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Stationary states of molecular negative ions (anions) near the surface of a solid are investigated. The lone elec-
tron is assumed to interact with a diatomic molecule and the surface of the solid. The energies of electron levels
are determined by solving the 2D Schrédinger equation. It is shown that its stable solutions exist at distances
from the surface greater than some critical distance, otherwise the electron is detached from the anion. In the
case of attraction between the electron and the solid, the interaction potential between the anion and the solid
appears to have the Lennard—Jones form and the ion is separated from the surface by some equilibrium distance.

PACS: 34.50.Dy, 32.10.Hgq, 31.15.Fx

1. INTRODUCTION

The interaction of electronegative molecules and
negative molecular ions (anions) with surfaces of con-
densed state is extensively studied within the last
decades. One of the problems most interesting to us is
the formation and evolution of negative ion resonances
(NIRs) on surfaces [1-4]. As in the gas phase, NIRs
can also be generated at surfaces by the attachment of
free electrons to absorbed molecules at a defined en-
ergy [1-3]. It has been recognized that the photochem-
ical behavior of adsorbed molecules can effectively be
governed by the photoinduced electron transfer from
the substrate to the adsorbed molecule [5-7]. In some
systems, NIRs thus formed are considered as the driv-
ing force for the respective photochemical reaction.

The formation and evolution of NIRs are usually
appreciably modified when passing from the gas phase
to the surface [8,9]. This concerns the energy of the
temporary negative ion, its lifetime (with respect to
the electron loss and dissociation), and the branching
ratios between the dissociative attachment channels.

Some electron scattering experiments have been
performed on molecules deposited on cold noble gas
substrates (solids). Here, a noble gas layer of vari-
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able thickness can be used to study the influence of
the metallic substrate on the particular process, e.g.,
the (dissociative) attachment cross section or the en-
ergy shift of the negative ion resonance [8-10]. In addi-
tion, substrate-induced electron transfer reactions via
the initial formation of an electron exciton precursor in
the noble gas layer could be observed [3,13].

The stability of molecular negative ions at or near
the surface is an essential point in the investigation of
low-energy electron-driven reactions on adsorbed and
condensed molecules [14]. In addition to its importance
from the standpoint of basic science, the stability of
negatively charged particles at or near a solid surface
is an important issue in many technological processes
like photocopying, laser printing, etc.

In [15], it was shown that the interaction of a nega-
tive ion with a nonpolar liquid results in a considerable
shift of its photodetachment threshold. Apparently, no-
ticeable shifts can be expected in the interaction of an
anion and the surface of a solid. In [16-18], the dyna-
mics of the processes of charge transfer and production
of molecular anions in the vicinity of a surface were
investigated. It was recognized that an accurate cal-
culation of electron energies requires solving the 2D
Schrodinger equation, because the spherical symmetry
for the lone electron is broken at a short distance from
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the surface [18]. Consequently, on the basis of a one-
dimensional perturbation theory, sufficiently accurate
values of the electron energy cannot be found at short
distances from the surface because higher-order terms
require nonspherical corrections to the wave function.

The objective of this paper is to calculate the sta-
tionary state energy of the lone electron of a molecular
anion near the surface of a solid by solving the station-
ary 2D Schrédinger equation. The interaction of the
lone electron with the diatomic molecule is described
by a polarization pseudopotential; the interaction with
the solid is characterized by a single parameter, the
effective energy of the electron inside the solid, Vj.

In this formulation, the problem has a two-
dimensional axial symmetry with the axis perpen-
dicular to the surface, and we must therefore solve
the 2D Schrodinger equation. Solutions of the mul-
tidimensional Schrodinger equation are known in the
cases where spatial variables can be separated (as in
the theory of the Stark effect). In the case of unsepa-
rable variables, due to the complexity of the general
mathematical formulation, no regular methods, either
analytic or numerical, have been developed up to date.
As a rule, the multidimensional Schrédinger equation
is reduced to a quasi-one-dimensional one, specific for
the problem under consideration. There are several
approaches to the treatment of multidimensional equa-
tions. Among them, the split-step Fourier scheme [19]
was used in [20] for the investigation of white noise
in the 2D nonlinear Schrédinger equation. The 3D
wave packet propagation method was used in [21]
to describe the propagation of an electron near the
surface of a solid.

