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Edge-selective sum rules are proposed for a variety of X-ray dichroisms related to natural or nonreciprocal
optical activity. Four spherical operators are identified that mix orbitals of different parities in what is assumed
to be the ground state. The orbital anapole moment Q) is primarily responsible for the magnetochiral dichro-
ism; the time-even rank-2 tensor N® = [L, Q]® for natural circular dichroism; the time-odd rank-2 tensor
W® = [L,n]® for nonreciprocal magnetic linear dichroisms. At higher orders, the time-odd rank-3 tensor
r® = L, L, Q](3) can also contribute to all nonreciprocal dichroisms. The physical content of these operators
is analyzed. For every magnetoelectric group, one can predict which dichroic effect can be measured with either
a single crystal or a powdered sample. Experimental spectra are produced to illustrate the value of the sum
rules and the practical conditions of their application. Regarding nonreciprocal activity, one should be cautious
about discussing magnetic symmetry because the deep core hole can couple the true ground state with low-lying
excited states.
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1. INTRODUCTION

Systems with broken inversion symmetry play a
fascinating role not only in physics but also in chem-
istry and in life sciences where molecular recognition
processes are very often controlled by chirality. In
1958, Zel’dovich [1] introduced the concept of the
anapole to describe parity-violating interactions. For
nearly 40 years, atomic and nuclear physicists were
angling for nuclear anapoles [2, 3] until the anapole
moment of '33Cs was finally measured in 1997 [4]. In
solid-state physics, the concept of the anapole has at-
tracted much less attention even though there is a long
established literature dealing with toroidal multipole
moments [5-8]. It was realized recently that X-ray
optical activity (XOA) can offer a unique experimen-
tal access to orbital anapole moments and to a whole
family of related operators. It is the aim of the present
paper to analyze the physical content of these oper-
ators, especially for magnetoelectric solids in which
parity (I) and time-reversal (@) symmetries are bro-
ken, while the structure remains invariant under the
product IO [9].

Unlike magneto-optical effects such as the Fara-
day rotation or the magnetic circular dichroism, which
refer primarily to electric dipole (E1E1) transitions,
optical activity is associated with transition proba-
bilities that mix multipole moments of opposite pari-
ties (e.g., E1M1 or E1E2). The Curie principle thus
states that optical activity can be observed only in
parity nonconserving systems. We recall that prop-
erties related to optical activity can be either even
(«natural») or odd («nonreciprocal») with respect to
the time-reversal operator ®. We have discussed else-
where [10] how to transpose the theories of optical ac-
tivity currently used at optical wavelengths into the
X-ray spectral range. Following Buckingham [11] and
Barron [12], we found it most convenient to describe
XOA by introducing a complex gyration tensor

CaBy = Capy — Capy-
In core level spectroscopies, magnetic dipole transi-
tions (M1) are very weak [13], and it seems perfectly
legitimate to neglect the E1M1 terms. Under such
conditions, this Cartesian gyration tensor is domi-

nated by the electric dipole (E1,)—electric quadrupole

(E2g~) interference terms,
Copy = IM{E1,E25,} + Im {E15E24,} ,

(s, =Re{E1,E25,} — Re{E13E2,,}.

(1)

The imaginary part (¢") is antisymmetric with respect
to interchange of the «a, # subscripts and is responsible
for the natural XOA; the real part ({') is symmetric
and contributes to nonreciprocal effects [12].

Every Stokes component S; is associated with a
well identified dichroism related to XOA [14-19]:
1)The X-ray magnetochiral dichroism (XMyD),

XMXD(SO) X [Czaﬁfy + C(I;uoz’y] :

2) The nonreciprocal X-ray magnetic
dichroism (XMLD)

linear

3

XMLD(S1) x [C55, = Chan) -

3) The nonreciprocal, Jones X-ray magnetic linear
dichroism (XMLD)

3

XMLD(S2) o 2¢, 5,

4) The X-ray natural circular dichroism (XNCD),
XNCD(S3) o 2¢, 3

In several cases, XNCD spectra were successfully
reproduced using ab initio calculations in the gen-
eral framework of the multiple scattered wave the-
ory [16, 20]. To the best of our knowledge, however,
no suitable code for simulation of the nonreciprocal
XOA is presently available. This is why we focus in
this paper on the exploitation of edge-selective sum
rules, which may give access to the expectation values
of a series of effective operators that mix orbitals of
opposite parities in what is assumed to be the true
multi-electronic ground state [¢,). In the next sec-
tion, we recast the XOA sum rules in their general
framework. In Sec. 3, we analyze the physical con-
tent of the four effective operators that were identified
as responsible for XOA. An important result in this
section is the possibility to predict which dichroism
can be observed experimentally for a given magnetic
class. In Sec. 4, referring to several specific examples,
we develop some considerations on what can be learnt
regarding the magnetoelectric symmetry and how the
XOA operators can be accessed in practice.

Throughout this paper, we keep the same termi-
nology (i.e., scalar, vector, deviator, septor, ...) for
the decomposition of Cartesian or spherical tensors
into their irreducible representations [21, 22]. We sys-
tematically use normal fonts for Cartesian tensors and
bold face fonts for spherical tensors. Irreducible ten-
sors of an even rank that have odd parity or irreducible
tensors of an odd rank with even parity are commonly
called pseudotensors. For clarity, we prefer to call ir-
reducible tensors of an odd rank and odd parity polar
tensors rather than true tensors. Polar vectors that
are odd under time reversal are called toroidal for rea-
sons explained in Sec. 3; pseudovectors that are even
under time reversal are called antitoroidal by analogy.
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2. EDGE-SELECTIVE E1E2 SUM RULES

2.1. Parity-mixing operators

Optical sum rules are commonly used in atomic
physics [23]. In 1992, Thole et al. [24] established a
useful sum rule for X-ray magnetic circular dichroism
(XMCD): it states that the integrated dichroic signal is
proportional to (L.), i.e., to the ground state expecta-
tion value of the angular momentum operator acting on
the electronic shell that accepts the excited photelec-
tron. For XMCD spectra, one is mostly concerned with
electric dipole (E1) transitions satisfying the selection
rule { = (. £ 1, where /. characterizes the angular mo-
mentum in the initial core state and ¢ is the angular
momentum in the final excited state. In 1998, using a
similar approach, Natoli et al. [20] already established
the sum rule

E
S o1 = / opp (B) 0 (1| N

L (O ) (2)

AFE

for X-ray natural circular dichroism (XNCD), where
or1E2 denotes the X-ray absorption cross section due
to the E1FE2 interference terms in a finite energy range
AFE that must include, whenever this is relevant, the
two partners (j;,j_) of the spin—orbit split edge. In
the right-hand side, ¢ still refers to the final angu-
lar momentum of the electric dipole (E1) transition
and (' refers to the electric quadrupole transition (E2)
satisfying the selection rule ¢ = ¢, + 0,2, excluding
(" = (¢, = 0. Obviously, ¢ and (' have opposite pa-
rities and the operator N(?) (¢,¢') probes the mixing
of atomic orbitals of the corresponding parities. The
problem with Eq. (2) was that the rank-2 spherical
tensor N} was given no clear physical meaning in
Ref. [20]. We also found it desirable to extend this
sum rule to all E1E2 dichroisms.

