ОДНОПАРАМЕТРИЧЕСКИЕ ЗАВИСИМОСТИ СПЕКТРОВ, ДЛИН РАССЕЯНИЯ И КОЭФФИЦИЕНТОВ РЕКОМБИНАЦИИ В СИСТЕМЕ ТРЕХ БОЗОНОВ

Ф. М. Пеньков*

Объединенный институт ядерных исследований 141980, Дубна, Московская обл., Россия

Поступила в редакцию 4 февраля 2003 г.

Исследуется модель двухполюсной парной t-матрицы для описания трехбозонных систем при условии $r_0/a_0 \ll 1$. Положение второго полюса на нефизическом листе рассматривается как параметр интегрального уравнения Фаддеева. Получено хорошее согласие с расчетами, выполненными для реалистических потенциалов, и предсказаны не рассчитанные ранее параметры взаимодействия трех бозонов.

PACS: 03.65.Nk, 34.10.+x

1. ВВЕДЕНИЕ

Открытие слабосвязанного состояния двух атомов гелия [1] и проблемы устойчивости бозе-конденсата атомов щелочных металлов (см., например, [2]) инициировало всплекс расчетов, касающихся свойств трехчастичных систем, определяемых парным взаимодействием с большой длиной рассеяния a_0 по сравнению с радиусом действия парных сил r_0 :

$$\frac{r_0}{a_0} \ll 1. \tag{1}$$

Практическая значимость исследования таких трехчастичных систем сопровождается значительными трудностями при проведении численных расчетов. Это связано с необходимостью брать очень большие расстояния для фиксирования асимптотического поведения волновой функции трехчастичной системы. И если существует целый ряд работ по расчету спектра трех атомов гелия (см., например, работы [3] и ссылки в них), то расчетам длин рассеяния атома гелия на димере гелия посвящены единичные публикации [3, 4]. Более того, расчеты, использующие разные границы области численного решения, дают различные значения длин рассеяния [4]. Еще большие трудности возникают при расчетах коэффициентов рекомбинации, которые определяют устойчивость бозе-конденсата.

Указанные выше трехчастичные системы вызывают интерес не только из-за практической значимости, но и из-за близости параметров двухчастичного взаимодействия к условиям проявления эффекта Ефимова [5]. В частности, величина $\ln(|a_0|/r_0)/\pi$, определяющая количество ефимовских уровней в трехчастичной системе для гелий-гелиевого взаимодействия, примерно равна 0.9, что оставляет возможность аномального поведения второго связанного состояния тримера гелия при уменьшении глубины парного взаимодействия. Действительно, численное моделирование такой ситуации приводит к увеличению (по модулю) энергии возбужденного состояния указанной системы [6]. Поэтому система трех атомов гелия является первой физической системой трех частиц с равными массами, свойства которой определяются эффективным автомодельным взаимодействием пропорциональным $1/R^2$ с константой связи $-\gamma^2$, не зависящей от деталей парного взаимодействия [5]. Параметры парного взаимодействия лишь ограничивают область действия такого эффективного потенциала: $r_0 \ll R \ll |a_0|$. Очевидные свойства решений в этом потенциале указывают на определяющее положение одного безразмерного параметра $|a_0|/r_0$. Если он стремится к бесконечности, то количество связанных состояний в трехчастичной системе тоже стремится к бесконечности. В

^{*}E-mail: penkov@thsun1.jinr.ru

частности, при $|a_0| \to \infty$ спектр сгущается к нулю, определяя собственно эффект Ефимова [5], а при $r_0 \to 0$ спектр неограничен снизу [7], что эквивалентно падению на центр [8]. В работе [9] было показано, что интегральные уравнения для трехчастичных систем с нулевым радиусом действия парных сил [10] не имеют единственного решения и определяются одним свободным параметром. Такая ситуация определила возможную процедуру описания системы путем фиксирования свободного параметра по известной спектральной точке [9]. Эта идея неоднократно использовалась для описания реальных физических систем. В частности, в последние годы в рамках эффективной теории поля (EFT) были построены феноменологические трехчастичные уравнения, которые включали свободный параметр сразу, на основании дополнительного условия сходимости ряда EFT [11]. Использование трехчастичных уравнений с нулевыми радиусами парных сил для описания реальных физических систем неявно предполагает малость поправок из-за конечного радиуса. Однако в настоящее время никаких строгих утверждений о величине поправок за счет конечного отношения $|a_0|/r_0$ не существует. Поэтому в данной работе реализована схема рассмотрения трехчастичных систем, в которой параметром является эффективный радиус парного взаимодействия. При этом основные этапы решения задачи остаются прежними. Эффективный радиус рассматривается как параметр в интегральных уравнениях Фаддеева и подбирается так, чтобы совпадал один из двух уровней в системе трех атомов гелия (тример). Далее вычисляется второй уровень и длина рассеяния атома гелия на связанной паре двух других. Расчеты, проведенные по такой схеме, согласуются, как будет показано ниже, с результатами расчетов с использованием дифференциальных уравнений Фаддеева в пределах нескольких процентов. После этого вычисляются коэффициенты рекомбинации.