We propose a solution of this problem assuming
that the electron state is in fact a superposition of
states with different values of the angular momentum
in the corresponding effective spherically symmetric
potentials. The state with zero angular momentum
is assumed to dominate. An exact solution of the
Schrédinger equations is then sought as a linear com-
bination of the wave functions corresponding to dif-
ferent values [ of the angular momentum. Thus, the
2D Schrédinger equation is reduced to an infinite set
of one-dimensional equations for the radial wave func-
tions. It can be shown that its solution can be approx-
imated to a very good accuracy by the truncation of
the infinite set to two equations for [ = 0 (zero approx-
imation) and [ = 1 (first approximation). The latter
is easily solved numerically by the iteration method.
This allows calculating the lone electron energy as a
function of the parameters characterizing its total in-
teraction potential.
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Two cases must be distinguished, the repulsive sur-
face (potential barrier) and the attractive surface (po-
tential well). Repulsion of the electron from the surface
causes pure repulsion of the anion from the surface;
there is the minimum distance at which a stationary
state is possible. At shorter distances, nonstationary
states emerge, which prove to have the decay times too
short to be detected experimentally. Thus, detachment,
of the electron from a diatomic molecule occurs, and
the electron is removed into vacuum.

In the case of an attractive surface, the existence of
an electron stationary state depends on the values of
potential parameters. If the potential well in a solid is
too deep, no stationary state is possible, and the elec-
tron is detached from the anion at the distance where
the anion decay time becomes shorter than its residence
time near the surface of the solid. If the well depth is
moderate, there is a finite range with some minimum
and maximum distances from the surface where a sta-
tionary solution exists. If the potential well is shallow,
there is only the minimum distance, as in the case of
a potential barrier. In the case of surface attraction,
detachment of the lone electron implies its tunneling
into the potential well of a solid. If stationary states
exist, the curve of interaction between the anion and
the surface of the solid has the form characteristic of
the interatomic interaction (the Lennard—Jones poten-
tial). As is known, this potential has an equilibrium
distance. Hence, a molecule-like equilibrium state of
the anion near the surface emerges. This makes it pos-
sible to predict not only the shift of the electron level
(of the electron photodetachment threshold), but also
the distance from the surface at which the anion can
be found.

This paper is organized as follows. In Sec. 2,
the interaction potential for the lone electron and the
Schrédinger equation to be solved are written; in Sec. 3,
its asymptotically exact solution is found and the first-
order approximation to this solution is considered. Po-
tential curves for anions near the surface are calculated
in Sec. 4; the results obtained are analyzed in Sec. 5.

2. PROBLEM FORMULATION

We consider a system consisting of a highly polar-
izable diatomic molecule, the surface of a solid, and a
lone electron. The interactions between the molecule
and the surface are assumed to be negligibly small, and
we can therefore take only the interactions between the
lone electron and molecule, and between the electron



D. I. Zhukhovitskii, W. F. Schmidt, E. Illlenberger

MKIT®, Tom 124, Boin. 3(9), 2003

and the surface into account. We let V, and V, denote
the respective interaction potentials.

We introduce the spherical coordinate system with
the origin at the point of location of the molecule and
with the polar axis perpendicular to the surface. The
polar axis is directed toward the surface. The corre-
sponding spherical coordinates are denoted by r and 6.
The distance between the molecule and the surface is
zp. The half-space r{ < zp (£ = cosf) is the vacuum
and the other half-space r€é > zg is occupied by the
solid; the surface is defined by the equation ré = zg.
At sufficiently large distances from the molecule in the
vacuum, r > r., where r. is the molecule hard-core ra-
dius, the lone electron polarizes core electrons of the
molecule, and the interaction can be described by the
polarization potential

Vo = —ar™ 4,

where a is the molecule polarization in the units of a3
(and qq is the Bohr radius) [22]; the length and energy
are measured in the units of ag and in Ry, respectively
(in contrast to the atomic units, we measure the en-
ergy in Ry). At small distances r < r., due to the
Pauli principle, a short-range repulsion occurs, and we
can therefore set

Vp=+400 at r<r.

(see [22]). Thus, we use a spherically symmetric pseu-
dopotential to describe a lone electron. Because a real
diatomic molecule is not spherically symmetric, this as-
sumption is made for simplicity. We also assume that
the electron charge is screened inside the solid and does
not therefore interact with the molecule, which allows
us to set V), = 0 for 7§ > 2.

