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We investigate the interaction of strongly correlated electrons with phonons in the framework of the Hubbard-
Holstein model. The electron—phonon interaction is considered to be strong and is an important parameter
of the model in addition to the Coulomb repulsion of electrons and the band filling. This interaction with
nondispersive optical phonons is transformed to the problem of mobile polarons using the canonical transfor-
mation of Lang and Firsov. We discuss the case where the on-site Coulomb repulsion is exactly canceled by
the phonon-mediated attractive interaction. We suggest that polarons exchanging phonon clouds can lead to
polaron pairing and superconductivity. The fact that the frequency of the collective mode of phonon clouds is
larger than the bare frequency then determines the superconducting transition temperature.

PACS: 71.10.Fd, 71.27.+a, 71.38.-k
1. INTRODUCTION

Since the discovery of high-temperature supercon-
ductivity by Bednorz and Miiller [1], the Hubbard
model and related models such as RVB and ¢-J have
widely been used to discuss the physical properties of
the normal and superconducting states [2-6]. How-
ever, a unanimous explanation of the origin of the con-
densate in high-temperature superconductors has not
emerged so far. One of the unsolved questions is how
far phonons can be involved in the formation of the su-
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perconducting state. In experimental and theoretical
works, the change of phonon frequencies and phonon
lifetimes associated with the superconducting transi-
tion were mostly discussed. For example, the decrease
of frequencies of Raman-active phonons at the transi-
tion [7], observation of the isotope effect for not opti-
mally doped superconductors [8], and the observation
of a phonon-induced structure in the tunnel character-
istics [9] evidence in favor of strong electron—phonon
coupling in the cuprates.

The aim of the present paper is to gain further
insight into the mutual influence of strong on-site
Coulomb repulsion and strong electron—phonon inter-
action using the single-band Hubbard-Holstein model
and a recently developed diagram approach [10-14].
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For simplicity, we consider coupling to dispersionless
phonons only, although this might not be the most
interesting case as regards superconductivity. How-
ever, previous investigations [15-17] have shown that
the Hubbard-Holstein model [18, 19] constitutes a
formidable problem of its own. Other authors have also
intensively studied this model Hamiltonian [20-23].

Because the interactions between electrons and elec-
trons and phonons are strong, we include the Coulomb
repulsion in the zero-order Hamiltonian and apply the
canonical transformation of Lang and Firsov [24] to
eliminate the linear electron—phonon interaction. In
the strong electron—phonon coupling limit, the result-
ing Hamiltonian of hopping polarons (i.e., hopping elec-
trons surrounded by clouds of phonons) can lead to
an attractive interaction among electrons mediated by
the phonons. In this limit, the chemical potential, the
on-site Coulomb energy, and the frequency of the col-
lective mode of phonon clouds (which is much larger
than the bare frequency of the Einstein oscillators) are
strongly renormalized [17, 25, 26], which affects the dy-
namical properties of the polarons and the character of
the superconducting transition. In discussing this, we
assume that the renormalized on-site Coulomb repul-
sion and attractive electron—electron interaction com-
pletely cancel each other. We suggest that the result-
ing superconducting state with polaronic Cooper pairs
is mediated by the exchange of phonon clouds during
the hopping processes of the electrons.

2. THEORETIC APPROACH

2.1. The Lang—Firsov transformation of the
Hubbard—Holstein model

The initial Hamiltonian of correlated electrons cou-
pled to optical phonons with bare frequency wyg is
given by

H="He+ Hpp, + Heph, (1)

He =D {t(j—i)—€odij} al,ain+U Y niniy, (2)

i,j,0 i

1
th = Zho.)o (b:bz + 5) ,

7'lefph =g ZRZQZ/
i

n; = Z Nig, Nig = al‘o'ai0'7
", T (4)
qi = E (bi_'_bi)a

where a:.rg (air) and b:f (b;) are creation (annihila-
tion) operators of electrons and phonons, respectively,
1 refers to the lattice site and o to the spin, ¢; is
the phonon coordinate, ¢ is the electron—phonon in-
teraction constant, U is the on-site Coulomb repul-
sion, ¢(j — i) is the two-center transfer integral, and
€0 = €g—p with the local energy €y and chemical poten-
tial p. The Fourier representation of ¢(j — i) is related
to the tight-binding dispersion (k) of bare electrons,

L 1 )
1= 1) = 5 S el exp{—ik - (R; — Ry)},
Kk
with the band width W. The energy scale of this model
is fixed by the parameters W, U, g, and hwy. An ad-
ditional parameter is given by the band filling.
After applying the Lang—Firsov transformation [24]

Hy = eSHe ™S, ¢y = %aipe” 7,
R (5)

Ciy = € ajze

with

where p; is the phonon momentum and § is the di-
mensionless interaction constant, we obtain the polaron
Hamiltonian

Hp = HY + HYy + Hine, (7)

7‘[2 - ZH?IH H?p = GZ”” + U’nnnu, (8)

Hz’nt = Z t(.] - i)c;r'gcicra (9)

4,j,0
where

i T

Civc = Qiy exp(_igpi)a Cioc = Qjo eXp(ngz), (10)

f=p+ ahw,

a—l’Q (11)

€ =€ — [,

U =U — 2ahwy,
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To derive the polaron Hamiltonian, it was necessary
to include the shift of the phonon coordinate ¢; of the
form
egie 5 = q; — gni,

which is responsible for the elimination of the linear
electron—phonon interaction. The polaron Hamiltonian
is a polaron—phonon operator by its nature, i.e., the
creation operator c:.ra and the destruction operator c;,
entering H, must be interpreted as creation and de-
struction operators of polarons (electrons dressed with
displacements of ions) that couple dynamically to the
momentum of the optical phonon. In the zero-order
approximation (omitting H;,¢), polarons and phonons
are localized with the strongly renormalized chemical
potential i and on-site Coulomb interaction U. The
operator H;,; describes tunneling of polarons between
lattice sites, i.e., tunneling of electrons surrounded by
clouds of phonons.

