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MAGNETOTRANSPORT IN A MODULATEDTWO-DIMENSIONAL ELECTRON GASN. A. Zimbovskaya *The City College of CUNY10031, New York, NY, USAUral's State Aademy of Mining and Geology620000, Yekaterinburg, RussiaSubmitted 29 January 2003We propose a semilassial theory of d magnetotransport in a two-dimensional eletron gas modulated alongone diretion with weak eletrostati modulations. We show that osillations of the magnetoresistivity �jj or-responding to the urrent driven along the modulation lines observed at moderately low magneti �elds an beexplained as ommensurability osillations.PACS: 73.21.Cd, 73.40.-The theory of d magnetotransport in modulated2D eletron gas is well developed at present and mostof the e�ets observed in suh systems at low magneti�elds have been explained by both quantum mehani-al (in a semilassial limit) [1�7℄ and lassial [8�12℄transport alulations, giving onsistent results. Oneof a few exeptions is the e�et of osillations of the re-sistivity omponent �jj that orresponds to the urrentdriven parallel to the modulation lines. These osilla-tions were observed along with the ommensurabilityosillations of the other resistivity omponent �? or-responding to the urrent driven aross the modulationlines. The �k osillations have the same period as the�? ones and the opposite phase. The osillations of�jj have been explained as an e�et that originates inquantum osillations of the eletron density of states inthe applied magneti �eld [1; 3℄.On the other hand, the observed oinidene of pe-riods of the low-�eld ommensurability (Weiss) osilla-tions of the resistivity omponent �? and the weakeranti-phase osillations of �jj provides grounds for theassumption that these osillations have the same na-ture and origin for both resistivity omponents. Thepurpose of the present paper is to demonstrate that themost important harateristi features of the low-�eldosillations of the resisitivity �jj an be qualitatively*E-mail: nzimbov�physlab.si.ny.uny.edu

reprodued within the semilassial transport theory.To simplify the following alulations, the anisotropye�ets in eletron sattering are negleted and the re-laxation time approximation is used. It is also assumedthat the external magneti �eld is moderately weak,suh that the eletron ylotron radius R is onsid-erably smaller than the eletron mean free path l butlarger than the period of modulations �; and R� pl�:This provides preferred onditions for observation ofommensurability osillations of transport oe�ientsof the 2D eletron gas.We onsider eletrostati modulation with a singleharmoni of the period � = 2�=g along the y diretiongiven by �E(y) = �dV (y)dy :The sreened modulation potential V (y) is parameter-ized as eV (y) = �EF sin gy;where EF is the Fermi energy of the 2D eletron gas.We examine weak modulations, and hene j�glj � 1:The eletron urrent density in the 2D eletron gasmodulated along the y diretion also depends on y andan be written asj(y) = Ne2 2�Z0 d 2� v(y;  )�(y;  ); (1)714



ÆÝÒÔ, òîì 124, âûï. 3 (9), 2003 Magnetotransport in a modulated two-dimensional eletron gaswhere N = m=�~2 is the eletron density of states onthe Fermi surfae, and m and e are the e�etive massand harge of the eletron. The eletron veloity ve-tor v(y) has the diretion u( ) = (os ; sin ) and themagnitude v(y) = vFp1 + � sin gy;where vF is the Fermi veloity in the unmodulated 2Deletron gas. The distribution funtion �(y;  ) satis�esthe linearized Boltzmann transport equationD[�℄ + C[�℄ = E � v; (2)where E is the eletri �eld. The ollision term C[�℄ iswritten in the relaxation time approximation with therelaxation towards the loal equilibrium distribution,C[�℄ = 1� 0��(y;  )� 12� 2�Z0 �(y;  ) d 1A ; (3)and the drift term is given byD[�℄ = v(y) sin ���y + (v0(y) os +
)��� ; (4)where 
 is the eletron ylotron frequeny. The lin-earized transport equation (2) with the ollision anddrift terms of form (3), (4) was used in [8℄ and agreeswith the transport equations in [9�11℄.Following the standard approah [10℄, we write�(y;  ) as�(y;  ) = �0( )v(y)vF + �0��(y;  ); (5)where �0 is the Drude resistivity and � is the relaxationtime. The homogeneous distribution funtion�0( ) = �0�v0 � j0desribes the linear response of the 2D eletron gasto the �eld E in the absene of modulations, and thefuntion �(y;  ) satis�es the transport equationD[�℄ + C[�℄ = �v0(y)v(y)j0y : (6)Here, as before, j0 is the urrent density for the un-modulated 2D eletron gas.To proeed, we expand �(y;  ) in a Fourier series inthe spatial variable y, whih leads to a system of di�er-ential equations for the Fourier omponents. Solvingthese equations and keeping the terms of the order of