The lone electron polarizes the surface of the solid,
and the arising electrostatic image force is responsible
for the interaction between the electron and the sur-
face at large distances. At short distances and inside
the solid, the electron experiences attraction caused by
polarization of surrounding molecules by its charge and
the Pauli repulsion. For simplicity, we do not take the
details of this interaction into account and use its sim-
plest form instead.

We note that the characteristic length of variation
of the image force potential is given by several agp,
whereas the characteristic length of the lone electron
localization (the width of the electron wave function)
is about 10ag. Obviously, Vs must be uniform inside
the solid. This enables approximating Vs by a simple
«step» potential Vi = 0 for 7€ < zp and Vy = V4 for
ré > zp. The interaction between the electron and the
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Fig. 1. Interaction potential for the attractive surface

along the polar axis

surface is therefore allowed by a single parameter Vj.
This parameter characterizes the interaction as a whole
and is essentially an effective one. Its sign depends on
the ratio between the strengths of the attractive elec-
trostatic image force outside the solid and the Pauli
repulsion inside it. This ratio is defined by constants
characterizing the molecule and the solid. In some cases
(e.g., the surface of a metal), the image force domi-
nates, and V5 < 0. In this case, a potential well occurs,
which causes attraction, at large distances at least. If
Vo > 0, the solid is represented by a potential barrier,
and the net effect is repulsion.

Although the details of the potential Vy can be in-
cluded (as, e.g., in Ref. [21]), this can considerably com-
plicate the analysis of the results obtained and mask the
nature of the effects that we want to demonstrate. At
the same time, any complicated form of the electron—
surface interaction potential can be included in our for-
malism if necessary.

Thus, the total electron interaction potential

U=V,+V;
is given by
+o0, r<re,
U(Ta g) = —CW‘74., f’f‘c S f’f’ < 20, (1)
Vo, &r > zo.

It is shown in Fig. 1. Because potential (1) has the
axial symmetry, the electron energy is found from the
2D stationary Schrodinger equation

Hy = Eg, (2)
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where ¥ (r, £) is the electron wave function and Ej is
the energy. In the spherical coordinates, the Hamilto-
nian H is given by

10 (,0
‘725(” a>‘

1 ? 0
—T—Q[(l—fQ)a—@—?fag}ﬂLU( §). (3)

H=

The boundary conditions for the wave function are

P(re, &) = (o0, §) = 0. (4)

3. THE METHOD OF SOLUTION

To solve Eq. (2), we have to additionally assume
that its solution has the same symmetry as the poten-
tial U(r, £) in Eq. (1), i.e., the axial symmetry. This
is correct for the ground state, which is a single state
for most of diatomic anions in the approximation of the
simplified electron—molecule interaction potential V.

A solution of Eq. (2) can be represented as an ex-
pansion in any complete set of functions of £. Similarly
to the quantum scattering theory, we use the Legen-
dre polynomials P;(£). But in contrast to scattering,
we seek a stationary bound state localized in a finite
spatial region with the real energy FE; less than the
minimum value of potential (1) at » — oc. Thus, we
can represent the solution as a series in the Legendre
polynomials

ﬁl»—l

Z (5)

The wave function @ is normalized to unity,

00 1
o2 [ r2dr | |(r, &) dé = 1. (6)
[7]

It follows from the discussion above and condition (6)
that o;(r) are real functions. Substituting (5) in (6)
and recalling the normalization and orthogonality con-
dition for the Legendre polynomials,

Pe(§)de =0, L#F,

we obtain the normalization condition for the functions
Pl (T)v

NE / Gy dr| =1. (7)

13 ZK3T®, Bem. 3(9)

Because the Legendre polynomials are eigenfunctions
of the square angular momentum operator,

P, B _

substitution of expansion (5) in Schrodinger equa-
tion (2) yields

_Zpkd 9%

(€ -1)

[
Z k+1 Pk@k"‘
k=0

Z Pigr=Es Y Pegr. (9)
k=0 k=0

We multiply both sides of Eq. (9) with P,(¢) and inte-
grate over ¢ from —1 to 1 to derive

d?¢ I(1+1) =
E, — — =0 10
a2 T { ]991 ; ek =0, (10)

where the matrix elements

Vik(r) = <z+ %) /1U(r

are the effective spherically symmetric potentials; they
are related by the ratio

yOB(§P(ds (11)

- 204+ 1
= —Vu. 12
Vik Sy 7 Vi (12)
The boundary conditions for the set of equations (10)
are

@i(re) = pi(o0) = 0. (13)

Thus, we have reduced the 2D Schrodinger equation to
an infinite set of ordinary differential equations (10),
each of which corresponds to a certain value of the an-
gular momentum.