2.2. Expansion around the atomic limit

The problem is now to deal properly with the im-
pact of electronic correlations on the polaron problem.
This can be done best using the Green’s functions pro-
vided one finds a key to deal with the spin and charge
degrees of freedom. In the general case where U is
different from zero, the Coulomb interaction must be
included in the zero-order Hamiltonian. As a conse-
quence, the conventional perturbation theory of quan-
tum statistical mechanics is not an adequate tool be-
cause it relies on the expansion of the partition func-
tion around the noninteracting state (achieved using
the traditional Wick theorem and conventional Feyn-
man diagrams). A similar situation occurs for compos-
ite particles like polarons,

Cig = Qjg eXp(ngl),

involving operators for the electron and phonon sub-
systems.

Hubbard [27] proposed a graphical expansion for
correlated electrons about the atomic limit in powers
of the hopping integrals. This diagram approach was
systematically reformulated for the single-band Hub-
bard model by Slobodyan and Stasyuk [28] and in-
dependently by Zaitsev [29] and further developed by
Izyumov [30]. In these approaches, the complicated al-
gebraic structure of the projection or Hubbard opera-
tors was used. It therefore appeared to be more appro-
priate to develop a diagram technique involving simpler
creation and annihilation operators for electrons at all
intermediate stages of the theory (see Refs. [10, 11] for
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details). In the latter approach, the averages of chrono-
logical products of interactions are reduced to the n-
particle Matsubara Green’s functions of the atomic sys-
tem. These functions can be factorized into indepen-
dent local averages using a generalization of the Wick
theorem (GWT), which takes strong local correlations
into account (details are given in Refs. [10,11, 25]). Ap-
plication of the GWT yields new irreducible on-site
many-particle Green’s functions, or Kubo cumulants.
These new functions contain all local spin and charge
fluctuations. A similar linked-cluster expansion for the
Hubbard model around the atomic limit was recently
reformulated by Metzner [31].

2.3. Averages of phonon operators

We define the temperature Green’s function for the
polarons in (7) in the interaction representation by

G(x,0,7x",0",7") = (T cxo (T)ex o (T UB))y (12)

with
Cxo (T) = eXp(HOT)Cxa eXp(—HOT),
xo (T) = exp(HO7) el exp(—H 7),

where H°

given by

7-[2 + ”th and the evolution operator is

I}
U(B) = Texp | — / drHo(r) |, (13)

x, x' are site indices, and 7, 7' stand for the imaginary
time with 0 < 7 < ; T is the time ordering operator
and 3 is the inverse temperature. The statistical aver-
age (...)§ is evaluated with respect to the zero-order
density matrix of the grand canonical ensemble of the

localized polarons and phonons,

exp(—fH®)

Trexp(—BHO)
(=BHY,)  exp(=SH],p)
(=BHj,) Trexp(—=FH] ;)

(14)

The superscript «c» in (12) indicates that only con-
nected diagrams must be taken into account. Den-
sity matrix (14) is factorized with respect to the lattice
sites. The phonon part is easily diagonalized using the
free phonon operators b; and b;r, while the on-site po-
laron Hamiltonian contains the polaron—polaron inter-
action that is proportional to the renormalized param-
eter U, which only can be diagonalized using Hubbard
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operators [18]. At this stage, no special assumption
is made about the quantity U and its sign; we set up
the equations of motion for the dynamical quantities in
this general case, but investigate the equations in detail
only in the special case where U = 0.

The Wick theorem of weakly coupled quantum field
theory can be used in evaluating statistical averages of
phonon operators, e.g., the propagator of the phonon
cloud,

®(11|2) = (11 —72) = (Texp{ig [p(11) —p(m2)]})o =
= exp (=0T ) — (o) =
=exp (—o(B) +o(ln — 7)), (15)

D(11, 70|13, 74) =
= (Texp{ig[p(r1) + p(m2) — p(73) — p(14)]})o =

= exp (= 38°T ) +ptr)-plm)-p(ro)o ) =

= exp{o(jn = 7|) + o(|n — 7)) + o(|m2 — 73]) +
to(ln—mnl)-o(n-nl)-o(ls-ml)-20(8)}, (16)

where

o (I = 7)) = §(Tp(r1)p(r2))o =

ch (ho.)() {g — |T1 — T2|}>
(17
N (17)

s
2

We now discuss the problem of calculating chrono-
logical averages of combinations of polaron operators.
We here use the above-mentioned new diagram tech-

nique and the GWT [10, 11]. The many-particle on-site
irreducible Green’s functions are the main element of

=«

diagrams in this approach.