Для того чтобы эффективный радиус явно входил в уравнения Фаддеева, в настоящей работе используется двухполюсная парная $t(p, p'; p_0^2/m)$ -матрица. При этом один ее полюс отвечает связанному состоянию пары, а положение второго определяет эффективный радиус. В частности, при использовании парного сепарабельного взаимодействия в виде потенциала Ямагучи

$$v(p, p') = -\frac{8\pi}{m} \frac{\beta(\beta + \kappa)^2}{(\beta^2 + p^2)(\beta^2 + p'^2)}$$
(2)

двухчастичная $t(p, p'; p_0^2/m)$ -матрица имеет полюсы

при $p_0 = i\kappa$ и $p_0 = -i(2\beta + \kappa)$. Здесь p — импульс относительного движения, m — масса атома, $\kappa = \sqrt{-m\varepsilon}$ — волновое число состояния димера с энергией ε , а β определяет параметры разложения эффективного радиуса:

$$a_0 = \frac{2(\beta + \kappa)^2}{\beta\kappa(\kappa + 2\beta)}, \quad r_0 = \frac{\kappa^2 + 2\beta\kappa + 3\beta^2}{\beta(\beta + \kappa)^2}$$

Отметим, что при $\beta \gg \kappa$ длина рассеяния $a_0 \approx \kappa^{-1}$, а эффективный радиус $r_0 \approx 3/\beta$. Предел нулевого радиуса достигается устремлением β к бесконечности. Из-за явной связи β с эффективным радиусом именно эта величина будет использоваться ниже как параметр задачи.

2. ДЛИНА РАССЕЯНИЯ И СВЯЗАННЫЕ СОСТОЯНИЯ ТРИМЕРА ГЕЛИЯ

Для нахождения энергий связанных состояний трех атомов гелия и амплитуд упругого рассеяния атома гелия на димере гелия (Не₂) ниже энергии развала решались уравнения Фаддеева с сепарабельными парными потенциалами (2). Техника построения и симметризации уравнений Фаддеева в указанном случае многократно описана (см., например, монографию [12]). В следующем разделе приведена схема построения уравнения для амплитуды неупругого перехода. Для сравнения будут приведены и основные этапы вывода уравнения для амплитуды упругого рассеяния. Здесь лишь отметим, что используется схема, рассмотренная в работе [13]. В рамках этой схемы интегральные уравнения для амплитуды рассеяния бозона на связанном состоянии двух других имеют простой квазидвухчастичный вил:

$$f(k_i, k_0) = V_0^{eff}(k_i, k_0) + \frac{2}{\pi} \int_0^\infty \frac{V_0^{eff}(k_i, k)k^2 dk}{k^2 - (Z - \varepsilon)4m/3} f(k, k_0), \quad (3)$$

где

$$Z = \frac{3k_0^2}{4m} + \varepsilon + i0$$

— полная энергия системы, \mathbf{k} — импульс относительного движения частицы и связанной пары, а V_0^{eff} — S-волновая проекция эффективного потенциала. Для парного взаимодействия Ямагучи трехчастичный эффективный потенциал имеет вид

$$V^{eff}(k_i, k_j) = \frac{16}{3} \frac{(\beta + \kappa)^2 \beta S(k_i)}{(\beta^2 + (\mathbf{k}_j + \mathbf{k}_i/2)^2) \left(-mZ + k_i^2 + k_j^2 + \mathbf{k}_i \cdot \mathbf{k}_j\right) (\beta^2 + (\mathbf{k}_i + \mathbf{k}_j/2)^2)},\tag{4}$$

где введены обозначения:

$$S(k) = (\beta + a_k)^2 \frac{\kappa + a_k}{2\beta + \kappa + a_k},$$
$$a_k = \sqrt{-m\left(Z - \frac{3k^2}{4m}\right)}.$$

Заметим, что при $\beta \to \infty$ потенциал (4) остается конечным, а уравнение (3) переходит в уравнение Скорнякова–Тер-Мартиросяна [10].

