ИССЛЕДОВАНИЕ УГЛОВОГО РАСПРЕДЕЛЕНИЯ ОЖЕ-ЭЛЕКТРОНОВ В АТОМЕ Xe

А. Ю. Елизаров^а^{*}, И. И. Тупицын^{b**}

^а Физико-технический институт им. А. Ф. Иоффе 194021, Санкт-Петербург, Россия

^b Санкт-Петербургский государственный университет 198904, Санкт-Петербург, Россия

Поступила в редакцию 22 ноября 2002 г.

Рассматривается угловое распределение оже-электронов. Приводятся результаты численных расчетов параметра анизотропии углового распределения α_2 для переходов в атоме Xe вида $(M_3 \rightarrow N_2N_3)$, $(M_3 \rightarrow N_3N_3)$, $(M_4 \rightarrow N_1N_3)$, $(M_4 \rightarrow N_4N_5)$, $(M_4 \rightarrow N_5N_5)$ и $(M_{4,5} \rightarrow O_{2,3}O_{2,3})$. Расчеты матричных элементов выполнены методом Хартри-Фока в нерелятивистском приближении в LS-связи, а также релятивистским методом Хартри-Фока-Дирака как в jj-связи (одноконфигурационное приближение), так и в промежуточном типе связи (многоконфигурационный метод).

PACS: 32.80.Hd

1. ВВЕДЕНИЕ

Впервые существование анизотропии углового распределения оже-электронов в атомах было предсказано в работе [1]. С тех пор экспериментальное и теоретическое исследование этого эффекта получило широкое распространение. Особый интерес в этих работах представляют исследования оже-электронов, образующихся в результате заполнения глубоких вакансий, появившихся в результате взаимодействия атомов с синхротронным излучением [2]. Общая теория анизотропии углового распределения оже-электронов была развита в работах [3-6], где был использован формализм матрицы плотности. Позднее расчеты коэффициентов углового распределения были выполнены несколькими теоретическими группами [7–9]. Однако, как это было отмечено в работах [6,9,10], довольно часто имеет место расхождение экспериментальных данных с результатами расчетов, что указывает на необходимость продолжения работ по исследованию углового распределения оже-электронов. Причины указанных расхождений до конца не выяснены. Они могут быть следствием несовершенства самой теории углового распределения оже-электронов (в частности, необходимости учета интерференции конечных состояний системы «ион + оже-электрон» [11]), а также использования различных приближений в расчетах волновых функций начальных и конечных состояний ионов и волновых функций сплошного спектра.

В настоящей работе использована теория углового распределения оже-электронов, развитая в работах [6–8]. Эта теория обобщена на случай атомов с незамкнутыми валентными оболочками как для LS-, так и для jj-типов связи. Кроме того, получены выражения для коэффициентов анизотропии углового распределения α_2 для промежуточного типа связи, т. е. для многоконфигурационных релятивистских волновых функций конечного и начального состояний иона. Волновые функции ионов рассчитывались методом Хартри–Фока и многоконфигурационным релятивистским методом Хартри–Фока-Дирака.

Величины параметров углового распределения оже-электронов зависят от качества волновой функции сплошного спектра, которая во многих более ранних работах рассчитывалась с использованием довольно грубых приближений. В частности, не учитывалось обменное взаимодействие

^{*}E-mail: a.elizarov@mail.ioffe.ru

^{**}E-mail: tup@tup.usr.pu.ru

электрона сплошного спектра с остовными электронами и не учитывались недиагональные множители Лагранжа, обеспечивающие ортогональность волновой функции сплошного спектра к одноэлектронным занятым состояниям иона. В настоящей работе рассмотрено влияние этих приближений на величину параметра углового распределения α_2 . Волновая функция сплошного спектра в релятивистских расчетах была получена путем решения релятивистских уравнений Хартри–Фока–Дирака. Влияние релятивистских эффектов в расчетах функций сплошного спектра на величину α_2 может оказаться существенным, поскольку основной вклад в величину α_2 определяется поведением функции сплошного спектра в области остова.

Следующий раздел статьи посвящен описанию основных теоретических принципов, используемых

при вычислении параметра анизотропии углового распределения оже-электронов. В разд. 3 приведены результаты расчетов параметра угловой анизотропии α_2 для переходов типа $(M_3 \rightarrow N_{2,3}N_{2,3})$, $(M_4 \rightarrow N_{4,5}N_{4,5})$, $(M_4 \rightarrow N_1N_3)$ и $(M_{4,5} \rightarrow O_{2,3}O_{2,3})$ в атоме Хе, полученные при помощи различных приближений.

2. ОБЩАЯ ТЕОРИЯ

Рассеяние электронов или фотонов на атоме $A(J_0)$ может привести к образованию вакансии во внутренней оболочке $A^+(J_1)$. Заполнение образовавшейся вакансии может происходить с испусканием фотона либо электрона (оже-процесс). В настоящей работе мы рассмотрим оже-процесс

$$A(J_0) + e \longrightarrow e_s + e_d + A^+(J_1)$$

$$A^+(J_1) \longrightarrow A^{2+}(J) + e_A.$$
(1)

Здесь e_s и e_d — соответственно, рассеянный и выбитый электроны. В результате оже-процесса, в конечном состоянии образуются двухкратно заряженный ион $A^{2+}(J)$ и оже-электрон в непрерывном спектре, e_A . Время жизни возбужденного состояния много больше времени столкновения, поэтому можно представить, что процесс рассеяния происходит в два независимых этапа: первый — образование вакансии, второй — оже-распад [1]. Для того чтобы исключить интерференцию состояний двух электронов e_s и e_A , рассмотрим процесс, в котором энергии рассеянного электрона и оже-электрона не совпадают. Квантовые состояния электронов e_s , e_d и двухкратного иона в эксперименте не фиксируются. Кроме того, будем считать, что ни электрон (e), ни атом

 $A(J_0)$ в начальном состоянии $(A(\gamma_0 J_0))$ не поляризованы.