3. POLARON AND PHONON GREEN’S
FUNCTIONS

In the zero-order approximation, the one-polaron
Green’s function is given by

gg[)) (x‘xl) = _<T Cxo‘(T)Ex’a’ (TI

where z = (x,0,7). The simplest new element of
the diagram technique is the two-particle irreducible
Green’s function, or Kubo cumulant, which is equal to

g(O) ir

2 (x17x2|x37 1‘4) = 5x1,xQ6x1,x35x1,X4 X

X géO)ir(UlaTl;0-217-2|0-377-3;0-47T4)7 (19)

where

GO (01,715 09, To |03, T3 04, ) =
= (T ¢y, (11) €y (72)C04 (T3) Coy (Ta) )0 —
= (T oy (1) Coy (14))0(T oy (T2) Coy (73))0 +
+ AT o, (1) Coy (73))0(T oy (72) Coy (Ta))o.  (20)

The first term in the right-hand side of Eq. (20) is

(T coy (1) oy (T2) Cog (T3) Coy (T4))o =
= (T, (71) 05, (T2) 804 (T3) G0y (T4))o X
X ®(1y, 2|13, 74).  (21)

As the number of polaron operators increases,
more complicated irreducible Green’s functions like
g,(zo)"(xl cooxpleh oo al) with n > 3 and all possible
terms of their products appear. The sum of all strongly
connected diagrams (i.e., those that cannot be divided
into two parts by cutting a single hopping line) con-
taining all kinds of irreducible Green’s functions in the
perturbation expansion of the evolution operator de-
fines the special function Z(x|z') (see Refs. [10,11] for
details). This function contains all contributions from
charge and spin fluctuations. Together with the mass
operator (which is the hopping matrix element in our
case), it allows us to formulate a Dyson-type equation
for the one-polaron Green’s function [10-14],

Gzl2') = Aala’) + ) Alz|DH(1 - 2)G(2]2"),  (22)

where
Az|a') = G (x|2') + Z(x]a"), (23)
tx—a')=8p00(r —7') t(x — x'). (24)

Here, x again denotes x,0,7 and the sum is over the
discrete indices and includes integration over 7. Using
the Fourier representation for these quantities,
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Go (x7) = ] s 8
_ %g % ;exp(—ik-x )G (Klin), D (i, 10]i23,iQ4) = 0/...0/d7-1 coodry X
Ay (x|7) = x exp(iQi 71 +iQomo — Q373 — 1Qy74) ¥
= % ; % Zexp(—ik X — iwnT)Ag (kliwy), x ®(1, 7|3, ), (31)

(25)

1

B
5 / dr exp(iwnT) Ay (x|7),

-B
we obtain the Dyson equation for the renormalized one-
polaron Green’s function,

Ay (x|iwy)

. _ A(r(k|zw"1)
o (k|an) T 1— g(k) A(k|2wn) 7 (26)
where
RCES
" p

is the odd Matsubara frequency.

To discuss G, (k|iw) further, we need the Fourier
representation of the zero-order one-polaron Green’s
function Q]E,O) defined in (18). In order to facilitate
the investigation, we have evaluated the propagator
of the phonon cloud (16) in the strong-coupling limit
a > 115, 16, 26],

B(r) = %Zexp<—mn<r>><i><mn>, (27)
Qn

exp(—o

B
5 (8)) /dT exp(iQu7+o(|7])), (28)
-8
where Q,, = 2n7 /3. To find ®(if2,,), we use the Laplace
approximation [32] for integral (28), which contains an

(i)(lﬂn) =

exponential function with the parameter «. In the
strong-coupling limit o > 1, we obtain

- 2w, g9’

@(Zﬁn) ~ W, We = hawg = 2hw0 . (29)

This term is the harmonic propagator of the collec-
tive mode of phonons belonging to the polaron clouds.
There are further terms describing anharmonic devia-
tions. For a > 1, these terms can be omitted because
they are small compared with the harmonic contribu-
tion. Using the Laplace approximation [32] and

®(11, 72|73, 74) = D B, Qi i) X
Q1.0

Bt

X exp(—inTl — iQQTQ + ngTg + iQ4T4), (30)
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we then obtain the Fourier representation of the phonon
correlation function

é(1917292‘1937294) ~

~ [591793592794 + 591794692793] (i)(’LQl) (i)(ZQQ)v (32)
which corresponds to
¢(7-17,7-2|}7-31 T4) X
R O(1i|73) B(T2|T4) + P(71|74) P(72|T3). (33)

This implies that in what follows, we can keep only the
free collective oscillations of phonon clouds (29) sur-
rounding the polarons and use the Hartree—Fock ap-
proximation (32) and (33) for their two-particle corre-
lation functions. In particular, we investigate the in-
fluence of the absorption and emission of this collective
mode by polarons on the superconducting phase tran-
sition.

With the harmonic mode given by (29), the Fourier
representation of the local polaron Green’s function

B
, 1 s
Gh (iwn) = 5 / dr exp(iw, TGS (1) (34)
-8
becomes
. 1
1()[;') (an) ~ Z_O X

exp(=fEp)+N (w.) (exp(=SEo)+ exp(~BE,)) N
twn+Eyg—E, —w,

<
+ eXp(—ﬂE(,)—}—N(wc)(exp(—ﬂEO)—}— eXp(—,@EU))
wn+Eo—Es+w,.