Regarding Eq. (2), there is still a serious limita-
tion that was underlined by Di Matteo and Natoli in a
comprehensive review article [25]. Due to the core hole
perturbation, |¢,) is merely a virtual or pseudo ground
state of the system. Intuitively, one may fear that the
core hole does affect orbitals of opposite parities differ-
ently. If we expand |t¢),) in terms of stationary states
|¥,,), the quantity that is obtained is actually given by

W)g = Z a:zan’

n,n’

(| O 7,09 |%,), (3

where O(9) is the pertinent parity-mixing effective op-
erator. At present, there is no proof that the sum over
all configurations cancels the effects of the core hole
and restores the property of a true ground state as this

is implicitly assumed for the popular XMCD sum rules.
Contrary to Ref. [25], we are not even certain that the
cross terms (n # n') can a priori be neglected: typi-
cally, in the case of XMCD where O(Y) = L., the matrix
elements in the right-hand side of Eq. (3) are precisely
those that contribute to the Van Vleck paramagnetism
and are usually nonzero. We consider this difficulty
again in Sec. 4.

2.2. Spherical polarization tensors

The electric dipole (E1) and electric quadrupole
(E2) transition operators are é -t and é-rk -r, respec-
tively. We recall that for the left circularly polarized
light with a wavevector k, é = (i — ij) /v/2 where i and
j are unit vectors such that

ixj=k/k=k

It is therefore natural to describe the angular depen-
dence of the interference between the E1 and E2 tran-
sitions by coupling € first with % (as spherical tensors)
and then with €* to obtain

RN

([,] denotes a coupling via Clebsch-Gordan coeffi-
cients). The coupling of spherical tensors is described
in standard textbooks (e.g., [26]). But the tensors T(Bb)
do not have a well-defined behavior under time reversal
and are to be decomposed into their time-reversal even
(f = 1) and time-reversal odd (f = —1) parts T(Bb’g).
The E1E2 absorption cross section (0g1pa2) and sum
rules (X p1g2) are therefore written as

O'ElEZ—Z Z Z

b=1 f=—bO=+1

3 b
D DD DD D b i y bl

b=1 f=—bo==+1

BT (b,6) 9239)7

where ag’ée) and 2(_{”;) are rank-b spherical tensors.

To investigate the time-reversal symmetry of Tg”g),

we write it in terms of

= [, k)

(see [27] and Table 1). Here, [¢*@€](®) is a rank-a spher-
ical tensor. As proved in the next section, the time re-
versal properties of Xg“’b) can readily be deduced from
the fact that the action of the time-reversal operator ©
on € and k is ©@¢ = ¢* and Ok = —k. The action of @
on Xga’b) is therefore given by

ox = (-1)erixi,
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Table 1.  Polarization tensors of XOA
T+ = 0 (transversality condition)
a=0 TV (%) = —% % i XMyD (So)
‘ . 1)
a=2 T (e k) = ? [[e*.,e]“) k] XNCD (S;)
0
o), on L7 ) 1@
R 00D 5.5
TG+ =0
(3,-1) (s 7 o a2 71]®
a=2 T V(e k) = [[e ¢ ,k]? XMxD (So)
_n,, 3(3)
a=2 TGV (e, k) = [[e*,g]@) k] . XMLD (S;,S5)

We note that complex conjugation has a different ac-
tion, .
Xga’b) — (_1)a+1+b BX(féb).

We now consider the possible values of a and b
satisfying the triangle conditions 0 < a < 2 and
la—1]<b<a+1.

1) For a = 0, i.e., €* - € = 1, it immediately follows
that b=1 and og1g2 < ko=1 or YE1E2 X Ex-1),
This is obviously the case of XMyD.

2) For a = 1, ie., [¢*,e]V) ik, the result is still
rather simple if we assume that the electromagnetic
wave remains transverse inside the sample, i.e., if the
condition € -k = 0 is satisfied; then, the only choice
for b is 2. This is typically the case of XNCD and it
was previously established that the spherical tensors
o> *tDand B2+ are rank-2 pseudodeviators [20].

3) Finally, if a = 2, the problem becomes more
complicated because the values b = 1,2,3 are pos-
sible, which implies that the tensor property o(®—1)
can be a vector, a deviator or a septor. The option
{a =2;b=1} again yields the same vector contribu-
tion to XMyD; the options {a = 2;b= 2,3} can be
shown to contribute to nonreciprocal XMLD.

This discussion and the relation between T

B
and Xga’b) show that the nonzero tensors are T(1=1),
T+ 7= and TG~V . These tensors transform
as

(b,6) (b,0)
GTB = GTB
under time-reversal symmetry and as
b,6)* —Bm(b,6
TP = g(-1)>F 1"

under complex conjugation. We note that all tensors
o9 and (9 are time-reversal odd with the unique
exception of XNCD {a =1; b = 2}.

448

At this stage, within the limits of validity of
Egs. (2), several important results already follow with-
out heavy calculations: because the effective vector op-
erator of XMyD is odd under I and ©, it can only be
a toroidal vector; the effective operator of XNCD must
be a time-even pseudodeviator; the effective operators
of XMLD (S, S2) must combine a pseudodeviator and
a polar septor, which must again be odd with respect to
both I and ©. These results are summarized in Table 1.

2.3. Symmetry groups in XOA

In magnetic samples, the time-reversal operator ©
plays a key role and the point and space groups have to
be replaced by magnetic point and space groups [29].
The representation theory of magnetic groups is dif-
ficult because © is antilinear and representations are
replaced by corepresentations [30]. Theorems involv-
ing characters are no longer valid for corepresentations
because the equivalence between corepresentations D
and D’ is not determined by the existence of a matrix
A such that D' = ADA™! [30]. Nevertheless, we show
that these complications can be circumvented for the
representations of symmetries involved in XOA.

2.3.1. Transformation properties

The X-ray absorption cross section ¢ including elec-
tric dipole and quadrupole transitions is proportional
to

o(e.k) o 3 (yylé” r - %e* vk ry) x
f

x (Pylé- T+ %é vk |, )0(Ep — By — hw).



MKIT®, Tom 124, Boin. 2 (8), 2003

X-ray optical activity ...

We now successively transform a physical state with the
parity I, time-reversal O, rotation R, and translation
Tr operations and consider how o (€, k) is modified.
To investigate the transformation of the absorption
cross section under parity, we first consider the one-
electron spinless case. The action of the parity opera-
tor (I) on the system transforms the wavefunctions as
(Iy)(x) = (=r) and (Ig)(x) = t,(r), and the

matrix elements become
(1igé-2lT0y) = [ dwiy(o)e- vy (1) =

- / Qe (') & (—2 )y (2) = (7| (=¢) - 2li).

The same result holds generally for a many-body sys-
tem with spin. Moreover,

(Ihylé-r + %&-rk-r|hpg> =
= (sl T+ e Tk n)Tlyy) =
= (yl(=8) x4 5(=8) v (=K) -rluy).

Therefore, if o(€, k; I') denotes the absorption cross sec-
tion of the system transformed by parity, and if parity
is a symmetry of the system (such that the energies of
Inpy and I, coincide with the respective energies of
Yy and tg), we obtain that o(é,k;I) = o(—¢, —k).

For time-reversal symmetry (©), we start from the
basic equation

(09]0¢) = (4|¢)*
(see [30,31]). Hence,

(o)

(O0y]O(E x4+ S xk )lg) =
= <¢g\€-r+%€-rk-r|¢f>* = <¢f|€*~r—%€*-rk-r|¢g>.

