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The coupling of electron momenta is considered for the resonant charge exchange process in slow collisions. Be-
cause the electron transfer in this process occurs at large distances between the colliding atomic particles, where
ion—atom interactions are relatively weak, we can separate different types of interaction and find the character
of coupling of the electron momenta in the quasi-molecule consisting of the colliding ion and its atom for real
collision pairs. Since the real number of interaction types for colliding particles exceeds that used in the classical
Hund coupling scheme, there are intermediate cases of momentum coupling outside the standard Hund scheme.
This occurs for the resonant charge exchange involving halogens and oxygen where the quantum numbers of
the quasi-molecule in the course of the electron transfer are the total momenta .J and j of the colliding ion and
atom and the projection M or M, of the atom orbital or total momentum on the quasi-molecule axis. The
ion—atom exchange interaction potential is independent of the ion fine state, and under these conditions, the
resonant charge exchange process is not entangled with the rotation of electron momenta, as in the case «a»
of the Hund coupling. The partial cross section of the resonant charge exchange process depends on quantum
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numbers of the colliding particles. The average cross sections weakly depend on the coupling scheme.

PACS: 31.10.+z, 31.25.-v

1. INTRODUCTION

The process of resonant electron transfer in slow
collisions of an ion and the parent atom results in tran-
sition of a valence electron from one core to another.
In the simplest case of the transition of an s-electron,
this process is determined by the interference of two
electron terms of the quasi-molecule consisting of the
colliding ion and the atom. Correspondingly, the prob-
ability of this transition is expressed through the energy
difference for the even and odd quasi-molecule states
and the cross section of this process [1]. In the case of
the transition of a p-electron involving an ion and an
atom with unfilled electron shells, the resonant charge
exchange process becomes more complex, because the
electron transfer can be entangled with the processes
of rotation of electron momenta and transitions be-
tween fine states of the colliding particles. One can
simplify the analysis of this process by constructing a
hierarchy of interactions in the quasi-molecule and thus
choosing a suitable case of the Hund coupling [2—-4] that
corresponds to certain quantum numbers of the quasi-
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molecule. Although this scheme is related to diatomic
molecules when the distance between the nuclei is fixed,
it can be extended to a quasi-molecule consisting of col-
liding particles [5-8]. According to the general method
by Nikitin [5-8], the trajectory is then divided into sev-
eral parts such that the Hund coupling of a certain type
is realized in each part. If the transition range between
different cases of the Hund coupling is narrow, one can
construct the wave function of colliding particles and
the S-matrix of the transition by sewing the wave func-
tions on different sides of the transition range [7]. This
allows one to separate different processes and to find
the probabilities for the variation of quantum numbers
of the colliding particles at a given collision trajectory.

This general scheme can be used in the analysis
of the resonant charge exchange process involving an
ion and an atom with unfilled electron shells when the
electron momenta can be coupled via different schemes,
and the resonant charge exchange process can therefore
be entangled with other processes (rotation of the elec-
tron momenta and transitions between fine structure
states) in different ways. Indeed, within the framework
of the classical Mulliken scheme of the momentum sum-
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mation [2], three types of interactions are introduced
for a quasi-molecule: the electrostatic interaction V,
is responsible for the energy splitting of different an-
gular momentum projections onto the molecule axis;
dr corresponds to the spin—orbit interaction and other
relativistic interactions; and the rotational energy or
the Coriolis interaction V,,; accounts for the interac-
tion between the orbital and spin electron momenta
with the rotation of the molecular axis. Depending on
the ratio between these interaction energies, one can
construct six cases of the Hund coupling [2—-4]; each of
these cases corresponds to a certain scheme of momen-
tum summation and is characterized by certain quan-
tum numbers of the diatomic molecule. These cases are
used as model ones in the analysis of some transitions
in atomic collisions [7-9].

For the resonant charge exchange in slow collisions,
the electron transfer from one core to another proceeds
at large distances between the colliding particles, where
interactions of different types are weak. This simpli-
fies the general analysis of the charge exchange process
and gives an additional experience in understanding
the momentum coupling. As a result of this analysis,
we find a number of interactions to be actually greater
than within the framework of the Hund scheme.
deed, the electrostatic interaction V, includes the ex-
change interaction V., inside the atom, which leads to
certain orbital momenta L of the atom and [ of the ion,
and to certain spins S and s of these atomic particles,
such that V., characterizes the energy splitting of states
with different quantum numbers LSIs. A long-range in-
teraction U(R) and the ion—atom exchange interaction
A(R) are added to this. In addition, the fine split-
ting of levels refers to the atom (d,) and ion (J;) sep-
arately, and competition between all these interactions
gives rise to many other cases of momentum coupling
compared to the Hund coupling scheme. In analyzing
this problem for real ion—-atom systems, we deal with
a restricted number of momentum couplings. Below,
we consider this problem for the resonant charge ex-
change of halogens and oxygen in the case where the
ions and atoms are found in the ground state and the
collision energies vary from thermal ones up to tens
of electronvolts (this energy range is of interest for a
low-temperature plasma).