При рассеянии электронов на атоме в системе сталкивающихся частиц образуется выделенное направление, что, как было показано в работе [12], приводит к анизотропии в угловом распределении интенсивности потока $I(\Theta)$ оже-электронов. Выражение для углового распределения $I(\Theta)$ оже-электронов было получено несколькими авторами [1, 4–7]. В работе [6] для описания углового распределения $I(\Theta)$ были введены параметры A(KkQ), содержащие информацию о динамике и геометрии оже-процесса. В той же работе были приведены общие выражения для параметров A(KkQ):

$$A(KkQ) = \sqrt{(2K+1)(2k+1)} \sum_{M,M_1,M_1'} \sum_{m_s,m_s'} (-1)^{J_1 - M_1 + 1/2 - m_s} \begin{pmatrix} J_1 & J_1 & K \\ M_1 & -M_1' & -Q \end{pmatrix} \times \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & k \\ m_s & -m_s' & -Q \end{pmatrix} \langle JM, p^{(-)}m_s | V | J_1 M_1 \rangle \langle JM, p^{(-)}m_s' | V | J_1 M_1' \rangle^*, \quad (2)$$

где V — оператор межэлектронного кулоновского взаимодействия:

$$V = \frac{1}{2} \sum_{i \neq j} v(\mathbf{r}_i, \mathbf{r}_j), \quad v(\mathbf{r}, \mathbf{r}') = \frac{1}{|\mathbf{r} - \mathbf{r}'|}.$$
 (3)

2.1. Промежуточный тип связи и jj-связь

Используя разложение волновой функции сплошного спектра оже-электрона $\langle p^{(-)}m_s|$ в ряд по сферическим волнам с учетом спин-орбитального взаимодействия [7], можно получить следующее выражение для параметров A(KkQ):

$$A(KkQ) = \frac{1}{4\pi p} \sqrt{(2K+1)(2k+1)} \times \\ \times \sum_{l,l'} i^{l'-l} \exp[i(\sigma_l^j - \sigma_{l'}^{j'})] \times \\ \times \sum_{j,j'} (-1)^{J+J_1+j+Q+l'} \sqrt{(2l+1)(2l'+1)(2j+1)(2j'+1)} \times \\ \times \left\{ \begin{array}{cc} J & J_1 & j \\ K & j' & J_1 \end{array} \right\} \sum_X (2X+1) \begin{pmatrix} X & l' & l \\ 0 & 0 & 0 \end{pmatrix} \times \\ \times \begin{pmatrix} K & X & k \\ -Q & 0 & Q \end{pmatrix} \left\{ \begin{array}{cc} \frac{1}{2} & \frac{1}{2} & k \\ j' & j & K \\ l' & l & X \end{array} \right\} \times \\ \times \langle (J,\varepsilon j)J_1 \parallel V \parallel J_1 \rangle \langle (J,\varepsilon j')J_1 \parallel V \parallel J_1 \rangle, \quad (4)$$

где l + l' — четное. Здесь использованы обозначения коэффициентов Клебша–Гордана, 6*j*- и 9*j*- символов в соответствии с [13], σ_l^j — сдвиг фаз для электрона сплошного спектра в состоянии $\langle lj|$.

Коэффициенты углового распределения α_K связаны с параметрами A(KkQ) следующим образом [6]:

$$\alpha_K(J) = \frac{A(K00)}{A(000)}.$$
 (5)

Для коэффициентов α_K нетрудно получить:

$$\alpha_{K} = \left(\sum_{lj} \langle J_{1} || V || (Jj) J_{1} \rangle^{2} \right)^{-1} \times \\ \times \sqrt{(2K+1)(2J_{1}+1)} \times \\ \times \sum_{ll'} \sum_{jj'} (-1)^{J+J_{1}-1/2+l'} i^{l+l'} C(K)_{jj'} \cos(\sigma_{l'} - \sigma_{l}) \times \\ \times \langle J_{1} || V || (Jj) J_{1} \rangle \langle J_{1} || V || (Jj') J_{1} \rangle, \quad (6)$$

где

$$C(K)_{jj'} = -(-1)^{K+2j'} \sqrt{\frac{(2j+1)(2j'+1)}{2K+1}} \times \\ \times C_{j'-1/2,j1/2}^{K0} \left\{ \begin{array}{c} J & J_1 & j \\ K & j' & J_1 \end{array} \right\} .$$
(7)

Приведенные матричные элементы $\langle J_1 || V || (Jj) J_1 \rangle$ определены для начальных и конечных многоэлектронных состояний произвольного атома. Эти матричные элементы могут быть получены в общем случае с помощью теоремы Вигнера–Эккарта [13,14], если известны многоэлектронная волновая функция Ψ_{J_1,M_1} начального состояния $A^+(J_1)$, волновая функция $\Psi_{J,M}$ конечного состояния $A^{2+}(J)$ иона и одноэлектронная волновая функция ψ_{jm} :

$$\langle J_1 \parallel V \parallel (J, j) J_1 \rangle =$$

= $\frac{\sqrt{2J_1 + 1}}{C_{JM,jm}^{J_1M_1}} \langle J_1 M_1 | V | JM, jm \rangle.$ (8)

Волновые функции Ψ_{J_1,M_1} и $\Psi_{J,M}$ могут быть рассчитаны релятивистским методом Хартри-Фока-Дирака в одноконфигурационном приближении. В этом случае коэффициенты α_K определяются в *jj*-связи, и для атомов с замкнутыми оболочками этот подход эквивалентен подходу, развитому в работах [6-8], и оправдан только для тяжелых атомов с замкнутыми оболочками, когда конечное состояние иона $A^{2+}(J)$ имеет вакансии на глубоких остовных уровнях. Более корректные результаты могут быть получены многоконфигурационным методом Хартри-Фока. В частности, можно учесть наложение всех релятивистских конфигураций, соответствующих одной нерелятивистской конфигурации иона, т. е. всех конфигураций, имеющих одни и те же заселенности нерелятивистских оболочек (nl) и различные заселенности релятивистских оболочек (nlj). Такое приближение мы назовем промежуточным типом связи. Очевидно, что в нерелятивистском пределе промежуточный тип связи переходит в LS-связь. Этого нельзя утверждать для чистой *jj*-связи для систем с незамкнутыми оболочками и, в частности, для ионов с двумя вакансиями на внутренних уровнях.

В случае атомов с замкнутыми валентными оболочками для приведенных матричных элементов $\langle J_1 || V || (J_j) J_1 \rangle$ можно получить выражение в пред-

ставлении дырок в чистой *jj*-связи:

$$\langle (J,\varepsilon j)J_1 \parallel V \parallel J_1 \rangle = = (-1)^{\theta+j} \langle (l_f j_f, l'_f j'_f)J \parallel v \parallel (l_i j_i, \varepsilon lj)J \rangle,$$
(9)

где $l_f j_f$ и $l'_f j'_f$ — квантовые числа двух вакансий иона $A^{2+}(J)$, $l_i j_i$ — квантовые числа одной вакансии начального состояния иона $A^+(J_1)$. Величина θ является полуцелой и зависит от выбора фазовых множителей волновых функций начального и конечного состояний иона. При подстановке (9) в выражения (4) и (6) зависимость от θ исчезает, а дополнительный фазовый множитель имеет вид $(-1)^{j+j'+1}$. Полученные выражения для A(KkQ) и α_K в представлении дырок аналогичны выражениям (9) и (25) работы [7].