On the other hand, the antilinearity of the time-reversal
operator yields

0 <€-r+%€-rk-r>¢f>=

and therefore,
(OUy " -x— =& -1k 1[OYy) =

A iA*
= (Yy|é" v — 56 vk -rfg).

14 ZK3T®, Bem. 2 (8)

Similarly,

(Ouylé-x+ 5é Tk 1|0w,) =
= (Pglé- T+ %é-rkmhpf).

Finally, if o(¢é,k; ©) denotes the absorption cross sec-
tion of the time-reversed system and if the system is in-
variant under ©, we obtain that o(é,k; ©) = o(é*, —k).

We next consider a transformation by the rotation
R. Starting again with the one-electron spinless case,
we have

(Rislé x| Riby) = / dr3(Re) € - 2apy (Rr) =
- / Q'3 () - (R12') 5, (1) = (i | (RE) - x]dy)-

More generally, for a many-body system with spin, if
o(é,k; R) denotes the absorption cross section of the
system transformed by the rotation R, we find that

o(é,k; R) = o(Ré, Rk).

The last tranformation that we need is transla-
tion. In X-ray absorption spectroscopy, the dipole and
quadrupole approximations are valid because the core
states are localized and the origin of coordinates can
be taken at the absorbing atom. If the system is trans-
lated, the origin is no longer the absorbing atom, the
dipole and quadrupole approximations are not valid,
and we must use the full absorption cross section [32]

R 472 ho e
o, k) = —5— Y [(sle™ " X[0g)[*6(Ef — By — hw),
f

m-w

where
X =hé-V—(g9/2)s-(k xé)

and s is the spin operator. The operator X is not
modified by translation. Thus, the translation Tg
acting on the system by Trts(r) = ¢s(r + R) and
TrYy(r) = by (r + R) transforms (1 7|e’™* X|1p,) into

(Trioyle™ ™ X|Tribg) = e "R (U |e™ " X1)y).

Therefore, if Tr is a symmetry of the system, we ob-
tain that o(é,k; Tr) = o(¢,k) and the absorption cross
section is independent of translations of the system.
At this stage, we have shown that a transformation
of the physical system can be replaced by a simultane-
ous transformation of the polarization and wave vec-
tors. We next analyze the consequences of this result
for the angular and polarization dependence of ogipso.
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2.3.2. Symmetry groups and E1E2 absorption

As discussed in Sec. 2.2, the E1E2 absorption cross
section can be written as

3
OF1E2 = E
b=1

In a reference frame where the wave vector is di-
rected along z axis, the polarization vector is

b

>

B:_

0 0
)7 S TP (4

0==+1

(_
b

cos Y cosy + isinesin y

sinty cosy —icosysiny |,
0

which represents an elliptically polarized wave for
which the ellipse axes are at the angle ¢ with the ref-
erence frame axes, and the circular polarization rate is
sin 2y. We recall that
S1/Sy = cos2y cos2t, So/Sp = cos2x sin 2,

S3/So = sin 2y.

In this frame, the nonzero tensor components are

(1171) — 1 3
Tor 7= ‘5\[5’
1
T = 5 s 2x,
_ 1 .
T(fé D= :I:—Q\/éeﬁw cos 2,
_ 1
T(3a 1) —_ ,
0 V10
_ 1 :
T(fé D = _o#2iv oog 2.

2V3

In particular, T(fé*l) =0.

We proved that the action of ® on the system can
be replaced by its action on T(Bb’g)., which was found to
be (6,0) (6,0)

b,0) _ b0
OT; " =0Tz

This result is nontrivial because the action of the time-
reversal operator © on a spherical tensor is usually de-
scribed by

T — (-1y~"1Y),

(see [30, 33]) or

T = (-1)"TY),

(see [31]). Here, the result is different because the time-
reversal operator does not act directly on the spherical
tensor. Its action on the system is translated into a
simpler action on the polarization and wave vectors.

450

More generally, any symmetry operation S acting
on the system can be written as

S = I’O'RTR,

where p = 1 or p = 0 if S contains or does not con-
tain the inversion, t = 1 or t = 0 if S contains or
does not contain the time-reversal symmetry, R de-
notes a rotation and Tr a translation. From the iden-
tity o(e, k;I) = o(—¢,—k), we see that the action of
the parity operator on the system reverses the E1E2
absorption cross section (i.e., og1p2(l) = —op1E2).
Therefore, the action of a general symmetry operation
S on the system transforms ogqpo into

b
opp2(S) =Y > (-1 x

b=1 B=—b
b b,0) (b0
< 3 (1D L(RITS ") (5)
6=+1

where Dg’,)ﬁ(R) is the Wigner rotation matrix. This
result justifies the use of the character method, which
was employed by Tenenbaum in Ref. [34] and which we
use in Sec. 3.

For a magnetic group Gys containing g¢,, elements,
the form of the absorption cross section is obtained by
taking the average over the elements of the group,

3 b
(opim) =Y. 3 (=12 S (P e (6)
b=1B=—b g==+1
where
1
(¢ = — 3 (~1re DY (R)TS?.
Im scGu

2.4. Effective operators of XOA
2.4.1. Spherical basis

The E1E2 sum rules were calculated by Carra and
collaborators using the powerful method of group gen-
erators [27,35-37]. A key achievement was to show
that all operators £("?) can be built from the triad of
mutually orthogonal vector operators:

1) n = r/r, which is a time-reversal even, polar
vector typically associated with the electric dipole mo-
ment;

2) the orbital angular momentum L, which is a
time-reversal odd axial vector;

3) the toroidal vector Q = [(n x L) — (L x n)] /2,
which is odd with respect to both I and ©.
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Because © can be rewritten as the commutator,
Q = i [n,L*] /2, we show in Sec. 3 that it is propor-
tional to the orbital anapole moment defined in [2].

Important results heve been established.

1) The XMxD sum rule involves the ground state
expectation value of the toroidal vector Q=1 pro-
jected along the direction of the wave vector k.

2) The XNCD sum rule must yield the expectation
value of the @-even pseudodeviator N+1) = [L, ]
which is obtained for a = 1, b = 2.

3) For a b 2, the effective operator must
be a ©-odd pseudodeviator, which was identified with
W1 = [L,n]®. Tts ground state expectation value
appears in the nonreciprocal XMLD sum rule.

4) For a = 2 and b = 3, the effective operator is the

©-odd septor '3~V = [[L.,L]@) ,ﬂ] )
state expectation value is involved in the XMyD sum
rule and in the nonreciprocal XMLD sum rule.

As long as the definition of the polarization tensors
T(Bb’e) given in the previous section is applicable, we
can use the following generic formulations of the XOA
sum rules, to be called the Carra—Jerez—Marri equa-
tions hereafter [37]:

for XNCD (Ss),

Its ground

X

m2a
YE1E2 = sin 2y (20, + 1

3he

)Y RVR

0

x a®+D (0,1, é’)\/;<N((]2’+1)(€,€’)>, (7)

for XMxD (So),

—272a

(2)
he v

Ypipe = X

(2t +1) > RVR

0,0

x{i Dl ) (7D (1,0

e eyt ®

for XMLD (51, SQ),

b3 (4,0, é)<

16m2a cos 2y 2)
Ymp2= ———— 0

2, 1§ (1
x 3 4a ) (€, 0,0) <W2*1 (M)>
9 3,8 3
=2
A

S ) (18 )| @
In these equations, Rgl)and R

;. denote the radial
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dipole and quadrupole integrals that are classically de-

fined as
Py

R = [ droe )00,

PmT

RI(Z,Z) = / rtdro, (r) e (1),
0

where the core state and photoelectron radial wave
functions are ¢, (r) and g, respectively; ¢, (r) is
typically localized in a muffin-tin sphere of the radius
parr. The expressions for the numerical factors a(2+1),
a1 o= pB:=1 are given in Table 2.