In-

2. ASYMPTOTIC THEORY OF THE
RESONANT ELECTRON TRANSFER

We first formulate a general method to analyze this
problem. We use the asymptotic theory of the reso-
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Table 1.  The cases of Hund coupling
Hund case Relation Quantum numbers
a Ve dr > Vi A, S, Sy
b Ve > Viot > 4y A, S, Sy
c o > Ve > Vipr Q0
d Viot > Ve > 0y L,S, Ly, Sy
e Viot > 6p > Ve J, JN

nant charge exchange [9-12], where the electron trans-
fer has the tunnel character and large impact parame-
ters of collisions give the main contribution to the cross
section of this process. A reciprocal value of a typ-
ical impact parameter of collisions is a small param-
eter in the asymptotic theory of the resonant charge
exchange process. Expanding the cross section with
respect to this small parameter and restricting our-
selves by two expansion terms, we can express the ion—
atom exchange interaction potential and the cross sec-
tion through asymptotic parameters of the transferring
electron in an isolated atom and quantum numbers of
the ion and atom electron shells. In contrast to mod-
els, the asymptotic theory allows us to find the cor-
rect value of the cross section with an estimated accu-
racy. For p-electron transitions in the collision energy
range under consideration, this accuracy is better than
10 % [13, 14].

The asymptotic theory allows us to determine the
ion—atom exchange interaction potential. The cross
section of the electron charge exchange is then ex-
pressed through the exchange interaction potential for
given quantum numbers of the quasi-molecule consist-
ing of the colliding ion and atom at a given distance
R between them. In constructing this interaction po-
tential, we start from the Hund coupling scheme [2—4]
represented in Table 1 together with the quantum num-
bers of the quasi-molecule for each case of the Hund
coupling. We introduce the following notation: L is
the total electron angular momentum of the molecule,
S is the total electron spin, J is the total electron mo-
mentum of the molecule, n is the unit vector along the
molecular axis, N is the rotation momentum of nuclei,
A is the projection of the angular momentum of elec-
trons on the molecular axis, ) is the projection of the
total electron momentum J on the molecular axis, S,
is the projection of the electron spin on the molecular
axis, and Ly, Sy, and Jy are projections of these mo-
menta onto the direction of the rotation momentum N
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of the nuclei. We take this scheme as a basis in con-
sidering the momentum coupling of the quasi-molecule
consisting of a colliding ion and the parent atom.

We note two momentum coupling schemes for the
atom and ion [4,15, 16]. In the LS scheme, which is re-
alized under the condition V., > d,,0;, we have LM S
as the quantum numbers of the atom and Ims as the
quantum numbers of the ion, where L and [ are the
angular momenta, M and m are their projections on
the molecular axis, and S and s are the spins of the
atom and the ion respectively. In the j—j coupling
scheme for an individual atomic particle, which occurs
at Ve < 84,0;, we use JMj; as the atom quantum
numbers and jm; as the ion quantum numbers, where
J and j are the total electron momenta and M; and m;
are their projections on the molecular axis for the atom
and the ion respectively. These quantum numbers are
the basis for the limiting cases of electron terms of the
quasi-molecule.

The possible interaction potentials in the quasi-mo-
lecule under consideration are

V:ex-, UM = QMSM’
Qrmmq . Y
Um = T, A(R), 5i7 6&7 and VTOt'

We divide the electrostatic interaction V., in Table 1
into four parts: the exchange interaction V., inside
the atom and ion responsible for electrostatic splitting
of levels inside the isolated atom and ion with given
electron shells; the long-range interaction Ujs of the
ion with the quadrupole atom moment; the long-ran-
ge interaction U,, responsible for splitting of the ion
level; and the ion—atom exchange interaction potential
A that determines the resonant charge exchange cross
section. The fine splitting dy of levels in Table 1 is
written separately for the ion (d;) and the atom (d,).
Here, M and m are the projections of the atom and ion
angular momenta on the molecular axis, R is the ion—
atom distance, (Q;x is the tensor of the atom quadrupole
moment, and ¢;; is the quadrupole moment tensor of
the ion. As can be seen, a number of possible coupling
cases increases significantly in this description in com-
parison with the classical case. Of course, a small part
of these cases can be realized, and we verify this below
for certain cases of the resonant charge exchange.

To find the suitable momentum coupling scheme, we
evaluate the above ion—atom interaction potentials at
distances that determine the resonant charge exchange
cross section. Constructing the hierarchy of interac-
tions, we find the quasi-molecule quantum numbers in
this distance range and the partial cross sections cor-
responding to these quantum numbers. This allows us

to ascertain the momentum summation scheme in slow
ion—atom collisions with a resonant electron transfer.
We note that the character of momentum coupling in-
fluences the value of the average cross sections. Below,
we realize this operation for certain cases of ion—atom
collisions where the colliding ion and atom are found
in the ground electron states.

3. HIERARCHY OF ION-ATOM
INTERACTIONS FOR HALOGENS

We start with the resonant electron transfer involv-
ing a halogen atom and an ion in the ground electron
states,

Xt +X = X+XT, (2)

where X is the halogen atom. In this case, the atom
and ion ground states are (p°)2P and (p*)3P, respec-
tively, and all the interactions in (1) are therefore real-
ized in this case. In Table 2, we collect some parameters
of the colliding atomic particles in this case. We note
that the lower fine structure states include states with
the total electron momenta j = 2,1,0. The parameter
d; in Table 2 is the splitting of the 2P,~2Py ion lev-
els. Next, the value V., is the splitting between the
ground ion level 2P, and the level ' D, in the notation
of the LS momentum coupling scheme. Because the
ratio 0;/Ve, is small for all ions, the LS momentum
coupling scheme is valid in the ion, and we take it as a
basis.