Приведенный матричный элемент в представлении дырок для случая *jj*-связи был получен в работе [15] и в окончательном виде приведен в работе [7]. В наших обозначениях он имеет вид

$$\langle (l_{f}j_{f}, l'_{f}j'_{f})J \parallel v \parallel (l_{i}j_{i}, \varepsilon lj)J \rangle =$$

$$= \tau (-1)^{j'_{f}+j_{i}} \sqrt{(2j_{f}+1)(2j'_{f}+1)(2J+1)} \times$$

$$\times \left[(-1)^{J} \sum_{k} C^{j_{i}1/2}_{j_{f}1/2,k0} C^{j1/2}_{j'_{f}1/2,k0} \left\{ \begin{array}{c} j'_{f} & j & k \\ j_{i} & j_{f} & J \end{array} \right\} \times \\ \times R^{k} (n_{f}l_{f}j_{f}, n'_{f}l'_{f}j'_{f}, n_{i}l_{i}j_{i}, \varepsilon lj) + \\ + \sum_{k} C^{j_{i}1/2}_{j'_{f}1/2,k0} C^{j1/2}_{j_{f}1/2,k0} \left\{ \begin{array}{c} j_{f} & j & k \\ j_{i} & j'_{f} & J \end{array} \right\} \times \\ \times R^{k} (n_{f}l_{f}j_{f}, n'_{f}l'_{f}j'_{f}, \varepsilon lj, n_{i}l_{i}j_{i}) \right], \quad (10)$$

где коэффициент τ зависит от того, являются ли две вакансии и
она $\mathrm{A}^{2+}(J)$ эквивалентными или нет:

$$\tau = \begin{cases} 1, & n_f l_f j_f \neq n'_f l'_f j'_f, \\ \frac{1}{\sqrt{2}}, & n_f l_f j_f = n'_f l'_f j'_f. \end{cases}$$
(11)

Радиальные интегралы R^k в выражении (10) совпадают со стандартными радиальными интегралами, используемыми в методе Хартри-Фока-Дирака [16]:

$$R^{k}(A, B, C, D) =$$

$$= \int_{0}^{\infty} dr_{1} \int_{0}^{\infty} dr_{2}, \left[P_{A}(r_{1})P_{C}(r_{1}) + Q_{A}(r_{1})Q_{C}(r_{1})\right] \times$$

$$\times \gamma_{k}(r_{1}, r_{2}) \left[P_{B}(r_{1})P_{D}(r_{1}) + Q_{B}(r_{1})Q_{D}(r_{1})\right], \quad (12)$$

где А, В, С, D нумеруют релятивистские оболочки,

P и *Q* — большая и малая компоненты радиальной волновой функции, соответственно, и

$$\gamma_k(r_1, r_2) = \frac{r_{<}^k}{r_{>}^{k+1}} \tag{13}$$

2.2. LS-связь

Если релятивистские эффекты невелики, то для описания состояний ионов можно использовать приближение LS-связи. Для того чтобы получить выражение для параметров углового распределения A(K00) в LS-связи, нужно воспользоваться известным преобразованием от jj-связи к LS-связи для конечного состояния. Тогда для приведенного матричного элемента в LS-связи получим (см., например, [17])

$$\langle (J, \varepsilon l j) J_1 \| V \| J_1 \rangle =$$

$$= \sqrt{(2L_1 + 1)(2S_1 + 1)(2J + 1)(2j + 1)} \times$$

$$\times \begin{cases} L & S & J \\ l & \frac{1}{2} & j \\ L_1 & S_1 & J_1 \end{cases} \times$$

$$\times \left\langle \left(\left(LS, \varepsilon l \frac{1}{2} \right) L_1 S_1 \right) J_1 \| V \| (L_1 S_1) J_1 \right\rangle. \quad (14)$$

Используя теорему Вигнера–Эккарта, нетрудно получить

$$\left\langle \left(\left(LS, \varepsilon l \frac{1}{2} \right) L_1 S_1 \right) J_1 \parallel V \parallel (L_1 S_1) J_1 \right\rangle = \\ = \sqrt{\frac{(2J_1 + 1)}{(2L_1 + 1)(2S_1 + 1)}} \times \\ \times \left\langle \left(LS, \varepsilon l \frac{1}{2} \right) L_1 S_1 \parallel V \parallel L_1 S_1 \right\rangle.$$
(15)

В этом случае вместо (14) имеем

$$\langle (J,\varepsilon lj)J_1 \parallel V \parallel J_1 \rangle = \sqrt{(2J_1+1)(2J+1)(2j+1)} \times \\ \times \begin{cases} L & S & J \\ l & \frac{1}{2} & j \\ L_1 & S_1 & J_1 \end{cases} \times \\ \times \left\langle \left(LS,\varepsilon l\frac{1}{2} \right) L_1S_1 \parallel V \parallel L_1S_1 \right\rangle.$$
(16)

Тогда для параметров A(K00) в LS-связи можно получить выражение

$$A(K00) = \frac{1}{4\sqrt{2}\pi p} \sum_{l,l'} i^{l'-l} \exp[i(\sigma_l - \sigma_{l'})] \times \\ \times \sqrt{(2l+1)(2l'+1)} C_{l0,l'0}^{K0} \sum_{j,j'} (-1)^{1/2-J-J_1+l+l'} \times \\ \times (2J_1+1)(2J+1)(2j+1)(2j'+1) \begin{cases} \frac{1}{2} & j' & l' \\ K & l & j \end{cases} \times \\ & \left\{ \begin{array}{c} J & J_1 & j \\ K & j' & J_1 \end{array} \right\} \begin{cases} J_1 & L_1 & S_1 \\ J & L & S \\ j & l & \frac{1}{2} \end{array} \right\} \times \\ & \times \begin{cases} J_1 & L_1 & S_1 \\ J & L & S \\ j' & l' & \frac{1}{2} \end{array} \end{cases} \times \\ & \times \begin{cases} J_1 & L_1 & S_1 \\ J & L & S \\ j' & l' & \frac{1}{2} \end{array} \end{cases} \times \\ & \times \begin{cases} \left(LS, \varepsilon l \frac{1}{2} \right) L_1 S_1 \| V \| L_1 S_1 \\ L S_1 \| V \| L_1 S_1 \\ \end{array} \right) . \quad (17)$$