2.4.2. Cartesian basis

For linear dichroism experiments, it is more appro-
priate to express Eq. (9) in terms of Hermitian Carte-
sian effective operators. This can easily be done using
the relations (see, e.g., Refs. [22, 38])

2,1 1 2,-1 2,-1
WL )25 [W)((X )_Wx(/y )} +
1 _
o W+ wE Y,
2
2,—1 3 [(3,—1 3,-1
F(iQ = 5 [F(XXZ) - Fgfyz)] *
\/3 (3,-1) 3,1
[ Xvz +F§fxz)

where {X,Y, Z} are Cartesian coordinates in the ref-
erence frame used to define the polarization tensors in
Subsec. 2.3.2. Hence, the two effective operators de-
fined in Eq. (9) can now be rewritten as

W(27_1)

; [ezup < @ > _ o2t <W(2é_1)>} _

- s {5 ) ()] -

—cos20 [(WETY) + ( )], o)
o o ) -

w1

2,—1
XY W)(fx )

=sin2 [(T%7) + (V)] -
—cos 2y [< YYZ1)> - <F()?);;)>] - (1)
Because

S1/So = cos2x cos2y, Sy/Sy = cos2y sin 21,

14*
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Table 2.  Numerical factors

le+ 14+ 1) (e +1— 201 +20' =1+ 1)
e+ D)l +1+2)(1+ 1" +1)2

a> = (1, 1,1 = (

220+ )2 + 1)[6 + 3le(le + 1) = 20(1+ 1) = I'(I"' + 1)]

a0 (., 1,1 =
Y T4+ + 1) =31 +2D)(le + 31" =21 + 1) (I + 1)2(I. + 1 + 2)?

(' = D21+ 1)(2 + 1)[6 + 3le(lo + 1) — 20(1 + 1) — I'(I' + 1)]
20, — 31" + 20)(lo + 30 — 20+ 1)(lo + D)2(lo + 1 + 2)2

a7V (I, 11" =

2(20 + 1) (20 + 1)

(37_1) N =
b (fe, 1, 1) T+ 1+ 1)(le =31+ 20)(Le + 31" =20 + 1) (I + D)2 (I + 1 + 2)2

it becomes obvious that within the defined refer-  In Sec. 3, we address the inverse problem: assuming
ence frame, [W}(?{l) — W)(f)’;l)] is the effective opera- that we know some physical realization of a rank-2 ir-

tor responsible for the Jones dichroism XMLD (S;),  reducible tensor <W(526’71)>, we can generate its em-
and [W)((Q{,_l) + Wi(?)}_l)} is the effective operator of  bedded form in the rank-3 tensor space [22],
XMLD (S;). Tt can be seen that the septor terms

"(2) (2,-1) (2,-1)
02+ 0] o [0 rGi)] o con G s (W) s (W)
tribute to XMLD (S3) and XMLD ((5;1)_.,1)respec(t2niell)y. (”(2) o <N(2’+1)> . <N(2’+1)>
Typically, the contributions of [WY}’, - Wxk ] aBy aBd \ oy 08y \*Vas ’
and [F%le) - I‘(;;é)} are in quadrature with respect Keeping in mind that ({'l(g)v must be symmetric and
to the angular dependence 2¢. ({;'L(;) must be antisymmetric under the transposition
Identical conclusions can be reached by directly de-  of the «, 8 subscripts, we finally obtain after proper
composing the rank-3 gyration tensor (.3 into rota- symmetrization that
tional invariants following procedures reviewed in [22]. for XMLD (S,),
Such a decomposition yields one scalar (¢(?), three
vectors ((A(Yl)), two deviators (Cc(ia)), and one septor [ng)v — ﬁ)ﬁy] x [<Wé2ﬁ’7l)> + <Wﬁ(i’71)>] ;
(3) ;
(Caﬁv)' Because the E1E2 interference terms have for XMLD (S5),
no scalar part, it follows that (((¥)) = 0. Regarding
: 12 12 _ 2,-1
the vector components, it fOllOYVS from Sec. 2.2 t.hat [Coz(ﬁf)y + Cﬁ(a)v] x [<WC(£ 1)> _ <WB(B )>} :
only the vector part collinear with %, is involved, i.e.,
¢ = 0a5Cls,. Therefore, ¢\ must be identified  for XNCD (Ss),
with the expectation value of the anapole component
1,—1 1,—1 1(2) 1(2) 2,41
<Q(v )> = <Q((] )>‘ [Caﬁv - Cﬁa’v] X <N§7 )>'
Two pseudodeviators can be generated by a sym-
metric contraction of (j . [22]: On the other hand, the septor I‘fjﬁ’;l) must be the
1 natural irreducible representation of the rank-3 tensor
[C(;%)] =73 [eaijqiﬁ + egijg’m] ) C&BW. It is expected to contribute to both XMLD (.9y)
) and XMLD (S2) because
(8], = =3 lesshss + €siaChis]
2 2 L Kl 1(3) (3 (3.-1) 3,—1
[Cﬁﬁw - <a(a)v] x [Fﬁﬁw -0 )] )

Given the symmetry properties of the gyration tensor,

we can check that [(;(;)]1 = 0, and therefore [C;(Z}y n Cé(jzy] ~ {Tféf) + 1—\233(;;1)] .

[C;(;)] ) x <W;25’71)> . The two approaches are indeed equivalent.
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3. PHYSICAL IMPLICATIONS

3.1. Orbital magnetoelectric operators
3.1.1. Spin and orbital anapoles

As was first pointed out by Zel’dovich [1], a toroidal
solenoid generates not only an annular magnetic field
H, (r), but also the so-called toroidal current j, (r)
along the torus axis z [1-3,39]. The anapole moment
A is defined as the root-mean-square (rms) radius of
Ja (r). As emphasized long ago in [5], one should not
confuse the anapole moment with the toroidal dipole
moment M;y in the theory of classical electrodynam-
ics [7]. Khriplovich [2] and others [40] have nevertheless
proved that in a stationary state, where j, (r) is ti-
me-independent, the two moments become equivalent
up to the factor 4r, i.e.,

A = 471—Mtd .

We use this equivalence in Sec. 4 because the current
literature on magnetoelectric solids mostly refers to
toroidal dipole moment.

In solid state physics, annular magnetic fields can
be associated with either spin or orbital currents. The
magnetoelectric character of a spin anapole [42] is
schematically illustrated in Fig. 1. In the presence of a
magnetic field H, the energy of each spin carrier (elec-
tron) depends on its location on the annular orbit to
which the electrons are constrained: their distribution
is no longer uniform; consequently, an electric polar-
ization P is generated in the direction that is mutu-
ally orthogonal to H or j, (r). The case of an orbital
anapole was also envisaged by Ginzburg, Gorbatsevich,
Kopaev and their collaborators [8] many years ago, but
in a different theoretical perspective.

i
=

>

€1

x (=D

H,=S8S;

Fig. 1. Magnetoelectric character of a spin anapole: in

an external magnetic field H, the electron distribution

is no longer uniform and induces an electric polarization
orthogonal to H
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Following [2] or [43], we can decompose the total
anapole moment into its spin and orbital components,

< >:27WBZ<SZ-><1‘Z->,

>:

A(lv_l)

spin

(12)

2mpp
_;2"HB
3

A(lv_l)

orb

<

> (L)
(@u=0), (13)
where it can be checked that the operator —i [L?, ]

is both Hermitian and ©-odd [43]. We immediately
obtain that

_ 2mup
3

M;)gl“b — MBG<Q> )

At this stage, we must recall Lloyd’s theorem, which
states that for (diamagnetic) systems that have an even
number of electrons and integral spin, the expectation
value of Hermitian ©-odd operators vanishes [43].