Длина рассеяния вычислялась двумя способами для возможности оценки аккуратности разложения эффективного радиуса: как решение предельного уравнения при $k_0 = 0$ и как предел решения (амплитуды) $a^{(3)} = f(k_0, k_0)$ при $k_0 \to 0$. В задаче на связанное состояние решается однородное уравнение с таким же ядром. Уравнение (3) решалось численно по схеме, приведенной в работе [14], с точностью вычисления приведенных ниже параметров не хуже шести значимых цифр. Такая точность достигается алгоритмом с плавающей сеткой дискретизации подынтегрального выражения. Способ выбора сетки для численного решения интегрального уравнения типа $f = V + V g_0 f$ с вполне непрерывным ядром основывается на предварительном оценочном интегрировании величины Vg₀V с заданной точностью. Это можно сделать, поскольку для компактных уравнений величина f является более «гладкой» функцией, чем V. Подробности выбора класса функций, для которых достигается единственное решение, можно посмотреть в монографии [12].

Как уже указывалось выше, величина β рассматривалась как параметр задачи. Ее значение подбиралось так, чтобы один из уровней тримера гелия совпадал с уровнем, ранее рассчитанным другими авторами [3, 15] с использованием реалистических потенциалов Азиза: HFD-B [16], LM2M2 [17], SAPT [18], SAPT1 [18], SAPT2 [18]. Поскольку тример гелия имеет два связанных состояния, настоящие расчеты проводились в привязке и к первому, и ко второму уровням. Результаты вычислений показаны в таблице. В общих строках приведены типы парных потенциалов с указанием энергии связи димера. При этом для потенциалов HFD-В и LM2M2 энергия связи димера рассчитывалась автором, а для потенциалов типа SAPT эти значения взяты из работы [15]. Ссылки в колонке «метод» показывают, откуда бралась информация для подгонок основного E_1 или возбужденного E_2 состояний тримера, а цифры «1» и «2»

указывают, под какой уровень, E_1 или E_2 , выбирался параметр β во второй колонке. Заметим, что в работе [3] приведены данные и по энергиям связи тримера гелия, и по длинам рассеяния атома гелия на димере, тогда как расчеты энергий связи тримера и длин рассеяния для потенциалов SAPT приведены в разных публикациях: соответственно, в [15] и [4]. Для более легкого чтения подогнанный уровень в таблице опускался. Колонка со значениями С относится к результатам следующего раздела и будет пояснена ниже. Результаты расчетов, приведенные в таблице, показывают неплохое согласие для столь простой модели описания. Так, максимальная погрешность в описании положения основного состояния при привязке к возбужденному уровню составляет 6.5%, а в описании возбужденного состояния при привязке к основному уровню — 2.2 %. Согласие же результатов по длинам рассеяния, полученных при привязке к возбужденному состоянию, с результатами вычислений работы [4] столь хорошо (относительная ошибка меньше 1 %), что может служить критерием аккуратности вычислений этих величин. Напомним, что различие длин рассеяния, приведенных авторами в работах [3] и [4], возникает из-за разных границ области численного решения дифференциальных уравнений Фаддеева [4].

Высокая точность вычисления амплитуды рассеяния позволяет сделать выводы о возможности и области действия квазидвухчастичного разложения эффективного радиуса:

$$k_0 \operatorname{ctg} \delta(k_0) = -\frac{1}{a^{(3)}} + \frac{r_{eff} k_0^2}{2} + \dots$$

Здесь δ — фаза упругого рассеяния атома гелия на димере в S-волне, а r_{eff} — эффективный радиус рассеяния. Это разложение по четным степеням импульса часто используется при анализе низкоэнергетического рассеяния и справедливо для достаточно быстро убывающих потенциалов (см., например, [19]).

Для демонстрации импульсной зависимости функции $k_0 \operatorname{ctg} \delta(k_0)$ вычислялись первые и вторые производные. В качестве примера был выбран потенциал HFD-В. Здесь не приводится график этой функции и ее первой производной из-за их малой информативности. Укажем лишь, что с точностью численного счета коэффициент перед линейным слагаемым в разложении $k_0 \operatorname{ctg} \delta(k_0)$ равен нулю. На рис. 1 показан график второй производной,

Рис. 1. Зависимость $r(k_0)$. Пояснения в тексте

$$r(k_0) = \frac{d^2(k_0 \operatorname{ctg} \delta(k_0))}{dk_0^2}$$

которая совпадает с эффективным радиусом при $k_0 \rightarrow 0$.