Здесь L_1 , S_1 , J_1 — квантовые числа, описывающие состояние однозарядного иона A^+ ; L, S, J — квантовые числа, описывающие состояние двухзарядного иона A^{++} ; l, l' — орбитальные квантовые числа электрона сплошного спектра (оже-электрона). В нерелятивистском приближении волновая функция оже-электрона не зависит от квантового числа j, поэтому приведенные матричные элементы в выражении (17) не зависят от j, j'. Тогда, осуществив суммирование по j и j', формулу (17) можно преобразовать к виду

$$A(K00) = \frac{1}{\sqrt{2}} \frac{1}{4\pi p} (2J+1) (2J_{1}+1) \times \\ \times \sum_{l,l'} i^{l'-l} \exp[i(\sigma_{l}-\sigma_{l'})] \sqrt{(2l+1)(2l'+1)} C_{l0,l'0}^{K0} \times \\ \times \sum_{x} (-1)^{x+J_{1}} (2x+1) \left\{ \begin{array}{c} x & J_{1} & l \\ K & l' & J_{1} \end{array} \right\} \times \\ \times \left\{ \begin{array}{c} L & S & J \\ \frac{1}{2} & x & S_{1} \end{array} \right\}^{2} \left\{ \begin{array}{c} L & L_{1} & l \\ J_{1} & x & S_{1} \end{array} \right\} \times \\ \times \left\{ \begin{array}{c} L & L_{1} & l' \\ J_{1} & x & S_{1} \end{array} \right\} \left\{ \left(LS, \varepsilon l \frac{1}{2} \right) L_{1}S_{1} \| V \| L_{1}S_{1} \right\} \times \\ \times \left\{ \begin{array}{c} LS, \varepsilon l' \frac{1}{2} \right) L_{1}S_{1} \| V \| L_{1}S_{1} \right\}.$$
(18)

2 ЖЭТФ, вып. 4 (10)

Приведенные матричные элементы могут быть получены с помощью теоремы Вигнера–Эккарта [13, 14], если известны многоэлектронная волновая функция $\Psi_{L_1,M_{L_1}S_1,M_{S_1}}$ начального состояния A^+ , волновая функция Ψ_{L,M_LS,M_S} конечного состояния иона A^{2+} и одноэлектронная волновая функция оже-электрона $\psi_{lm,1/2m_s}$:

$$\left\langle \left(LS, \varepsilon l \frac{1}{2} \right) L_1 S_1 \parallel V \parallel L_1 S_1 \right\rangle = \\ = \frac{\sqrt{(2L_1 + 1)(2S_1 + 1)}}{C_{LM_L, lm}^{L_1 M_{L_1}} C_{SM_S, lm}^{S_1 M_{S_1}}} \times \\ \times \langle L_1 M_{L_1} S_1 M_{S_1} | V | LM_L, lm \rangle.$$
(19)

Для случая атомов с замкнутыми валентными оболочками приведенные матричные элементы в выражениях (17) и (18) могут быть вычислены в представлении дырок [15] аналогично случаю *jj*-связи (10):

$$\left\langle \left(LS, \varepsilon l \frac{1}{2} \right) L_1 S_1 \parallel V \parallel L_1 S_1 \right\rangle = \\ = \left\langle \left(l_f \frac{1}{2}, l'_f \frac{1}{2} \right) LS \parallel v \parallel \left(\varepsilon l \frac{1}{2}, l_i \frac{1}{2} \right) LS \right\rangle = \\ = \tau (-1)^{l_f + l_i} \sqrt{(2l_f + 1)(2l'_f + 1)} \times \\ \times \left[(-1)^L \sum_k R^k (n_f l_f, n'_f l'_f, n_i l_i, \varepsilon l) \times \\ \times C^{l_i 0}_{l_f 0, k 0} C^{l_0}_{l'_f 0, k 0} \left\{ \begin{array}{c} l'_f & l_f & L \\ l_i & l & k \end{array} \right\} + \\ + (-1)^S \sum_k R^k (n_f l_f, n'_f l'_f, \varepsilon l, n_i l_i) \times \\ \times C^{l_0}_{l_f 0, k 0} C^{l_i 0}_{l'_f 0, k 0} \left\{ \begin{array}{c} l'_f & l_f & L \\ l & l_i & k \end{array} \right\} \right], \quad (20)$$

где $R^k(nl,n'l',n_1l_1,n_1'l_1')$ — радиальный интеграл:

$$R^{k}(A, B, C, D) = \int_{0}^{\infty} dr_{1} \int_{0}^{\infty} dr_{2} P_{A}(r_{1}) \times P_{B}(r_{2}) \gamma_{k}(r_{1}, r_{2}) P_{C}(r_{1}) P_{D}(r_{2}), \quad (21)$$

2.3. Вычисление волновых функций сплошного спектра

В нерелятивистском случае волновые функции сплошного спектра определялись в приближении

Хартри-Фока путем решения уравнения

$$-\frac{1}{2}\frac{d^2}{dr^2}P_{\varepsilon l}(r) + \left[\frac{l(l+1)}{2r^2} + V_c(r)\right]P_{\varepsilon l}(r) + W_{ex}(r) =$$
$$= \varepsilon P_{\varepsilon l}(r) + \sum_{nl}\lambda_{\varepsilon l, nl}P_{nl}(r), \quad (22)$$

где n, l — квантовые числа занятых атомных оболочек иона $A^{2+}, \lambda_{\varepsilon l, nl}$ — недиагональные множители Лагранжа, обеспечивающие ортогональность функции сплошного спектра $P_{\varepsilon l}$ к атомным радиальным функциям P_{nl} той же симметрии, $V_c(r)$ — кулоновский потенциал, W_{ex} — результат действия нелокального обменного оператора на радиальную волновую функцию сплошного спектра.