3.1.2. Operators conserved by I0®

We now consider the perturbation of a system that
is in a remanent magnetoelectric state, when one elec-
tron is annihilated in a core state and one electron
{n, L, S} is created in a virtual ground state. By anal-
ogy with [44], we expand the energy U(n,L,S) into
a MacLaurin series [27]. Using a Cartesian basis, we
obtain

Un,L,S) = U(0,0,0) +

1
—|—Z {ﬁ[naana"‘LBaLB+SB853]mU(O,070)} . (14)

We need to retain only the magnetoelectric interfer-
ence terms that are invariant in the product 7© and
contribute to the nonreciprocal XOA. In the case of
a K-shell ionization, the spin does not play any role
and can be neglected. Starting with m = 2, we ob-
tain a rank-2 Cartesian tensor [aag],,, that is the
ground state expectation value of the orbital part of the
one-electron magnetoelectric tensor associated with the
dyad [L @ n]. Indeed, we can decompose [aqs],,, into
its irreducible representations, which include a pseu-
doscalar (i.e., the trace), the dual vector of the an-
tisymmetric part, and the traceless pseudodeviator of
the totally symmetric part. It is then straightforward
to show that the integrated XMyD signal, via the ex-
pectation value of the orbital anapole moment, is pro-
portional to the dual vector of [aqg]

)

orb’

1
o =

2

(1’71)

LXMXD (S) X <Qv €apy [aalon, -
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We note that this is a direct transposition of the re-
sult established long time ago by Ascher [39] and by
Gorbatsevich et al. [41, 42], who pointed out that for
a toroidal magnetoelectric solid, the total anapole mo-
ment (A;pq;) 18 proportional to the dual vector of the
rank-2 magnetoelectric tensor [aqg], i.e.,

1
(4;)  Seapn [aa]

We also show that at the m = 2 order, ¥ x 71, p(S1)
and Yy p(S2) can similarly be related to the irre-
ducible zero-trace symmetric pseudodeviator [aag]
because we have seen that

orb

[<W'$3’_1)> + <W(?17_1)>] X [aap + agalors,
[<WC(¥%571)> - <W[§237_1)>] X [aa = agglors-

This implies that XMLD (S;) and the Jones dichro-
ism XMLD (Ss) are also first-order magnetoelectric ef-
fects, but of the orbital nature. Typically, XMLD (Ss)
can be detected in magnetoelectric solids characterized
by a magnetoelectric tensor that has nonzero diagonal
terms. More precisely, this dichroism should be ob-
served whenever the diagonal terms are not equal in
the plane (0,0,%). The dichroism XMLD (S;) is ex-
pected to be detectable only when the magnetoelectric
tensor has symmetric off-diagonal terms, a situation
which is less frequent.

At the K-edge, there is no hope to access the spin
part of the one-electron magnetoelectric tensor [S @ n],
which can also be decomposed mto the spin anapole
Ai;’l; and the pseudodeviator Aspm . A priori, noth-
ing can be said about the relative sign and magnitude of
the spin and orbital parts of the total magnetoelectric
tensor. At most, it may be guessed that for transition
metal oxides, the spin part [aag]spm should be much
larger than the orbital part [aag],,. To date, mag-
netoelectric susceptibility measurements were largely
dominated by the spin contribution, and to the best of
our knowledge, there is not a single example where the
orbital part has been extracted. What makes X-ray ab-
sorption spectroscopy attractive is indeed its capability
to probe the orbital contributions to the magnetoelec-
tric tensor selectively.

At the m = 4 order, additional magnetoelectric in-
terference terms can be identified that are odd with
respect to parity I and time-reversal © but remain in-
variant under the product 10. Such terms can only be
obtained from the two rank-4 Cartesian tensors

[bgy6e),p = [L@L®L@n],

454

[¢8rvdelppp = [L @M @1 @ n].

We recall that the rank-4 tensor [L ® n @ L ® n], which
contributes to the so-called biquadratic susceptibil-
ity [45], is obviously parity-even and cannot therefore
contribute to XOA. As far as XOA is concerned, we
must only retain irreducible tensors of rank < 3 that
are linear with respect to n. We are then left with (at
most) three independent Cartesian septors obtained by
decomposing [bssc],,, into irreducible representations.
The latter are related to the six dual rank-3 tensors
generated by antisymmetric contraction [22], i.e.,

TtO(B’Y X €qde [bBV‘Sf]orb )

with 7 varying from 1 to 6. Three independent tensors
are easily identified,

1Fa6’y - [L @L® Q]aﬁy

@& @ a0]

b
afy

2Tapy = M @ L @0 {Hu +1) e, _1)]

By ™ afy’

slapy = [L @11 @n]

.=

can be viewed as an example of an antitoroidal vector
operator that is not Hermitian. As a consequence, only
the expectation value of the first septor operator is real
and can contribute to XOA. At this stage, it becomes
more convenient to return to the representation in the
spherical basis. We first observe that for the septor

() = o )

to exist, it is sufficient but not necessary that (€2)
and (Qrr) # 0 individually. We note that the tensor

(LQ{H), which is ©- and I-even, has the same symme-
try and angular dependence as the charge quadrupole
operator, althou h the matrix elements are different.
Interestingly, LL was recently shown [46, 47] to
be also the effective operator responsible for the recip-
rocal X-ray magnetic linear dichroism (XMLD) of a
magneto-optical origin [48].

At this stage, it can be anticipated that in ana-
lyzing XMyD spectra, we could experience serious dif-
ficulties in disentangling the contributions of I‘E)37_1)
and Q((]l 71)., especially if these two operators appear-
ing in Eq. (8) are both allowed by symmetry. In prin-
ciple, the higher-order septor term can be expected to
be smaller. As discussed in Sec. 3.3.2 below, compari-
son of the XMyD spectra recorded with a single crys-
tal or a powder can be very helpful in verifying the

