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We develop a QCD description of the breakup of photons into forward dijets in small-z deep inelastic scattering
off nuclei in the saturation regime. Based on the color dipole approach, we derive a multiple scattering expansion
for intranuclear distortions of the jet—jet transverse momentum spectrum. A special attention is paid to the
non-Abelian aspects of the propagation of color dipoles in the nuclear medium. We report a nonlinear & -fac-
torization formula for the breakup of photons into dijets in terms of the collective Weizsdcker-Williams glue of
nuclei defined in [5, 6]. For hard dijets with the transverse momenta above the saturation scale, the azimuthal
decorrelation (acoplanarity) momentum is of the order of the nuclear saturation momentum Q4. For minijets
with the transverse momentum below the saturation scale, the nonlinear k, -factorization predicts a complete
disappearance of the jet—jet correlation. We comment on a possible relevance of the nuclear decorrelation of
jets to the experimental data from the STAR-RHIC Collaboration.

PACS: 12.38.Aw, 13.87.Ce, 24.85.+p, 25.75.Gz

1. INTRODUCTION

From the parton model point of view, the opac-
ity of heavy nuclei to high-energy projectiles entails a
highly nonlinear relation between the parton densities
of free nucleons and nuclei. The trademark of the con-
ventional pQCD factorization theorems for hard inter-
actions of leptons and hadrons is that the hard scat-
tering observables are linear functionals of the appro-
priate parton densities in the projectile and target [1].
The parton model interpretation of hard phenomena
in ultrarelativistic heavy ion collisions calls upon the
understanding of factorization properties in the non-
linear regime. A priori, it is not obvious that nuclear
parton densities can be defined such that they enter
different observables in a universal manner. Indeed,
opacity of nuclei brings in a new large scale 4 that
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separates the regimes of opaque nuclei and weak atten-
uation [2-5]. Furthermore, for parton momenta below
the saturation scale @ 4, the evolution of sea from glu-
ons was shown to be dominated by the anticollinear,
anti-DGLAP splitting [5]. In our early studies [5, 6],
we have demonstrated that such observables as the am-
plitude of the coherent hard diffractive breakup of a
projectile on a nucleus or the transverse momentum
distribution of forward quark and antiquark jets in deep
inelastic scattering (DIS) off a nucleus and/or the sea
parton density of nuclei can be cast in precisely the
same k| -factorization form as for a free nucleon tar-
get. Specifically, this only requires replacing the unin-
tegrated gluon structure function (SF) of the free nu-
cleon with the collective nuclear Weizsicker—Williams
(WW) unintegrated nuclear glue, which is the expan-
sion over the collective gluon SF of spatially overlap-
ping nucleons of a Lorentz-contracted ultrarelativistic
nucleus. This exact correspondence between the BFKL
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unintegrated glue of the free nucleon [7] and the non-
linear collective WW glue of the nucleus in the calcu-
lation of these observables is a heartening finding. It
persists despite the sea quarks and antiquarks with the
transverse momenta below ) 4 being generated by the
anticollinear, anti-DGLAP splitting of gluons into sea,
when the transverse momentum of the parent gluons is
larger than the momentum of the produced sea quarks.
In [5], we noticed that less inclusive quantities like
the spectrum of leading quarks from the truly inelastic
DIS or coherent diffractive breakup off nuclei are non-
linear functionals of the collective nuclear WW glue.
Consequently, in the quest for factorization properties
of nuclear interactions, we must go beyond the one-
parton observables such as the amplitude of coherent
diffractive breakup of pions or photons into back-to-
back dijets, single-jet inclusive cross section, and/or
nuclear sea parton density. In this paper, we discuss
the truly inelastic hard interaction with nuclei followed
by a breakup of the projectile into forward hard di-
jets!).  We illustrate our major point in the exam-
ple of DIS at small 2 with a breakup of the (virtual)
photon into a hard approximately back-to-back dijet
with a small separation in rapidity, such that the so-
called lightcone plus-components of the jet momenta
sum up to the lightcone plus-component of the pho-
ton momentum, i.e., the so-called 2, = 1 criterion is
fulfilled (see, e.g., [10] and references therein). In the
familiar collinear approximation, such a dijet originates
from the photon—gluon fusion v*g — ¢g, often referred
to as the interaction of the unresolved or direct pho-
ton. Allowing a transverse momentum of gluons leads
to a disparity of the momenta and to an azimuthal
decorrelation of the quark and antiquark jets, which
can be quantified in DIS off free protons within the & -
factorization in terms of the unintegrated gluon SF of
the target (see [11, 12] and references therein). A sub-
stantial nuclear broadening of the unintegrated gluon
SF of nuclei at small 2 and of the nuclear sea parton
distributions [2, 5] points at a stronger azimuthal decor-
relation of jets produced in DIS off nuclei. Further-
more, our finding of anticollinear, anti-DGLAP split-
ting of gluons into sea strongly suggests the complete
azimuthal decorrelation of forward quark and antiquark
jets with the transverse momenta below the saturation
scale, p+ < Q4. In this paper, we quantify these ex-
pectations and formulate a nonlinear generalization of
the k, -factorization for the inclusive dijet spectrum.

The technical basis of our approach is the color-

D Preliminary results of this study have been reported else-
where [8, 9].
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dipole multiple-scattering theory of small-z DIS off nu-
clei [13, 14]. We derive a consistent k, -factorization
description of the azimuthal decorrelation of jets in
terms of the collective WW unintegrated gluon SF
of the nucleus. In this derivation, we closely follow
our early work [5] on the color-dipole approach to
saturation of nuclear partons. We focus on DIS at
x Sxyg=1/Ramy < 1, which is dominated by inter-
actions of ¢q Fock states of the photon. Here, my is the
nucleon mass and R 4 is the radius of the target nucleus
of the mass number A. Nuclear attenuation of these
qq color dipoles [13, 15] quantifies the fusion of gluons
and sea quarks from spatially overlapping nucleons of
the Lorentz contracted nucleus ([16], also see [3, 4]).
Here, we also report some of the technical details, es-
pecially on the non-Abelian aspects of propagation of
color dipoles in nuclear matter, which were omitted in
the letter publication [5].

We focus on the genuinely inelastic DIS followed
by color excitation of the target nucleus. For heavy
nuclei, equally important is the coherent diffractive
DIS in which the target nucleus does not break and
is retained in the ground state. Coherent diffractive
DIS makes 50 % of the total DIS events at small x
[14]; in these coherent diffractive events, quark and
antiquark jets are produced exactly back-to-back with
a negligibly small transverse decorrelation momentum
|A| = |p+ +p-| S1/Ra ~mg /A3,

This paper is organized as follows. We work at the
parton level and discuss the transverse momentum dis-
tribution of the final state quark and antiquark in in-
teractions of ¢7 Fock states of the photon with heavy
nuclei. In Sec. 2, we set up the formalism with a brief
discussion of the decorrelation of jets in DIS off free
nucleons. In Sec. 3, we report the derivation of the
general formula for the two-body transverse momen-
tum distribution. Color exchange between the initially
color-neutral ¢ dipole and the nucleons of the target
nucleus leads to intranuclear propagation of the color-
octet gg-states. Our formalism, based on the technique
described in [17, 18], consistently includes the diffrac-
tive attenuation of octet dipoles and effects of transi-
tions between color-singlet and color-octet ¢g pairs, as
well as between different color states of the ¢g pair. The
hard jet—jet inclusive cross section is discussed in Sec. 4.
For hard dijets, diffractive attenuation effects are weak,
and we obtain a nuclear k| -factorizaton formula for
the broadening of azimuthal correlations between the
quark and antiquark jets, which is reminiscent of that
for a free nucleon target and is still a linear functional
of the collective WW gluon SF of the nucleus. We re-
late the decorrelation (acoplanarity) momentum to the
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nuclear saturation scale @ 4. In Sec. 5, working in the
large- N, approximation, we derive our central result, a
nonlinear nuclear k| -factorization formula for the in-
clusive dijet cross section, and prove the complete dis-
appearance of the jet—jet correlation for minijets with
the transverse momentum below the saturation scale
Q4. In Sec. 6, we present numerical estimates for the
acoplanarity momentum distribution based on the un-
integrated glue of the proton determined in [19]. We
point out a strong enhancement of decorrelations from
the average to central DIS and comment on possible
relevance of our mechanism of azimuthal decorrelations
to the recent observation of the dissolution of the away
jets in central nuclear collisions at RHIC [20]. The
next-to-leading order 1/N2-corrections to the large- N,
results in Sec. 5 are discussed in Sec. 7. Here, we de-
rive a nonlinear k| -factorization representation for the
1/N?Z corrections and establish a close connection be-
tween the 1/N?2 and higher-twist expansions. In Sec. 8,
we summarize our principal findings.

Some of the technical details are presented in the
Appendices. In Appendix A, we present the calcula-
tion of the matrix of 4-body cross sections that enters
the evolution operator for the intranuclear propagation
of color dipoles. In Appendix B, we revisit the single-
jet spectrum and total cross section of DIS off nuclei
and demonstrate how the color-dipole extension [13, 14]
of the Glauber—Gribov results [21, 22] is recovered de-
spite a nontrivial spectrum of eigen-cross sections for
the non-Abelian propagation of color dipoles in the nu-
clear matter. The properties of the collective uninte-
grated gluon SF for overlapping nucleons of a Lorentz-
contracted ultrarelativistic nucleus are discussed in Ap-
pendix C.

2. K,-FACTORIZATION FOR BREAKUP OF
PHOTONS INTO FORWARD DIJETS IN DIS
OFF FREE NUCLEONS

We briefly recall the color dipole formulation of
DIS [13, 14, 23-25] and set up the formalism in the ex-
ample of jet—jet decorrelation in DIS off free nucleons
at moderately small 2, which is dominated by interac-
tions of ¢q states of the photon. The total cross section
for the interaction of the color dipole r with the target
nucleon is given by [26, 27]

o(r) = as(r)og /dl-ef(n) (1—eiT) =

1

= 5as(r)og / drf(k) (1—e™7) (L—e ™), (1)

where og is an auxiliary soft parameter and «g is the
running coupling constant for the gauge group SU(N.).
The function f(k) is normalized as [dkf(k) =1, ag
is a running coupling constant for the gauge group
SU(N,.), related to the BFKL unintegrated gluon SF
of the target nucleon F(x, k%) = 0G(x, k%)/0In k? ([7],
also see [19, 28] for the phenomenology and review) by

— Fla,x?). (2)

For DIS off a free nucleon target (see Figs. 1la-d),
the total photoabsorption cross section is given by [13]

on(Q7) = / dr dz|T(Q?, 2.1) Po(z.r).  (3)

where ¥(Q?, z,r) is the wave function of the gg Fock
state of the photon and @? and 2 are the standard DIS
variables. In the momentum representation,

don o9 as(p?)

dpydz 2 (2m)2

x / dk () (777 D4) — (1712 py — &), (4)

where p, is the transverse momentum of the
quark, the antiquark has the transverse momen-
tum p- = —py + K, and zy = zand z_ =1 -z
are the fractions of the photon lightcone momentum
carried by the quark and antiquark, respectively. The
variables zy for the observed jets add up to unity,
% = z4 + 2 = 1, which in the realm of DIS is said to
be the unresolved (or direct) photon interaction.