Функция сплошного спектра $P_{\varepsilon l}$, использованная выше, нормирована на δ -функцию по энергии $\langle P_{\varepsilon l} | P_{\varepsilon' l} \rangle = \delta(\varepsilon - \varepsilon')$. В этом случае асимптотика $P_{\varepsilon l}$ имеет вид

$$P_{\varepsilon}(r) \approx \sqrt{\frac{2}{\pi p}} \sin\left(\tau + \sigma_l\right),$$

$$\tau = pr + \frac{Z}{p} \ln(2pr) - l\frac{\pi}{2},$$
(23)

где $p = \sqrt{2\varepsilon}$, Z — заряд иона, σ_l — фаза рассеяния. Сшивая произвольное ненормированное регулярное в нуле решение $\tilde{P}_{\varepsilon}(r) = NP_{\varepsilon}(r)$ уравнения (22) и его производную с асимптотикой (23), можно определить нормировку N и фазу решения $\tilde{P}_{\varepsilon}(r)$. Однако для достижения достаточно высокой точности сшивание необходимо проводить на расстоянии порядка 10^4-10^5 ат. ед., т. е. находить регулярное в нуле решение $\tilde{P}_{\varepsilon}(r)$ уравнения (22) в очень большом интервале радиальной переменной r. Существенно более эффективной является процедура сшивания решения и его производной с линейной комбинацией регулярной F и иррегулярной G в нуле кулоновских функций [18]:

$$\tilde{P}_{\varepsilon}(R_a) = AF(R_a) + BG(R_a).$$
(24)

Здесь R_a — точка сшивания. Кулоновские функции могут быть вычислены, например, при помощи эффективной процедуры, описанной в работе [19], где использована техника цепных дробей. В этом случае точка сшивания R_a может быть выбрана в той области, где все атомные радиальные волновые функции пренебрежимо малы и атомный потенциал является кулоновским с высокой степенью точности, т. е. при $R_a \sim 20$ —50 ат. ед. Нормировка N и фаза σ_l могут быть найдены из коэффициентов A и B при помощи соотношений

$$\cos \sigma_l = \frac{1}{N} (A \cos \sigma_l^0 - B \sin \sigma_l^0),$$

$$\sin \sigma_l = \frac{1}{N} (A \sin \sigma_l^0 + B \cos \sigma_l^0),$$

$$N = \sqrt{A^2 + B^2},$$
(25)

где σ_l^0 — фаза кулоновских функций [18],

$$\sigma_l^0 = \arg \Gamma(l+1+i\eta), \quad \eta = -\frac{Z}{\sqrt{2\varepsilon}}.$$
 (26)

Релятивистские волновые функции сплошного спектра определялись в приближении Хартри-Фока-Дирака путем решения уравнений [16]

$$c\left(-\frac{d}{dr} + \frac{k}{r}\right) Q_{\varepsilon k} + V_c P_{\varepsilon k} + W_{ex}^P =$$

$$= \varepsilon P_{\varepsilon k} + \sum_{nl} \lambda_{\varepsilon l, nl} P_{nk},$$

$$c\left(\frac{d}{dr} + \frac{k}{r}\right) P_{\varepsilon k} + \left[-2c^2 + V_c\right] Q_{\varepsilon k} + W_{ex}^Q =$$

$$= \varepsilon Q_{\varepsilon k} + \sum_{nl} \lambda_{\varepsilon l, nl} Q_{nk}.$$
(27)

Здесь $P_{\varepsilon k}$ и $Q_{\varepsilon k}$ — большая и малая компоненты радиальной волновой функции сплошного спектра, P_{nk} и Q_{nk} — большие и малые компоненты радиальных волновых функций занятых оболочек иона A^{2+} , W_{ex}^P и W_{ex}^Q — большая и малая компоненты, полученные в результате действия нелокального обменного оператора на двухкомпонентную радиальную волновую функцию сплошного спектра, k — релятивистское квантовое число.

Нормировка на энергию для релятивистских волновых функций имеет вид

$$\int_{0}^{\infty} dr \left[P_{\varepsilon}(r) P_{\varepsilon'}(r) + Q_{\varepsilon}(r) Q_{\varepsilon'}(r) \right] = \delta(\varepsilon - \varepsilon'). \quad (28)$$

Радиальная волновая функция сплошного спектра, нормированная на δ -функцию по энергии при больших r имеет асимптотику [20]

$$P(r) \approx \frac{1}{c} \left(\frac{\varepsilon + 2c^2}{\pi p}\right)^{1/2} \sin(\tau + \sigma_k),$$

$$Q(r) \approx \frac{1}{c} \left(\frac{\varepsilon}{\pi p}\right)^{1/2} \cos(\tau + \sigma_k),$$

$$\tau = pr - \eta \ln(2pr) - \frac{\pi l^*}{2},$$
(29)

где

$$l^* = \begin{cases} \gamma, & k > 0, \\ \gamma - 1, & k < 0 \end{cases}$$
(30)

Терм	α_2^{11}	α_2^{00}	$\alpha_2 \ [10]$	α_2 [9]	α_2 [24]	$\alpha_2 \ [25]$
$Xe(M_4 \to N_{4,5}N_{4,5})^1 S_0$	-1.0000	-1.0000		-1.000		-1.000
$Xe(M_4 \to N_{4,5}N_{4,5})^3 P_0$	-1.0000	-1.0000		-1.000		-1.000
$Xe(M_4 \to N_{4,5}N_{4,5})^3 P_1$	-0.8000	-0.8000		-0.800		-0.800
$Xe(M_4 \to N_{4,5}N_{4,5})^3 P_2$	0	0.7100		0		0
$Xe(M_4 \to N_{4,5}N_{4,5})^1 D_2$	-0.2240	-0.1917		-0.167		-0.189
$Xe(M_4 \to N_{4,5}N_{4,5})^3 F_2$	0.5817	0.5867		0.558	0.55	0.607
$Xe(M_4 \to N_{4,5}N_{4,5})^3 F_3$	0.4597	0.4659		0.43	0.42	0.493
$Xe(M_4 \to N_{4,5}N_{4,5})^3 F_4$	-0.7513	-0.7390		-0.806	-0.82	-0.608
$Xe(M_4 \to N_{4,5}N_{4,5})^1 G_4$	-0.6203	-0.6144		-0.640		-0.499
$Xe(M_5 \to N_{4,5}N_{4,5})^1 S_0$	-1.0690	-1.0690	-1.069	-1.069		-1.069
$Xe(M_5 \to N_{4,5}N_{4,5})^3 P_0$	-1.0690	-1.0690	-1.069	-1.069		-1.069
$Xe(M_5 \to N_{4,5}N_{4,5})^3 P_1$	-0.7483	-0.7483	-0.749	-0.748		-0.748
$Xe(M_5 \to N_{4,5}N_{4,5})^3 P_2$	-0.3818	-0.3818	-0.371	-0.382		-0.382
$Xe(M_5 \to N_{4,5}N_{4,5})^1 D_2$	-0.2394	-0.2050	-0.124	-0.178		-0.202
$Xe(M_5 \to N_{4,5}N_{4,5})^3 F_2$	0.5157	-0.7134	0.738	0.0056	-0.02	0.115
$Xe(M_5 \to N_{4,5}N_{4,5})^3 F_3$	0.3695	0.3338	0.336	0.322	0.32	0.412
$Xe(M_5 \to N_{4,5}N_{4,5})^3 F_4$	0.4658*	0.3774	0.386	0.435	0.420	0.506
$Xe(M_5 \to N_{4,5}N_{4,5})^1G_4$	-0.6631	-0.6568	-0.710	-0.685		-0.533

Таблица 1. Коэффициенты α_2 для некоторых оже-переходов в Хе. Использовалось приближение LS-связи

Примечание. * Для указанной линии экспериментальное значение параметра $\alpha_2 = 0.431 \pm 0.120$ было представлено в работе [23].