На рис. 1 хорошо видно, что параболическая импульсная зависимость вблизи нуля (примесь k^4) меняется в области 10^{-3} – $4 \cdot 10^{-3}$ Å⁻¹ на ярко выраженную линейную зависимость вплоть до импульсов порядка $4 \cdot 10^{-3}$ Å⁻¹. Таким образом, область разложения по целым степеням энергии не превышает 10^{-5} K, что не позволяет описать амплитуду рассеяния атома гелия на димере простым полюсным соотношением

$$f(k) = \frac{1}{-1/a + r_{eff}k^2/2 - ik}$$

(см., например, [20]). Более того, подставляя значения $r_{eff} = 62.6$ Å и $a^{(3)} = 121.58$ Å в это выражение, можно убедиться, что амплитуда имеет полюсы не при энергии связи тримера, а при энергиях, содержащих и действительную, и мнимую части. Заметим, что подстановка в выражение для амплитуды параметров разложения эффективного радиуса для парного столкновения атомов гелия (потенциал HFD-B) $a_0 = 88.601$ Å и $r_0 = 7.278$ Å дает положение полюса с относительной погрешностью $4 \cdot 10^{-5}$.

3. КОЭФФИЦИЕНТЫ РЕКОМБИНАЦИИ

Коэффициент рекомбинации α связан с количеством переходов $3 \rightarrow 2 \ (1 + 1 + 1 \rightarrow 2 + 1)$ в единицу времени из единичного объема соотношением αn^3 , где n — концентрация атомов. При этом по условию определения полная энергия системы трех тел Z = 0.

Особый интерес к процессам рекомбинации атомов при низких температурах связан с тем, что это явление разрушает бозе-конденсацию. Вместе с тем существует значительная неопределенность в расчетах этого коэффициента рекомбинации. Так, в работе [2] делается утверждение, что безразмерный коэффициент C, который вводится из размерных соображений:

$$\alpha = C \frac{a_0^4 \hbar}{m},$$

при выполнении условия (1) является универсальным для всех систем и равен 3.9. Авторы работы [21] заметили, что такую универсальность обеспечить невозможно, и дали разброс значений C = 0-65. В работе [22] в рамках ЕFT-модели приводится феноменологическая формула, параметры которой определяются из интегрального уравнения модели EFT:

$$C = C_{max} \cos^2[s_0 \ln(a_0 \Lambda) + \delta],$$

$$C_{max} = 67.9 \pm 0.7, \quad \delta = 1.74 \pm 0.02.$$
(5)

В этой формуле $s_0 \approx 1.0063$, а Λ — параметр теории и может быть определен по процедурам, приведенным выше, то есть из сравнения с расчетами энергии связи или длин рассеяния для трехчастичных систем.

Нашей задачей было нахождение решения из точных трехчастичных уравнений Фаддеева и проверка его асимптотического поведения при $\beta \to \infty$ $(r_0 \to 0)$.

Коэффициент рекомбинации может быть записан через амплитуду процесса $3 \rightarrow 2$ как

$$\alpha = \pi \frac{k_f}{m} |f_{3\to 2}|^2,\tag{6}$$

где $k_f = \sqrt{4/3}\kappa$. Заметим, что это выражение представляет собой двухчастичный поток в выходном канале, умноженный на коэффициент 1/6, который возникает при учете количества тройных комбинаций.

Уравнение для амплитуды упругого рассеяния (3) было приведено без вывода, поэтому ниже будет показана схема вывода интегрального уравнения Фаддеева для амплитуды неупругого перехода

HFD-B, $\varepsilon = -1.685411 \text{ MK}$					
Метод	$\beta, Å^{-1}$	E_1, \mathbf{K}	E_2 , мК	$a^{(3)}, \mathrm{\AA}$	C
1	0.3305		-2.7899	116.60	0.977
2	0.3200	-0.12597		121.58	0.704
[3]		-0.1325	-2.74	135 ± 5	
[4]				121.9	
LM2M2, $\varepsilon = -1.303483 \text{ MK}$					
1	0.3305		-2.3163	109.48	2.513
2	0.3220	-0.12070		114.25	2.145
[3]		-0.1259	-2.28	131 ± 5	
[4]				115.4	
SAPT, $\varepsilon = -1.898390 \text{ MK}$					
1	0.33111		-3.0501	118.23	0.521
2	0.31730	-0.12763		124.35	0.276
[15, 4]		-0.13637	-2.986	123.7	
SAPT1, $\varepsilon = -1.732405 \text{ MK}$					
1	0.33130		-2.8507	116.74	0.868
2	0.31785	-0.12539		123.00	0.554
[15, 4]		-0.13382	-2.790	122.4	
SAPT2, $\varepsilon = -1.81500 \text{ MK}$					
1	0.33130		-2.9507	117.51	0.686
2	0.31735	-0.12638		123.86	0.396
[15, 4]		-0.13516	-2.887	123.1	