afy
where

i) ==, =

2,41 _
(LL )-, Qt-=b
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Table 3.  X-ray optically active magnetoelectric group Gmag[x2, XW, XT]
Anapole QW £ Qb =
Deviator w® = \ w® 2 W@ £
Septor r® £0 r® =9 r® +£g
222[0,2,1]
4/m'm'm’[0,1,0] | m'm'm’[0,2,1]
3'ml1,0,2] 1[3,5,7); mmm/[1,1,2] 422[0,1,0] 4 /m'[0,2,2]
4/m'mml|1,0,1] 2/m'[1,3,3]; 2'/m|2,2,4] 4'2m’'[0, 1, 0] 4" /m'mm’[0, 1, 1]
AFM |AFE 12'm[1,0,1] 3'[1,1,3] I'm'200,1,0] 4mm'[0,1,1]
6/m'mml1,0,1] T[1,1,1); 4/m/[1,1,1] 622[0, 1,0] A2m[0, 1,1]
6'2'ml1,0,1] 6'[1,1,1]; 6/m’[1,1,1] 6 2m'[0, 1, 0] 12'm'0,1,1]
I'm'2[0,1,0] 32[0,1,1]
3'm'[0,1,1]
3m[1,0,7] mm2[1,1, 2]
AFM | FE T (2mm)*[1, 1, 2] 4'10,2, 2]
4mm]1,0,1]; 6mm|1,0, 1]
(m2m)[1,1,2]
FM |AFE| 321[1’0’,2], 1[0, 2, 2]
42'2'[1,0,1]; 62'2'[1,0,1]
M FE 31,1, 3] 4m'm’[0,1, 0] m'm'2[0,2,1]
4[1,1,1); 6[1,1,1] 6m'm’[0, 1, 0] 3m’[0,1, 1]
29'9'[1,1, 2]
Weak FM|AFE
(2'22')*[1,1,2]; (2'2'2)*[1,1, 2]
1[3,5,7); 2[1,3,3]; 2'[2, 2. 4]
Weak FM | FE m(2,2,4]; m'[1,3, 3]
m'm2'[1,1,2]; mm/2'[1, 1, 2]

* Non-standard groups.

validity of this assumption. We assume that we can
perform XMLD (S;) experiments with a single crys-
tall; Eqs. (9)-(11) show that the effective operators

WS(,27_1) )((2)’(_1)] and {Fg’y‘;) - Fgﬁ;;] have the
same angular dependence (2¢) when the crystal is ro-
tated around the direction of the incident X -ray beam,
but we already pointed out that the two contributions
are in quadrature. This implies that the higher-order
septor must induce only a small phase shift with respect
to the dominant XMLD (S,) signal. The same conclu-
sion must obviously be true for nonreciprocal XMLD
(S1) experiments. Again, the comparison of nonrecip-
rocal XMLD spectra recorded with a single crystal or
a powdered sample could be most helpful in evaluating
the importance of the septor term. This option is also
considered in Sec. 3.3.2.

In Table 3, we have summarized the effective XOA
operators that are irreducible representations of a given
magnetoelectric point group. Table 3 is a spin-off of the

455

work of Tenenbaum [34] who listed the number of in-
dependent components of the spherical tensors up to
rank 4 for 90 magnetic point groups. We recall, how-
ever, that this application was justified in Sec. 2.3.2.
For each magnetoelectric class, we indicated the num-
ber of independent, nonzero components of the anapole
(xa < 3), of the pseudodeviator W~ (yy < 5),
and of the pseudoseptor T3~V (ypr < 7). We have
identified 34 «toroidal point groups» (but only 31
classes) 6, 39] that admit the anapole as an irreducible
representation and we found that all of them also ad-
mit T'®) as an irreducible representation. We have also
found 22 «nontoroidal groups» that admit the pseudo-
deviator W(2=1 ag an irreducible representation and
may exhibit nonreciprocal XMLD; interestingly, 13 of
them still admit the pseudoseptor I'®>1) as an irre-
ducible representation. Not listed in Table 3 are the
magnetic classes that are not magnetoelectric but still
admit T'®) as irreducible representations,
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Table 4. Operators for induced magnetoelectric sus-

ceptibilities

I=-1,06=+41 (HHE)
FE1E2 compatible

I=+1,06=-1(EEH)
E2E2 + E1E3 compatible

Piezo-electric Piezo-magnetic

[L- Q](O) [n- Q](O)
L x Q—Q x L] nx Q—Q xn]®
[L, Q] [n, Q]
[L,W<2)](3) [n, W(2)](3)

6';6;6'/m;6'22";6'mm’; 6m2; 6'/mmm';
23;m'3; m'3m; 4'32: 43m.

For nonreciprocal XOA to be detectable, the orbital
magnetoelectric group must imperatively belong to the
groups listed in Table 3. This is not sufficient, unfortu-
nately, because Table 3 does not tell us whether the spe-
cific representations WEi’Q_)l) and I‘Eg;;; are allowed.
This is where Eq. (6) has to be used. In the specific case
of the Jones dichroism, one can alternatively exploit
the fact that the Cartesian tensors Wfﬁ’*l) must have
the same form as the magnetoelectric tensors in [49]
or [50]: using Eq. (10), it is then a trivial exercise to
identify which magnetoelectric groups give a nonrecip-
rocal dichroism XMLD (S,).

3.1.3. Operators not conserved by I®

The so-called higher-order magnetoelectric effects,
or the induced magnetoelectric effects in paramag-
netic systems [51], are commonly associated with
rank-3 susceptibility tensors referring to H,HgE., or
E.EgH, [52]. The corresponding tensors are there-
fore odd with respect to 710 and can be identified with
cross terms in the MacLaurin expansion of the energy
U at the intermediate order (m = 3). As pointed out
in [52], these additional terms must be taken into con-
sideration for magnetic groups that are compatible with
either piezomagnetism or piezoelectricity. Neither the
group 3m’' of CroO3 nor the groups 2/m' and 2'/m
to be considered in Sec. 4 for (Vi_,Cr,)203 belong to
these classes, but we nevertheless feel useful to look at
the relevant effective operators listed in Table 4.

Because we are primarily interested in the o1 g2 X-
ray absorption cross section, we first consider the case
of the odd parity H HE susceptibilities. The Hermitian
operators listed in the first column of Table 4 can be
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seen as describing magnetic field-induced magnetoelec-
tric properties. It immediately appears, however, that
the first 3 operators in the first column are the effec-
tive operators for natural optical activity as discussed
in more detail in Sec. 3.2. Of particular importance is
the scalar term, which is a parity-violating energy of
orbital origin but is fully consistent with the formula-
tion in [1]. For example, in a population of resolved
chiral species in a disordered fluid phase, each enan-
tiomer must bear an orbital anapole moment with a
well-defined sign in the molecular coordinate system,
but because the orientation of molecules is random in
a disordered fluid phase, there is obviously no magne-
tochiral dichroism that can be detected. In the pres-
ence of a strong external field H, the magnetoelectric
energy of the system becomes

[L . Q]H = [Lg . Qo] + [XorbH . ﬂg] + [Lo . AQH] + ...
where
L=Lo+ XorbH~

Neglecting the field-induced anapole moment AQy in
the first approximation, we expect the system to mi-
nimize its magnetoelectric energy with an anisotropic
angular distribution of the anapole preferably oriented
along the direction of the external magnetic field H.
As a consequence, one may anticipate that a (weak)
paramagnetochiral dichroism (XMyD) might be found.
Baranova and Zel’dovich [53] and others [54, 55] pre-
dicted long time ago that such a dichroism should
be detectable at optical wavelengths, where the con-
tribution of the E1M1 interference terms is domi-
nant; but the theory of optical magnetochiral dichroism
(OMyD) is more complicated because the Zeeman ef-
fect and the contribution of the spin anapole must also
be taken into account. The first OMyD spectra were
reported rather recently in solutions of paramagnetic
chiral compounds [56,57] and even in diamagnetic sys-
tems [58, 59]. Nevertheless, no XMyD could unfortu-
nately be detected as yet on chiral paramagnetic so-
lutions. On the other hand, the problem of detecting
XMyD spectra using powdered samples of magnetic
chiral complexes is different because the orientations
of the cristallites are frozen and another way to define
the quantization axis must be found. In this case, it
is desirable to combine the electric and magnetic fields
in a geometry depending on the magnetic group of the
sample. Further work is in progress at the ESRF in
order to explore this possibility, which is reminiscent
of the induced magnetoelectric effect detected in the
paramagnetic phase of NiSO4-4H>O [60].