+

4 EXD(BE =)+ N () (exp(=3Eq )+ exp(=HEy)

wn+E_s—Ey—w, +
N exp(=BE2)+N (w,) (exp(=fE, )+ eXP(—ﬂEz))>
twn+E_s—Es+w, ’
(35)
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where
Zo =1+ exp(—BE,)+
+exp(—BE_;) + exp(—BE>), (36a)
Ey=0, Ei,=¢, Ey=0U+2e, (36b)
n(e) = (exp(fe +171,
) (e) = (exp(Be) + 1) 37)

N(we) = (exp(Bwe) — 1)_1 :

Equation (35) shows that the on-site transition energies
of polarons are changed by the collective-mode energy
+w, of the phonon clouds. The delocalization of po-
larons due to their hopping between lattice sites causes
the broadening of the polaron energy levels. Equation
(35) can be further simplified for a small on-site inter-
action energy U of polarons. For U = 0, we obtain

N(w,) +1-n N(w,) + 7
iyl = N+ 1=(e) | Nwo) +7le) _
Wy — € — We Wy — €+ We

(twn — €) cth(Bw./2) + w th(Be/2)

>(0)
po

= . (38
(twy — €)% — w? (38)

This function has the antisymmetry property
Gho (=iwn| =€) = =Gy (iwnle) (39)

which also holds for the renormalized polaron quanti-
ties,
Ao (=k, —iwy,| — €) = = Ay (k, iwp]e),

. . (40)
Go(—k, —iw,| — €) = =G, (k, iwp]€).

Setting U ~ 0, we assume that the strong on-site
Coulomb repulsion of polarons can be canceled by the
attraction induced by the strong electron—phonon in-
teraction. We consider this as a model case that al-
lows a transparent discussion of the polarons exchang-
ing phonon clouds during hopping between lattice sites.

4. TWO-PARTICLE IRREDUCIBLE
CORRELATION FUNCTIONS

In what follows, we discuss the influence of a strong
electron—phonon interaction on the two-particle irre-
ducible Green’s function. For U = 0, the electronic
correlation function in (22) is given by

<Ta0'1 (Tl) Aoy (TQ) dda (T3) ‘_10'4 (T4)>0 =
= (T a5, (11)804(72))0(T @5, (T2) 804 (73))0 —
— (T ag, (T1)855 (73))0{T a5, (T2)a0, (T4))o  (41)

because the standard Wick theorem is now applicable.
Using (33), we obtain the relation

0) ir
GO (01, 71509, 72|03, T3 04, Ta) =

= 50’1,04602,03 g((r?) (Tl - T4)g((rg) (T2 - T3) X

X (1 — 713) D(12 — T4) —

- 601,03 602’0'4 Qg?) (Tl - T3) ggg) (T2 - T4) X
x ®(1y — 1) ®(12 — 73)  (42)

for the two-particle irreducible Green’s function (21).
In the absence of the exchange of phonon clouds by po-
larons, this quantity must vanish. Indeed, if the elec-
trons keep their initial phonon clouds during the time
of propagation of two polarons, then the irreducible
two-polaron Green’s function (21) vanishes for U = 0.
But because two electrons can be exchanged (indepen-
dently of the exchange of phonon clouds), we obtain
new contributions corresponding to two polarons with
the exchanged phonon clouds. Alternatively, we can
say that for U = 0, the Wick theorem applies sepa-
rately to free electrons and free phonons; however, it
does not apply to polarons as composite particles, and
their cumulants do not therefore vanish.
The Fourier representation of (42),
g§°) ir(al,iwl;ag,iw2|03,iw3;a4,iw4) =
B B

:/.../dTl...dT4><

0 0
(0) ir . .
X Gy (01,7110, T2|03,T3;04,T4) X

X exp(iw1T1 + twaTy — lw3T3 — iwaTs), (43)
is given by

géo) "oy, iwr; 02, iws |03, iws; 04, iws) =
= /8 6w1+w27w3+w4 X
X géo) ir(al.,iwl;02.,2'W2|03,iw3;a4,iw4) =
= ﬁ5w1+w2,wg+w4 {601,0'4 602’0'3 X
X Agy oo (01, 1W1; 02, lwa| 02, iws; 01, lwy) —
- 501,03 602,04 X

X Agy oy (01,1015 09, 0Wa |01, iWa; 02, 0w3) },  (44)

where

(2w.)?

Ay oo (01, 0w1; 09, lwa|os, iws; 01, iws) =

15 ZK3T®, Bem. 3 (9)

1
B ZQ: [iwor — i — e][iws — iQ — ][22 + W2[(Q + )2 + 2]

(45)
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with Q; = ws — w3. The summation leads to

A01’0-2 (0172.(,01;0272.(,02‘0'272.(,03; 0'1.,2.&)4) =

(Be/2) [iwr + iwa — 2¢€][2w2 — (iw1 — €)(iws — €) — (iwa — €)(iwz — €)]

— 200 {2

(i1 — 7 — w2ll(iws — )% — wBllliws — )7 — wBll(iws — €)? — 2]

2w, [iwy + iws — 2¢€]? cth(Bw,/2) [2w? — (iwy — €)(iws — €) — (iwa — €)(iwg — €)]

- (90)? = 2we)][(iwr — €)? = w2][(iws — €)? = w2][(iws — €)2 — wP][(iws — )2 —w?]

cth(Bw./2)

(iwy — €)(iwz — €) + 3w?

