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We propose a semiclassical theory of dc magnetotransport in a two-dimensional electron gas modulated along
one direction with weak electrostatic modulations. We show that oscillations of the magnetoresistivity p| cor-
responding to the current driven along the modulation lines observed at moderately low magnetic fields can be

explained as commensurability oscillations.
PACS: 73.21.Cd, 73.40.-c

The theory of dc magnetotransport in modulated
2D electron gas is well developed at present and most
of the effects observed in such systems at low magnetic
fields have been explained by both quantum mechani-
cal (in a semiclassical limit) [1-7] and classical [8-12]
transport calculations, giving consistent results. One
of a few exceptions is the effect of oscillations of the re-
sistivity component p|| that corresponds to the current
driven parallel to the modulation lines. These oscilla-
tions were observed along with the commensurability
oscillations of the other resistivity component p, cor-
responding to the current driven across the modulation
lines. The p| oscillations have the same period as the
pL ones and the opposite phase. The oscillations of
p|| have been explained as an effect that originates in
quantum oscillations of the electron density of states in
the applied magnetic field [1, 3].

On the other hand, the observed coincidence of pe-
riods of the low-field commensurability (Weiss) oscilla-
tions of the resistivity component p; and the weaker
anti-phase oscillations of pj| provides grounds for the
assumption that these oscillations have the same na-
ture and origin for both resistivity components. The
purpose of the present paper is to demonstrate that the
most important characteristic features of the low-field
oscillations of the resisitivity pj| can be qualitatively
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reproduced within the semiclassical transport theory.
To simplify the following calculations, the anisotropy
effects in electron scattering are neglected and the re-
laxation time approximation is used. It is also assumed
that the external magnetic field is moderately weak,
such that the electron cyclotron radius R is consid-
erably smaller than the electron mean free path [ but
larger than the period of modulations A, and R > vV/I\.
This provides preferred conditions for observation of
commensurability oscillations of transport coefficients
of the 2D electron gas.

We consider electrostatic modulation with a single
harmonic of the period A = 27 /g along the y direction
given by
_dV(y)

dy

AE(y)

The screened modulation potential V (y) is parameter-
ized as

eV (y) = eEpsin gy,

where Ep is the Fermi energy of the 2D electron gas.
We examine weak modulations, and hence |egl| < 1.
The electron current density in the 2D electron gas
modulated along the y direction also depends on y and
can be written as
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where N = m/nh? is the electron density of states on
the Fermi surface, and m and e are the effective mass
and charge of the electron. The electron velocity vec-
tor v(y) has the direction u(v)) = (cos,sinv) and the

magnitude
v(y) =vpy/1+ €esin gy,

where vr is the Fermi velocity in the unmodulated 2D
electron gas. The distribution function ®(y, 1) satisfies
the linearized Boltzmann transport equation

D[®]+ C[®]=E v, (2)
where E is the electric field. The collision term C[®] is

written in the relaxation time approximation with the
relaxation towards the local equilibrium distribution,

cial = (2wo) - 5 (2w ], @
0

and the drift term is given by

0®

®
D8] = v(y)sinw 3+ (0 () cos v + W

(4)
where ) is the electron cyclotron frequency. The lin-
earized transport equation (2) with the collision and
drift terms of form (3), (4) was used in [8] and agrees
with the transport equations in [9-11].

Following the standard approach [10], we write

®(y, 1)) as

v(y)
where pg is the Drude resistivity and 7 is the relaxation
time. The homogeneous distribution function

®0(¢)) = poTVo - Jjo

describes the linear response of the 2D electron gas
to the field E in the absence of modulations, and the
function x(y,) satisfies the transport equation
D[]+ C[x] = =v'(y)v(y)Joy - (6)
Here, as before, jo is the current density for the un-
modulated 2D electron gas.
To proceed, we expand x(y, ¢) in a Fourier series in
the spatial variable y, which leads to a system of differ-

ential equations for the Fourier components. Solving
these equations and keeping the terms of the order of
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or larger than (egR)?, we obtain the approximation for
the distribution function (y, )
) x

sin
Qr

VR

x(y,v¥) = 5

egljé’Q(coszp -
X { sin(gR cosy + gy) —
1 2

— 5egR cos(gR cos 1)) cos”gy —

- % sin(gR cos 1)) sin 2gy] }, (7)

where T (aR
R ®)
o(gR)
and Jo(gR) is the Bessel function. Using the obtained
distribution function, we can easily calculate the elec-
tron current density given by (1).

Keeping only the leading terms in the expansion
of x(y,%) in powers of the small parameter (Q7) !, we
obtain that only the j, component receives a correction
due to the modulations along the y direction, whereas
the component j, remains equal to jg and does not
depend on spatial coordinates. This agrees with the
continuity equation

vjzo,

which is necessary in order to obtain correct results for
electron transport coefficients in modulated 2D elec-
tron gas [10].