Solution of Eqs. (10) makes sense only if series (5)
converges fast. This means that some state must dom-
inate superposition (5). Because the increase of the
hard-core parameter r. of the potential V), by few per
cent leads to the disappearance of the bound state of
an isolated anion, we can assume that if the lone elec-
tron is localized on the molecule, the deviation of its
wave function from the spherically symmetric form is
moderate. Hence, the s-state (I = 0) must dominate,
and we can truncate the set of equations (10) at some
finite value of I. The error involved in this truncation
can easily be estimated by inclusion of a higher-order
equation. Thus, (10) can be regarded as a key to obtain
an asymptotically exact solution.
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In the zero appro?glmat}on (1 Q.).,‘Eqs. (10) are 9920 + [Es = Voo(r)]eo = 0, (14)
reduced to the one-dimensional Schrédinger equation dr
for the radial wave function ¢q(r)/r in the spherically
averaged interaction potential Voo (r) in Eq. (1), where
\
. . 00, r<re,
_ 1 1 —ar™4, The <1 < 20,
Toolr) =5 [ Ul ds = Vo) + 5 [ Velr, ) = ST ()
—1 —1 V() 20 « 20
S -2) - = = > 2.
3 (1-7) g (14 3). r2s

In the zero approximation, nonsphericity is obviously‘
not allowed. Far from the surface, the lone electron
wave function can be approximated by that of an iso-
lated anion s (r)/r. By definition,

d*Poc
C2 1By - V(o =0, (16)
where
Ey= lim E,
Zp— 00

is the electron energy of an isolated anion (—Eq is the
electron affinity of an isolated molecule), and we can

3

therefore obtain the electron energy from (14) as

1
E, ~ Eo+2n / G (Vi (r, €) de.

-1

This coincides exactly with the result of the perturba-

tion theory if Vj is treated as a small perturbation.
At the surface (small distance 2q), V5 is not small,

and the first order of the perturbation theory does not

1 +0o0

% 3 2 —ar—*
Vii(r) = 5 [ U(r, )& d§ =

2 ¥ (

-1 — (1
2
|
and the wave function is the sum of two terms
1

(. §) = ~lpo(r) + & (r)] (21)

normalized by the condition

oo

r [ [0+ A0/ dr = 1

We can estimate the accuracy of this approximation by

therefore provide high accuracy. Calculation of higher-
order corrections of the perturbation theory is impos-
sible, because the nonsphericity effect is not included.
But we can handle small distances zg even in the first
approximation on the basis of the set of equations (10).

In this approximation, (10) is truncated to two equa-
tions for [ = 0 and 1,
d* o S o
g2 T [Es = Voo(r)lwo = Vou(r)er =0, (17)
d2901

9 B _
e |:Es 2 Vn(r)] @1 = 3Vor(r)po =0, (18)

where relation (12) is used,

1

Vn(r) = 5 [ Ulr, )¢ =

0, r < Zp,
R E RO T
‘ r? 4rt 4 )’ ="
r <re,

(20)

The <1 < 20,
3
0

Z,
3 TZZ()a
r

T3

(8%
-— (1
) 2r4<
(0)

comparison of electron energy E;~’ obtained from (14)
with that calculated using (17) and (18), B,

The set of equations (17) and (18) can be solved
numerically using the iteration method. First, we set

and (17) becomes a one-dimensional equation. This
equation is solved with the boundary conditions
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d
wo(re) =0, (%)r:r = Co,

where Cj is an arbitrary number; the parameter Ej
appearing in the equation is adjusted to satisfy the
boundary condition

wo(x) = 0.

The obtained value of E, and the calculated function
@o(r) are then substituted in Eq. (18), which is solved
with the boundary conditions

d
! (TC) N 07 <%>r:r B Cl.

c

The value of C is then varied to satisfy the boundary
condition

w1(c0) = 0.