Результаты расчетов энергий связанных состояний тримера гелия, длин рассеяния атома гелия на димере гелия и коэффициентов рекомбинации для атомов гелия. Пояснения в тексте

 $3 \rightarrow 2$ в случае произвольного сепарабельного взаимодействия в паре $v = |\nu\rangle\langle\nu|$. Условимся обозначать *in*-состояние непрерывного спектра индексом «0», а состояние со связанной парой — греческим индексом. При этом греческий индекс для импульсов будет определять один из трех наборов координат Якоби. Ниже будут использоваться интегральные соотношения типа Липпмана-Швингера, способы вывода которых приведены во многих монографиях (см., например, [19]). Для того чтобы подчеркнуть общность построения уравнений для упругих и неупругих процессов, будем по мере возможности писать общие уравнения. Например, для переходов из непрерывного спектра и из подсистемы с номером 1. Поэтому определим канальную Т-матрицу соотношением (см. [19]) с двойным индексом в круглых скобках:

$$T_{\alpha,(0,1)} = \langle \varphi_{\alpha} | \bar{v}_{\alpha} | \Psi^+_{(0,1)} \rangle,$$

где \bar{v}_{α} — стандартное обозначение суммы парных потенциалов за исключением взаимодействия, связывающего подсистему α , $|\Psi^+_{(0,1)}\rangle$ — волновая функция трех частиц в непрерывном спектре для индекса «0» или волновая функция трех частиц со связанной парной подсистемой в *in*-состоянии, $\langle \varphi_{\alpha}|$ — волновая функция связанного состояния пары в конечном канале. Ниже для упрощения записи квантовые числа состояний в непрерывном спектре будут опускаться. В частности, состояние непрерывного спектра двух взаимодействующих частиц в канале α будет обозначаться $|\varphi^+_{\alpha}\rangle$.

Из-за тождественности частиц амплитуда неупругого перехода выражается через сумму трех амплитуд:

$$f_{3\to 2} = -\frac{m^*}{2\pi} T^{inel}, \quad T^{inel} = \sum_{\alpha} T_{\alpha,0}.$$

Здесь $m^* = (2/3)m$ — приведенная масса трехчастичной системы. Заметим, что амплитуда упругого рассеяния будет определяться таким же соотношением:

$$f_{2\to 2} = -\frac{m^*}{2\pi} T^{el}, \quad T^{el} = \sum_{\alpha} T_{\alpha,1}.$$

Из интегральных соотношений для волновой функции непрерывного спектра,

$$|\Psi_0^+\rangle = |\varphi_\alpha^+\rangle + G_\alpha \bar{v}_\alpha |\Psi_0^+\rangle, \quad \alpha = 1, 2, 3,$$

получим уравнения Фаддеева для величин $U_{\alpha,0} = v_{\alpha} |\Psi_0^+\rangle$:

$$U_{\alpha,0} = t_{\alpha} + t_{\alpha}G_0(U_{\beta,0} + U_{\gamma,0}), \quad \alpha \neq \beta \neq \gamma.$$
 (7)

Здесь $G_0 = (Z - H_0)^{-1} - функция Грина трех$ частичной системы со свободным гамильтонианом $<math>H_0, G_\alpha = (Z - H_0 - v_\alpha)^{-1} - функция Грина с$ $взаимодействием в парной подсистеме <math>\alpha, t_\alpha$ — парная *t*-матрица в трехчастичном пространстве, удовлетворяющая интегральному уравнению

$$t_{\alpha} = v_{\alpha} + v_{\alpha}G_0(Z)t_{\alpha}$$

а Z— полная энергия трехчастичной системы, положительная мнимая часть которой стремится к нулю.