Summing over the helicities A and A of the final
state quark and antiquark, we obtain

* * 2
[(v*[z,p) = (¥']z,p — R>|>\7:i1 = 2Nce?ozem X
2
p P—K
Q112 (B ) 4
{ P L) N

m? < L1 )2 (5)
f p2 +¢e2 (p— k)2 +¢e2 N

for transverse photons and quarks of flavor f and

* * 2
|<Ay ‘Zap>_<7 |Z7p—l-€>|/\7:0:
= 8Nce§caemQ222(1 —2)% x

X( 1 1 )2 ©)
p’+e? (P-kK)P+e?) 5oy,

for longitudinal photons, where £* = z(1 — 2)Q* +m3.
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Fig.1. pQCD diagrams for the cross section of inclusive DIS off nucleons (a-d) and nuclei (g-%) and the amplitude of

diffractive DIS off protons (e, f). Diagrams a—d show the unitarity cuts with color excitation of the target nucleon, g is a

generic multiple scattering diagram for the Compton scattering amplitude off nucleus, & is the unitarity cut for a coherent

diffractive DIS with retention of the ground state nucleus A in the final state, i is the unitarity cut for quasielastic diffractive

DIS with excitation and breakup of the nucleus A*, j and k are the unitarity cuts for truly inelastic DIS with single (5) and
multiple (k) color excitation of nucleons of the nucleus
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We now note that the transverse momentum of
the gluon is precisely the decorrelation momentum
A =p, + p_, and in the differential form, we have

don _ 0o as(p?)
dzdpidA 2 (2m)?
* * 2
x [(v*[z,p+) = (772, P4 — A
_as(p}) Flz, A?) y
21N, A4

X |(v* 2z pr) = (' [z Py —A)

f(A) %

)

The small-z result in Eq. (7) shows that in DIS, for-
ward dijets acquire their large transverse momentum
from the intrinsic momentum of the quark and anti-
quark in the wave function of the projectile photon;
hence, it is appropriate to call this process the breakup
of the photon into forward hard dijets. In addition to
the criterion x, = 1, the experimental signature of the
photon breakup is a small rapidity separation of for-
ward jets, z; ~ z_. The perturbative hard scale for
our process is set by Q7 = 4p3 + Q? and the gluon
SF of the proton enters Eq. (7) at the Bjorken variable
z = (4p1 + Q%)/W?, where W is the v*p center-of-
mass energy. The purpose of our study is an extension
of Eq. (7) to the breakup of photons into dijets in truly
inelastic DIS on nuclear targets.

3. BREAKUP OF PHOTONS INTO DIJETS ON
NUCLEAR TARGETS

We focus on DIS at < 24 = 1/Ramy < 1, which
is dominated by interactions of ¢7 states of the photon.
This is a starting term of the leading In(1/x) expan-
sion; extension to interactions of higher Fock states of
the photon and the corresponding In(1/z) evolution to
smaller z will be discussed elsewhere. For 2 < x4, the
propagation of the ¢g pair inside the nucleus can be
treated in the straight-path approximation.

We work in the conventional approximation of two
t-channel gluons in DIS off free nucleons. The rele-
vant unitarity cuts of the forward Compton scatter-
ing amplitude shown in Figs. 1a—d describe the tran-
sition from the color-neutral ¢g dipole to the color-
octet ¢ pair?). The two-gluon exchange approxima-
tion amounts to neglecting unitarity constraints in DIS
off free nucleons. As a quantitative measure of uni-
tarity corrections, one can take diffractive DIS off free

2) To be more precise, for arbitrary N, the color-excited ¢q
pair is in the adjoint representation and quarks are in the fun-
damental representation of SU(N,); our reference to the color
octet and triplet must not cause any confusion.
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nucleons, whose amplitude is described by higher-order
diagrams in Figs. le, f[23, 24, 27] and which is only a
small fraction of the total DIS, np <« 1 [29-31]. The
unitarity cuts of the nuclear Compton scattering ampli-
tude that correspond to the genuine inelastic DIS with
color excitation of the nucleus are shown in Figs. 17,
k. The diagram in Fig. 1k describes a consecutive color
excitation of the target nucleus accompanied by the
color-space rotation of the color-octet ¢gq.

Let by and b_ be the impact parameters of the
quark and antiquark, respectively, and S4(b4,b_) be
the S-matrix for the interaction of the ¢g pair with the
nucleus. We are interested in the truly inelastic inclu-
sive cross section summed over all excitations of the
target nucleus when one or several nucleons are color
excited. A convenient way to sum such cross sections
is offered by the closure relation [21]. Regarding the
color states cg,, of the ¢ ¢y, pair, we sum over all octet
and singlet states. Then the 2-jet inclusive spectrum is
calculated in terms of the 2-body density matrix as

1
(2m)*

dam

db'_db"_db. db_
dzdpydp- / + D @+ aAb- X

x exp[—ipy - (by —bl) —ip_-(b_ —b’ )] x

X\IJ*(Q2727b,+ - bL)‘I’(Q27Z7b+ — b,) X

x {30 (1 AISA (B BL)IA ) X

A* km
X (Crm A*‘SA(b+,b_)|A; 1) —

— (L AJS3 (b, ) As 1) (13 A] X

xSa(by,b )4 1)} (8)

In the integrand in Eq. (8), we subtracted the coher-
ent diffractive component of the final state. We note
that four straight-path trajectories by and b’ enter
the calculation of the full-fledged 2-body density ma-
trix and S4 and S% describe the propagation of two
quark-antiquark pairs, ¢g and ¢'¢’, inside a nucleus.

The further analysis of the integrand in Eq. (8) is a
non-Abelian generalization of the formalism developed
by one of the authors (B. G. Z.) for the in-medium
evolution of ultrarelativistic positronium [32]. Upon
the application of the closure relation to sum over nu-
clear final states A*, the integrand in Eq. (8) can be
considered as an intranuclear evolution operator for the
2-body density matrix
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b)) bA) %

>SS Asam

A* km
% (A" {(cm|Sa(by, bo)|1) }4) =

(4 {

(for the related discussion, also see Ref. [33]). Let
the eikonal for the quark—nucleon and antiquark—
nucleon QCD gluon exchange interaction be T¢x(b)
and T?x(b), where T'{ and T are the SU(N,) gener-
ators for the quark and antiquark states, respectively.
The vertex V, for excitation of the nucleon, g* N — N7,
into the color octet state is normalized such that after
application of the closure relation, the vertex g®g® NN
in the diagrams in Figs. 1a—d becomes 4. In the
two-gluon exchange approximation, the S-matrix of the
(¢q)-nucleon interaction is then given by

Z<1‘52(bl+7blf)|ckm> X

km

x <CkmSA(b+,b—)1>} 4) (9)

SN(bJr,b,) =1 + Z[T_?_‘X(bJr) + TgX(b,)]Va -

ST + T2 (bR, (10)

The profile function for the interaction of the ¢g dipole
with the nucleon is I'(by,b_) =1 — Sy(by,b_). For
a color-singlet dipole, (T'¢ + T)? = 0 and the dipole
cross section for the interaction of the color-singlet ¢q
dipole with the nucleon equals

O'(b+ - b_) = 2/db+<N|F(b+,b_)‘N> =

N2-1

o xR,

- b [\(b) (11)

The nuclear S-matrix of the straight-path approxima-
tion is

b

Sa(by.,b (by —b;,b_—b,),

=1L

where the ordering along the longitudinal path is un-
derstood. We evaluate the nuclear expectation value
in (9) in the standard dilute gas approximation. In the
two-gluon exchange approximation, for each and every
nucleon Nj, only the terms quadratic in y(b;) must be
kept in the single-nucleon matrix element

(Nj|Sx(bYy —bj, bl —b;)Sy(by —bj, b_ —bj)[N;)
that enters the calculation of S%S4. Following the
technique developed in [17, 18], we can reduce the
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calculation of the evolution operator for the 2-body
density matrix (9) to the evaluation of the S-mat-
rix Sya(by,b_,b/ b’ ) for the scattering of a fic-
titious 4-parton state composed of the two quark—
antiquark pairs in the overall color-singlet state. Be-
cause (T¢)* = —T%, the quarks entering the complex-
conjugate S% in (9) can be viewed as antiquarks within
the two-gluon exchange approximation, and therefore

Z(”SZ(bLb/—)|ckm><ckm|SA(b+vb7)|1> =

km

= Z Ori0mj(Ckmcii|Saa(b!, b by, b_)[11), (12)
kmjl

where S;a(b_,b’ by ,b_) is the S-matrix for the
propagation of two quark—antiquark pairs in the overall
singlet state. While the first ¢ pair is formed by the
initial quark ¢ and antiquark ¢ at the respective impact
parameters b, and b_, the quark ¢ in the second ¢'G’
pair propagates at the impact parameter b’ and the
antiquark ¢’ at the impact parameter b/_. In the initial
state, both quark-antiquark pairs are in color-singlet
states, |in) = |11).

We introduce the normalized singlet—singlet and
octet—octet states

11) = - (@0)(@'e),
<y (13)
88) = ﬁ(JTGQ)(J'TW')v

where N, is the number of colors and T* are the gen-
erators of SU(N,) in the fundamental representation.
Using the color Fiertz identity,

m 1 m a a\ym
A D TS HIT)

we can represent the sum (12) over color states of the
produced quark—antiquark pair as

> (CkmChm|Saa(® b by b )|11) =

km
= <11\S4A( b, b_)[11) +
N3—1<88|54A(b'+-,b'_,b+, A1), (15)

If o4(b_. b’ by, b_) is the color-dipole cross sec-
tion operator for the 4-body state, evaluation of the
nuclear expectation value for a dilute gas nucleus in
the standard approximation of neglecting the size of
color dipoles compared to the radius of a heavy nucleus
gives [21]

S4A(bi§-‘/b,—‘/b+vb7) =

=exp{—la4(b b" b+,b_)T(b)}7 (16)
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where T'(b) = [db.na(b.,b) is the optical thickness of
the nucleus at the impact parameter?)

1
b= Z(b++b’++b_+b’_)
and n4(b.,b) is the nuclear matter density with the
normalization [dbT(b) = A. Single-nucleon S-mat-
rix (10) contains transitions from the color-singlet to

both color-singlet and color-octet ¢¢ pairs. However,
only color-singlet operators contribute to
(NjISNn(by = bj. b —bj)Sy(bs —bj. b —b;)|N;),

and hence the matrix o4(b’,,b’_,b,,b_) only includes
transitions between the |[11) and |88) color-singlet
4-parton states; the |18) states are not allowed.

The pQCD diagrams for the 4-body cross section
are shown in Fig. 2. It is convenient to introduce

s=b, —b, (17)

for the variable conjugate to the decorrelation momen-
tum, and r = by —b_, r' = b/, —b’, in terms of
which

by —b_ =s+1r', b_-b =s-r,

18
b.-b_=s—-r+r. (18)

Performing the relevant color algebra, we find (some
details of the derivation are presented in Appendix A)

o11 = (11]a4]11) = o(r) + o(2'), (19)
g18 = <11‘0’4|88> =
_ o(s)+o(s—r+r')—o(s+r1r')—o(s—r) _
N2 -1
_ TICES D) (20)

VN2 -1’

2

2 !
Tl tols—r e+

Jg] = <88‘0’4|88>

[o(r)+a(x)]. (21)

2 !
1[U(s—l—r J+o(s—r)]—

1
s N2-1

The term in (8) that subtracts the contribution from

3) One should not confuse b with the center of gravity of
color dipoles, where the impact parameters b+ and b/, must
be weighted with z4; the difference between the two quantities
is irrelevant here.