For completeness, we have also listed the effective
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operators related to the parity-even EEH susceptibili-
ties in column 2 of Table 4. These operators can be seen
as describing the magnetoelectric properties induced by
the electric field. The first term is a free energy violat-
ing the time-reversal symmetry. It should be kept in
mind that the corresponding systems having even par-
ity are strictly speaking not relevant to optical activity
any more. In the X-ray range, they could neverthe-
less contribute to the ogaps or op1 g3 absorption cross
sections, which are unfortunately significantly smaller
than OF1E2-

3.2. Natural X-ray optical activity

According to [27], the effective operator
INERS I S

associated with natural XOA is the ©®-even direct prod-
uct of two ©-odd operators that are both related to
orbital magnetism. This suggests viewing the nat-
ural XOA either as a «degenerate» case of orbital
magnetism or as a particular case of the «induced
orbital magnetoelectric effecty». We also note that
(NZ+1) may well be nonzero even when either (L)
or (@) is zero. This can easily be illustrated
with the case of diamagnetic chiral compounds: Lloyd’s
theorem implies that (Q('~V) must vanish, whereas
<[L, Q](2’+1)>, which is Hermitian but ©®-even, can per-
fectly remain finite.

There is another case that deserves a special atten-
tion: if the expectation value of the orbital anapole
moment is nonzero along the direction of the wave vec-
tor k, then the system must exhibit a magnetochiral
dichroism (XMyD) in addition to the natural circu-
lar dichroism (XNCD). Moreover, one would expect
the external magnetic field not only to create a mag-
netization vector M, but also to stabilize one isomer
with respect to its enantiomer as a consequence of the
parity-violating free energy [€2 - M]; this effect has been
proved experimentally using OMxD [57]. This experi-
ment may shed new light on a long-lasting debate re-
garding the existence of chirality in prebiotic chem-
istry [61-63], because it suggests that the action of
a strong magnetic field can suffice to resolve optical
enantiomers. This would revivify the old view of Pas-
teur [64] that an intrinsic dissymmetric force is inherent
to the physical world. We recall that Pasteur, with his
remarkable intuition, tried hard for many years to show
that chirality and magnetism are connected [64], but he
could not prove this within the knowledge of his time.
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As already illustrated with the first column of Ta-
ble 4, the dyad [L, ] can be decomposed into three
irreducible representations: the pseudoscalar

NO =L, 0,
the dual polar vector

N = [LxQ-QxL]"

3

and the pseudodeviator N(®)| which was shown to play
a key role in XOA. A priori, the scalar part N could
only be associated with the E1M1 interference terms
that dominate optical activity at optical wavelengths
but can be neglected in the X-ray range as proved
in the next subsection. One may wonder, however,
whether any specific XOA effect may be related to the
vector term N, An interesting indication can be
found in the early works [65] and [66], where it was
suggested that a new type of optical activity can be
measured in the reflectivity mode for several crystal
classes. More recently [67], it was pointed out that
these mysterious classes are precisely associated with
the irreducible vector part of the optical activity ten-
sor. In Table 5, following [67], we have listed the crystal
classes that can contribute to a scalar, vector or ten-
sor type XOA according to symmetry. But we must
identify where the theory developed in Subsec. 2.2 is
to be modified in order to become compatible with the
eventual detection of the vector part of natural opti-
cal activity in the X-ray regime. The solution to this
puzzling problem was more or less given in [68], where
it was pointed out that in all crystal classes exhibiting
the vector optical activity, the electromagnetic wave
propagating inside the crystal is not transversally po-
larized but has a so-called skew polarization with an
axial component. It has to be realized, however, that
the absorption cross section o g1 g2 of such a very weak
axial component is a second-order dichroism, whose de-
tection would be a considerable challenge for experi-
mentalists. Recently, we nevertheless succeeded in de-
tecting the vector type of natural optical activity of a
diamagnetic zinc oxide (ZnQ) single crystal, in a geom-
etry optimized for X-ray resonant scattering [69].

Induced natural optical activity can also be pre-
dicted to occur as a consequence of the m = 4 terms in
Eq. (14). The two rank-3 operators

réG-1n _ [[L,L]Z., Q](B,fl) 7

ABHD) [[n.,L]2,Q] (3,41)

can induce natural optical activity. We have already
emphasized that T(3~1 is odd with respect to I and ©,



cause the spherical harmonics associated with the elec-
tric dipole (¢ = 1) and electric quadrupole (¢ = 2) are
orthogonal in a sample that is orientationally isotropic.
For the sake of illustration, we have reproduced in
Fig. 2a the cobalt K-edge X-ray absorption near edge
(XANES) and XNCD spectra of two resolved enan-
tiomers of the chiral «propeller-like» complex

1% = 2[Co(en)3Cl3] - NaCl - 6H,0.

In these compounds, the ligand field has the D3 point
group symmetry. As already reported elsewhere [18§],
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Table 5.  Rotational invariants of natural optical activity
Natural OA Trreducible parts of L @
Crystal classes Pseudoscalar Polar vector Pseudodeviator
1;2;3:4;6 1 1 1
622; 32; 422; 222 1 0 1
m; mm?2 0 1 1
4; 422m 0 0 1
6mm; 3m; 4mm 0 1 0
432; 23 1 0 0
whereas AG:+1) is even with respect to both I and ©. LT T
Typically, AG+1 originates in the m = 4 biquadratic . 'f" TN T -
magnetoelectric susceptibility and appears as the oper- 05l ! ~e_.-"7 }
ator responsible for electrogyration in centrosymmet- E H C 1
. . . . 3,—1) . 20 ] rySta (7)
ric solids, under high magnetic fields, T'(* can in- g ! Crystal (+)
duce XNCD signals in noncentrosymmetric magnetic g ’
N
systems, possibly in powdered samples. It seems that =
the latter operator could be responsible for the so-called &
=]
quadratic Faraday effect of optically active systems. =Z
We recall that there are magnetic groups that are not XNCD x50 .
magnetoelectric but nevertheless admit T'®:=1) as irre- o4l |
ducible representations. Nevertheless, the m = 4 terms : : : L1
in Eq. (14) are expected to be rather small; as yet, we 0.008 - ' ' ' ' ' |
failed to prove that electrogyration can be measured in ' 6
the X-ray spectral range. A
% 0.006 |- Co K-edge 7
" _
3.3. Rotational isotropy —§ 0.004 - gf)::;: ((7))
3.3.1. XNCD spectra =
‘ 2 0.002
It was obvious from the beginning that the X-ray 2
natural circular dichroism (XNCD) can hardly be de- N
tectable in powders or solutions because the rank-3 ten-
sor F1FE?2 has no scalar part. This is not surprising be- . . . . .

I
7780 7800
Energy, eV

I
7760

Fig.2. Co K-edge XNCD spectra of the resolved enan-
tiomers of the chiral complex 1* = 2[Co*(en)sCl3]-
NaCl- 6H20. a — XNCD spectra recorded with sin-

gle crystals of the (4) and (—) enantiomers.