For the next iteration, the calculated function ()
is substituted in Eq. (17), etc. This iteration proce-
dure terminates when the difference in the values of
E, obtained from successive iterations, E§°) - Egl), is
sufficiently small. Obviously, the procedure described
can also be used for a set containing more than two
equations.

4. CALCULATION RESULTS

For numerical calculations, we considered two
molecules, O, with a moderate polarizability and
highly polarizable Bry. The molecule Oy was selected
because it is widely used in experiments. In addition,
in spite of the obvious internal asymmetry, the excess
electron can be approximately treated as a lone one,
which allows solving the one-electron problem. Brs is
an example of a dimer with a very high polarizabil-
ity. Polarizabilities o and electron affinities —Eq for
these molecules [23] are listed in the Table. The values
of hard-core radii r. of the potential V), were adjusted
to fit the corresponding experimental electron affinities
by the values of —Ej obtained from the ground state
solution of Eq. (16).

The set of equations (17) and (18) was solved nu-
merically using the procedure discussed in the previous
section for different values of the interaction potential
parameter Vy. We first consider positive V5. Figure 2
illustrates the solution of Eqs. (17) and (18) for Br,
at Vo = 1 eV and zy = 2aq. In this figure, wave func-
tion (21) is plotted in the X Z plane (Y = 0) of the
Cartesian coordinate system whose Z axis is parallel to
the polar axis of the spherical coordinate system used

(X, 0,2)|?

Fig.2. Wave function for Bry in the XZ plane (re-

pulsive surface, Vo = 1 eV). The plane Z = 227

(20 = 2a0) indicates the location of the surface of the
solid

in the foregoing. The spherical coordinates are related
to the Cartesian ones as follows:

r=va2+ 22, £=z/r
x = 0.075(X —200), 2 =0.075(Z — 200).

It is seen in Fig. 2 that the front of the wave function
is lowered near the repulsive surface. This is indicative
of a considerable repulsion of the wave function from
the surface. The ratio

is moderate, however.

The lone electron energy as a function of the dis-
tance from the solid surface is shown in Fig. 3. It is seen
that the results are similar for O; and Br; , although
the differences in polarizabilities and electron affinities
for these molecules are about an order of magnitude.
Each curve drops abruptly at some small distance and
Ey vanishes, which is indicative of the existence of the
minimum distance at which a stable state of the ani-
on is possible (at this distance, Es = 0). At shorter
distances, the electron is detached from the anion and
is removed to infinity in the vacuum, which means the
electron detachment. Fast vanishing of the effect of the
surface as the anion moves away from the surface is also
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Parameters of diatomic molecules

Molecule Polarizability «, aj Electron affinity Eg, eV Cutoff radius r., ag
(02} 10.6 0.46 0.909
Bry 43.6 2.6 1.457
Es/Eo (Es — Eo)/Eo
1.0 0

0.8

0.6

0.4

0.2
2 4 6 8
20, a0
Fig.3. Lone electron energy as a function of the

distance from a repulsive surface. 1 — Br; for
Vo =05 eV; 2—Br; for Vo = 1eV; 3— O for
Vo=0.5eV; 4 — 05 for Vo =1 eV

seen in this figure. We note that the electron energy
at a short distance from the surface cannot be calcu-
lated on the basis of perturbation theory; at moderate
distances, the results of the latter are not of interest
because of this vanishing.

In the case of an attractive surface, the form of the
wave function is qualitatively similar to the previous
case, but the front of the wave function is raised near
the attractive surface, which is indicative of the attrac-
tion of the wave function. The potential curve Es(zq)
is more complicated, however. In Fig. 4, the relative
energy shifts are shown for the values of V that co-
incide with the corresponding energies E, of isolated
anions. For both molecules, potential curves have the
form of the Lennard—Jones interatomic potential with a
short-range repulsion and vanishing long-range attrac-
tion. This behavior of a potential curve holds for any
negative value of V5. The reason of such behavior is
as follows. At a large separation zy from the surface,

—0.02 {

—0.04

—0.06

—0.08

—0.10
4 6 8 10

Z0, o

Fig.4. Relative electron energy shifts as functions of
the distance from an attractive surface at Vo = Ej.
1—Br,;2—0,

[Vp(20)| < |Vol, and the effect of the surface amounts
to lowering the energy Es. Because |Vj(rc)| > |Ep|,
the inequality |V} (z0)| > |Vo| holds at sufficiently short
distances (interaction of the electron with the molecule
is stronger than with the surface), which results in the
increase of Fy; due to the confinement of space avail-
able for the electron and in the consequent increase in
its kinetic energy.