As a characteristic of the resonant charge exchange
process, we take the average cross section o, of the
resonant charge exchange in the case «a» of the Hund
coupling [13, 14, 19], and the corresponding impact pa-
rameter Ry of collision is determined from the relation

ang%. (3)

In Table 2, we give the values of Ry (in units of the Bohr
radius ag) at the collision energies 0.1, 1 (in parenthe-
ses), and 10 eV (in square brackets). These energies
pertain to the laboratory reference frame, where the
atom is motionless and the parent ion has the energy
indicated. Using these values of Ry, we evaluate var-
ious interaction potentials and refer them to a given
collision energy. The value Uy, in Table 2 is equal to

Qoo — Q11 _ 6e2r2
R? 5R3

Um =Upo — U1 = (4)

where e is the electron charge and r is the distance
of a valence atomic p-electron from the nucleus inside

the atom. In Table 2, we list the corresponding values

5*
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Table 2. Parameters of halogen atoms and ions [17, 18]
F Cl Br I

8q, cm™! 404 882 3685 7603

8, cm L * 490 996 3840 7087

Vea, cn ™! 20873 11654 11410 13727
6i/Vex 0.023 0.085 0.34 0.52
Ry, ag 11.7(10.6)[9.54] 15.1(13.8)[12.3] 16.5(15.1)[13.6] 19.1(17.2)[15.8]
2, a3 1.54 4.06 5.22 7.20

Unr, cm™! 253(341)[467] 311(407)[575] 306(448)[546] 272(372)[481]
Unr/ba 0.63(0.84)[1.16] 0.35(0.46)[0.65] 0.08(0.12)[0.15] 0.036(0.049)[0.063]

Viot, con ™! 8.6(30)[106] 4.9(17)[60] 3.0(10)[36] 2.0(7.1)[25]

A(Rp), em™! 7.0(23)[78] 4.2(14)[46] 2.6(8.4)[29] 1.8(6.1)[21]

* Energy differences for levels of the states > P, and Py,

of Uy and the ratio Ups/d, that is usually less than
unity, and therefore the fine structure of level splitting
is important for processes involving halogens.

If the colliding particles move along straight trajec-
tories, the quasi-molecule rotation energy is given by

Vrot = 5 (5)

at closest approach and at the impact parameter Ry
of the ion—atom collision, where v is the relative ion—
atom velocity. According to the data in Table 2, the
rotation energy is smaller than the other interaction
potentials (Uas, 0;, dq). This determines the character
of momentum coupling in this case.

Based on the above analysis, we can construct a hi-
erarchy of interactions for the quasi-molecule consisting
of a halogen ion and the parent atom at the distances
between these particles that determine the cross section
of resonant charge exchange (2). The following hierar-
chy of interactions is valid for more or less all halogens
in the range of collision energies 0.1-10 eV:

Vex > 62'.,5,1 > UM > Umvvrot- (6)

In terms of the data in Table 1, this is an intermediate
case between cases «a» and «c» of the Hund coupling.
In addition, we evaluate the exchange ion-atom inter-
action potential A(R) using the formula for the reso-
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nant charge exchange cross section o, for the transi-
tion of an s-electron [1, 10, 11],

RZ
Top = 210 (7a)
2
where
1 ﬂ'RO
—[—A =0.2
oA/ o (Ro) = 0.28 (7b)

and v is the asymptotic parameter of the wave func-
tion of the transferred valence electron (A(R)
x exp(—yR)). From this, we can compare the exchange
interaction potential A(Rg) at the distance Rg (Eq. (3))
with rotation energy (5) of the quasi-molecule at the
impact parameter Ry of collision and the minimal dis-
tance between the colliding ion and atom,

2
A(Ry) = 0.28v, /% =0.22\/7Ro Vror.  (8)
0

A small parameter of the asymptotic theory is

1

R < 1. 9)
At collision energies of several electronvolts, we have
YRy ~ 10-15, and the above values are therefore com-
parable, A(Rg) ~ V,ot. The values of the exchange
interaction potential given in Table 2 confirm this state-

ment.
The hierarchy of interactions in (6) leads to the
quantum numbers LSJM jlsjm; of the quasi-molecule,
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where L and [ are the atom and ion angular momenta,
S and s are the atom and ion spins, J and j are the
total electron momenta of the atom and ion, and M
and m; are their projections on the molecular axis. The
wave function is then given by

L S J
UrsiMylsjm; = Z l ] X
MMsmmg M MS M‘]
l s ]
x[ J ]‘iLMSMswlmsms, (10)
m ms m;

where ® and ¢ are the respective wave functions of the
weakly interacting atom and ion; the atom (LM SMg)
and ion (Imsmg) quantum numbers are given with the
spin—orbit and other relativistic interactions neglected.