(iwz — €)(iwg — €) + 3w?

{[(

we[(1€21)? = (2wc)?]

iwr —€)? — wZ][(iws — €)% — w?]

)

[(iwy = €)? = wWZ][(iws — €)* — w?]

\
The function A,, ,, contains contributions of the dif- In the same approximation, A, is to be computed from

ferent spin channels to the two-particle on-site Green’s
function. The spin structure in Eq. (44) is due to the
conservation law for the spins of the polarons.

5. SUPERCONDUCTING PHASE TRANSITION

In what follows, we check whether the polaronic
system can have a superconducting instability in the
absence of a direct attractive interaction for the po-
larons, i.e., for U = 0. In this case, the attraction is
only induced dynamically by polarons exchanging the
phonon clouds. To describe superconductivity, we need
the anomalous propagators [33] in addition to the nor-
mal state Green’s function (13). For simplicity, we limit
the discussion to the s-wave superconductivity as in
previous investigations of superconducting instabilities
in the Hubbard model [13, 14] and in the Hubbard-
Holstein model in the strong-coupling limit a >> 1 [26].

To describe the superconducting state, we need
three irreducible functions A,, Y, _,, and Y,a’,, that
represent infinite sums of diagrams containing irre-
ducible many-particle Green’s functions. In order to
obtain a close set of equations, we restrict ourselves
to a class of rather simple contributions, which never-
theless contain the most important charge, spin, and
pairing correlations; see Ref. [26] for details. This class
of diagrams is obtained by neglecting contributions for
which the Fourier representation of the superconduct-
ing order parameters Y, _, and Y,a,g depend on the
polaron momentum k. In this approximation, Y, _, is
to be obtained from

. 1 e(k)e(=k)Y, _,(iwy)
Y. _ _ 5
o o'(ZUJ) ﬂN kz Do.(k_/ Zw[) X
;Wi
X Q_éo) Z'T(U, iw; —0o, —iw|o, iw;; —o, —iwy).  (47)
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Ag(iw)zgég)(iw)_ﬂi]vx
) kZ %{A”W“ — e(=k) A—g (—ica)] -

— E(k) Yg’_g(iwl) Y_g’g(iwl)} X
X §§°) Z'T(U, iw; o, iw|o,iw; o, iw) —
1 e2(k)

BN ¢ D, (ko) VAo ()
sWi

x[1—e(k)Ay (iw)]—e(—k) Y, — 5 (iw))Y_y o (i) } X
X g’éO) ir (g'_/ iw; —o, —iw[\ — o, —iwy; 0, 1w) (48)

with

Do (k,iw) = [1—e(k) A, (iw)][1—e(-k)A_; (—iw)]+

+ 2(W)e(—K) Yy o (i) Vg o (i), (49)

The corresponding equation for Y., ,(iw) can be ob-
tained from the expression for Y, _, (iw).

Together with the equations for the one- and two-
particle Green’s functions, the above equations com-
pletely determine the properties of the superconduct-
ing phase, provided it exists. In order to gain a further
insight into the physics contained in (47) and (48), we
linearize the equations in terms of the order parameter
Y, _,(iw) that determines the critical temperature 7.
The resulting equation for the order parameter is

YU7—g(iw) =
__ e(K)e(=K) Yy, o (iw;)
- BN kzwl [1—e(k) Ay (iw))][1 — e(=k)A_g(—iwy)] X

% géo) ir(al/ iw; —o, —iw\a., iW[;_U,_iwl)~ (50)

This equation must be solved together with the equa-
tion for A, (iw) that can be approximated by setting
the order parameters to zero, with the result
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Ao(iw) = G0 (i) = = 3 W y

o 1 20A_y (iw) )4
X gg()) W(Uv iw; o, iwl‘av iwi; o, iW) - ﬂ—Nk 1 j;(_)k)AEZ:EIZLl) gg()) "(U‘/ iw; =0, iw| — 0,iw;; o, iw)' (51)
;Wi

\
To determine T, we must solve (51) for A, and insert the result in (50). The irreducible functions in (50) and
(51) can be written as

%{Qoﬁ(m + 1) th(Be/2) —
l

cth(fw./2)
we[(iw — iwp)? — 4w?)