2 ZKSOT®, Bem. 3 (9)

diffractive processes without color excitation of the tar-
get nucleus is given by

(1; A[SH (), b1 )| A 1)(L; A|Sa(by, bo)[A; 1) =
= exp {—% [o(r) + o(r))] T(b)} =
= exp {—%O’llT(b)} . (22)

In the discussion of nuclear effects, it is convenient
to use the Sylvester expansion

1 1 -3
exp {—§U4T(b)} = exp {_521T(b)} % +
1 -3

where ¥; 5 are the two eigenvalues of the operator oy,

1
Yi0= 5(011 +0ss) F

(0’11—0’88)\/1+m. (24)

For the integrand in (8), application of the Sylvester
expansion to (15) gives

S (1 AISA B, b)) AT ) x

A* km

N | =

:F

X (chm; A*|Sa(by,bo)|A;1) —
— (L A[SH (], b1 )| A;1)(15 A[Sa (b b)) |45 1) =

= (1] + VAT 188 exp { - onT() b 11) -
e Lorin] -

% }—exp{—%anT(b)} 4

exp{
s %, {exp [_% b)} ~ exp {_%zﬁ(b)} }+
A ol ]

e[ Lsro]}. 9

4. BREAKING OF PHOTONS INTO HARD
DIJETS: A STILL LINEAR NUCLEAR
k,-FACTORIZATION

Diagonalization of the 2 x 2 matrix o4 is a straight-
forward task, and therefore technically, Eqs. (8) and

497



N. N. Nikolaev, W. Schéafer, B. G. Zakharov, V. R. Zoller

MIT®, Tom 124, Beim. 3(9), 2003

Y

Y
\]

, L3
o .

> b’

Y

Y
\J

/
b, < <

f
< <

A

-

s

S L

A
4

i J

<
< <

k l

Fig.2. The pQCD diagrams for the matrix of color dipole cross section for the 4-body (¢g)(q’'q’) state. The sets a—d and
e~h show the diagrams for the scattering without changing the color state of the ¢g and ¢'¢’ dipoles, the set i1 shows only
half of the diagrams for scattering with rotation of the color state of dipoles

(25) allow a direct calculation of the jet—jet inclusive
cross section in terms of the color dipole cross section
o(r). But evaluation of the 6-fold Fourier transform is
a nontrivial task.

We first note that the difference between Yo and
011 = o(r) + o(r') is of the second or higher order in
the off-diagonal o1g, see Eq. (24). Consequently, the
first two lines in Sylvester expansion (25) start with
terms proportional to o}y, whereas the last line starts
with terms proportional to og. It is then convenient to
represent (25) as the impulse approximation (TA) term
times the nuclear distortion factor D 4(s,r,r’, b),

> S (1 A[S5 (b B )|AY ) X
A* km
X <Ckm§A*|SA(b+7b_)|A; 1) —
— (1 A[S3 (D], bL) A1) (15 A[Sa(by  bo) | A51) =

= T(b)218(57r7 r,)DA(S7r7 r,7b)7 (26)

whence

ddm o 1
dbdzdpydp_  2(2m)4

X

X /ds dr dr' exp[—i(ps + p-)s +ip_(r' —r)] x

X Q2 2,0 )B(Q%, 2, 1) T (b) x
x Yig(s,r,v')Da(s,r, ', b). (27)
As an introduction to nuclear k,-factorization,
we start with forward hard jets with the momenta
p% > @Q%, which are produced from interactions with
the target nucleus of small color dipoles in the incident
photon such that diffractive nuclear attenuation effects
can be neglected. We proceed with the formulation of
the Fourier representations for each factor in (26). The
application of integral representation (1) gives

Yig(s,r,r') =
=lo(s)—o(s+r)—0o(s—r)+o(s—r+71')] =
= ag0g /dmf(n)ei"'s (1 — ei“'r,) X
x (1—e ™™ (28)

Hard jets correspond to |r, |r'| < [s|. Then the two
eigenvalues are Yo ~ 011 and X1 & 0gg & 2\.0(s) with
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Ae = N2/(N2 —1) = C4/2CF, where Cr and Cy4 are
the Casimir operators for the fundamental and adjoint
representations of SU(N,.). Because Yo &~ 011 &~ 0,
only the last term, proportional to o5, must be kept
in Sylvester expansion (25), and the nuclear distortion
factor takes the simple form

2
Dy(s,r,r'. b)) = ———— x
Al )= = =T

X {exp {—%le(b)} — exp {—%ZQT(b)H -

1—exp [—%ElT(b)}
= T . (29)
ST (b)

The Fourier representation for the nuclear distortion
factor D 4(s, r,r') is readily obtained from the NSS rep-
resentation [5, 6] for the nuclear attenuation factor,

exp {_%U(S)T(b)} -

= exp [~va(b)]exp |va(b) / dk f(m)ei”'s} =
* (b ' -
=esp[-valbl] 3 A [ ey =

:/Mﬂm@mwm7@m

in terms of the nuclear WW glue per unit area in the
impact parameter plane, ¢ww (va(b),k), defined in

[51,
®(va(b),k) =Y wi(va(b)f9 (k) =
j=0

= exp[—va(b)]f (k) + dww (va(b), k). (31)

Here,
va(b) = %as(T)O'UT(b) (32)
and
wwa) = AP exp )] 63

is the probability of finding j spatially overlapping nu-
cleons in a Lorentz-contracted nucleus, and

f9(r) = / [Lamistmitn =D 2m
FO (k) = 5(k)

is a collective gluon field of j overlapping nucleons. As
usual, the strong coupling in (32) must be taken at the
hardest relevant scale [34].

The denominator £; in (29) is problematic from
the point of view of the Fourier transform but can be
eliminated by the integral representation,

Dy(s) = jdﬁexp [—%ﬁle(b)} =

1

- / i3 / Ak®B(2B)era (b), K)e™=.  (35)

Here, $ has the meaning of the fraction of the nuclear
thickness that the ¢q pair propagates in the color octet
state. The introduction of this distortion factor in (27)
is straightforward and gives our central result for the
hard jet—jet inclusive cross section:

ddin

dbdzdp.da ~ L) / dr x

1
x /d,@ B(2B\eva(b), A — k)
0

dO’N

dzdpyidk’ (36)

Because r> ~ 1/p? for hard jets, we must use ag(p?)
in the evaluation of v4(b). For a thin nucleus with
va(b) € 1, we have ®(26A.va(b), A —K) = §(A —K),
see Eq. (31), and recover the TA result

doin don
— =T(b)———.
dbdzdpidA ( )dz dp+dA

Our result (36) for nuclear broadening of the acopla-
narity momentum distribution of hard dijets can be re-
garded as a nuclear counterpart of the k| -factorization
result (7) for a free nucleon target.

The probabilistic form of convolution (36) for
the differential cross section on a free nucleon tar-
get with the manifestly positively defined distribution
®(28\.va(b), k) can be understood as follows. Hard
jets originate from small color dipoles. Their interac-
tion with gluons of the target nucleus is suppressed by
the mutual neutralization of color charges of the quark
and antiquark in the small-size color-singlet ¢g state,
which is manifest from the small cross section for a free
nucleon target, see Eq. (7). The first inelastic interac-
tion inside the nucleus converts the ¢g pair into the
color-octet state in which color charges of the quark
and antiquark do not neutralize each other, rescatter-
ings of the quark and antiquark in the collective color
field of intranuclear nucleons become uncorrelated, and
the broadening of the momentum distribution with nu-
clear thickness follows a probabilistic picture.

(37)
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5. NONLINEAR NUCLEAR
k) -FACTORIZATION FOR BREAKUP OF
PHOTONS INTO SEMIHARD DIJETS:
LARGE-N, APPROXIMATION

We can now relax the hardness restriction and con-
sider semihard dijets, |p+| ~ Q4. In this section, we
give a consistent treatment of this case in the ven-
erable large-N,. approximation. Our formulation can
be called a nonlinear nuclear generalization of the & -
factorization.

The crucial point is that in the large-N,. approxi-
mation, ¥y = 011 = o(r) + o(r'), and therefore only
the last term in Sylvester expansion (25) contributes to
the jet—jet inclusive cross section. The nuclear distor-
tion factor is still given by Eq. (29), but for finite Xs.

Slightly generalizing (35) and using
Yy =0(s)+o(s+r —r), (38)

we can recast the distortion factor in the form

DA(S./I‘./I‘I./b) =

= / dpexp {—1[621 +(1- mzzmb)} =

0/ dgexp { =51 D)) + 0T (b) } »

X exp {—iﬂ[a(s) +o(s+r — r)]T(b)} . (39)

where the different exponential factors admit a simple
interpretation. The first and the second describe the
intranuclear distortion of the incoming color-singlet ¢G
and ¢'q’ dipole state, whereas the last two factors de-
scribe the distortion of the outgoing color-octet (¢q)
and (¢'q') states. Application of the NSS representa-
tion [6] to the attenuation factors in (39) yields

DA(S./I'./I'I./b) =
1

= /dﬂ/dm@((l — B)va(b), k1) exp(—iky - 1) X

0

X /dn2<I>((1 — B)va(b),ka) exp(iks - ) X
X /dng'iI)(,ByA(b),ng) expliks - (s + 1’ —1)] x

X /dm4(I>(BI/A(b),n4)exp(in4 -r). (40)

The integral representation in (39) furnishes two im-
portant tasks: it removes ¥; — X5 from the denomi-
nator in (25) and gives the Fourier transform (40) of
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the nuclear distortion factor as a product of manifestly
positive-definite nuclear WW gluon distributions. Fi-
nally, the jet—jet inclusive cross section takes the form

don
dbdzdp_dA
1

X /dﬂ/dnldngdngdnf(n) X

x ®(Bra(b), A — k3 — K)®(Bra(b), K3) x

X ®((1 = B)ra(b), k1)®((1 — B)ra(b), k2) X
X {7z, p—+K2 + K3)—(Y"[2, P-+K2tKs + K) } X
X {{(z, p—+kR1+R3|V )= (2, p_+R1+K3+K[Y)} =

1
= 32 asooT(b) x

2(21#)2 aSUOT(b)/dﬁ/dngdnf(n) X
X @(ﬂI/A(b), A — Kr3 — K)@(ﬂI/A(b),

X /dm(I)((l —Bva(b), k1) %

K3) X

x{(v*[z, - + K1+ K3)—

— (Y*|z,p- + K1 + K3 + K)} (41)

This is our central result for the inclusive cross sec-
tion of the photon breakup into dijets on nuclei. It
demonstrates how the broadening of the transverse mo-
mentum distribution of dijets is uniquely calculable in
terms of the collective WW glue of a nucleus and as
such must be regarded as a nonlinear k -factorization
for the inclusive dijet cross section.