To proceed, we define the effective conductivity ten-
SOI Teff as

27 /g

(W) =L [ i(y)dy = oo

27

0
To justify the definition adopted in (9), we note that the
expressions for transport coefficients obtained with ei-
ther quantum mechanical or classical calculations must
be consistent at low magnetic fields. Quantum mechan-
ical calculations of magnetoconductivity [3, 6, 7] give an
expression that passes to the classical conductivity ten-
sor averaged over the period of modulations. The lat-
ter is therefore an accurate semiclassical analogue of
the conductivity calculated within the proper quantum
mechanical approach, and our definition of .y agrees
with this!). The same definition was previously used
in [11].

(9)

J

1) For electrostatic modulations, definition (9) actually gives
the same results for magnetoresistivity components as the al-
ternative definition p.¢r(j) = E used in [10]. But there is a
significant difference in results based on these definitions when
magnetic modulations are considered.
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As a result, we obtain that only ooy 18 affected by
the modulations,

J3 (gR)
1—J5(gR)’

g0

1
Txr __ — 2
%4l = T (ar2 T 1 (€9R) o0

(10)

where o9 = 1/pg is the Drude conductivity of the elec-
tron system. The second term in (10) represents the
electron diffusion along the x direction caused by the
guiding center drift [8].

The effective magnetoresistivity tensor is here de-
fined as the inverse of the effective conductivity,

-1
Peff = Oy

For the current driven across the modulation lines, the
corresponding resistivity is

J3(gR)
= 12(oR) } (1D

1
PL = pPyy = po{l + Z(egl)2
Assuming that the current flows along the modulation
lines, we obtain

1= us = po{ 1= om0

For moderately weak magnetic fields (¢R > 1), the
results in (12) and (13) describe oscillations of both
magnetoresistivity components periodic in the inverse
magnetic field magnitude. The oscillations of p; and
pj have the same period in 1/B and the opposite
phases, which corroborates the experimental results
in [1]. The amplitude of the oscillations of p| is con-
siderably smaller than that of p, and this also agrees
with the experiments of [1] and with the results of nu-
merical quantum mechanical calculations in the limit of
a weak magnetic field [3]. The result for the resistivity
p1 also agrees with the corresponding results in [8-11]
obtained within the classical magnetotransport theory.

But expression (12) for pj differs from the
well-known result in the current semiclassical theory.
To analyze this discrepancy, we now calculate the
current density with the next terms in the expansion
of distribution function (7) in powers of (Q7)~! taken
into account. Keeping terms of the order not less
than (egR/Q7)?, we obtain that the grating-induced
correction to the Drude conductivity tensor &g is
given by

b5(1) L)mw((_“gj ?1> (13)

Here, the correction a(y) is of the order (egR)?. With
some formal transformations of transport equation (6),
we can represent (a(y)) in the form

(v(y)sinG(y, ¥)) dip, (14

)
=
Il
[N}
=1|H
o

where G(y, 1) satisfies the equation

20'(y)v(y)

Vg

DIG]+C|G] = — (15)
This gives expressions for oo and pegr that are totally
consistent with the existing semiclassical theory [8-12].
However, expression (13), which is the starting point
in derivation of these results, is obviously incorrect be-
cause it violates the continuity equation for the cur-
rent density. This gives grounds to seriously doubt the
results of earlier works [8-12], especially those concer-
ning pj|.

A detailed analysis shows that simplified transport
equation (2) can be succesfully used in calculations of
the leading terms in the expansions of transport coef-
ficients in powers of (Q27) ™!, and expressions (12)—(14)
are therefore valid. To obtain the next terms in these
expansions, we must modify transport equation (2) in
both the drift and collision terms. For that, we must
consistently and systematically consider effects of the
internal electrochemical field arising due to grating-in-
duced inhomogeneity of the electron density. This is
important because redistribution of the electron den-
sity at the presence of modulations provides the lo-
cal equilibrium of the system?). Considering magnetic
modulations, we arrive at similar results [13].

Finally, the novel result in this paper is a qual-
itative explanation of the low-field oscillations of
the magnetoresistivity component p in the 2D
electron gas modulated along one direction within a
semiclassical approach. We have shown that these
oscillations of p at low magetic fields are commen-
surability oscillations. At low temperatures, with the
quantum oscillations of the electron density of states
at the Fermi surface resolved, Shubnikov-de Haas
oscillations can be superimposed on the geometric

2) The method of calculations adopted in the current theory
is mostly based on averaging the transport equation multiplied
by a velocity component with respect to both ¢ and y (see,
e.g., [10,11]). This procedure ignores the contribution from the
second term of collision integral (3), which provides relaxation
of the system towards the local equilibrium. As a result, one
arrives at the expressions for transport coefficients correspond-
ing to the relaxation of the system towards the total equilibrium
that contradicts the continuity equation.
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oscillations of the magnetoresistivity. However, this
does not change the classical nature of the effect itself.

The author thanks G. M. Zimbovsky for help with
the manuscript.
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