_C';éo) "0, iw; 0, w0, iwy; 0, iw) =

[(22) + w2) (AA; + 8wl) — 202(A + A))(z2) — w?)] } (52)

5(0)ir, . . . . 2w,
Gs ' (0yiw; —o,iw | — 0, iw; 0, iw) =

{wc(ac +2)(A + A th(Be/2) +

AZAZ
L2 cth(Bw,/2)(zx; + 3w?)
+ cth(Bwe/2) (@ + @) (o — w) | + AR . (53)
g‘;m ir(o, iw; —0o, —iw|o,iw;; —o, —iw;) =
_ 2¢(2w.)? th(Be/2)[iw iw; + €2 — w?] n
(w2 + (€ + we)?][w? + (€ — we)?][wf + (€ + we)?][wi + (€ — we)?]
2w, cth(Bw,/2)[iwiw + 2w, (e — we) — (€ — we)?] N
[w? + (e = we)?][w} + (€ — we)*][(w — wi)? + (2we)?]
2w, cth(Bw,/2)[iw iw; — 2we(€e + we) — (€ + we)?] (54)
[w? + (€ + we)?][wf + (€ + we)?][(w — wi)? + (2we)?]’
where | 05 (iw) =
r=iw—e A= (iw—e?—w (55a) lz e(k)e(—k B
) =dw — €, Ap = (iw —€)* — w2, (55b) N = [1—e(k) Ay (iw)][1 - ( K)A_,(—iw)]
To analyze (50) and (51) further, we introduce the no- e (iw) — ¢y (—iw)
tation AU( w) — Ay (—i ) (58)
o (iw) = ]1/- % = We also assume that ¢(k) = (—k) holds with
-1 elk k) =3 (k) =
Nzk:1—a(k)Ag(zw)’ (56) Zk:E( ) zk:g( ) =0
0o (iw) = Go(x = x'|iw) = We replace sums with integrals,
_ 1 Ay (iw)
N g 1—e(k) Ay (iw)’ (57) %; = /dfﬂo(s)a (59)
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: 2
‘ 4 (1—\/1—)\2(20.)))
gliw) = o -
4 2% 2 ]-7 |6| < 77 (Zw)
_ = N il 4 Miw
pole) = =1 <W> X v (60 -2 (iw) (66)

where W is the band width and pg is the model den-
sity of states of a semielliptic form. Because we do not
consider magnetic states here, the spin subscript can
be omitted in the paramagnetic phase,

Ap(iw) = A, (iw) = A(iw), (61a)
o (iw) = ¢—q (iw) = ¢(iw), (61h)
o5 (iw) = ¢, (iw) = ¢ (iw). (61c)

However, the spin subscript is essential for the super-
conducting order parameter Y, _, (iw),
Y, o (iw) = go,—oY (iw), (62a)

Jo,—c = 50,T - 6U7¢7 (62b)

where Y (iw) is an even function of the frequency,
Y(iw) = Y (—iw). (63)

We finally add the equation that determines the chem-
ical potential,

% S 6o (x = X|iw) expliwy0F) =

= %Zgg(iw) exp(iw,0") = %7 (64)

where NV, is the number of polarons and N is the num-
ber of lattice sites. With (59) and (60), functions (56)
and (57) can be written as

)

(1+ 1—)\2(m))2’

where
Aiw) = (W/2)A(iw).

In order to check whether the state determined from
Eq. (51) is metallic or dielectric, we must analyze the
renormalized density of states given by

1
p(E) = —;Img(Eﬂ'o*) =

:_%Im<1— 1—)\2(E+i0+)>7 ©7)

AE +i0t)
where A\(E +i07) is the analytic continuation of A(iw).

6. ANALYTIC SOLUTIONS

The expressions for A(iw) and Y (iw) can be simpli-
fied using notation (56) and (57) and symmetry prop-
erty (62),

Vi) = 3 3 6 (i) x

x GOV (5 iw; —0, —iw|o, iw; —o, —iw)Y (iw;),  (68)

+ GO (0, iw; —0,iw| — 0,iw; 0,iw)| . (69)

To find a solution of Eq. (68), we insert (54), replace
Y (iw,) with

Y (iwn) = ¢°¢(20) x(iwn) Y(20), 20 =0, (70)

oliw) = 3 N (i) -
- % Aliw) S, (65)
(1 + /T2 (iw))
X(iwy) = = Z G (0, iWn; —0, —iWn |0, iwy; —0, —iw;) =

B

wi

1)t

_ el — e th(Be/2) ch(Bwe/2)] + ch(Buoe)(—w? + € + wd) (ch(Bwe) —
W2 + (e + w2 + (e — o]

, (71)
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and use the Poisson summation formula

1 oy 1 f(2)
ﬂgnjf( n)

(72)

Tori ) e 1

C

where C' denotes the usual counterclockwise contour of
the imaginary axis. With the help of the analytically
continued function Y(z) for Z = Zy = 0, we then ob-
tain an equation for the critical temperature T, from
Eq. (68),

x(0le) °¢(0le) =1, (73)
x(0le) = <2wc[wc — eth(B.€/2) cth(Bew./2)]+
€2 — w?) ch(Bew, 0 gy -2

This quantity is even in €, and therefore only the ab-
solute value of ¢ = & — ji determines kgT. = 3, 1.
From (58) and (65), we can make a rough guess for the

quantity ¢*¢(0),
21
?a

o0~ (
1 -
=2 (1+ 1—/\2(0+z<5)),
where v must satisfy the equation ~(—¢) = v(e). This
quantity can be obtained self-consistently from Eq. (64)
for the chemical potential. For simplicity, we here re-
place [1 4+ /1 — A2(0 4 i9)] with 2. Then (64) can be

written as

w

4 (75)

21

v B
Using (69) together with (52) and (53), we can express
A(iw,) as

Np

ZA(iwn) exp(iw,0") = N (76)

(twn — €) A1 (€) + weB1 (€)
(iwy — €)% — w?
W2[(iwy, — €) Az (€) + weBs(€)]
[(iwn — €)? — w?]?
with unknown coefficients A; and B;. They can be

found from Eq. (69) or more easily from the asymp-
totic behavior of (77) as |wy,| = oo,

Aliwy) =

(77)

Aiwy) = ﬂ Ale‘—l— weB1
|um | =00 n (iwn)?
A (w2 + €?) + 2ew. By + w2 Ay
(iwn)?
N A1 (+3ew?)+ By (w2 +3€2w, ) +w? (3e Ay +w,. B2) N
(iwn)?