The last form of (41) shows clearly that the inte-
grand is manifestly positive-valued. Returning to (39)
and (40), we can identify the convolution of the col-
lective nuclear WW glue ®((1 — 3)va(b), k1) with the
photon wave functions in the last form in (41) as an ef-
fect of distortions of the photon wave function when the
qq pair propagates in the state that is still color-singlet.

We finally consider the limiting case where
Ip—|,|A] < Q4. In our analysis [5] of the single
particle spectrum, we discovered that the transverse
momentum distribution of sea quarks is dominated
by anticollinear, anti-DGLAP splitting of gluons into
sea when the transverse momentum of the parent
gluons is larger than the momentum of sea quarks.
As stated in the Introduction, this strongly suggests a
complete azimuthal decorrelation of forward minijets
with the transverse momenta below the saturation
scale, p1+ < Q4. Our analysis of f9 (k) in Appendix
C shows that for the average DIS on realistic nuclei,
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Q% does not exceed several (GeV/c)?, and hence
this regime is a somewhat academic one (see Sec. 6,
however). We nevertheless assume that @ 4 is so large
that jets with p1 < Q4 are measurable.

We note that |k;] @4, and we can there-
fore neglect p_ in the photon wave functions and
the decorrelation momentum A in the argument of
®(fra(b), A — k3 — k). The approximation

~

[ i1 = Batb) ) {7+ )
2
— <’}/*|Z,p_ + K1+ K3+ H>}

~

2
~ (07|20 ks) = (|2, m + )| (42)

is then justified in (41). The principal point is that the
minijet—minijet inclusive cross section is independent
of either the minijet or the decorrelation momentum,
which proves the disappearance of the azimuthal decor-
relation of minijets with the transverse momentum be-
low the saturation scale.

6. AZIMUTHAL DECORRELATION OF DIJETS
IN DIS OFF NUCLEI: NUMERICAL
ESTIMATES

The azimuthal decorrelation of two jets is quan-
tified by the mean transverse acoplanarity momen-
tum squared (A? (b)), where A | is transverse to the
axis of the jet with the higher momentum (Fig. 3).
Here, we present numerical estimates for hard dijets,

ke)

Fig.3. The definition of the dijet configurations con-
sidered and of the transverse component of the acopla-
narity momentum A |
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Ip+| > Q4. The convolution property of hard dijet
cross section (35) suggests that

dO’N
A2 (b)) 4 = oar__dov
R Rl
C
—1
dGN
d [ S
8 /p dz dp1dp—

c

~ (k71 (b)) + (A%)N, (43)
where (A% )y refers to DIS on a free nucleon and
(k% (b)) 4 is the nuclear broadening term:

2

(k1

(b))a = /dnni@(Qﬂ)\cuA(b).,n) X
c

X /dn D(28A.va(b), K) (44)

c

The sign «a» in (43) reflects the kinematical limita-
tions C on p_ and k in the practical evaluation of the
acoplanarity distribution. In a typical final state shown
in Fig. 3, it is the harder jet with the larger transverse
momentum that defines the jet axis, and the acopla-
narity momentum A is defined in terms of components
of the momentum of the softer jet with respect to that
axis, see, e.g., [20]. For definiteness, we present numeri-
cal estimates for the Gedanken experiment in which we
classify an event as a dijet if the quark and antiquark
are produced in different hemispheres, i.e., if the az-
imuthal angle 7 — ¢ between the two jets is below 7/2,
the quark jet has fixed |p |, and the antiquark jet has
a higher transverse momentum, |py| < |p—| < 10|p4|
(in the discussion of the experimental data, one often
refers to the higher momentum jet as the trigger jet
and the softer jet as the away jet [20]).

The free-nucleon quantity (A% )y is evaluated from
Eq. (43) with free nucleon cross section (7). For evalua-
tion purposes, we can start with the small-A expansion
for excitation of hard (p3 > 2 = z(1 — 2)Q?), light
flavor dijets from transverse photons,

don 1, , , )
m ~ ;efozemozs(p+) [z +(1-2) ] «
1 aG(x’AZ) AQ

— . (4
AT OIn(A?) (e2+p3)(e? +pi + A?) (45)

The form of the last factor in (45) only mimics its le-
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veling off at A? > p2, see Eq. (7). In the denominator
of (43), we then find the typical logarithmic integral

dA2 0G(x ) 9
to be compared with the numerator of the form
A2)
20
0
1
~ Pl Fpl). (17)

More accurate numerical estimates for the selection cri-
teria of our Gedanken experiment suggest the numeri-
cal factor ~ 0.7 in (47); the expression

dGN
A2y YN PR
< / dp idzdpmp,
P+
—1
dcrN
d [ S
x /p dz dp dp—
P+
F(z,p2)
~0'77G(x.p?t) 1 (48)

correctly describes the numerical results shown in
Fig. 4. As far as the dijets are hard, p3 > 2(1-2)Q* ~
~ —Q2 the acoplanarity momentum d1str1bution is in-
dependent of @2, which holds even better if we con-
sider o7 + or. This point is illustrated in Fig. 4,
where we show (A2 )y at z = 1/2 for several values of
Q)%. Because of this weak dependence on Q?, we make
no distinction between DIS and real photoproduction,
Q? = 0, in what follows.

In practical evaluations of the nuclear contribution
(k2 (b)), we can use the explicit expansion

[ 452232 a(b).0) = Y- walboi) () =
0 J=0
— 1 G + 1,22va(b)) ,(;

where

v(j,z) = /dyyj*le*y
0

is the incomplete gamma-function. The properties of
the collective glue for j overlapping nucleons, f(j)(m),
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are presented in Appendix C. For a heavy nucleus,
Eq. (49) can be approximated by its integrand at
~ 1/2, ie, by ®(Awva(b),k). A slightly more

accurate evaluation of the numerically important no-
broadening contribution from j = 0 gives

/dﬂ@(Qﬂ)\cuA(b)., k) = wy(b,0)d(k) +
0
1 AQ%(b)
+ (1 - wA(bvo)); (1-62 + /\ch(b))Q’ (50)
where % is given by Eq. (108) and
1 —exp[-va(b)]
wa(b,0) = (D) (51)

is the probability of the no-broadening contribution,
which is still substantial for realistic nuclei. In our
Gedanken experiment, (k2 (b))a must be evaluated
over the constrained phase space C, k; < |p4| and
k1, > 0, and analytic parameterization (50) gives

k7 (b)) a = A\Q%(b) x

X 1ntg<£ 1arctg\/_QA( >

(

P+ %
AeQ% (b) +p
(1=wa(b,0))1/AcQ% (b)+p3
x (52)
’LUA(b,O) )\ch(b)+p3_+(1—1UA(b,0))p+

We recall that (43) and (52) must only be used for
pil > Qalb).

For the average DIS off heavy nuclei, the reference
value is (Q%,(b)) = 0.9 (GeV/c)?, see Appendix C.
The atomic mass number dependence of the nuclear
broadening (k%) 4 for jets with p; = 4 GeV/c in the
average DIS off nucleus is shown in Fig. 5. The prin-
cipal reason why (k%) 4 is numerically small compared
to (Q%,(b)) is that even for such a heavy nucleus as
197 Ay, the no-broadening probability in the average
DIS is large, (wau(b,0)) ~ 0.5. Comparison of the free
nucleon broadening (A? )y in Fig. 4 with the nuclear
contribution (k2 (b)) 4 in Fig. 5 shows that the nuclear
mass number dependence of the azimuthal decorrela-
tion of dijets in the average DIS off nuclei is relatively
weak.

However, nuclear broadening is substantially
stronger for a subsample of central DIS events at
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(A%)N, (GeV/c)?

10

10 100 p3, (Gev/e)’

Fig.4. The mean acoplanarity momentum squared (A2 )y for DIS off a free nucleon target with production of trigger jets
with the transverse momentum higher than p, for several values of Q2. The numerical results are for # = 0.01 and the
input unintegrated gluon structure of the proton is taken from Ref. [19]

(k1)a4, (GeV/c)®
T T

1.0 — T~a —
0.3 — ~ 197 A

~ Y u
P \\ -
08+ T .. AN —

... \
- E L . N i
0N

0.6 \’\\ —

0.2 —

04 ps =2GeV/e

e = 4GeV
Pt = 4GeV/c 1 0al P = AGV/e
I~~~ p+=10GeV/c
1 I 1 I 1 I 1
0.1 u 0 2 4 6 8

10 100 A

Fig.6. The impact parameter dependence of the nu-
clear broadening contribution, (k3 (b))a, to the mean
acoplanarity momentum squared from peripheral DIS at

a large impact parameter to the central DIS at b =0

Fig.5. The atomic mass number dependence of nu-
clear broadening contribution, (k3 (b)), to the mean

acoplanarity momentum squared for real photoproduc-
tion off nuclei at x = 0.01. The input unintegrated
gluon SF of the proton is taken from Ref. [19]

for several values of the away jet momentum py. The
numerical results are for z = 0.01 and the input uninte-
grated gluon SF of the proton is taken from Ref. [19]

b ~ 0. In Fig. 6, we show the dependence of the
B-averaged nuclear broadening (k% (b))a on the

impact parameter at several values of p, for the
gold, 7Au, target. There are two related sources
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of the py dependence of (k2 (b))4. First, because
r,r' ~ 1/p;y for hard dijets, the strong coupling
enters Eqs. (33) and (108) as ag(p3). Then for
hard jets, va(b) o« as(p?) and wa(b = 0,0) rises
substantially with py in the region of p, of practical
interest, 1 < p; < 5-10 GeV/e, where the strong
coupling varies rapidly. For a nucleus with the mass
number A = 200, it rises from w4 (b = 0,0) ~ 0.12 at
py = 2 GeV/e to &~ 0.20 at 4 GeV/c, and to ~ 0.25
at py = 10 GeV/c (see [39] for the nuclear density
parameterization). Second, for the same reason that
va(b) x as(p?), the contribution from large j in (49),
and hence Q% (b), diminishes gradually with rising
p+, proportionally to as(pi)/as(Q%). In the region
pr < 10 GeV/c of practical interest, we find that
(2. (b)) 4 ~ Q2 (b).

We now compare the numerical results in Figs. 5
and 6 for p; = 4 GeV/c and the 197 Au target. Accord-
ing to Eq. (109) in Appendix C,

A= (3-2)@m) 6
The no-broadening probability wa(b = 0,0) ~ 0.20
for central DIS is substantially smaller than
(wau(b,0)) =~ 0.5 for average DIS. In conjunction
with (53), this entails an enhancement of (k% (b))a
by the factor 2.5-3 from the average to central DIS.
The same point is illustrated by the expectation
value of j in (49) for the Au target: for jets with
py =4 GeV/c, it decreases by the factor about 3 from
(j(b = 0)) = 2.86 to (j)4 = 0.87 from the central to
average DIS.