or larger than (�gR)2, we obtain the approximation forthe distribution funtion �(y;  )�(y;  ) = �vF2 �gljy0Q� os � sin 
� ���� sin(gR os + gy)�� 12�gR� os(gR os ) os2gy �� 12 sin(gR os ) sin 2gy��; (7)where Q = J0(gR)1� J20 (gR) (8)and J0(gR) is the Bessel funtion. Using the obtaineddistribution funtion, we an easily alulate the ele-tron urrent density given by (1).Keeping only the leading terms in the expansionof �(y;  ) in powers of the small parameter (
�)�1, weobtain that only the jx omponent reeives a orretiondue to the modulations along the y diretion, whereasthe omponent jy remains equal to j0y and does notdepend on spatial oordinates. This agrees with theontinuity equation r � j = 0;whih is neessary in order to obtain orret results foreletron transport oe�ients in modulated 2D ele-tron gas [10℄.To proeed, we de�ne the e�etive ondutivity ten-sor �eff asj � hj(y)i � g2� 2�=gZ0 j(y)dy � �effE: (9)To justify the de�nition adopted in (9), we note that theexpressions for transport oe�ients obtained with ei-ther quantum mehanial or lassial alulations mustbe onsistent at low magneti �elds. Quantum mehan-ial alulations of magnetoondutivity [3; 6; 7℄ give anexpression that passes to the lassial ondutivity ten-sor averaged over the period of modulations. The lat-ter is therefore an aurate semilassial analogue ofthe ondutivity alulated within the proper quantummehanial approah, and our de�nition of �eff agreeswith this1). The same de�nition was previously usedin [11℄.1) For eletrostati modulations, de�nition (9) atually givesthe same results for magnetoresistivity omponents as the al-ternative de�nition �eff hji = E used in [10℄. But there is asigni�ant di�erene in results based on these de�nitions whenmagneti modulations are onsidered.715
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�)2 + 14(�gR)2�0 J20 (gR)1� J20 (gR) ; (10)where �0 = 1=�0 is the Drude ondutivity of the ele-tron system. The seond term in (10) represents theeletron di�usion along the x diretion aused by theguiding enter drift [8℄.The e�etive magnetoresistivity tensor is here de-�ned as the inverse of the e�etive ondutivity,�eff = ��1eff :For the urrent driven aross the modulation lines, theorresponding resistivity is�? = �yy = �0�1 + 14(�gl)2 J20 (gR)1� J20 (gR)�: (11)Assuming that the urrent �ows along the modulationlines, we obtain�jj = �xx = �0�1� 14(�gR)2 J20 (gR)1� J20 (gR)�: (12)For moderately weak magneti �elds (gR � 1), theresults in (12) and (13) desribe osillations of bothmagnetoresistivity omponents periodi in the inversemagneti �eld magnitude. The osillations of �? and�jj have the same period in 1=B and the oppositephases, whih orroborates the experimental resultsin [1℄. The amplitude of the osillations of �jj is on-siderably smaller than that of �?; and this also agreeswith the experiments of [1℄ and with the results of nu-merial quantum mehanial alulations in the limit ofa weak magneti �eld [3℄. The result for the resistivity�? also agrees with the orresponding results in [8�11℄obtained within the lassial magnetotransport theory.But expression (12) for �jj di�ers from thewell-known result in the urrent semilassial theory.To analyze this disrepany, we now alulate theurrent density with the next terms in the expansionof distribution funtion (7) in powers of (
�)�1 takeninto aount. Keeping terms of the order not lessthan (�gR=
�)2, we obtain that the grating-induedorretion to the Drude ondutivity tensor �̂0 isgiven byÆ�̂(y) = �01 + (
�)2 �(y) (
�)2 
��
� �1 ! : (13)

Here, the orretion �(y) is of the order (�gR)2: Withsome formal transformations of transport equation (6),we an represent h�(y)i in the formh�(y)i = 12� 2�Z0 hv(y) sin G(y;  )i d ; (14)where G(y;  ) satis�es the equationD[G℄ + C[G℄ = �2v0(y)v(y)v2F : (15)This gives expressions for �eff and �eff that are totallyonsistent with the existing semilassial theory [8�12℄.However, expression (13), whih is the starting pointin derivation of these results, is obviously inorret be-ause it violates the ontinuity equation for the ur-rent density. This gives grounds to seriously doubt theresults of earlier works [8�12℄, espeially those oner-ning �jj:A detailed analysis shows that simpli�ed transportequation (2) an be suesfully used in alulations ofthe leading terms in the expansions of transport oef-�ients in powers of (
�)�1; and expressions (12)�(14)are therefore valid. To obtain the next terms in theseexpansions, we must modify transport equation (2) inboth the drift and ollision terms. For that, we mustonsistently and systematially onsider e�ets of theinternal eletrohemial �eld arising due to grating-in-dued inhomogeneity of the eletron density. This isimportant beause redistribution of the eletron den-sity at the presene of modulations provides the lo-al equilibrium of the system2). Considering magnetimodulations, we arrive at similar results [13℄.Finally, the novel result in this paper is a qual-itative explanation of the low-�eld osillations ofthe magnetoresistivity omponent �jj in the 2Deletron gas modulated along one diretion within asemilassial approah. We have shown that theseosillations of �jj at low mageti �elds are ommen-surability osillations. At low temperatures, with thequantum osillations of the eletron density of statesat the Fermi surfae resolved, Shubnikov�de Haasosillations an be superimposed on the geometri2) The method of alulations adopted in the urrent theoryis mostly based on averaging the transport equation multipliedby a veloity omponent with respet to both  and y (see,e.g., [10; 11℄). This proedure ignores the ontribution from theseond term of ollision integral (3), whih provides relaxationof the system towards the loal equilibrium. As a result, onearrives at the expressions for transport oe�ients orrespond-ing to the relaxation of the system towards the total equilibriumthat ontradits the ontinuity equation.716
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