Guided by the hierarchy (6) of interactions, we now
find positions of the energy levels for the quasi-molecule
under consideration and apply this to the case of halo-
gen atoms. In the first approach, LSls are the quasi-
molecule quantum numbers, and in the case of halogen
atoms, we are restricted by the lowest electron terms
2P for the atom and 3P for the ion. The second ap-
proach gives the quantum numbers J and j of the quasi-
molecule with the splitting between the fine-structure
levels determined by the corresponding values d, and d;
for the isolated atom and ion. The third approach leads
to the quantum number M of the quasi-molecule, i.e.,
the projection of the total atom electron moment on
the molecular axis; the splitting between the levels with
different M is then determined by the interaction of
the ion charge and the atom quadrupole moment,

AU(M,) =
= <‘I’LSJMleSjm]‘ %‘ ‘IJLSJMleSjmj> =
2
=2 % | w oare ar |
M Mg S J

For the interaction of the halogen atom and the ion,
X(2P) + X*(3P), where X is the halogen atom, this

3

formula becomes

2
L S J
AU(JTMyjm;) = Vy [ 2 -
0 M, M,
r s g7 02
r
_ , U, :—a, 12
1 M, —1 MJ] o =3 (12

where Qs is the component of the quadrupole mo-
ment tensor of the atom, r, is the distance of the va-
lence electron from the nucleus, and the bar denotes
the average over electron positions in the atom.
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The fourth approach corresponds to the quantum
number m; of the quasi-molecule, with the interaction
potential between the ion and atom quadrupole mo-
menta given by

AU(JMyjmy;) =
2
1 L S J
== Z Qv l ]
R M Ms M,
2
I s j
X mim , 13
oL BN T

where ¢, is the component of the ion quadrupole
moment tensor. We note that the electron terms of
the quasi-molecule under consideration are degener-
ate with respect to the sign of the total momentum
projections. For the interaction of atomic particles,
X(2P) + X*(3P), where X is a halogen atom, this for-
mula can be rewritten as

AU(IMyjm;) r s g7
Vo B 0 M, MJ] -
r s g7 s ’

_[1MJ—1 MJ] lo m; mj]_

. 2
3 [ l s Jj ] 4

1 m;—1 my
where —

Vo = 4;;;; (15)

and the distances r, and r; pertain to the atom and
ion correspondingly.

As an example, we construct the lowest-energy lev-
els for the chlorine ion—atom system at R = 14aq that
characterizes the resonant charge exchange cross sec-
tion at the collision energy 1 eV (see Table 2). At
this distance, the energy of charge—quadrupole interac-
tion (Eq. (12)) and quadrupole—quadrupole interaction
(Eq. (15)) are Uy = 130 em~! and V5 = 0.6 cm™!. In
this case, we therefore have the following hierarchy of
interactions (6):

‘/ez > 5i76a > UM > Ayvrot > Um‘ (16)

In Table 3, we list the level energies E for chlorine
given by

E =6; 400+ U + 20, (17)

where ¢ is taken such that the lowest electron term
has zero energy E = 0. The quasi-molecule energies
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Table 3. The lowest energy levels E of the quasi-mo-

lecule CI*—Cl at the distance R = 14ao between the

nuclei. The statistical weight g pertains only to even
(or odd) quasi-molecule states

JMyj g AU(My), em™1! E, cm™!
33

552 20 —130 0
31

552 20 130 260
33

551 12 —130 696
31

551 12 130 956
33

550 4 —130 996
112 20 0 102
22

31

33 4 130 1256
11

551 12 0 1708
11

550 4 0 2009

in Table 3 pertain to the ground electron state of the
atom and ion, ie., L=1,1=1,5 =1, s = 1/2 for
this term. In this approximation, we include the quan-
tum numbers JM ;j for interacting particles; the states
with other quantum numbers, i.e., LSIs are character-
ized by higher energies. Indeed, the excitation energy
of the ion state ' Dy is 11654 cm~! and the excitation
energy of the ion state 1S, is 27878 em™!; these ion
states pertain to the same electron shell 3p*. A nonex-
cited electron shell of halogen atoms is characterized
by one electron term L = 1, s = 1/2, which simplifies
the analysis.

The data in Table 3 are obtained with the interac-
tion potentials A, V.., and U, neglected. These po-
tentials give additional quantum numbers for the quasi-
molecule, and therefore the accuracy of the data in Ta-
ble 3 is determined by these values: A(R) ~ Vo ~
~ 10 em™ ! and U,, ~ 1 em~!. In this approximation,
the statistical weight of the quasi-molecule states is

g=2-2(2j+1), (18)

where the first factor accounts for the degeneration
with respect to the sign of M, the second factor corre-
sponds to the separation of quasi-molecule states into
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odd and even ones, and this degeneration is therefore
removed by the exchange interaction A(R), and the
third factor in (18) accounts for the degeneration with
respect to m;, which is removed by all the neglected
interactions A, V,ot, and Uy,.