One can enhance Q% and the nuclear contribu-
tion (k2 (b)) 4 even further by selecting the DIS events
where the photon breaks up into a ¢g pair on the front
face of the nucleus, which in the language of (36) cor-
responds to the contribution from 5 — 1, see the dis-
cussion of (49). Experimentally, precisely such events
are isolated by selecting very large multiplicities or very
high transverse energies of the secondary particles pro-
duced (see [20] and references therein). Equation (36)
then shows (also see the discussion of the 5 ~ 1/2 ap-
proximation in (49)) that for a very high multiplicity
central DIS off the Au nucleus, Q% = 2.5 GeV? is quite
feasible. Equation (52) shows that for such a large
Q% ~ 2.5 GeV? and py = 5-10 GeV/c of practical in-
terest, (k3 (b = 0)) grows slower than proportionally to
Q?%, and therefore the value of (k2 (b = 0)) for a high-
multiplicity central DIS off Au nucleus is enhanced by
the factor 4-5 from (k3 )ay for the average DIS.

We have an overall good understanding of gross fea-
tures of nuclear azimuthal decorrelations in DIS off nu-

clei. We now comment on the recent finding by the
STAR collaboration of the disappearance of a back-
to-back high-p; hadron correlation occurring in pass-
ing from peripheral to central gold—gold collisions at
RHIC [20]. Our experience with application of the color
dipole formalism to hard hadron—nucleus interactions
[17] suggests that our analysis of acoplanarity of for-
ward hard jets can be generalized to mid-rapidity jets.
This only requires choosing an appropriate system of
dipoles, for instance, the open heavy flavor production
can be treated in terms of the intranuclear propaga-
tion of the gluon—quark—antiquark system in the over-
all color-singlet state. At RHIC energies, jets with
moderately large p; are mostly due to gluon-gluon
collisions. In our language, this can be treated as a
breakup of gluons into dijets, and azimuthal decorrela-
tion of hard jets must be discussed in terms of intranu-
clear propagation of color-octet gluon—gluon dipoles.
For such gluon—gluon dipoles, the relevant saturation
scale Q3 4 is larger than that for the quark—antiquark
dipoles by the factor 2\, = C4/Cp = 9/4 [24]. Ar-
guably, distortions in the target and projectile nuclei
add up in central nucleus—nucleus collisions and the ef-
fective thickness of nuclear matter is about twice that
in DIS. The results shown in Fig. 5 then suggest that
for central gold—gold collisions, the nuclear broaden-
ing of gluon—gluon dijets could be quite substantial,
(k% (b = 0))Auau ~ 3-4 (GeV/c)? for the average cen-
tral Au—Au collisions and even twice larger if collisions
occur at the front surface of the colliding nuclei.

The principal effect of nuclear broadening is a re-
duction of the probability of observing back-to-back
jets,

(A7)~
(k2 (b))a + (AZ)N’

where (A?%)y is to be compared to (k% (b)) 4. Equa-
tion (48) for the free nucleon case also holds for the
gluon—gluon collisions. The results shown in Fig. 3 then
entail that (A% )n &~ (k2 (0))Auau ~ 34 (GeV/c)? at
the jet momentum p; = py = 6-8 GeV/c and our nu-
clear broadening becomes substantial for all jets with
p4+ below the decorrelation threshold momentum p;. In
practice, the STAR collaboration studied the azimuthal
correlation of two high-p; hadrons; for a quantitative
correspondence between the STAR observable and the
azimuthal decorrelation in the parent dijet, one must
model the fragmentation of jets into hadrons (see [35]
for the modern fragmentation schemes). We note here
that the cutoff py in our Gedanken experiment is re-
lated to the momentum cutoff pr i, of the associated
tracks from the away jet, whereas our jet of the momen-

P(b) o (54)
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tum p_ can be regarded as a counterpart of the trigger
jet of STAR. The STAR cutoff pr = 2 GeV/c corre-
sponds to parent jets with the transverse momentum

+ ~ (2-3)pr = 4-6 GeV /¢, which is comparable to, or
even smaller than the decorrelation threshold momen-
tum py = 6-8 GeV /c. Equation (54) then suggests that
in the kinematics of STAR, the probability to observe
the back-to-back away and trigger jets approximately
reduces to half, and perhaps even stronger, from pe-
ripheral to central Au—Au collisions, and our azimuthal
decorrelation may therefore substantially contribute to
the STAR effect.

In practical consideration of azimuthal decorrela-
tions in central heavy ion collisions, the above distor-
tions of the produced jet—jet inclusive spectrum due to
interactions with the nucleons of the target and projec-
tile ions must be complemented by rescatterings of the
parent high-p, partons on the abundantly produced
secondary hadrons. Our nuclear decorrelation effect
must be dominant and reinteractions with secondary
particles must be marginal in pA collisions, where we
expect (k2 (0))pau = 1.5 (GeV/c)? for central collisions
and even (k% (0))pau & 3 (GeV/e)? is feasible for cen-
tral collisions in the regime of § — 1, i.e., with the
limiting high multiplicity.

7. NUCLEAR k_  -FACTORIZATION FOR 1/N?
CORRECTIONS TO THE PHOTON
BREAKUP

Having established nuclear k| -factorization prop-
erties of the dijet cross section to the leading or-
der of the large-N, approximation, we turn to the
1/N2-corrections and demonstrate that with one sim-
ple exception, the 1/N2-expansion can be regarded as
the higher-twist expansion. The two sources of the
1/N?2-corrections to the nuclear distortion factor are
higher-order terms in the off-diagonal o3 matrix ele-
ment and the terms proportional to 1/(N? — 1) in osgs,
Eq. (21). We note that ogg can be decomposed as

2% .r,r
18£s,r,r)+
N2 -1

—o(r) —o(r')

oss =a(s)+o(s—r+r')+

o(s)+o(s—r+r') _

_|_

N2 -1
2 2%5(s, 1, 1')
= Ng—1["(s) +0(s—r+r’)]+ﬁ -
AZgg(I‘,I‘/)
- ﬁ7 (55)
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where
AYgg(r,r') = o(r) + o(r) (56)

and we exactly reabsorbed one part of the 1/NZ2-cor-
rection into the leading large- N, term of ogg by scaling
it with the color factor A..

After some algebra, we find

(11|S4a(b!y, b by, b )|11) =

— exp {—%[a(r) + a(r’)]T(b)} +

jdﬁ/ﬁdﬂl X
a(r’)]T(b)} x
<exp{ =5 (5-B0lo (s +os—r T . (67

Y2 (s, r, v )T? (b
4(N2 —-1)

X exp {—%(1 — B+ pB1)[o(r) +

The first term in (57) is canceled by the subtraction
of coherent diffractive term (22) in (8) and (25), and
therefore only the subleading term in (57), proportional
to 1/(N2 — 1), contributes to the dijet cross section.
Evaluation of corrections to the leading term of the
Sylvester expansion is somewhat more complicated,

VNZ — 1(88[Sya (bl

1
= 5218(57 r, I'I)T(b) X

b, b_)|11) =

1

X [/ df exp {—%B[a(r) + a(r’)]T(b)} X

0

X exp {—%(1 — ﬂ)assT(b)} +
B1

Zdﬂjdﬁlo/d,é’gx

a(r’)]T(b)} x

Y2 (s, r, v )T%(b
4(N2-1)

X exp {—5(5 — p1 4+ B2)[o(r) +
XGXP{ s(1=B4+p1—f2) x

X [U(s)+a(s—r+r')]T(b)} . (58)

The first term in (58) contains the attenuation fac-
tor, where ogg is still the exact diagonal matrix ele-
ment, and we must isolate the leading term and the
1/(N2? — 1)-correction,
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exp {—%(1 - B)agsT(b)} _
~ exp {—%(1 _B)\o(s) +o(s — 1 + r’)]T(b)} «

x {1 _a —ﬂ)zzlv?s_., no)T0)
L)y

The fundamental reason why the different components
of the second term, proportional to 1/(N2 — 1), in
Eq. (21) are treated differently is that the NSS repre-
sentation [6] with a positive-valued Fourier transform
holds only for attenuating exponentials of the dipole
cross section. The related expansion for the rising ex-
ponential exp[3o(r)T'(b)] can easily be written, but its
Fourier transform is a sign-oscillating expansion,

)(k)exp(ik - s). (60)
Therefore, combining the two exponentials with simi-
lar exponents proportional to [o(r) + o(r')] in the first
term of (57) is not guaranteed, because the sign of the
exponent changes from attenuation to growth in the
course of the § integration,

Bloe) + o (x')] = 5 (1= B)ATus(r,2') =

NZ -
N2 -

- m[a(r) +o(r')], (61)

and it is advisable to work with the perturbative ex-
pansion in (59).

The final result for the nuclear absorption factor to
the accuracy 1/(N2? — 1) is given by

' _ n ! (2) 1
DA(S.,I'.,I' ,b) - DA (S,I‘,I‘ ,b) +DA (S.,I'.,I' ,b) +

+ DY (s.r,1".b) + D'V (s,r,x',b) + DY) (s,1,1", b),
where

1

/dﬁ/dﬂlx

0

a(r'>1T<b>} ><
X exp {—%(ﬂ—ﬂl)[U(s)—l—a(s—r—l—r')]T(b)} ,  (62)

Yig(s,r,r NT! b)

D (s,rr' b) = =5

X exp {—%(1 — B+ pB1)]o(r) +
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2%851‘1‘ T2
4(N2 - 1)

DW(s,r,v',b) =

1 B
O/d,é’o/dﬂl X
61

< [ assesp { =36 - i+ oot + @)} x

0

oxp { ~5(1-+51-52) x

X [a(s)+a(s—r+r')]T(b)}, (63)

fo)(svrarlab) ==

1
2l T0) [as0 - 5) x
0

N2 1

X exp {—%,@[a(r) + a(r')]T(b)} X

X exp {—%(1—6)/\6[a(s)+a(s—r+r')]T(b)} ,  (64)

1

/dﬂ(l—ﬂ)x

0

X exp {—%B[G(r) + a(r')]T(b)} X

AZgg (I‘, I‘I)T(b)

4
Dg)(s,nr',b): 2(N2_1)

X exp {—%(I—B)AC[cr(s)-l—a(s—r+r’)]T(b)} ,  (65)

Df’) (s,r,v’.b) =
= [asexp {~301- Dlotx) + o1T0) | x
0

X exp {—%ﬂ[a(s) +o(s+r — r)]T(b)} . (66)

Equation (66) is the leading large- N, result, Eqgs. (62)
and (63) describe contributions to the dijet cross sec-
tion of the second and third order in the off-diagonal
matrix element o5, and Eqs. (64) and (65
expansion (59).

) come from

illustration of salient features of the
1/(N? — 1)-corrections, we expose the contribution
from the first term (62) in detail. Following the
considerations in Secs. 4 and 5, we readily obtain

As an
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dAol)  a%odT?(b)

dbdzdp_dA ~ 4(27)2(N2 —1)

dg | dpi x

I}
/
« / dar dasdrs f(ar) f(as)

X ®((8 — Br)va(b), A — K3 —q1 — q2) X
x ®((8 = p1)ra(b),K3) x

S

X

[ dm (1= 5+ Batb). ) x

X {<’Y*‘Z-,P7+R1 +K3)— (V|2 p- + K1+ K3 +qi) —

—{(¥*|z,p= + K1 + K3 + Q) +
2

+<’y*|z,p,+m+m3+q1+q2>} (67)

Of particular interest is the large-|p_| behavior of (67).
We note that for p2 > Q% (b), we can neglect K 3 in
the argument of the photon wave function, and hence

/dm((l — B+ B1)wa(b), k1) x

X {(7*\z,p—+n1 +K3) — (V|2 P+ K1+ K3+ i) —
—{(¥*|z,p= + K1 + K3 + Q) +

~

+ (V|7 p= + K1 + K3 + a1 + Q2>}
~ {07 ep ) = (b @) = (D @)+

+ (Y2, p- + a1 + q2>}, (68)

where we used the normalization property

/dl'ilq)((l — ﬂ + 61)1/,4(])),[{1) =1.

