

ωpe < ωTOωpe > ωTO

ω

ω+

ω
−

k

ω+

ω
−

Fig. 2. S
hemati
 representation of the dispersion of phonon�plasmon modes (a) for metalli
 (!pe > !TO) and (b) forsemi
ondu
ting (!pe < !TO) 
arrier 
on
entrations. The dashed straight lines separate the domain kvF > ! where theLandau damping exists; the dashed 
urves represent damped modes therea k0 = 1�eph = 0
0:60:40:2
k = 0:8 k0 = 1

0:60:40:2
k = 0:8�eph = 0:1b

0:2 1:40:6 1:6Frequen
y, rel. units0:4
Intensity

0:2 1:40:6 1:6Frequen
y, rel. units0:4
Intensity

Fig. 3. Raman spe
tra from a semi
ondu
tor with low 
arrier 
on
entration as a fun
tion of the frequen
y transfer ! forthe indi
ated values of the momentum transfer k, the Thomas�Fermi parameter k0 (in units of !TO=vF ), and the ele
tron�phonon 
oupling 
onstant �eph = 0 (a) and �eph = 0:1 (b). We set the ion plasma frequen
y !pi = !TO, the phononnatural width �nat=!TO = 10�2, and the 
arrier relaxation rate ��1=�nat = 101) Low 
arrier 
on
entration, !pe < !O:j�j � 1,!2 = !2LO � i!�nat ++�eph!!2TO!� �1+�23 �+(!pi!pe)2!!� �1+ i�23!� � ;
j�j � 1,!2 = !2LO � i!�nat ++�eph!!2TOkvF ��i�2+1���3(!pi!pe)2(kvF )2 �1+ i�!2kvF � ;where !� = !+i=� and instead of ! we must substitute! ! !LO.893
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0

1:00:80:60:40:2�0:2�0:4
! = kvF

0
1:00:80:60:4

�0:2�0:4
0:2

! = kvF b k0 = 1�eph = 0:1a k0 = 1�eph = 0
0 0:60:40:2 Wave ve
tor, rel. units

Line widthLine asymmetry
Line peak

0 0:60:40:2 Wave ve
tor, rel. unitsLine asymmetryLine widthLine peak

Fig. 4. The plasmon dispersion as a fun
tion of k in units of !TO=vF (the position in units of !TO of the line peak ofRaman spe
tra; upper part of the �gure, solid line) for k0 = 1 and �eph = 0 (a) and �eph = 0:1 (b). In the bottom, the linewidth (the full width at half maximum, dashed line) and the line asymmetry (the di�eren
e between the right and left wingsat half maximum, dash-dotted line) in units of !TO. The Landau damping exists to the right of the dotted line ! = kvF
k0 = 1�eph = 0:1 k = 0:1

1:5 1:7 2:2Intensity
1:3 1:81:4 1:5 1:9Frequen
y, rel. units1:6 1:7Fig. 5. The LO phonon Raman spe
tra for large mo-mentum transfers k2) Large 
arrier 
on
entration, !pe � !TO :j�j � 1,!2 = !2TO � i!�nat ++ �eph!!2TO!� �1 + �23 �� !2pi!!�!2pe �1� i�23!� � ;

j�j � 1,!2 = !2TO � i!�nat ++�eph!!2TOkvF ��i�2+1��+(!pikvF )23!2pe �1� i�!2kvF � ;where we substitute ! ! !TO . The de�nition of �ephdepends on �,�eph = �0h�2(p)iM 0N!2TO ; �� 1;�eph = �0v2F h�2(p)=v2ziM 0N!2TO ; �� 1;but gives the same order of value, �eph � pFam�=m.Results of the numeri
al 
al
ulations of the Ramanspe
tra, Eq. (23), in this approximation are shown inFig. 3 for two values of the ele
tron�phonon 
oupling�eph. We take the value of the Faust�Henry 
oe�-
ient C = �0:5 and the phonon natural width �nat == 10�2!TO. The ele
tron 
ollision rate is taken as��1 = 10�1!TO , whi
h is the usual value for heavilydoped semi
ondu
tors [13; 19℄. In Fig. 3, the wave ve
-tor k and the Thomas�Fermi parameter k0 are given inunits of !TO=vF , and the frequen
y ! in units of !TO.Both these �gures 
orrespond to the 
ase of small 
ar-rier numbers !pe < !TO (see Fig. 2b; for the quadrati
ele
tron spe
trum, !pe = k0vF =p3). The left peakmainly has a plasmon 
hara
ter and the right peak ismainly the LO phonon. We put the ion plasmon fre-quen
y !pi = !TO, therefore !LO = p2!TO . As the894
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tion : : :a�eph = 0k0 = 3
k = 2:31:91:50:1

�0:7 k0 = 3
1:91:50:1

�0:7�eph = 0:2b
k = 2:3Intensity

0:5 2:51:0 1:5 Frequen
y, rel. units2:0 3:0
Intensity
0:5 2:51:0 1:5 Frequen
y, rel. units2:0 3:0Fig. 6. Raman spe
tra from a heavily doped semi
ondu
tor for k0 = 3 and �eph = 0 (a) and �eph = 0:2 (b); the notationsas in Fig. 1a�eph = 0k0 = 3