Thus, the above analysis of the interaction of the
halogen ion and atom at large separations shows that
the character of electron momentum coupling differs
from that of the Hund coupling scheme. Along with
the quantum numbers of electron shells of an isolated
atom and an ion in the framework of the LS coupling
scheme, the quantum numbers of the quasi-molecule
are JjM (the total electron momenta of the atom and
the ion and the projection of the total atom momen-
tum on the molecular axis). Other quantum numbers
are mixed due to the rotation energy V,.,;, exchange A,
and quadrupole-quadrupole interaction potentials U,
between the atom and the ion.

4. ION-ATOM EXCHANGE INTERACTION
FOR HALOGENS

We now determine the exchange ion—atom interac-
tion potential that allows us to evaluate the resonant
charge exchange cross section. For this, we represent
the wave function of the atom having n valence elec-
trons with the momentum [, in the framework of the
LS coupling scheme as [15, 16, 20]

(PLSMLMS(].,Q.,... ,n) =
1 - le 1 L
=—=P Gl%(len) | °
\/ﬁ lms;sucr l ‘ Heom ML
L5 S
X 2 1 1 smmsg 2,....,71, 19
[U e | P Dt 2, (19)

where ®, ¢, and ¢ are the respective wave functions
of the atom, the ion, and the valence electron with the
quantum numbers indicated; y and o are the projec-
tions of the angular momentum and spin of the valence
electron; the argument of the wave function indicates
the electrons contained by this atomic particle; the op-
erator P permutes the electrons; and the parentage co-
efficient G[%(l.,n) is responsible for addition of the
valence electron to the ion for construction of an atom
for given quantum numbers of these atomic particles.

The exchange interaction potential is given
by [8,12]

A(R) =2 <x111 ‘f]‘ \1/2> _

- 2<‘1’1 ‘ﬁ‘ ‘I’1> (U1 1] ®s), (20)
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where ¥, is the wave function of the quasi-molecule
with the valence electron located near the first core (the
atom is located near the first nucleus), ¥y corresponds
to the atom location near the second nucleus, and H
is the Hamiltonian of electrons. We note that an accu-
rate evaluation of this interaction requires the accurate
wave functions of the quasi-molecule that account for
the interaction of the valence electron with both cores
simultaneously; this is achieved in the framework of the
asymptotic theory. Using the general method to evalu-
ate the exchange interaction potential A(R) similarly
to the case «a» of the Hund coupling in [12, 14, 19, 21],
we obtain

A(R) =n (GES)? x

o Z le 1 L
!
u m' M
umm' MM’ s
oo’ msm.m!!
MSM/ m///m///
s s

" L S J Il s J o
M Mg DMy m ms; mj
1
" le 1 L |- 5 5 S -| "
uom" M [ 5

L s J
X X
M ML M,

Q o=
X

A (21)

We here account for the character of coupling of the
electron momenta in the quasi-molecule, such that the
atomic core quantum numbers Ism'm/ and the valence
electron atomic numbers lep%a are first summed in the
atomic quantum numbers LSMjp Mg, and the atom
quantum numbers are then summed over the quan-
tum numbers LSJM;, and the ion quantum numbers
lsmmg are summed over the ion quantum numbers [sj.
We sum or average over the other quasi-molecule quan-
tum numbers and use the relations

l S J l S Jj 1
1 " -
I gy 111 m mS m] m m m]

mmgm''m’)’ L

1 1 -
- s S - s S
> |z 2 -
crcr’m’sm'sl L g my MS o' m;’ MfS‘ |
= dmsmy,

for the Clebsch-Gordan coefficients. In Eq. (21), A, ,
is the one-electron exchange interaction potential that
corresponds to the case where a valence electron with
these quantum numbers is located in the field of two
structureless cores and has the same asymptotic wave
function as in real atoms. As a result, we obtain by
analogy with [6, 12, 14, 19, 21] that

A(lepyls, LS, JMj, R) = n (GES)® x

2
> I, 1 L] .
umM Mg Heom M
2
L S J
X[ ] Anu(R), (22)
M Ms My

where the argument contains the quantum numbers of
the quasi-molecule and the distance R between the in-
teracting ion and atom. This formula reduces the prob-
lem of the exchange interaction between an atom and
an ion with unfilled electron shells to the transition of
one electron between structureless cores. It is impor-
tant that the exchange interaction potential is indepen-
dent of the ion moment j.

The one-electron exchange interaction potential
Ay, , is given by [6, 8, 12, 22]

A u(R) = A2R?/ 1=l exp (—R7 - 1) X
gl

(20 +1)(le + |p))!
(le = |t [l ()1

(23)

It decreases with the increase of p as R4, Here, I,
and p are quantum numbers of the valence electron and
v and A are the parameters of the asymptotic wave
function of this electron. This formula contains the
first term of the asymptotic expansion over the small
parameter 1/vR for the ion—atom exchange interaction
potential at large distances between the nuclei.

From (22), we thus obtain the exchange interaction
potential involving the halogen atom X(2P) and its ion
X*(*P),

A(lep,ls, LS, JMyj, R) = 3A19(R) x
2 2
lelll ll 1/2 J]:
710 M M M Mjy—M My
_ 3A0(R)

2

112 J

2
(24
1 My—1 My

where we extract the dominant term in the sum in (22)
that is proportional to Ajg(R) (see Eq. (23)). In Ta-
ble 4, we give the values of the exchange interaction
potential for the ground electron states of the halogen
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Table 4.