Терм		$_{(00)}\alpha_2$ [7]	$_{(11)}\alpha_{2}^{HF(LSJ)}$	$_{(11)}lpha_2^{HFD}$	$\alpha_2^{HFD(I)}$
$\mathrm{Xe}(M_3 \to N_2 N_3)^3 P_2$	α_2	-0.0905	0	-0.0836	0
$\mathrm{Xe}(M_3 \to N_3 N_3)^3 P_2$	α_2	0.5431	0.8000	0.5332	0.6212
$\operatorname{Xe}(M_4 \to N_4 N_5)^3 F_4$	α_2	-0.6805	-0.7948	-0.6706	-0.8266
$\operatorname{Xe}(M_4 \to N_5 N_5)^3 F_4$	α_2	0.4161	0.4409	0.2703	0.3837
$\operatorname{Xe}(M_5 \to N_4 N_5)^3 F_4$	α_2	-0.6041	-0.8004	-0.6034	-0.8314
${ m Xe}(M_5 ightarrow N_5 N_5)^3 F_4$	α_2	0.1544	0.4370	0.1688	0.3796
$\mathrm{Xe}(M_4 \to N_1 N_3)^3 P_2$	α_2	0.4760	0.6818	0.5058	0.5034

Таблица 2. Коэффициенты α₂ для некоторых переходов в Хе, рассчитанные в приближении связи *LSJ*-типа и промежуточного типа связи (*I*)

Примечание. $\alpha_2^{HF} (\alpha_2^{HFD})$ — параметр анизотропии углового распределения фотоэлектронов в случае расчета волновых функций методом Хартри-Фока (Хартри-Фока-Дирака).

И

$$\begin{split} \gamma &= \sqrt{k^2 - \frac{Z^2}{c^2}}, \quad p = \frac{1}{c}\sqrt{(\varepsilon + c^2)^2 - c^4}, \\ \eta &= -\frac{Z(\varepsilon + c^2)}{c^2 p}. \end{split} \tag{31}$$

Величина σ_k так же, как и в нерелятивистском случае, является фазой волновой функции сплошного спектра.

Для определения фазы и нормировки произволь-

Оже-переход	Эксперимент [26]	MHFD [10]	$\operatorname{HF}(LS)$	$\mathrm{HFD}(\mathrm{I})$
$Xe(N_4 \to O_{2,3}O_{2,3}) {}^1S_0$		-1.000	-1.000	-1.0000
$Xe(N_4 \to O_{2,3}O_{2,3}) {}^3P_2$	0.72 ± 0.13	0.231	0.000	-0.1674
$Xe(N_4 \to O_{2,3}O_{2,3}) {}^3P_1$	-0.73 ± 0.11	-0.837	-0.800	-0.8321
$Xe(N_4 \to O_{2,3}O_{2,3}) {}^3P_0$		-1.000	-1.000	-1.0000
$Xe(N_4 \to O_{2,3}O_{2,3}) {}^1D_2$	0.05 ± 0.06	-0.116	0.5160	0.3634
$Xe(N_5 \to O_{2,3}O_{2,3}) {}^1S_0$		-1.069	-1.069	-1.0690
$Xe(N_5 \to O_{2,3}O_{2,3}) {}^3P_2$	0.47 ± 0.13	-0.385	-0.382	-0.2017
$Xe(N_5 \to O_{2,3}O_{2,3}) {}^3P_1$	-0.77 ± 0.17	-0.743	-0.748	-0.7309
$Xe(N_5 \to O_{2,3}O_{2,3}) {}^3P_0$	-1.07 ± 0.10	-1.069	-1.069	-1.0690
$Xe(N_5 \to O_{2,3}O_{2,3}) {}^1D_2$	0.24 ± 0.10	0.094	0.551	0.6167

Таблица 3. Коэффициенты α_2 для некоторых оже-переходов в Хе в приближении *LS*-связи и промежуточного типа связи

ного ненормированного регулярного в нуле решения уравнения Дирака $\tilde{P}_{\varepsilon}, \tilde{Q}_{\varepsilon}$, так же как и в нерелятивистском случае, мы использовали сшивание найденного решения с линейной комбинацией регулярной P_r, Q_r и иррегулярной P_i, Q_i в нуле релятивистских кулоновских функций:

$$\dot{P}_{\varepsilon}(R_a) = AP_r(R_a) + BP_i(R_a),
\tilde{Q}_{\varepsilon}(R_a) = AQ_r(R_a) + BQ_i(R_a).$$
(32)

Асимптотика релятивистских кулоновских функций может быть выбрана в виде

$$P_{r}(r) \approx \frac{1}{c} \left(\frac{\varepsilon + 2c^{2}}{\pi p}\right)^{1/2} \sin(\tau + \sigma_{k}^{0}),$$

$$Q_{r}(r) \approx \frac{1}{c} \left(\frac{\varepsilon}{\pi p}\right)^{1/2} \cos(\tau + \sigma_{k}^{0}),$$

$$P_{i}(r) \approx \frac{1}{c} \left(\frac{\varepsilon + 2c^{2}}{\pi p}\right)^{1/2} \cos(\tau + \sigma_{k}^{0}),$$

$$Q_{i}(r) \approx -\frac{1}{c} \left(\frac{\varepsilon}{\pi p}\right)^{1/2} \sin(\tau + \sigma_{k}^{0}).$$
(33)

Здесь σ_k^0 — фаза релятивистских кулоновских функций, для которой с использованием стандартного выражения [20] нетрудно получить

$$\sigma_k^0 = \arg \Gamma(l^* + 1 + i\eta) + \frac{1}{2} \arg \left(\frac{k + i\eta c^2/(\varepsilon + c^2)}{\gamma k/|k| + i\eta}\right). \quad (34)$$

Для релятивистских волновых функций с асимптотикой (33) вронскиан имеет вид

$$W = P_i Q_r - P_r Q_i = \frac{1}{c\pi}.$$
(35)

Для вычисления релятивистских кулоновских функций мы использовали предложенное в работах [21, 22] преобразование, которое позволяет свести радиальное кулоновское уравнение Дирака к двум дифференциальным уравнениям, формально совпадающим с нерелятивистскими уравнениями Шредингера. Это преобразование можно записать в виде

$$\begin{pmatrix} P'\\Q' \end{pmatrix} = U \begin{pmatrix} P\\Q \end{pmatrix},$$

$$U = \begin{pmatrix} 1 & X\\X & 1 \end{pmatrix}, \quad X = -\frac{Z}{c} \frac{k}{|k|} \frac{1}{|k| + \gamma}.$$
(36)