Next, we can readily verify that

/dn3<1>((ﬂ — B)wa(b), A — K3 —qi — q) X

x ®((8 — P1)va(b), K3) =

=®((f - Li)va(b),A —qi —qg2). (69)

Incidentally, by a similar analysis of the onset of
the high-p4 limit, one would obtain the linear nuclear
k1 -factorization (36) for hard dijets from the nonlinear
nuclear k| -factorization (41).

The combination of the photon wave functions
in (68) corresponds to the second finite difference in
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q: and q2, and therefore for jets with p2 > £2, we
have the estimate

<7*|27p*> - <7*‘27p7 + q1> + <7*‘27p7 + Q2> -
‘2 2 did)

(p2)?’
which shows that the contribution to the dijet cross
section from terms of the second order in o%g is the
higher twist correction. Compared to the leading large-
N, cross section, it contains extra [ dqs a3 f(aqz) and
an extra power of agooT (b), which combine to pre-
cisely the dimensional nuclear saturation scale Q% (b),
see Eq. (52), such that the resulting suppression fac-
tor is

— (l5p-+a + )| &[0z po) (70)

dAc)

in

1 Q4(b)
(N2=1) p2

As far as the expansion in higher inverse powers of
the hard scale p is concerned, Aaﬁ) has the form
of a higher twist correction. In the retrospect, we
observe that the principal approximation (68) in the
above derivation for hard dijets amounts to putting
Ir],|r'| < |s| in the attenuation factors in the 3,/
integrand in (62). But the exact r,r'-dependence must
be retained in the prefactor ¥g(s, r, '), because it van-
ishes if either r = 0 or ' = 0. It is precisely the latter
property that provides the finite-difference structure of
the combination of the photon wave functions in (67)
and (68) and is behind the higher twist property (71)
of the 1/(N? — 1)-correction.

The second term, Eq. (63), gives the correction

oo (71)

1 B

dﬂ/dﬂl X
0

B1
x [ dB> [ daidayxdasdks f(qi)f(a2)f(qs) x
o f

dAc?)  adodT3(b) /
dbdzdp_dA — 8(2m)2(N2 —1)
0

X®((1 =B+ p1—P2)rva(b), A=Kz —qi —q2 —q3) X
X ®((1— B+ p1— B2)va(b),k3) x

X

/dm«ﬂ—ﬂl T Ba)va(b), k1) X

X {(’y*\z.,p,+m1 +K3)— (V|2 p- + K1+ K3 +qi) —

— (Y |z, P—tK1+KR3+q2) + (72, Po+K1 HR3 Q1L +2) —
—(v*|2, p_+K1+K3+a3)+H (7|2, p_+K1HR3FazFar )+

+(v*|z,p— + K1 + K3 +q3 + Q) —
2

(72)

—(']2 P+ K+ R+ G+ sy
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The combination of the photon wave functions in (72)
corresponds to the third finite derivative in qi 2 3.
Starting from (72), we can readily repeat the analy-
sis that leads to estimate (71). Alternatively, we can
take the simplified form of the attenuation factors, as
explained below Eq. (71). Either way, we find that the
contribution from third-order terms in o5 is of an even
higher twist and has the smallness

Apart from a slight difference in the structure of
the /3 integrations, correction (64) is not different from
dAc™ in Eq. (68)

3

dAc? a%02T?(b)

dbdzdp_dA —  4(2m)2(N2 —1) /dﬂ(l — B) x
0

« / day daadrss f (1) f(qg2) X

X ®((1 = B)Ava(b), A — K3 —qi — q2) X

X ®((1 — B)Aeva(b), k3) X

X

/dIcl(I)(ﬂ)l/A(b)., K1) X

X {(7*\z,p—+n1 +K3)— (Y|z,p—+ K1+ Ks+aqi) —

—{(¥*|z,p= + K1 + K3 + Q) +

2

+<’y*|z,p,+m1+n3+q1+q2>} (74)

Consequently, the same estimate (71) is also valid for
dAc®),

The correction dAc® requires a bit more scrutiny.
It contains a product of the first and second finite
derivatives of the photon wave function,

PINS a%02T?(b)

dbdzdp_dA ~ 2(2r)2(N2 — 1) /dﬂ(l —B) x
0

x / degy dega iy dresdrea f(q1) f(a2)®(Bva(b), k1)

X ®(Bra(b), ka) X
x ®((1 = B)Acva(b), A — K3 — a1 — @) ¥
X ®((1 — B)Acva(b), k3) x

X {(7*\2,7*\z,p_ + K1+ K3) —
— (71 e+ R g )
X {W*\Z-,Pf‘i'ﬂl +k3) = (V|2 p- + K1+ K3 +a1) —
—(V|z.p- + KL+ Rz +a) +
(7 5o+ KR A @), (75)

and in the interesting case of hard dijets,

PN a%02T?(b)

dbdzdp_dA — 2(27)2(N2 —

l)o/dﬂ(l—mx

< [ dardae @) Flaz) 220 -HAa(b), A=ai—a)x
x {127 12,-) = (072,72 P+ an) | x
x {(r"[2,p-) = (77|z.p- +ar) -

—(7"|2p- + @)+ (2P +a @) [ (76)

The leading term of the small-q; » expansion of the
product of the photon wave functions in (74) is a
quadratic function of q; and a linear function of q»
of the form

2 (p— -a1)*(p-- Q2)‘

7 (77)

[(y"1z,p-)
The leading nonvanishing term comes from the expan-
sion of the nuclear WW glue,

®(2(1 - B)Acva(b), A —a1 —a2) —
- ¢(2(1 - ﬂ))\cVA(b)'/ A) ~

~ ®(2(1 = B)Acva(b), A) x

% A (g1 +q2)
2(1 = B)A.Q%(b) + A2’

Namely, upon the azimuthal averaging of (77) in con-
junction with (78), we find the leading nonvanishing
term of the form 2(p_q2)(Aqz) — (p_A)q3, and
therefore

(78)

dAO’Z(:;) 1 p_-A (79)
dO’in Nc2 -1 p2_ ’
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which is reminiscent of a higher twist-3 correction.

To summarize, nonlinear nuclear k, -factorization
allows a consistent evaluation of the 1/N2-corrections.
We demonstrated how the expansion in 1/(N? — 1)
comes along with a higher twist expansion. One ex-
ception is the reabsorption of one of the terms propor-
tional to 1/(N2 — 1) in ogg into the renormalization
of the leading term in ogg by the N.-dependent factor
Ae. We conclude this discussion by a comment that
all the arguments in Sec. 5 regarding the disappear-
ance of azimuthal correlations of minijets hold for the
1/N?2-corrections as well.

8. SUMMARY AND CONCLUSIONS

We formulated the theory of the breakup of photons
into dijets in DIS off nuclear targets based on the con-
sistent treatment of propagation of color dipoles in nu-
clear medium. The non-Abelian intranuclear evolution
of color dipoles gives rise to a nontrivial spectrum of
the attenuation eigenvalues, but the familiar Glauber—
Gribov multiple-scattering results are recovered for the
nuclear total cross sections. However, in more special
cases like DIS in which the photon breaks up into color-
singlet dijets, the cross section depends on the complete
spectrum of the attenuation eigenstates.

We derived the nuclear broadening of the acopla-
narity momentum distribution in the breakup of pho-
tons into dijets, see Eqs. (35) and (41). Our principal
finding is that all nuclear DIS observables — the ampli-
tude of coherent diffractive breakup into dijets [6], nu-
clear sea quark SF and its decomposition into equally
important genuine inelastic and diffractive components
performed in [5], and the jet—jet inclusive cross sec-
tion derived in the present paper — are uniquely cal-
culable in terms of the NSS-defined collective nuclear
WW glue. This property can be regarded as a nu-
clear k| -factorization theorem that connects DIS in
the regimes of low and high density of partons. For the
generic dijet cross section, nuclear k| -factorization is of
a highly nonlinear form, which must be contrasted to
the linear hard factorization for the free nucleon target.
This result is derived to the leading order in large N,;
the further evaluation of the 1/N2-corrections shows a
close relation between the 1/N?2 and high-twist expan-
sions. Furthermore, the 1/N2-corrections themselves
admit the nonlinear nuclear &, -factorization represen-
tation.

We demonstrated the disappearance of azimuthal
jet—jet correlations of minijets with momenta below
the saturation scale. Based on the ideas on genera-

lization of the dipole picture to hadron—nucleus colli-
sions [17, 18], we presented qualitative estimates of the
broadening effect for mid-rapidity jets produced in cen-
tral nucleus—nucleus collisions and argued that our az-
imuthal decorrelation may contribute substantially to
the disappearance of back-to-back high-p; hadron cor-
relation in central gold—gold collisions observed by the
STAR collaboration at RHIC [20].

We conclude by the comment that all the results
for hard single-jet and jet—jet inclusive cross sections
can be readily extended from DIS to the breakup
of projectile hadrons into forward jets. Indeed, as
argued in [6], the final state interaction between the
final state quark and antiquark can be neglected and
the plane-wave approximation becomes applicable as
soon as the invariant mass of the forward jet system
exceeds a typical mass scale of prominent meson
and baryon resonances. Here, we confine ourselves
to the statement that although our principal point
about a nonlinear nuclear £k, -factorization is fully
retained, we find important distinctions between the
breakup of pointlike photons and nonpointlike hadrons

This work has been partly supported by the INTAS
(grants Nos. 97-30494 and 00-00366) and the DFG
(grant No. 436RUS17/119/02).

APPENDIX A

Calculation of the 4-body color dipole cross
section

The Feynman diagrams for the matrix of 4-parton
dipole cross section o4(s,r,r’), Eqgs. (19)—(21), are
shown in Fig. 2. The profile function for the color-
singlet ¢q pair is given by the diagrams in Figs. 2a—d,

2T (Figs. 2a-d; (¢q)1N; b4, b_) =
1
= 0 {2 (b4) + 32 (b )TH(TTY) ~
c
— 2x(by )x(b ) Tx(T*T")} =

_ NSN_C Ln(by) = x(b )2, (80)

which has already been cited in the main text,
Eq. (11). Upon adding the contribution from diagrams
in Figs. 2e-h, we obtain the obvious result in Eq. (19).