If we compare this with the asymptotic behavior of the
full one-polaron Green’s function (see the Appendix)
by invoking the methods of moments together with the
asymptotic behavior of g(iw,) in (66), we obtain

Ai(e) =1, (79a)
1
Bi(e) = _W_[Ml + €], (79Db)
W 2
A2(€) = w—g M2+2€M1+62—w3— <Z> ] y (79C)
Bs(e) =
1 2
=— [—M3—36M2+M1 <w§—3e2+3 <E> ) +
wg 4

2
+ew? — € + 3¢ <%> ] . (79d)

where M; is the ith moment of the one-polaron Green’s
function. The results in (A.5) for the moments in the
lowest order allow us to evaluate A; and B;, see (A.7).
Ay 1 describes the asymptotic freedom of the po-
larons. By = th(fe/2) is identical with its value in the
zero-order polaron Green’s function (38). The two new
quantities Ay and By are small, being proportional to
wo/we =1/ .

Inserting (77) in the left-hand side of Eq. (76) and
performing the summation, we obtain

% Z A(iwy,) exp(iw,0) = f(e) +

4 th(Be/2)[th(fw./2) — 1][1 — th(Be/2)] n
2[1 — th*(Bw./2) th* (Be/2)]
Bs(e) 1 — th?(Be/2)
3 thiBwe/2) 1 — th?(Be/2) th?(Bw,/2)
_ ch A2 (6) + B2 (6) A2 (6) — BQ(E)
16 [ch’[B(w. +€)/2]  ch?[B(w, —€)/2]]’

which is equal to (v/2)(N,/N) in accordance with
Eq. (76). Because the collective frequency is large,
Bwe > 1, we can omit exponentially small quantities
like exp(—pw,.). Since we are interested in results for
electron numbers that are close to half filling (¢ = 0),
also |e] < w, holds. We also neglect contributions of
the order 1/a. Then the equation for chemical poten-
tial (74) is simply

+

(80)

fi(e) = ynp/2, nyp = N,/N. (81)

If we set v = 1 (free polarons), we obtain from (75)
that

¢*(0) = (W/4)*, (82)
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which allows us to write the equation for the critical
temperature T, as

€ 4+ w? — 2ew . th(Be/2) = (W2 — )% (4/W)%.  (83)

In this approximation, 7T, depends only on the lo-
cal parameters, but we expect that close to half filling,
this should give an indication which of the local quan-
tities is most important for superconductivity in the
strong-coupling limit of the Hubbard-Holstein model.
Precisely at half filling, Eq. (83) can only be satisfied if
we = W/4. This may perhaps be an unphysically large
value for a renormalized quantity. It also shows that
the specific limit U = 0 is probably the critical value for
the occurence of superconductivity in the framework of
the Hubbard-Holstein model. It is clear that super-
conductivity is possible for U < 0, but in this case, it
would have to compete in energy with the energies of
charge-ordered states.

For the special case where w, =

? _ h Belel
5 |-
Because €¢/w, < 3 holds (which we do not discuss in de-

tail), we can seek solutions in the case where |¢] <€ we,
leading to

W/4, we obtain

€

We

€

e

We

2|e]
Tt

We

(84)

w 5 e\’
T,=221-= (=) +...| =
ks 3 [ 12<wc> +
w 20 / € \2
_5[1—§(W) +} (85)

In spite of the many approximations used (all of
which are reasonable, however) the result for 7T, is re-
markable because it shows that the critical tempera-
ture depends on the band width (corresponding to the
largest cut-off energy of the model) and not on the ef-
fective mass of the ions. For small deviations from half
filling, T, decreases and is independent of the sign of €.

For different values of w,,

We = W/4_y, (86)
with y # 0, there are only solutions not at half filling.
In this case, Eq. (84) can be written as

1-|-n
— K’

Belel = In (87)

_ € +w? — (4/W)*(w? — €%)?
2|€|we

, 0<rk<1. (88
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The condition x < 1 is equivalent to
le] + w. < W/4. (89)

On the other hand, the condition x > 0 reformulates
differently depending on the parameter y,

we < W/, y>0: (W/d—w.)? <e® < e uus (90)
we>W/, y<0: e, <e <€, (91)
1 (W
eznaammin =w, + 5 <Z> +
W W
+ | — — 2, 2
(3)(5) +s2 o
For small y, we can simplify (87) and (88) as
2 2 2 ’
~ 3_ -
W { ‘ <W> i
W4, 4\’
|y (w) | o
with the following restrictions for e:
y>0: 3y°<e<3 E2—§Wy+92 (94)
’ 4 6 27
W 25, w\?>
y<0: 6|y\+27y <e <3<4>+
29 o
+ W\yl-l-27 (95)

Large values of T, can be achieved for x £ 1 and in the
vicinity of half filling (e # 0),

_ Ge2
Wiyl

Wo

kBTC ~ 12(T/

> 1,
(96)

but only for y < 0, and hence w, > W/4.