A stable electron state is realized only if the energy
E; is less than the minimum value lim U(r, £); oth-
r—oQ

erwise, the tunneling to the region of lower potential
must lead to the electron detachment. In the previ-
ously considered case of a repulsive potential (Vo > 0),
this minimum is equal to zero at £ = —1. If Vj < 0, it
is equal to Vi at £ = 1. In the latter case, the region
of stable states is therefore limited by the condition
E; < W.

In the case of an attractive surface, the existence of
a stable state depends on the ratio of parameters Ey
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1.0
Vo/Eo

0.8

0.6

Fig.5. Equilibrium distance as a function of V4 for an
attractive surface. 1 — Bry; 2 — O3

E./Eo
1.12

I

1.08

I
|
I
I
I
|
|
I
I
1.04 1
|
I
|

I
|
|

0.8

04

1.00
Vo/Eo

Fig.6. Equilibrium energies as functions of V4 for an
attractive surface. 1 — Br,; 2 — O, ; dashed curve
indicates the line E; =14

and Vy. If |Eg| > |Vb|, a bound state is possible at
zp — oo at least, where E; = Ey. Therefore, a bound
state exists at a sufficiently large distance zg > Zmin,
where 2,,;, is a single root of the equation E,(z9) = Vp.

If |Ep| < |Vol, electron detachment occurs at large dis-

tances, and the region of possible bound states is fi-
nite, Zmin < 20 < Zmaz, Where Zmin and Zpa, are
two roots of the equation Es(z9) = Vo. As Vj in-
creases, Zmin — Zmaz, and at some value Vo = Viin,
Zmin = Zmaz- Obviously, this case corresponds to the
bottom of the potential curve Es(zq). At |Vo| > |Vininls
no stable state is realized; in this case, only electron de-
tachment is possible.

We note that independently of zy and the sign of
Vo, the interaction with a surface leads to the decrease
of anion stability, | Es(Viin) — Vinin| < |Eo| due to bro-
ken spherical symmetry of the lone electron state in an
isolated anion.

If we neglect the interaction between the molecule
and the surface, which is most likely a hard-core at-
traction at small distances, then the energy E, — Ej is
that of the anion as a whole. The condition

dE;
=0
( dZ[) >Z:Zeq

defines some distance ze, at which the energy Es(zo)
reaches the minimum and an equilibrium bound state
of the anion at solid surface is realized. We note that
the interaction between the molecule and the metal sur-
face may noticeably contribute to the total energy of
the anion, especially in the region of short distances zp,
but we can expect that this does not change the situ-
ation qualitatively. Equilibrium distances z., and the
corresponding equilibrium state energies Eqq; = Es(zeq)
are shown in Figs. 5 and 6 as functions of the potential
well depth V4. It is seen in Fig. 5 that the equilibrium
distance increases sharply as V — 0, and the curves for
O and Br, almost coincide. The quantities |Eq(Vo)]
increase with |Vp| until the condition E; = V4, (dashed
curve in Fig. 6) is satisfied. In Fig. 6, the intersection
points of solid curves with the dashed curve indicate
the maximum well depths at which bound states can
occur. For O3, the maximum value of VO/EO is 1.04;
for Br, , it is 1.12.

5. DISCUSSION

In this paper, we have solved the 2D Schrédinger
equation for the lone electron interacting with a di-
atomic molecule and the surface of a solid. Our solu-
tion allows calculating electron energies of an anion at
the surface. In the case of an attractive surface, we
predict molecule-like bound states of the anion, which
are realized if the potential well depth |Vp| character-
izing the interaction with the surface does not exceed
some threshold value. We have determined this value,
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above which the electron detachment occurs and the
lone electron is removed either into the vacuum or into
the solid.