The color-diagonal contribution of the same dia-
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grams to the interaction of the color-octet ¢¢ pair with
the nucleon is given by
2T (Figs. 2a-d: (4q)s N by, b_) =
2

=31 dap { (X2 (by) + X2 (b)) Te(T°T*T*T¢) -
2 _
—2y(by ) (b )TH(TToToT)} = e 2L
2N,

e e (U FRCLY

The contribution to the matrix element (88]04|88) from
color-diagonal interactions of the ¢'g’ pair is obtained
from (81) by the substitution by — b/,
T4 (Figs. 2a—d+Figs. 2e~h; (88)N; by, b_. b’ . b" ) =
= T'(Figs. 2a—d; qq)sN; by, b_) +
+ T'(Figs. 2a-d; qq)sN; b ,bL). (82)
The diagrams in Figs. 2i-l describe processes with
color-space rotation of the ¢g pair,

2F4(Figs 2i-1; (88) N — (88)N; by, b_. b b ) =

- Nc _ 5ab{[ )x(b’) + x(b_)x(b!,)] x
XTr(TCT‘le)Tr(TCTde) _
— [x(by)x(b!) + x(b-)x(b")] x
x Te(T°T*TY)Te(TT'T)} =
- _NCN: 1 {N22_ 1 [x(b4)x(b") + x(b_)x(b')] +
+%cz j [x(bi)x(bl) + x(b)x(b’)]} . (83)

The (11)N — (88)N transition matrix element
comes from the diagrams in Figs. 2i-/,

2Ty (Figs. 2i-1; (11)N — (88)N; by, b_.b!, b))

- W%aab{mbnx(b' V(bo)y(by)] x

X Te(T°T)Te(T°T?) —
— [x(by)x (b} )+x(b—) (b_ )] Tr(TCT“)Tr(TCT”)} =
-2 e (PN a o) -
= [x(bi)x(bly) + x(b_)x(b )]} . (84)
Upon the rearrangement
—2x(bi)x(b;) = [x(bi) — x(b;)]* = x*(b;) — x*(b;),

we can readily verify that the terms proportional to
x%(b;) cancel each other, and the 4-body cross section
matrix contains only linear combinations of o(b; —b;),
recall a discussion in [24].
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APPENDIX B

Non-Abelian vs. Abelian aspects of
intranuclear propagation of color dipoles and
the Glauber—Gribov formalism

The intranuclear propagation of color-octet ¢ pairs
is part and parcel of the complete formalism for DIS off
nucleus. Tt is interesting to recover the quasi-Abelian
color-dipole results for the nuclear cross sections [13, 14]
that are of the Glauber-Gribov form [21, 22]. We
first consider the total inelastic cross section obtained
from (8) upon the integration over the transverse mo-
menta p+ of the quark and antiquark, which amounts
to putting by = b!, and b_ = b’.. Then we are left
with the system of two color dipoles of the same size
r=b, —b_=r"=Db/ —b’, and the matrix of the
4-body cross section has the eigenvalues

S =0 (85)
2N?
%= rqo) (36)
with the eigenstates
1
|f2) = \/ — 1[11) — [88)). (88)

The existence of the nonattenuating 4-quark state with
Y1 = 0 is quite obvious and corresponds to an overlap
of two ¢q dipoles of the same size with neutralization
of color charges. The existence of such a nonattenu-
ating state is shared by an Abelian and non-Abelian
quark—gluon interaction. The intranuclear attenuation
eigen-cross section (86) differs from o(r) for the color-
singlet ¢g pair by the nontrivial color factor

2\ = 2N¢:2/(N¢:2 - 1) = CA/CF7
which occurs because the relevant 4-parton state is in
the color octet—(anti)octet configuration.

The crucial point is that the final state that en-
ters the calculation of the genuine inelastic DIS off a
nucleus, see Eq. (15), is precisely the eigenstate |f1).
Then, even without invoking Sylvester expansion (23)
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and (25), the straightforward result for the inelastic

3

cross section is

Oin = /drdz\\I/(QZ’,z,r)R/db X
{ ety exp | -5 T )] 1) - exp [0 TB)] | =
= [ avtri{esp |-5=T )] —expl-omT o} <

X |y*) = / db(y*| {1 — exp[~o(®)T (M)} "), (29)

which is precisely the color-dipole generalization [14]
of the Glauber-Gribov formula [21, 22] in which no
trace of a non-Abelian intranuclear evolution with the
nontrivial attenuation eigenstate (88) with eigen-cross
section (86) is left.

When the photon breaks into a color-singlet ¢g di-
jet, the net flow of color between the ¢¢ pair and color-
excited debris of the target nucleus is zero. This sug-
gests that a rapidity gap can survive hadronization,
although whether the rapidity gap in genuine inelas-
tic events with the color-singlet ¢q production is stable
against higher-order corrections remains an interesting
open issue. Although the debris of the target nucleus
have zero net color charge, the debris of color-excited
nucleons are spatially separated by a distance of the
order of the nuclear radius, which suggests the total
excitation energy of the order of 1 GeV times A'/3,
such that such rapidity-gap events look like a double
diffraction with multiple production of mesons in the
nucleus fragmentation region (see [36] for the theoreti-
cal discussion of conventional mechanisms of diffraction
excitation of nuclei in proton—nucleus collisions; the ex-
perimental observation has been reported in [37]). As
such, inelastic excitation of color-singlet dijets is distin-
guishable from quasielastic diffractive DIS followed by
excitation and breakup of the target nucleus without
production of secondary particles.

Using the Sylvester expansion (23)-(25) and eigen-
states (87) and (88), we readily obtain

N2-1
Ng

« [ty {1 -exp | ~5Earm)| L), (o)

oin(A"(a0)s) =

X

These expressions depend on the entire non-Abelian
spectrum of attenuation eigenstates.

Several features of the result in (90) are notewor-
thy. First, the color neutralization of the ¢g pair af-
ter the first inelastic interaction requires at least one
more secondary inelastic interaction, and the expan-
sion of the integrand of o;,(A*(qqd)1) starts with the
term quadratic in the optical thickness,

{1-exiomron- o

< (1-e[-2marm]) ) -

- mcﬂ(rw?(b) o (92)

Second, in the large-N,. limit, the color-octet state
tends to oscillate in color remaining in the octet state.
This is clearly seen from (92). Third, in the limit of an
opaque nucleus,

v 1
oin(A"(qq)1) = N2 X

« / db(y*| {1 = exp [~ (®)T(b)]} |1*) =

- ﬁa (93)
This remains a constant fraction of DIS in contrast to
the quasielastic diffractive DIS or inelastic diffractive
excitation of a nucleus, whose cross sections vanish for
an opaque nucleus [14, 36].

The analysis of the single-parton, alias single-jet,
inclusive cross section is quite similar. In this case, we
integrate over the momentum p_ of the antiquark jet
such that b’ = b_. The corresponding matrix o4 has
the eigenvalues

Sy =o(r—1'), (94)

N2 1
Z‘: 4 ! -
2= 3 )+ o))~

c

o(r—r') (95)

with exactly the same eigenstates | fi) and |f2) as given
by Eqgs. (87) and (88). Again, the cross section of the



N. N. Nikolaev, W. Schéafer, B. G. Zakharov, V. R. Zoller

MKIT®, Tom 124, Boin. 3(9), 2003

genuine inelastic DIS corresponds to the projection on
the eigenstate |f1), and hence

dO’in _ 1 ’ . ,
dbdpds ~ (2n)? /dr drexp[ip - (r' —r)] x

x U(Q% 2, )¥(Q?, z,r) x
v {exp [—%ZlT(b)} —exp [—%[a(r)+a(r')]T(b)} } _

- ﬁ /dr’drexp[ip (' = 1)) %

X U*(Q?, 2, )¥(Q? 2, 1) x
x {exp {—%a(r - r’)T(b)} -
- exp |5 lotw) + a7 )] . (00

which is precisely Eq. (10) in [5].

At this point, we emphasize that for the fundamen-
tal reason that the relevant final state is precisely the
eigenstate | f1), the calculations of the integrated inelas-
tic cross section (89) and of the one-particle inclusive
inelastic spectrum (96) are essentially Abelian prob-
lems, and the final result in (96) is identical, apart from
a very different notation, to that for the propagation
of relativistic positronium in dense media derived by
one of the authors [32]. As can be seen from inspec-
tion of the relevant four-parton states, all contributions
from the propagation of color-octet dipoles cancel, and
the results can be obtained from studying the propa-
gation of color-singlet dipoles without any reference to
the full cross section matrix o4. Our formalism makes
these cancellations nicely explicit. These quasi-Abelian
problems have also been studied in [2, 38].

APPENDIX C

Weizsiacker—Williams glue of spatially
overlapping nucleons

According to [5, 6], the multiple convolutions
f9(k?) have the meaning of the collective uninte-
grated gluon SF of j nucleons at the same impact
parameter such that their Weizsécker—Williams gluon
fields overlap spatially in a Lorentz-contracted nucleus.
These convolutions can also be viewed as a random
walk in which f(k?) describes the single walk distribu-
tion.

To the lowest order in pQCD, the large-x? behavior
is f(k?) o< ag(k?)/k*. The phenomenological study of
the differential glue of the proton in [19] suggests a use-
ful large-x? approximation f(k?) o 1/(k?)? with the

exponent 7 & 2 (a closer inspection of numerical re-
sults in [19] gives v ~ 2.15 at z = 1072). The QCD
evolution effects enhance f(k?) at large k2, the smaller
z, the stronger the enhancement.

Because f(k?) decreases very slowly, we encounter
a manifestly non-Gaussian random walk. For instance,
as argued in [6], a j-fold walk to large k2 is realized by
one large walk, k? ~ k2, accompanied by j — 1 small
walks. We simply quote the main result in [6],

An?(j — 1)

FO(R2) = jF(2) |1+ Taw?)|, (97

]\]'C(J'of'i2
where G(k?) is the conventional integrated gluon SF.

Then the hard tail of unintegrated nuclear glue per
bound nucleon,

fww (b, k%) = dww (va(b), k%) /va(b),

can be calculated parameter-free,

fww (b, k%) = ﬁ 3w ra(B)if V) (k) x

471'2 2 ]

N, U:HQ b= I)G(HQ)} N

27292a5(r)T(b)
N.r?

x{l-l—

= f(K?) [1 + G(ﬁ)} . (98)

In the hard regime, the differential nuclear glue is
not shadowed; furthermore, because of the manifestly
positive-valued and model-independent nuclear higher
twist correction, it exhibits a nuclear antishadowing
property [6].

We now present the arguments in favor of the scal-
ing small-x? behavior

D m e (Bl @&
fY(R") =~ Q?€<Q?> ~ o (R2+Q?)2
with

Q; ~ jQp. (100)

In the evolution of f)(k?) with j at moderate &2,
£ = [0 (K2, (101

the function f(k?) is steep compared to the smooth and
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broad function ) ((k —k)?), and we can therefore ex-
pand

df 9 (k?)
dr?

FOR?) +
1 df(j)(n2)
2 (dk?)?
df(f)(n2)
dk?

d

dr?

9 ((k —k)?) [k? — 2k - K] +

}:

} . (102)

4k - k)? =

o @ [0 (K?)
(dr?)?
a9 ()

dr?

= [ (k?) + K [

9 (k%) + K2

] £

where «=» indicates azimuthal averaging. The ex-
pansion (102) holds for k* < Q3, and after the dk in-
tegration in (101), we obtain

FU () =
) d df) (k2
= 1906+ 900 gz [ TGP o
where
Q3 42
a(i) = / A1) = T-GQ)). (100

It is a smooth function of j. It is easy to verify that
our approximation preserves the normalization condi-
tion [drfU)(k?) = 1.