The exchange interaction potential A(R) for the halogen atom and ion in the ground electron states,

CI(®*Psar,) + CIT(®P;), and different states of the fine structure JMjj for these particles. The total energy E of these
states (Table 3) refers to the distance R = 14ao between the nuclei and is obtained in neglecting the quadrupole—quad-

rupole ion—atom interaction and the rotation energy of the quasi-molecule

€T A2 exT A2 exr:s A2
JM;yj A(R) A, em! E, cm™! Tea: Teas Tea
e=0.1eV e=1eV e=10¢eV

33 3

552 §A0 87 0 110 92 76
31 1

552 §A0 29 260 93 7 62
33 3

551 §A0 87 696 110 92 76
31 1

551 §A0 29 956 93 77 62
33 3

550 §A0 87 996 110 92 76
11

552 Ag 58 1012 104 86 71
31 1

550 §A0 29 1256 93 7 62
11

551 Ag 58 1708 104 86 71
11

550 Ag 58 2009 104 86 71

atom X(?P;) and ion XT (*P;) with different fine-struc-
ture quantum numbers for these particles.

To demonstrate these results, we return to the
above example of the interaction C1(2P) + CI*(3P) at
the distance R = 14aqy between the nuclei. The energy
splittings between even and odd quasi-molecule states
are Ajg = 14 em ™! and Aj; = 2.0 em ™! if we consider
the cores structureless. Table 4 contains the values
of the exchange interaction potential under these con-
ditions for given quantum numbers of the interacting
particles. We ignore the quadrupole—quadrupole ion—
atom interaction and the rotation energy; the energy
of the even or odd state with given quantum numbers
is E+ A(R)/2. The data in Table 4 confirm the above
hierarchy of interactions between halogen atoms and
their ions.

5. RESONANT CHARGE EXCHANGE FOR
HALOGENS

The above results allow us to determine the reso-
nant charge exchange cross section in slow collisions of
halogen atoms and their ions in the ground electron

states. To determine the partial cross section of the
resonant charge exchange, we use the asymptotic for-
mula [10, 11] (see Eq. (8))

TR? 1 /7R
Ores = TO where 5,/2—7‘]A(RO) =0.28, (25)

where v is the collision speed and the asymptotic coeffi-
cient v is expressed through the atom ionization poten-
tial I as y = v/2I in atomic units (also see Eq. (23)).
Equation (25) is valid for s-electron transitions or in
the case where electron transfer transitions for states
with given quantum numbers can be separated from
other transitions. In particular, the partial cross sec-
tions of resonant charge exchange are given in Table 4
for chlorine.

We introduce the resonant charge exchange cross
section averaged over fine states assuming the initial
population of atom and ion fine states to be propor-
tional to their statistical weights,
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Table 5.

The average cross sections (in 107'° c¢m?) for the halogen atom and ion in the ground electron states,

X(*P) 4+ X*(3P) at the indicated collision energies ¢ in the laboratory reference frame for hierarchy (6) of interactions
and in the case «a» of the Hund coupling [13, 19] (in parentheses)

e=0.1eV e=1eV e=10eV
F (y=1.132, A=1.6) 6.2 (6.0) 5.1 (4.9) 4.1 (4.0)
Cl (y=0.976, A=1.8) 10 (10) 8.7 (8.4) 7.1 (6.9)
Br (y = 0.932, A = 18) 13 (12) 11 (10) 8.9 (8.2)
I(y=0.876, A =1.9) 16 (16) 14 (13) 12 (11)

+1 31 +1 11 (26)
30'5@ 55 30'310 279 )

where the atom quantum numbers .J and M are given
in the partial cross section argument. If we expand the
resonant charge exchange cross section with respect to
the small parameter 1/ R, keep only two terms in the
expansion, and take Eq. (24) into account, we can write
Eq. (25) for average cross section (26) as

2
Ores = F—RO., (27a)
2
where
2.
—7 W—ROAOO(RO) =0.28 (27h)

v 2y

and Ago(R) is the ion—atom exchange interaction po-
tential for the transferred s-electron with the given
asymptotic parameters v and A of its wave function.
This value is related to the one-electron exchange in-
teraction potential Ajq(R) for a transferred p-electron
by A1g(R) = 3Ago(R) in accordance with (23). Table 5
contains the average cross sections of resonant charge
exchange for halogen atoms and their ions in the ground
electron state, X(2P) 4+ X*(3P), for hierarchy (6) of
interactions for the quasi-molecule constituted by the
colliding atom and ion. These cross sections practically
coincide with the average cross sections for the ground
fine states of the colliding particles, i.e., for the process
X(*Ps)5) + XT(*P;). Thus, averaging over fine states
of the ground electron states and over momentum pro-
jections of the ground fine state of colliding particles
leads to results that are close to each other. In addi-
tion, these data are compared with the cross sections in
the case «a» of the Hund coupling taken from [13, 14].
As follows from the comparison, the real hierarchy of
interactions in a quasi-molecule increases the resonant

charge exchange cross section by several percent com-
pared with the case «ay» of the Hund coupling.