Используя преобразование *U*, можно получить дифференциальные уравнения второго порядка:

$$\begin{bmatrix} -\frac{d^2}{dr^2} + \frac{l_1^* (l_1^* + 1)}{r^2} - \frac{2Z^*}{r} \end{bmatrix} P' = 2 \varepsilon^* P',$$

$$\begin{bmatrix} -\frac{d^2}{dr^2} + \frac{l_2^* (l_2^* + 1)}{r^2} - \frac{2Z^*}{r} \end{bmatrix} Q' = 2\varepsilon^* Q',$$
(37)

где

$$\varepsilon^* = \frac{(\varepsilon + c^2)^2 - c^4}{2c^2} = \varepsilon \left(1 + \frac{\varepsilon}{2c^2}\right),$$

$$Z^* = \frac{Z(\varepsilon + c^2)}{c^2} = Z \left(1 + \frac{\varepsilon}{c^2}\right),$$

$$l_1^* = \begin{cases} \gamma, & k > 0, \\ \gamma - 1, & k < 0, \\ \gamma - 1, & k < 0, \\ l_2^* = \begin{cases} \gamma - 1, & k > 0, \\ \gamma, & k < 0. \end{cases}$$
(38)

Терм	jj	α_2^{00}	α_2^{01}	α_2^{11}
$\operatorname{Xe}(M_5 \to N_4 N_5)$	$\left(\frac{3}{2},\frac{3}{2}\right)_0$	-1.0690	-1.0690	-1.0690
$\operatorname{Xe}(M_5 \to N_4 N_5)$	$\left(\frac{3}{2},\frac{3}{2}\right)_2$	-0.3059	0.2914	-0.7881
$\operatorname{Xe}(M_4 \to N_4 N_5)$	$\left(\frac{3}{2},\frac{5}{2}\right)_1$	-0.8000	-0.8000	-0.8000
$\operatorname{Xe}(M_4 \to N_4 N_5)$	$\left(\frac{3}{2},\frac{5}{2}\right)_2$	0.0408	0.0258	0.0247
$\operatorname{Xe}(M_4 \to N_4 N_5)$	$\left(\frac{3}{2},\frac{5}{2}\right)_3$	0.4616	0.4574	0.4553
$\operatorname{Xe}(M_4 \to N_4 N_5)$	$\left(\frac{3}{2},\frac{5}{2}\right)_4$	-0.6398	-0.6644	-0.4553
$\operatorname{Xe}(M_4 \to N_5 N_5)$	$\left(\frac{5}{2},\frac{5}{2}\right)_0$	-1.0000	- 1.0000	-1.0000
$\operatorname{Xe}(M_4 \to N_5 N_5)$	$\left(\frac{5}{2},\frac{5}{2}\right)_2$	-0.7806	-0.7605	-0.7591
$\operatorname{Xe}(M_4 \to N_5 N_5)$	$\left(\frac{5}{2},\frac{5}{2}\right)_4$	-0.1992	0.1426	-0.1441
$\operatorname{Xe}(M_5 \to N_4 N_5)$	$\left(\frac{3}{2},\frac{3}{2}\right)_0$	-1.0690	-1.0690	-1.0690
$\operatorname{Xe}(M_5 \to N_4 N_5)$	$\left(\frac{3}{2},\frac{3}{2}\right)_2$	-0.7877	-0.7873	-0.7881
$\operatorname{Xe}(M_5 \to N_4 N_5)$	$\left(\frac{3}{2},\frac{5}{2}\right)_1$	-0.7483	-0.7483	-0.7483
$\operatorname{Xe}(M_5 \to N_4 N_5)$	$\left(\frac{3}{2},\frac{5}{2}\right)_2$	-0.1198	-0.1346	-0.1372
$\operatorname{Xe}(M_5 \to N_4 N_5)$	$\left(\frac{3}{2},\frac{5}{2}\right)_3$	0.3719	0.3665	0.3639
$\operatorname{Xe}(M_5 \to N_4 N_5)$	$\left(\frac{3}{2},\frac{5}{2}\right)_4$	-0.5858	-0.5951	-0.5972
$\operatorname{Xe}(M_5 \to N_5 N_5)$	$\left(\frac{5}{2},\frac{5}{2}\right)_0$	-1.0690	-1.0690	-1.0690
$\operatorname{Xe}(M_5 \to N_5 N_5)$	$\left(\frac{5}{2},\frac{5}{2}\right)_2$	-0.3255	-0.3376	-0.3401
$\operatorname{Xe}(M_5 \to N_5 N_5)$	$\left(\frac{5}{2},\frac{5}{2}\right)_{A}$	0.1994	0.1874	0.1839
	. , , ,			

Таблица 4. Коэффициенты α_2 , рассчитанные в приближении jj-связи для оже-процесса в Xe $(M_{4,5} \rightarrow N_{4,5}N_5)$, где орбитальный момент оже-электрона принимает значения $l'_1 = 2, 4, 6$

Дифференциальные уравнения (37) отличаются от уравнений, приведенных в работе [21], поскольку записаны в виде, более удобном для решения поставленной в данной работе задачи. Регулярное, F_1 , и иррегулярное, G_1 , решения первого из уравнений (37), а также регулярное, F_2 , и иррегулярное, G_2 , решения второго уравнения могут быть найдены при помощи той же процедуры [19], что и в нерелятивистском случае. Тогда для релятивистских кулоновских функций нетрудно получить:

$$P_{r} = \frac{N_{0}}{1 - X^{2}} (F_{1} - X F_{2}),$$

$$Q_{r} = \frac{N_{0}}{1 - X^{2}} (F_{2} - X F_{1}),$$

$$P_{i} = \frac{N_{0}}{1 - X^{2}} (G_{1} - X G_{2}),$$

$$Q_{i} = \frac{N_{0}}{1 - X^{2}} (G_{2} - X G_{1}),$$
(39)

где нормировка N₀ определяется выражением

$$N_0^2 = \frac{(1 - X^2)}{c \pi \gamma p} \left[c \left(\gamma + |k| \right) + \frac{\varepsilon |k|}{c} \right]$$
(40)

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В работе вычислены параметры α_2 анизотропии углового распределения оже-электронов для переходов вида $(M_3 \rightarrow N_{2,3}N_{2,3}), (M_4 \rightarrow N_1N_3)$ и $(M_4 \rightarrow N_{4,5}N_{4,5})$ и $(M_{4,5} \rightarrow O_{2,3}O_{2,3})$ в атоме Xe. Получено удовлетворительное согласие с единственным известным экспериментальным значением параметра α_2 для перехода Xe $(M_5 \rightarrow N_{4,5}N_{4,5})$, которое равняется $\alpha_2 = 0.431 \pm 0.120$ [23] (см. табл. 1). Вычисленное значение α_2 в релятивистском приближении для случая промежуточного типа связи равно $\alpha_2 = 0.3796$ (см. табл. 2). Для оже-переходов вида $(M_{4,5} \to O_{2,3}O_{2,3})$ согласие с экспериментом существенно хуже. Для некоторых переходов имеется различие даже в знаке параметра α_2 (см. табл. 3), что указывает на необходимость проведения дальнейших исследований.