7. SUMMARY

We have discussed the occurence of superconduc-
tivity in the strong-coupling limit (g > 1) of the
Hubbard—Holstein model. Strong coupling leads to a
renormalization of the one-polaron Green’s function al-
ready in the local approximation. For g > 1, we found
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a collective mode for the phonon clouds estimated by
evaluating integrals in the Laplace approximation. Be-
cause of absorption and emission of this mode by po-
larons, the on-site energies of polarons are renormal-
ized. Similarly, the irreducible two-particle Green’s
functions are renormalized. Allowing the exchange
of polarons including their phonon clouds leads to a
new irreducible Green’s function that has been used to
study spin-singlet pairing of polarons. Analytic results
for the superconducting phase have been obtained in
the limiting case where the local repulsion of polarons
is exactly canceled by their attractive interaction. The
resulting equation for the critical temperature has been
obtained by assuming a large collective-mode frequency
and a nearly half-filled band case. The parameters that
determine T, are w, (we > W/4), e (with e = 0 corre-
sponding to half filling), and the band width W. In the
strong-coupling limit, we obtain the critical tempera-
ture of the order of w./3.

It is interesting to note that a similar result for
the value of T, has been established in [34,35] for
such anomalous low-temperature superconductors as
Pb, Hg, and Nb realized within the framework of
Eliashberg’s theory [36].

In Eliashberg’s theory, the retarded nature of the
photon-induced interaction and the pseudopotential
treatment of the screened Coulomb interaction are
taken into account. For example, in [35], the maxi-
mum value of the critical temperature 7."** is equal
to (w)/exp(3/2), where (w) is the average phonon
frequency taken over the phonon density of states,
(w) ~ 0.5wg. Our equations involve only the collective
frequency w, = awg, a > 1.

It is possible to estimate the values of T, not only
analytically but also via calculations using Eq. (83), or
more precisely, Eq. (73). Indeed, such numerical re-
sults have been obtained by assuming some values of
the theory parameters and of the interval of interest-
ing values of T.. From the three parameteres in our
theory (w., W, and e), we first choose the value of the
collective frequency w.. Assuming that wg is equal to
0.07 eV for cuprates and that the dimensionless inter-
action constant 7 is equal to 3, we obtain a = 4.5 and
we = 0.315 eV. We next fix the value of T, e.g., to be
equal to 100 K. With these values of w. and T., the
following pairs of the other two parameters are com-
patible:

e =0.10515eV and W = 1.68057 eV,

e =0.20348 ¢V and W = 2.07383 eV,
e=0.30149 eV and W = 2.46594 eV.
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APPENDIX

The method of moments

Using the Heisenberg representation of the one-
polaron Green’s function

G (x = X'|7 = 7') = (Téxo (1) Cxor (7)), (A1)

where
Cxo (T) = e e T, (A .2a)

exo (1) = eM7cl_e M7, (A.2b)

Xo

we can write the asimptotic expansion of the Fourier
representation in (25) for |w,| — oo as

Gy (x = 0liwy,) = go (iwy) =

1 M, M, M,
_ _ (A
o ok ey ey T A9

Ma = ek, [HIH . [H, oxo) o iy (M)
—

n

where the statistical average (... )y is defined with re-
spect to the full density matrix of the grand canonical
ensemble. In the simplest approximation, we obtain
the first three moments of the Green’s functions as

M, = — (e + we th(Be/2) (A.5a)

3

My = €2 + w? 4+ (W/4)? + 2ew, th(Be/2) +
+ wowe cth(fwe/2), (A.5Db)

Mz = —{€® + 3e[w? + wowo ch(Buw./2) + (W/4)?] +
+ we th(Be/2)[3e* + 3(W/4)? + w? + wd +
+ Bwowe cth(Bwo/2)]}. (A.5c)

The expressions for the moments can be used to deter-
mine the unknown coefficients A,,(¢) and B, (¢) in the
relation for A, (iw), Eq. (78), by also considering the
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asymptotic behavior of g,(iw) in (66) for small values
of A\, (iw),

9o (iw) = (2/W)Aq (iw) X
x [14+ (A2/4) +2(A?/4)* +...]. (A.6)

We then insert the asymptotic form of )\, (iw) from
(78). Comparing the corresponding equations fixes the
coefficients A, (e) and B, (¢) as

Ai(e) =1, (A.7a)

Bi(e) = ——[M, + € ~ th(Be/2), (A.7D)

We

1
AQ(G) = F [MQ + 26M1 + 62 — wf — (W/4)2] ~

c

~ % cth(Bwo/2), (A.7c)

1
Ba(e) = — [— Mz — 3eMs + My (w? — 36>+
Cc

+ 3(W/4)?) + ew? — €® + 3e(W/4)?] ~

m%th(ﬂeﬂ) Z—S-I—Scth(ﬂwo/Q) . (A7d)

c
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