0:010:40:7k = 1:1
k0 = 3b�eph = 0:1
0:010:4k = 0:71:10:6 1:10:8 0:9 Frequen
y, rel. units1:0 1:20:7

Intensity Intensity
0:6 1:10:8 0:9 Frequen
y, rel. units1:0 1:20:7Fig. 7. The LO phonon part of the Raman spe
tra from heavily doped semi
ondu
tor for various momentum transferswithout (a) and with (b) ele
tron�phonon intera
tion taken into a

ountwave ve
tor k approa
hes the boundary of the Landaudamping region kvF > !, the plasmon peak be
omesbroader and almost disappears at k = 0:8. The broad
ontinuum in the region kvF > ! results from the ex
i-tation of ele
tron�hole pairs. The intensity of the plas-mon peak be
omes larger in 
omparison to the phononpeak as the ele
tron�phonon intera
tion �eph in
reases.The k-dispersion of the plasmon (the peak posi-tion of the Raman spe
tra as a fun
tion of k), the linewidth (the full width at half maximum), and the lineasymmetry (the frequen
y di�eren
e between the rightand left wings of the resonan
e line at half maximum)are shown in Fig. 4, all in units of !TO. The width

and asymmetry be
ome mu
h larger while the plasmonpeak is immersed in the ele
tron�hole 
ontinuum. Themaximum in this region of the spe
tra is nothing butthe ele
tron�hole 
ontribution. In Fig. 4b, we see how
lose this maximum is lo
ated to the line ! = kvF for�eph = 0:1.The behavior of the phonon peak around ! = !LOas k in
reases is shown in Fig. 5. As the wave ve
torin
reases from k = 0 to k = 1:7, the phonon peak isevidently shifted to the higher frequen
y and be
omesbroader. This is an e�e
t of the Landau damping (seeFig. 2b). But for k > 1:75, this peak appears at alower frequen
y, ! � 1:4, and be
omes sharper for895
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! = kvF

1:21:11:00:90:200:1
�eph = 0k0 = 3�eph = 0:1

0 1:51:0 2:00:5 Wave ve
tor, rel. units
Line peakLine widthLine asymmetryFig. 8. Dispersion of the phonon peak (upper), the linewidth, and the line asymmetry (bottom). The bound-ary of the Landau damping region is shown with a dot-ted line2:82:62:42:2 ! = kvF2:0

00:2
�eph = 0k0 = 3�eph = 0:5

0 1:51:0 2:00:5 Wave ve
tor, rel. units2:5Line asymmetryLine width
Line peak

Fig. 9. Dispersion of the plasmon peak in heavily dopedsemi
ondu
torsk > 2:2 be
ause the Landau damping de
reases withk (see Eq. (26)).The Raman spe
tra for heavily doped semi
ondu
-tors and metals are shown in Fig. 6 (see also Fig. 2a).The phonon peak is now lo
ated around ! � !TO in-stead of ! � !LO. This is an e�e
t of the Coulombs
reening: 
arriers de
rease the frequen
y of the LOmode from !LO to !TO . We also see that the ele
tron�phonon intera
tion suppresses the phonon peak.The e�e
t of the Coulomb s
reening and the ele
t-

ron�phonon intera
tion on the phonon mode is 
learlyseen in Fig. 7, where the phonon part of the spe
tra isshown in detail. The lines are very asymmetri
. Thephonon dispersion, the line width, and the line asym-metry as fun
tions of k are shown in Fig. 8. We see asingularity at k � !=vF . It is interesting to estimatethe value of the phonon dispersion. With the help ofFig. 7b, we �nd d!=dk � 10�1vF . On the other hand,using Eqs. (26) and (29), we �nd for the phonon dis-persion !2 = !2TO + !2pik2=k20, whi
h 
orresponds wellwith the previous estimate for our values of k0 and!pi. We note that these estimates 
on�rm the adia-bati
 approximation, be
ause the value of dispersions = !pi=k0 � vFpm=M 
ontains the adiabati
 param-eter.In Fig. 9, the dispersion, the line width, and the lineasymmetry are shown for the plasmon peak in heavilydoped semi
ondu
tors. Here, the e�e
t of the ele
tron�phonon intera
tion on the phonon dispersion is weakand no in�uen
e on the width and asymmetry of theline is seen. 8. CONCLUSIONSIn 
on
lusion, we �rst emphasize that our re-sult (23) des
ribes the renormalization of the phononfrequen
ies, the e�e
tive ion 
harge, and the 
oupling
onstants due to the ele
tron�phonon deformationintera
tion �j(p). Se
ond, this result involves thek-dependent semi
lassi
al diele
tri
 fun
tion insteadof the Lindhard�Mermin expression. Finally, the lights
attering vertex 
(p) with ex
itations of the ele
tron�hole pairs not only gives an additional 
ontribution �ein Eq. (23), but also modi�es the ele
tro-opti
 gE anddeformation-opti
 gj 
oupling 
onstants, whi
h be
omedependent on the frequen
y and momentum transfers.The author a
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