В расчетах учитывалось обменное взаимодействие и была выполнена ортогонализация волновой функции парциальной волны оже-электрона к остовным функциям А²⁺ при помощи множителей Лагранжа. Результаты расчетов для случая связи *jj*-типа приведены в табл. 4, где используются обозначения: α_2^{00} — в расчетах не учитывается ортогонализация и обмен, α_2^{01} — расчеты без ортогонализации, α_2^{11} — расчеты с учетом и ортогонализации, и обмена. Из таблицы видно, что величины параметра α_2 сильно различаются в зависимости от учета обмена и ортогонализации для различных переходов. Результаты вычислений, представленные в табл. 1 и 2, хорошо согласуются с расчетами других авторов [7, 9, 10]. В указанных работах атомные волновые функции были получены путем решения релятивистского уравнения Хартри-Фока-Дирака при помощи процедуры, описанной в работе [27]. Наши расчеты параметра α_2 для оже-переходов вида

 $(M_{4,5} \to N_{4,5}N_{4,5})$ в атоме Xe, выполненные как в приближении LS-, так и *jj*-связи, показали, что примерно одинаковые влияния на величину параметра α_2 имеют учет обмена и ортогонализации волновой функции оже-электрона к остовным орбиталям и учет релятивистских эффектов. Наиболее значительные изменения величины α_2 происходят при использовании промежуточного типа связи для многоконфигурационного случая. Как было отмечено в работе [7], в случае использования приближения LS-связи значения орбитального момента парциальных волн оже-электрона могут принимать значения l = 2, 4, тогда как при использовании *jj*-связи учитываются и состояния оже-электрона с l = 6. Численные расчеты для коэффициентов α_2 при значениях l = 2, 4, 6 даны в табл. 4. Отметим, что основной вклад в значение параметра α_2 дают парциальные волны с l = 2 и/или l = 4.

В работе выполнены вычисления «из первых принципов» параметров угловой анизотропии оже-электронов, образующихся в результате рассеяния электронов на атомах. В качестве приближения использовались различные типы связи: LS-, jj- и промежуточный тип связи для одно- и многоэлектронных волновых функций. Расчеты показали, что значения коэффициентов α_2 исключительно чувствительны к методу вычислений. Это может быть использовано в качестве теста метода вычислений для широкого класса задач рассеяния частиц на атомах.

Настоящая работа выполнена при поддержке программы «Интеграция» (проект № Л-01-02).

ЛИТЕРАТУРА

- 1. W. Mehlhorn, Phys. Lett. 26, 166 (1986).
- H. Winick and S. Doniach, Synchrotron Radiation Researches, John Wiley & Sons, Inc., New York (1980).
- J. Eichler and W. Fritsch, J. Phys. B: At. Mol. Opt. Phys. 9, 1477 (1976).
- E G. Berezhko and N. M. Kabachnik, J. Phys. B: At. Mol. Opt. Phys. 10, 2467 (1977).
- H. Klar, J. Phys. B: At. Mol. Opt. Phys. 13, 4741 (1980).
- K. Blum, B. Lohmann, and E. Taute, J. Phys. B: At. Mol. Opt. Phys. 19, 3915 (1986).

- B. Lohmann, J. Phys. B: At. Mol. Opt. Phys. 23, 3147 (1990).
- N. M. Kabachnik, H. Aksela, and S. Ricz, Phys. Rev. A 49, 4653 (1994).
- 9. M. H. Chen, Phys. Rev. A 45, 1684 (1992).
- J. Tulkki, N. M. Kabachnik, and H. Aksela, Phys. Rev. A 48, 1277 (1993).
- N. M. Kabachnik, J. Tulkki, H. Aksela, and S. Ritz, Phys. Rev. A 49, 4653 (1994).
- B. Cleff and W. Mehlhorn, J. Phys. B: At. Mol. Opt. Phys. 7, 593 (1974).
- Д. А. Варшалович, А. Н. Москалев, В. К. Херсонский, Квантовая теория углового момента, Наука, Ленинград, (1975).
- 14. И. И. Собельман, Введение в теорию атомных спектров, Физматгиз, Москва (1963).
- 15. W. N. Asaad, Nucl. Phys. 44, 415 (1963).
- 16. I. P. Grant, Adv. Phys. 19, 747 (1970).
- 17. R. Karazija, The Theory of X-Ray and Electronic Spectra of Free Atoms, Mokslas, Vilnius (1987), p. 274.

- **18**. М. Абрамовиц, И. Стиган, Справочник по специальным функциям, Наука, Москва (1979).
- 19. A. R. Barnett, Comput. Phys. Commun. 24, 141 (1981).
- M. E. Rose, *Relativistic Electron Theory*, J. Wiley & Sons, New York (1961).
- 21. R. A. Swainson and G. W. F. Drake, J. Phys. A 24, 79 (1991).
- 22. L. Infeld, Phys. Rev. 59, 737 (1941).
- U. Hahn, J. Semke, H. Merc, and J. Kessler, J. Phys. B: At. Mol. Opt. Phys. 18, L417 (1985).
- 24. N. M. Kabachnik and I. P. Sazhina, J. Phys. B: At. Mol. Opt. Phys. 21, 267 1988.
- 25. N. M. Kabachnik, I. P. Sazhina, I. S. Lee, and O. V. Lee, J. Phys. B: At. Mol. Opt. Phys. 18, L417 (1985).
- 26. B. Kammerling, V. Schmidt, W. Mehlhorn, W. B. Peatman, F. Schaefers, and T. Schroeter, J. Phys. B: At. Mol. Opt. Phys. 22, L597 (1989).
- 27. I. P. Grant, B. J. McKenzie, P. H. Norrington, D. F. Mayers, and N. C. Pyper, Comput. Phys. Commun. 21, 207 (1980).