One more peculiarity of the resonant charge ex-
change for momentum coupling follows from hierarchy
(6) of interactions. The exchange interaction poten-
tial that determines the cross section of this process
is given by (24), where we restrict to only a transi-
tion of a p-electron with zero momentum projection
on the molecular axis. As follows from this formula,
such states are present in any fine-structure state, and
we can therefore neglect the transition of the electron
whose momentum projection on the molecular axis is
unity. We note that in contrast to the case «a» of the
Hund coupling, where rotation of the molecular axis
leads to transitions between states with different mo-
mentum projections on the molecular axis, such transi-
tions are absent in the case of halogen atoms and ions
because of separation of fine-structure states by energy.
Next, we evaluate the resonant charge exchange cross
section with the momentum coupling of the transferred
electron with momenta of atomic cores taken into ac-
count. We can estimate the error in the cross sections
if we compare the cross sections with and without the
momentum coupling taken into account. We take a
p-electron that has the same asymptotic parameters as
valence electrons of halogen atoms, but is located in the
field of structureless cores. For the resonant charge ex-
change cross section in chlorine at the respective ener-
gies 0.1, 1, and 10 eV, we then obtain the values 87, 71,
and 57 A2 instead of those in Table 5. We see that ig-
noring the coupling between the momenta of the trans-
ferred electron and atomic cores leads to a significant
error.

Thus, it follows from the above analysis that in the
course of collision and electron transfer, a quasi-mole-
cule consisting of the colliding halogen ion and atom
is characterized by the quantum numbers JM;j, and
transitions between these states are absent during the
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Table 6.  The interaction potentials for the system O (*S3/5) — O(*Pyas,) at R = 12a0 and the partial cross sections
oex of resonant charge exchange at the indicated collision energy ¢
, A2 A2 , A2
IMy | a(IMy) | AUMy) | B, em™ | A, em™! Tea: Teas Tea:
e=0.1¢eV e=1eV e=10¢eV
4
22 -1 §A1 0 6.8 63 51 40
2
21 1/2 §A0 153 20 7 62 49
8
20 7/6 §A0 220 27 81 66 52
2
11 1/2 §A0 311 20 7 62 49
2
10 -1/2 §A1 209 4.4 56 44 34
4
00 1/3 §A0 363 13 72 57 45

electron transfer. The partial cross sections of resonant
charge exchange depend on quantum numbers, whereas
the average cross sections for the correct scheme of mo-
mentum coupling and in the case «a» of the Hund cou-
pling are close to each other.

6. RESONANT CHARGE EXCHANGE FOR
OXYGEN

We now consider one more example of resonant
charge exchange with a p-electron transition,

0+ (1S) + O(P) = O(*P) + 0F(1S),  (28)

involving the oxygen atom and ion in the ground elec-
tron states. Constructing the hierarchy of interactions
(1) in this case, we take the previous case in Eq. (6)
as a basis, with the quantum numbers JM; of the
quasi-molecule consisting of the colliding particles. In
accordance with (12), the interaction potential of the
ion charge with the atom quadrupole moment is then
given by

22
AU(JMj) = —2% x
(JMy) e
2 2
1 1 J 1 1 J
x |2 — =
0 My My, 1 M;—1 M,
2r2
= —2a(JMy), (29

where we use the same notation as in (12); the val-
ues a(JMy) are contained in Table 6. It follows from
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(22) that instead of Eq. (24) for the ion—atom exchange
interaction potential for halogens, the exchange inter-
action potential for oxygen is given by

A(JM; R) =

4 1
_gzu:lu M;

with the coefficients in this formula given in Table 6.
We note that the excitation energies of oxygen atom
fine states from the ground fine state 3 P, are 158 cm !
for the state *P; and 220 cm™! for the state P .
These values are comparable to the long-range ion—
quadrupole interaction potential (29) at distances that
give the main contribution to the resonant charge ex-
change cross section. Hence, we have an intermedi-
ate case of momentum coupling for oxygen, and in the
above halogen example with §, > AU, the quantum
numbers of the quasi-molecule are JM ;j, while in the
other limiting case where §, < AU, the quantum num-
bers of the quasi-molecule are JMj (where M and M
are the projections of the orbital and total atom mo-
mentum on the quasi-molecule axis). We consider the
first limiting case below; Table 6 contains the values of
the quasi-molecule energies E calculated in accordance
with Eq. (17), where we account for the fine-structure
splitting of levels and charge-quadrupole ion—atom in-
teraction in the limit 6, > AU. The energies are taken
at the ion—atom distance R = 12aq that correspond-
ing to the impact parameters typical of the resonant
charge exchange cross section at the collision energy

2

1 J
Alu(R)v

o (30)
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Table 7.