Molecule-like states of the system under conside-
ration can exist only if the vibrational energy quantum
hwy is much smaller than the well depth Ey — E,. For
the potential curves shown in Fig. 4, the estimate

I

Zeq —

2(Eo — Eeq)
M b

fiwy ~
Zmin
is valid, where M is the mass of a diatomic molecule.
Because the ratio m/M is small, the resulting condition

dm

27 % TRy(Ep — Eey) ' < 1

(Zeq me)
is satisfied for both Bry and O (the product in the
left-hand side is of the order 1072 for Br, and 1072 for
03). We note that similar phenomenon of levitation
above the surface is known for liquid helium [24].

The objective of introducing potential (1) was to
qualitatively include all possible cases of the interac-
tion between the lone electron and the solid. For some
particular anion and a surface, the interaction potential
may not be reduced to its simplest form (1). A rigor-
ous answer to the question concerning the existence of
an equilibrium state for given experimental conditions
implies the calculation of a real interaction potential
between the lone electron and the surface. This com-
plicated problem (see, e.g., [21]) requires additional in-
vestigation.

It is natural to discuss the lifetimes of transient an-
ion states near the surface. The lifetime of an anion
above the electron detachment threshold can be esti-
mated as the time of tunneling under the barrier with
the height —Fy and width zg,
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For typical values used in our calculations, 7 reaches
the minimum time necessary for experimental detection
of an anion (1072 s) at zy > 60ag, i.e., at mesoscopic
distances, where its interaction with the surface is neg-
ligibly small. Therefore, it is impossible to observe an
anion in the instability region: the electron detachment
is very fast.

It is clear that the higher the value of [ is at which
the set of equations (10) is truncated, the higher the
accuracy of the calculated electron energy. Because (5)
is an exact solution of (10), the sequence of approx-
0 p) p@

k) S k) S )

imations Eg converges to the exact
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energy Fg. From the standpoint of the variational prin-
ciple, the higher the approximation order, the closer the
«trial» wave function

k
PP (e, &) =r Y @) Pi()
=0
is to the exact solution for which the energy reaches
the minimum. Therefore,

E, < B < E®),

of E ¢t can be roughly estimated

and the accuracy
k .
In our calculations, this accu-

5 | Esk+1
racy depends prlmarlly on the relative energy shift
(Es — Ey)/Ep, and the accuracy is better than 4 % for
an attractive surface. If necessary, higher values of [ can
be included. The iteration method discussed above can
also be applied for the solution of the corresponding set
of equations.

It is interesting to note that for the truncated set
of equations (17) and (18) for an attractive potential,
a stable solution disappears at some threshold value of
E, somewhat higher than V4; that is, the limit con-
dition E; = V4 does not hold automatically. However,
the threshold value of E; converges to Vj as [ increases.
Thus, for O; in the zero approximation, this thresh-
old value is F; ~ 1.4 eV; in the first approximation,
E, ~ 0.8 eV; the exact value is 0.52 eV.

One can expect that the accuracy of the method de-
scribed in this paper is very high and that it is compat-
ible with the accuracy of spectroscopic measurements.
Thus, calculation results could be directly compared
with, e.g., measurements of electron photodetachment
threshold shifts.

We now discuss possible experimental realization of
the effects proposed in this paper. Layers of noble gases
are frequently used as simple model surfaces to study
the effect of a condensed environment [25]. In a typ-
ical experiment, O anions are deposited on a metal
surface covered with approximately 10 monolayers of a
noble gas (krypton). Because the energy of the elec-
tron inside the solid (relative to the vacuum) can range
from —2 to —1 eV, the case of attraction would be re-
alized in such an experiment. The case of repulsion
could occur when the metal is coated with a polyethy-
lene film. If this film is sufficiently thick, the energy
of the electron inside the solid can vary from 0.5 to
1 eV. The problems of possible experimental investiga-
tion are also generally related to the photochemistry of
adsorbed molecules via phototransfer of substrate elec-
trons to the adsorbate molecules. Such problems can
be treated experimentally by charging experiments.
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We hope that the solution of the 2D Schrodinger
equation proposed in this paper is sufficiently universal
to be used in other applications where the effect of the
wave function nonsphericity is not negligibly small.

A more detailed investigation of the stability
of anions requires solution of the time-dependent
Schréodinger equation, because the electron detach-
ment occurs as a tunnel process. In addition, the effect
of the image force has to be included more accurately
in the calculation of the overall interaction potential.
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