Заметим, что волновая функция переходов из in-состояния со связанной подсистемой 1 описывается другими уравнениями:

$$|\Psi_1^+\rangle = |\varphi_\alpha\rangle \delta_{1,\alpha} + G_\alpha \bar{v}_\alpha |\Psi_1^+\rangle, \quad \alpha = 1, 2, 3.$$

Соответственно, для величин $U_{\alpha,1} = v_{\alpha} | \Psi_1^+ \rangle$ получаем уравнения

$$U_{\alpha,1} = \tau_{\alpha}\delta_{1,\alpha} + t_{\alpha}G_0(U_{\beta,1} + U_{\gamma,1}), \quad \alpha \neq \beta \neq \gamma, \quad (8)$$

которые имеют одинаковое с уравнением (7) ядро, но разные свободные слагаемые. Здесь $\tau_{\alpha} = v_{\alpha} |\varphi_{\alpha}\rangle$, а $\delta_{i,j}$ — стандартное обозначение символа Кронекера. Ниже будут использоваться две разные двухчастичные функции Грина, которые мы будем различать по форме записи параметра энергии: $g_0(\varepsilon_{\alpha})$ для свободного движения пары частиц в подсистеме α и $g_0(Z - \varepsilon_{\alpha})$ для свободного движения третьей частицы относительно подсистемы α . С учетом представления парной *t*-матрицы для сепарабельных потенциалов [13],

$$t_{\alpha}G_{0} = v_{\alpha}|\varphi_{\alpha}\rangle g_{0}(Z - \varepsilon_{\alpha})\langle \tilde{\varphi}_{\alpha}|,$$

через внемассовую волновую функцию подсистемы,

$$\langle \tilde{\varphi}_{\alpha} | = \frac{\langle \varphi_{\alpha} | v_{\alpha} G_0(Z)}{\langle \varphi_{\alpha} | v_{\alpha} g_0(\varepsilon_{\alpha}) G_0(Z) | \nu_{\alpha} \rangle}$$

проекция которой $\langle \tilde{\varphi}_{\alpha} | \mathbf{k}_{\alpha}, \mathbf{p}_{\alpha} \rangle$ совпадает с $|\mathbf{k}_{\alpha}\rangle\langle \varphi_{\alpha} | \mathbf{p}_{\alpha}\rangle$ на массовой поверхности, когда

$$\frac{3k_{\alpha}^2}{4m} + \frac{p_{\alpha}^2}{m} = \frac{3k_f^2}{4m} + \varepsilon = Z,$$

можно ввести внемассовую Т-матрицу

$$\tilde{T}_{\alpha,(0,1)} = \langle \tilde{\varphi}_{\alpha} | (U_{\beta,(0,1)} + U_{\gamma,(0,1)})$$

с очевидным свойством $\tilde{T}_{\alpha,(0,1)} \to T_{\alpha,(0,1)}$ при $k \to k_f$. Тогда из уравнений Фаддеева (7) получим уравнение для внемассовой T-матрицы:

$$\tilde{T}^{inel} = 6R + 2Vg_0(Z - \varepsilon_\alpha)\tilde{T}^{inel}, \qquad (9)$$

где

$$R = \langle \tilde{\varphi}_{\alpha} | t_{\beta} | p_{\beta} \rangle, \quad V = \langle \tilde{\varphi}_{\alpha} | v_{\beta} | \varphi_{\beta} \rangle, \quad \alpha \neq \beta, \quad p_{\beta} = 0.$$

Уравнения (8) дают уравнения для упругих переходов:

$$\tilde{T}^{el} = 2V + 2Vg_0(Z - \varepsilon_\alpha)\tilde{T}^{el}.$$
(10)

Именно это уравнение, записанное для потенциала Ямагучи (2), дает уравнение (3), которое используется в предыдущем разделе для нахождения амплитуды упругого рассеяния частицы на связанной паре и спектра трехчастичной системы.

Для дальнейших преобразований заметим, что неоднородный член в уравнении (9) выражается через величины V:

$$R = VD, \quad D = \frac{\nu_{\alpha}(p_{\alpha})g_0(Z - \varepsilon_{\alpha})}{\langle \varphi_{\alpha} | v_{\alpha}g_0(\varepsilon_{\alpha})G_0(Z) | \nu_{\alpha} \rangle}.$$

Это позволяет вынести множитель 3D из уравнения путем простой замены $f_{3\to 2} = 3DF$. Комплексное уравнение для величины F удобно свести к двум действительным с помощью простого соотношения $F = F_0 + ik_f F_1 F$.