The ion—atom exchange interaction potential for the quasi-molecule O*(*S3,,) — O(*Py) with its quantum

numbers given by J and M (the total atom momentum and the projection of the atom orbital momentum on the molec-

ular axis) and the partial resonant charge exchange cross sections o, for the indicated quantum numbers and collision

energies ¢ in the laboratory reference frame

ex: AQ ex A2 ex: AQ
JM A(JM;) Tea: Tea: Ter:
e=0.1eV e=1¢eV e=10¢eV
2
20 KOAH 69 56 40
1
21 KOAH) 84 68 55
4
10 §A11 63 51 45
2
11 §A10 77 62 49
4
00 §A11 51 41 31
2
01 §A10 63 50 38

about 1 eV. We note that rotation energy (5) is 29 cm ™!

under these conditions and exceeds or is comparable to
the exchange interaction potential.
The average resonant charge exchange cross sec-
tion is
2

Oex = T 0ex

9

+ ~Oex

9

+ ~Oex

(22) + 2

(21) (20) +

+ ~Oex

9

+ ~Oex

9

+ ~Oex

~0ea(11)

(10) (00), (31)
where the quantum numbers of the fine-structure atom
state are given in parentheses, and we assume the popu-
lation of these states to be proportional to their statis-
tical weights. If we neglect the electron transitions due
to rotation of the molecular axis, we obtain by analogy
with Eqs. (25) and (27) that the average cross section
is given by

mR?
T',

2.9 7TR()
A =0.2 2
U(Rov)l/”/ 2 00(Ro) = 0.28 (32b)

and we use the same notation as in (25) and (27). Ave-
raging the cross sections in Table 6 in accordance with
(31) and (32) gives the values 71, 57, and 45 A2 for
the average cross section of resonant charge exchange
at the respective collision energies 0.1, 1, and 10 eV.
On the other hand, the respective cross sections in the

(32a)

Ores =

where
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case «a» of the Hund coupling are given by 73, 60,
and 48 A2 [13,14]. Similarly, for the partial cross sec-
tions for the ground fine-structure state, i.e., for the
process OF (1S3/5) + O(®P,), we obtain the values 72,
55, and 46 A2 at the respective collision energies 0.1, 1,
and 10 eV the difference of these average cross sections
from the above average cross sections does not exceed
their accuracy. Next, if we ignore the coupling of the
transferred electron with cores, i.e., if we consider the
transition of a p-electron between structureless cores at
the same asymptotic parameters of the electron wave
function as in the above cases, we obtain the values 64,
51, and 40 A2 for the average cross sections of resonant
charge exchange at the indicated collision energies.

The other limiting case of the interaction hierar-
chy, 6, < Up, between the fine splitting of atom lev-
els and the ion—atom quadrupole interaction potential
leads to the molecular quantum numbers JM j, where
M is the projection of the atom angular momentum on
the quasi-molecule axis. In this limiting case, Eq. (22)
for the ion—atom exchange interaction potential for pro-
cess (28) becomes

2
A(R) = g > l L ] “
uMs L H M—p M
2
1 1
y 4 Auu(R), (33)
M Mg Mg+ M
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Averaging the cross sections in Table 7 over fine states
of the ground electron state gives the values 70, 56, and
44 A? for the average cross section of resonant charge
exchange at the respective collision energies 0.1, 1, and
10 eV. For the ground fine state J = 2, these values
are 79, 64, and 50 A2, respectively. In this case, the
average cross section differs from that for the lowest
fine state. Next, with the logarithmic dependence of
the cross section on the collision velocity taken into ac-
count, we obtain that instead of (32), the cross section
averaged over fine states is given by

TR2
Ures—TOa (343‘)
where
2.6 7TRO
Ago(Rg) = 0.28 34b
v(Ro)/3 || 2y o0 (o) ’ (34b)

which differs from Eq. (32) only slightly. We find that
the average cross sections are close to those for the case
«a» of the Hund coupling. But the partial cross sec-
tions can be different in these cases.

7. CONCLUSION

Studying the character of momentum coupling for
the resonant charge exchange process in slow collisions,
we have found that the number of real cases of mo-
mentum coupling is considerably larger than that fol-
lowing from the classical Hund scheme of momentum
coupling. Constructing the hierarchy of interactions
for the quasi-molecule consisting of the colliding ion
and atom has allowed us to find a suitable scheme of
momentum coupling. The strongest interaction for not
heavy atoms is the exchange interaction of electrons
inside these atomic particles, and therefore the quasi-
molecule quantum numbers for the ion and atom elec-
tron shells are LSIs (the orbital momentum and spin of
the atom and the same quantum numbers for the ion).
For halogen and oxygen, the rotation energy V,.,; of col-
liding particles is small compared to the fine splitting
of the atom (J,) and ion (4;) levels; it is also small com-
pared to the long-range charge—quadrupole interaction
U between the ion and the atom. Hence, the resonant
charge exchange proceeds at certain quantum numbers
JMyj or JMj depending on the ratio 6,/U (where J
and j are the total atom and total ion momenta and
M and M are the projections of the atom orbital and
total atom momenta on the quasi-molecule axis). This
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character of momentum coupling does not correspond
to cases in the Hund coupling scheme.

In contrast to the case «a» of the Hund coupling,
where the electron transfer process is entangled with
the rotation of the atom and ion orbital momenta, the
resonant charge exchange process for halogen and oxy-
gen proceeds separately for each fine-structure state.
This increases the accuracy of evaluation of the elec-
tron transfer cross section. The resonant charge ex-
change cross section depends on the initial quantum
numbers of the quasi-molecule; according to the anal-
ysis for halogens and oxygen, the cross sections in the
case «a» of the Hund coupling scheme and for the real
momentum coupling are close to each other.
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