For small k2 and large j, recurrence relation (104)
amounts to the differential equation

2 —QF 1 dQ; 1 £
+1 .2 A
GL S g eV (%)
with the solution
J
s 0N [y £ E(0)
Q; = £0) /dj g(j") = ]9(])5(0)~ (106)

Expansion (102) holds up to the terms proportional to
k? and its differentiation at kK2 = 0 gives a similar con-
straint on the j-dependence of Q3.

We note that expansion of the plateau with j entails
a dilution of the differential collective glue fU)(k?) in
the plateau region,

FOR? S QF) x 1/QF e 1/,

We conclude by the observation that when extended
to k% 2 @7, the parameterization in (101) and (100)
behaves as jQ3/(x?)?, which nicely matches the j-
dependence of the leading twist term in the hard
asymptotic form (99).

3 ZKST®, Bem. 3 (9)

513

f(.i)

(k?), (GeV/(:)f4

j=1

107k

1073 v il v NN
10 10?* 10! 10
k%, (GeV/c)?

Fig.7. The nuclear dilution for soft momenta and
broadening for hard momenta of the collective glue of j
overlapping nucleons, £ (k?). The numerical results
are for DIS at z = 0.01 and the input unintegrated
gluon SF of the proton is taken from Ref. [19]

For a heavy nucleus, the dominant contribution to
the expansion in (31) comes from j &~ v4(b), and hence

1 Qib)

oww (va(b), k%) ~ p W-, (107)
where Eq. (106) gives the width of the plateau,
Q% (b) ~ 2v4(b)g(va(b)) ~
7T2 .
~ T as(QUGQT(H). (109

The explicit dependence on the soft parameter o that
is manifest in (104) cancels in (108). For DIS within
the saturation domain, Q> < @Q%, the strong coupling
in (33) must be taken at r ~ 1/Q 4, and the right-hand
side of Eq. (108) exhibits only a weak dependence on
the infrared parameters through the Q% dependence of
the running strong coupling constant and scaling vio-
lations in the gluon SF of the nucleon. For instance, at
2 = 1072, the numerical results [19] for G(Q?) corre-
spond to a nearly Q2-independent as(Q?)G(Q?) ~ 1.
For the average DIS on a heavy nucleus,

3 9
T(b)) ~ “T(0) ~ —5 A3 1
To) ~ 570~ oo (109)
where ro ~ 1.1 fm. For lighter nuclei with the

Gaussian density profile, (T'(b)) ~ 3$7(0). Then for
N, = 3 and A'3 = 6, Eqgs. (108) and (109) give
(Q%(b)) ~ 0.8 (GeV/c)?.
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The utility of approximation (99), (100) is illus-
trated in Fig. 7, where we show the j-dependence
of the collective glue of j overlapping nucleons cal-
culated for the unintegrated gluon SF of the pro-
ton from Ref. [19]. For the interaction of ¢¢ color
dipoles in the average DIS on gold, '"7Au target, we
find (Q2,(b)) ~ 0.9 (GeV/c)?, in good agreement
with the above estimate in Eq. (108). For the ¢gg
Fock states of the photon, the leading In Q? configura-
tions correspond to small ¢¢ pairs that act as a color-
octet gluon [24]; for such gluon—gluon color dipoles,
(Q32 4(b)) = 2.1 (GeV/c)>. We note in passing that the
standard collinear splitting sets in, and the DGLAP
evolution [34,39] becomes applicable to the nuclear
structure function, only at Q% > (Q32 ,(b)).

REFERENCES

. E. Leader and E. Predazzi, Introduction to Gauge
Theories and Modern Particle Physics, Vol. 1, Cam-
bridge University Press, Cambridge (1996); G. Ster-
man, An Introduction to Quantum Field Theory, Cam-
bridge University Press, Cambridge (1993).

A. H. Mueller, Nucl. Phys. B558, 285 (1999);in Lec-
tures at the Cargése Summer School, August 6-18
(2001), E-print archives hep-ph/0111244.

A. H. Mueller, Nucl. Phys. B335, 115 (1990).

L. McLerran and R. Venugopalan, Phys. Rev. D 49,
2233 (1994); 55, 5414 (1997); E. Iancu, A. Leonidov,
and L. McLerran, in Lectures at the Cargése Sum-
mer School, August 6-18 (2001), E-print archives
hep-ph/0202270.

N. N. Nikolaev, W. Schéfer, B. G. Zakharov, and
V. R. Zoller, JETP Lett. 76, 195 (2002).

N. N. Nikolaev, W. Schéfer, and G. Schwiete, Pis'ma
v Zh. Eksp. Teor. Fiz. 72, 583 (2000) [JETP Lett. 72,
583 (2000); Phys. Rev. D 63, 014020 (2001).

. L. N. Lipatov, Sov. J. Nucl. Phys. 23, 338 (1976);
E. A. Kuraev, L. N. Lipatov, and V. S. Fadin,
Sov. Phys. JETP 44, 443 (1976); 45, 199 (1977);
Ya. Ya. Balitsky and L. N. Lipatov, Sov. J. Nucl. Phys.
28, 822 (1978).

I. P. Ivanov, N. N. Nikolaev, W. Schifer, B. G. Za-
kharov, and V. R. Zoller, in Proceedings of 36" An-
nual Winter School on Nuclear and Particle Physics
and 8™ St. Petersburg School on Theoretical Physics,
St. Petersburg, Russia, 25 Feb.—3 Mar (2002), E-print
archives hep-ph/0212161.

514

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

I. P. Ivanov, N. N. Nikolaev, W. Schifer, B. G. Za-
kharov, and V. R. Zoller, Invited talk at the NATO
Advanced Research Workshop on Diffraction 2002,
Alushta, Ukraine, 31 Aug.—6 Sept. (2002), E-print
archives hep-ph/0212176; in Proceedings of the Work-
shop on FExclusive Processes at High Momentum
Transfer, Jefferson Lab., May 15-18 (2002), ed. by
A. Radyushkin and P. Stoler, World Sci. Publ. (2002),
p- 205; in Proceedings of the Conference on Quark
Nuclear Physics (QNP 2002), June 9-14, Jiilich, Ger-
many, ed. by C. Elster and Th. Walcher, Eur. Phys. J.
(2003) in print, E-print archives hep-ph/0209298; Ple-
nary talk at the International Symposium on Multi-
particle Dynamics (ISMD’2002), Alushta, Ukraine, 8
14 Sept. (2002), ed. by G. Kozlov and A. Sissakian,
World Sci. Publ. (2003), in print.

T. Ahmed et al. (H1 Collaboration), Nucl. Phys.
B 445, 195 (1995).

A. Szczurek, N. N. Nikolaev, W. Schéfer, and J. Speth,
Phys. Lett. B 500, 254 (2001).

J. R. Forshaw and R. G. Roberts, Phys. Lett. 335B,
494 (1994); A. J. Askew, D. Graudenz, J. Kwiecin-
ski, and A. D. Martin, Phys. Lett. 338B, 92 (1994);
J. Kwiecinski, A. D. Martin, and A. M. Stasto, Phys.
Lett. 459B, 644 (1999).

N. N. Nikolaev and B. G. Zakharov, Z. Phys. C 49,
607 (1991).

N. N. Nikolaev, B. G. Zakharov, and V. R. Zoller,
Z. Phys. A 351, 435 (1995).

V. Barone, M. Genovese, N. N. Nikolaev, E. Predazzi,
and B. G. Zakharov, Z. Phys. C 58, 541 (1993).

N. N. Nikolaev and V. 1. Zakharov, Yad. Fiz. 21, 434
(1975) [Sov. J. Nucl. Phys. 21, 227 (1975)]; Phys. Lett.
55B, 397 (1975).

N. N. Nikolaev, G. Piller, and B. G. Zakharov, JETP
81, 851 (1995); Z. Phys. A 354, 99 (1996).

B. G. Zakharov, JETP Lett. 63, 952 (1996); 65, 615
(1997); Phys. Atom. Nucl. 61, 838 (1998).

I. P. Ivanov and N. N. Nikolaev, Yad. Fiz. 64, 813
(2001) [Phys. Atom. Nucl. 64, 753 (2001)]; Phys. Rev.
D 65, 054004 (2002).

C. Adler, et al. (STAR Collaboration), Phys. Rev. Lett.
90, 082302 (2003).

R. J. Glauber, in Lectures in Theoretical Physics,
Vol. 1, ed. by W. E. Brittin et al., Intersci. Publ., Inc.,
New York (1959), p. 315.

V. N. Gribov, Zh. Eksp. Teor. Fiz. 56, 892 (1969) [Sov.
Phys. JETP 29, 483 (1969) 483].



MKIT®, Tom 124, Boin. 3 (9),

2003

Nonlinear k -factorization for forward dijets ...

23.

24.

25.

26.

27.

28.

29.

30.

31.

N. N. Nikolaev and B. G. Zakharov, Z. Phys. C 53,
331 (1992).

N. N. Nikolaev and B. G. Zakharov, Zh. Eksp. Teor.
Fiz. 105, 1498 (1994) [JETP 78, 806 (1994)]; Z. Phys.
C 64, 631 (1994).

N. N. Nikolaev, B. G. Zakharov, and V. R. Zoller,
JETP Lett. 59, 6 (1994).

N. N. Nikolaev and B. G. Zakharov, Phys. Lett. 332B,
184 (1994).

V. Barone, M. Genovese, N. N. Nikolaev, E. Predazzi,
and B. G. Zakharov, Phys. Lett. 326B, 161 (1994).

B. Andersson et al. (Small-z Collaboration), Eur.
Phys. J. C 25, 77 (2002).

M. Genovese, N. N. Nikolaev, and B. G. Zakharov,
Zh. Eksp. Teor. Fiz. 108, 1155 (1995) [JETP 81, 633
(1995)].

C. Adloff et al. (H1 Collab.), Z. Phys. C 76, 613 (1997).

J. Breitweg et al. (ZEUS Collaboration), Europ. Phys.
J. C 6, 43 (1999).

515

32.

33.

34.

35.

36.

37.

38.

B. G. Zakharov, Yad. Fiz. 46, 148 (1987) [Sov. J. Nucl.
Phys. 46, 92 (1987)].

N. N. Nikolaev, J. Speth, and B. G. Zakharov, Zh.
Eksp. Teor. Fiz. 109, 1948 (1996) [JETP 82, 1046
(1996)].

Yu. L. Dokshitser, Zh. Eksp. Teor. Fiz. 73, 1216 (1977)
[Sov. Phys. JETP 46, 641 (1977)]; Yu. L. Dokshitzer,
D. Diakonov, and S. I. Troian, Phys. Rep. 58, 269
(1980).

T. Sjostrand et al., Comp. Phys. Commun. 135, 238
(2001).

V. R. Zoller, Z. Phys. C 51, 659 (1991); M. A. Faessler,
7. Phys. C 58, 567 (1993).

T. Akesson et al. (HELIOS Collab.), Z. Phys. C 49,
355 (1991).

U. A. Wiedemann, Nucl. Phys. B 582, 409 (2000).

. V.N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15,

438 (1972): L. N. Lipatov, Sov. J. Nucl. Phys. 20, 181
(1974); G. Altarelli and G. Parisi, Nucl. Phys. B 126,
208 (1977).

3*