Преобразовав таким образом уравнения Фаддеева к удобному для решения виду, можно выразить величину C через параметры двухчастичного взаимодействия и решения уравнений Фаддеева для величин F_0 и F_1 :

$$C = \frac{4\pi^2 27}{\sqrt{3}} \frac{\beta(\beta+\kappa)}{(2\beta+\kappa)^2} \frac{k_f^2 F_0^2(k_f)}{1+k_f^2 F_1^2(k_f)}$$

Рис. 2. Зависимость величины *С* от параметров парного взаимодействия. Сплошная кривая — расчет по уравнению (11), штриховая — расчет по формуле EFT-модели (5). Две точки показывают максимальное и минимальное значения величины *С* для реалистических потенциалов. Пояснения в тексте

где амплитуды F_0 и F_1 отвечают решениям интегрального уравнения с одним и тем же ядром, но с разными свободными членами

$$F_{n}(k_{i}) = V^{eff}(k_{i}, k_{n}) + \frac{2}{\pi} \int_{0}^{\infty} \frac{V^{eff}(k_{i}, k)k^{2}dk}{k^{2} - k_{f}^{2}} F_{n}(k), \qquad (11)$$
$$n = 0, 1, \quad k_{0} = 0, \quad k_{1} = k_{f}.$$

Интегрирование в окрестности особенности Коши понимается в смысле главного значения. Эффективный потенциал $V^{eff} = -(m^*/\pi)V$ по-прежнему определяется выражением (4).

Заметим, что одно из уравнений (11) совпадает с уравнением для случая упругого рассеяния. Точнее, $F_1(k_f) = \operatorname{tg}(\delta)/k_f$, где δ — фаза упругого рассеяния атома на димере при энергии трехчастичного порога.

Уравнения (11) решались численно. Величины C, отвечающие разным парным потенциалам, приведены в таблице. Обращает на себя внимание факт, что при небольшом различии в длинах рассеяния коэффициенты рекомбинации различаются почти на порядок. Для исследования причины такого различия была построена кривая зависимости C от отношения κ/β , приведенная на рис. 2, которая демонстрирует большие амплитудные значения логарифмически осциллирующей величины C.

Проведенные численные расчеты позволяют утверждать, что замечание авторов работы [21] о неуниверсальности величины С справедливо. Далее можно утверждать, что эмпирическая формула работы [22] справедлива только в асимптотической области, далеко за пределами реальных параметров r_0/a_0 . На рис. 2 для демонстрации этого утверждения построены две кривые. Результаты наших расчетов проведены сплошной, а результаты расчетов по формуле (5) — штриховой линией. Точки обозначают значения величины С для двух гелий-гелиевых потенциалов (см. таблицу), которые реализуют максимальное и минимальное значения этой величины. Видно, что эти значения лежат на кривой, зависящей только от отношения r_0/a_0 (у нас — κ/β), но не совпадающей с кривой, представленной в работе [22]. Отметим, что значения амплитуд нашей кривой и зависимости (5) различаются в два раза. Поэтому на рисунке последняя кривая нормализована фактором 0.5. Различие величин C в два раза уже отмечалось в работе [21], где проводилось сравнение с результатами работы [2]. При этом результаты работы [22] согласуются с результатами работы [21]. К сожалению, причина такого различия неясна. Предельная $(\beta \rightarrow \infty)$ форма уравнения (11) указывает на различие неоднородных частей этого уравнения и уравнения, полученного в рамках ЕГТ-модели [22], в $\sqrt{2}$ раз, что и приводит к различию в конечном результате ровно в два раза. Краткая форма изложения схемы вывода интегрального уравнения для амплитуды $(3 \rightarrow 2)$ в работе [22] не позволяет определить происхождение этого различия.

4. ОДНОПАРАМЕТРИЧЕСКИЕ ЗАВИСИМОСТИ

Уравнения (3) и (11) можно сделать безразмерными простой заменой $k = x\kappa$. При этом мы получим уравнения, зависящие от одного безразмерного параметра κ/β , не только для величины C, но и для безразмерной амплитуды рассеяния $f\kappa$ и безразмерных энергий связи тримера: E_1/ε , E_2/ε . Поэтому можно исключить подгоночный параметр κ/β и построить кривые взаимных зависимостей безразмерных энергий связи, длины рассеяния и величины C.

На рис. 3 приведены зависимости величины C,

Рис. 3. Зависимости безразмерных характеристик трехбозонной системы от безразмерной энергии возбужденного состояния тримера. a — величина C, определяющая коэффициент рекомбинации α . Точками отмечены расчеты настоящей работы для реалистических гелий-гелиевых потенциалов. δ безразмерная длина рассеяния бозона на связанной паре. Крестиками отмечены расчеты [4] для реалистических потенциалов гелий-гелиевого взаимодействия. 6 — безразмерная энергия основного состояния тримера. Крестиками отмечены расчеты [3, 15] для реалистических потенциалов гелий-гелиевого взаимодействия

безразмерной длины рассеяния бозона на связанной паре и безразмерной энергии основного состояния тримера от безразмерной энергии возбужденного состояния тримера. Отмеченные крестиками значения взяты из работ [3, 4, 15] и относятся к расчетам энергии связи и длинам рассеяния в системе трех атомов гелия. Степень согласия результатов настоящих расчетов в рамках простой модели парного взаимодействия и расчетов с реалистическими потенциалами атом-атомного взаимодействия позволяет надеяться, что эти зависимости, вообще говоря, пригодны для любой трехбозонной системы, в которой выполняется условие (1).

5. ЗАКЛЮЧЕНИЕ

Расчеты, проведенные в рамках простой двухполюсной *t*-матрицы для гелий-гелиевого парного взаимодействия, показывают хорошее согласие спектров и длин рассеяния в системе трех атомов гелия с расчетами, выполненными для реалистических потенциалов. Поэтому можно надеяться, что рассчитанные впервые коэффициенты рекомбинации тоже будут в хорошем согласии с результатами последующих расчетов для реалистического парного взаимодействия.

Работа выполнена при поддержке РФФИ (грант № 01-02-17575).

ЛИТЕРАТУРА

- F. Luo, G. C. McBane, G. Kim, C. F. Giese, and W. R. Gentry, J. Chem. Phys. 98, 3564 (1993).
- P. O. Fedichev, M. W. Reynolds, and G. V. Shlyapnikov, Phys. Rev. Lett. 77, 2921 (1996).
- A. K. Motovilov, W. Sandhas, S. A. Sofianos, and E. A. Kolganova, Eur. Phys. J. D 13, 33 (2001).
- 4. V. Roudnev, Chem. Phys. Lett. 367, 95 (2003);
 V. A. Roudnev, Препринт ОИЯИ E4-2002-85 (2002).
- **5**. В. Ефимов, ЯФ **12**, 1080 (1970).
- E. A. Kolganova, A. K. Motovilov, and S. A. Sofianos, J. Phys. B 31, 1279 (1998).
- 7. Р. А. Минлос, Л. Д. Фаддеев, ЖЭТФ 41, 1850 (1961).
- 8. L. H. Thomas, Phys. Rev. 47, 903 (1935).
- 9. Г. С. Данилов, ЖЭТФ 40, 498 (1961).
- 10. Г. В. Скорняков, К. А. Тер-Мартиросян, ЖЭТФ 31, 775 (1956).
- P. F. Bedaque, H.-W. Hammer, and U. van Kolck, Phys. Rev. Lett. 82, 463, (1999).
- 12. С. П. Меркурьев, Л. Д. Фаддеев, Квантовая теория рассеяния для систем нескольких частиц, Наука, Москва (1985).
- **13**. Н. Ж. Такибаев, Ф. М. Пеньков, ЯФ **50**, 373 (1989).
- **14**. Ф. М. Пеньков, Н. Ж. Такибаев, ЯФ **57**, 1300 (1994).
- V. Roudnev, S. Sofianos, and S. Yakovlev, E-print archives, physics/0204025; submitted to Few-Body Systems.
- 16. R. A. Aziz, F. R. W. McCourt, and C. C. K. Wong, Mol. Phys. 61, 1487 (1987).

- 17. R. A. Aziz and M. J. Slaman, J. Chem. Phys. 94, 8047 (1991).
- 18. A. R. Janzen and R. A. Aziz, J. Chem. Phys. 107, 914, (1997)
- **19**. Дж. Тейлор, *Теория рассеяния. Квантовая теория нерелятивистских столкновений*, Мир, Москва (1975).
- Л. Д. Ландау, Е. М. Лифшиц, Квантовая механика. Нерелятивистская теория, Наука, Москва (1974).
- 21. E. Nielsen and J. H. Macek, Phys. Rev. Lett. 83, 1751 (1999).
- 22. P. F. Bedaque, E. Braaten, and H.-W. Hammer, Phys. Rev. Lett. 85, 908 (2000).