A

polarization-averaged XANES spectrum was added for
comparison. b— XNCD spectra of the (—) enantiomer
as a single crystal or as a powdered pellet. Note the
very weak, inverted signal obtained with the powdered

pellet
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the XNCD spectra of the two enantiomers have oppo-
site signs. In Fig. 2b, we compare the XNCD spectra
recorded with either a single crystal or a pellet of a
powdered sample of the same enantiomer. With the
powdered sample, the strong XNCD signature assigned
to the E1FE2 interference terms totally vanishes. How-
ever, a very weak signal that has the opposite sign is
left in the preedge range (the normalized amplitude is
approximately 2.5 - 107%). Tt is impossible to trans-
form the XNCD spectrum of a given enantiomer into
the spectrum of its mirror image by a simple rotation.
This implies that the very weak signal observed in the
powdered sample cannot be explained by any residual
orientational order in the powder. It is therefore our
interpretation that this weak signal should be of a dif-
ferent nature and can be associated with small E1M1
pseudoscalar interference terms.

Regarding the photoexcitation of deep core states,
a monoelectronic M 1M1 transition is forbidden for two
independent reasons: (i) the angular momentum oper-
ator L has zero eigenvalue for a spherically symmetric
1s core state (e.g., in the case of a K-edge photoioniza-
tion); (ii) in a central-field atomic model, one-electron
radial wave functions with the same ¢ and different en-
ergies are orthogonal, and the magnetic dipole transi-
tion matrix element therefore vanishes. In a many-body
picture, the second argument no longer applies because
different potentials must be used to describe initial and
final one-electron states [13], but argument (i) is still
a problem. It is our interpretation that E1M1 transi-
tions can nevertheless be allowed in the case of a multi-
electron excitation process. This interpretation is sup-
ported by the derivation [37] of a two-particle E1M1
sum rule via the same procedure as that described in
Sec. 2.3. The calculated effective operator was identi-
fied as a two-particle orbital pseudoscalar N(© = L. Q.
Typically, one X-ray photon would cause the simulta-
neous photoexcitation of two electrons, one in the deep
K-shell and the other in the valence band. That the
effective operator vanishes (N(®) = 0) for a single par-
ticle follows from the definition

NO =L.[(Lxn)—(nxL)]/2.

The experimental and theoretical results thus suggest
that (difficult) XNCD experiments on powdered sam-
ples could possibly give access to the effective operators
of parity-mixing many-body processes, of which very
little is presently known.

When no single crystal is available, there is still
a possibility to recover a well detectable XNCDgqpo
signal: the idea is to break the orientational isotropy
of space artificially, e.g., by investigating liquid crys-
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tal phases aligned in a high magnetic field or chiral
ferromagnets below their Curie temperature [70]. As
an example, we report the XNCD spectra of another
stereogenic organometallic complex,

2% = [(L1)(L2)Fe" (Ls) (La)],

dissolved in an aligned liquid crystal. In this tetra-
coordinated iron complex, the absorbing atom (Fe)
is clearly in a chiral ligand field because all the
four ligands are different (the point group C;): L
is the cyclopentadienyl ligand (n° — C5Hs), Lo is a
iodine atom (—I), L3 is a carbonyl group (—CO),
and Ly a chiral tertiary phosphine (—PPhyR) with
R = (—NMe-C*HMePh). The stereoselective synthe-
sis of the corresponding diastereo-isomers was first de-
scribed in [71] and was reproduced for us at the Uni-
versity of Dijon (France). Because no large-size sin-
gle crystals could be grown, the enantiomers were dis-
solved in a liquid crystal that was known to exhibit
a strong diamagnetic anisotropy (Merck: MLC-6204 ;
T. = 66°C) and each chiral sample was aligned ina 5 T
magnetic field directed along the wave vector k of the
incident X-ray beam. We recall that the exploitation of
mesophase-oriented solutes has become a very popular
technique in NMR and ESR since the pioneering work
of Saupe in 1963 [72, 73]. In Fig. 3, we have reproduced
the Fe K-edge XANES and XNCD spectra of the two
enantiomeric solutions. The two XNCD spectra have
clearly opposite signs, as expected. The price that we
had to pay was clearly a dramatic loss of sensitivity,
not only because the solubility of the chiral complexes
was very poor, but also because the (unknown) order
parameter of the solute itself inside the liquid crystal
phase was probably rather low. We note that ab initio
simulations of the experimental XNCD spectra turned
out to be impossible unfortunately due to the lack of
information regarding the preferential orientational or-
der of the solute in the oriented liquid crystal.

3.3.2. Nonreciprocal XMyxD and XMLD

spectra

Magnetochiral dichroism (XMyD) spectra of CrsO3
were successively recorded using either a single crystal
or a powdered sample [14]. As illustrated by Fig. 4,
the most significant difference between the two spec-
tra is a reduction of the signal, approximately 6 : 1
in the experiment carried out with the powdered sam-
ple. It also appears that the normalized intensity of the
magnetochiral dichroism spectrum measured with the
single crystal exceeds the intensity of the XNCD spec-
tra reproduced in Fig. 2; this might well be consistent
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Normalized XANES

I
7120

7110 7130 7140
Energy, eV
Fig. 3. Fe K-edge XNCD spectra of the
two resolved enantiomers of the chiral com-
plex 2% = (n® — CsHs)Fe*(=1)(—CO)
[-PPha(—NMe — C*HMePh)] dissolved in a i

quid crystal phase (Merck ZLI 4814). All spectra were

recorded in the fluorescence detection mode using a

high magnetic field (5 T) to align the liquid crystal

and the solute. a — Polarization averaged XANES

spectra of each (%) enantiomer. b — XNCD spectra
of the two (+) enantiomers

with our remark that the magnetoelectric susceptibili-
ties [aag],,, appear in the lowest order term m = 2 of
the series expansion of the energy U (L, n), whereas the
effective operators for XNCD contribute to the m = 3
susceptibilities.

The primary aim of this section is to show that the
proved capability to record XMyD spectra using pow-
dered samples is fully consistent with the proposed sum
rule analysis and also consistent with our interpreta-
tion that the leading term in Eq. (3) should be the
contribution of the projection of the orbital anapole
moment le) along the direction of the wave vector k.
Since the pioneering works of Astrov [74, 75], it is well
documented that the key step in measurement of the
magnetoelectric susceptibility is the creation of a re-
manent state characterized by a strong polarization of
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Fig.4. Cr K-edge XMyD spectra of Cro03 recorded

with either a single crystal (c||k) or a powdered sample.

The differential absorption spectra refer to the 180° do-

mains grown under the condition of time-reversality af-

ter magnetoelectric annealing. The upper trace repro-

duces a high energy resolution (deconvoluted) XANES
spectrum

the magnetoelectric domains. This is rather well un-
derstood for CroOgz, which has only two magnetoelec-
tric domains (+) that can be exchanged by reversing
the time and are illustrated with Fig. 5. If n(y) and
n(—) denote the number densities of the two types of
domains, we are directly concerned in our experiment,
with the magnetoelectric polarization ratio

) ()

PME T ey

We found it most convenient to adapt the model pro-
posed in [76] to describe the nucleation of magnetoelec-
tric domains by annealing.

We start from a crystal that is described by the ten-
sors <T§3b’0)>x in the crystalline axes. In a powder, the
crystalline axes of a given crystallite i are rotated with
respect to the reference frame of the experiment, with
the rotation described by the Euler angles ¢;,6;, and
;. We assume that the electric and magnetic fields
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(O1)
(O2)
(O3)
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Fig. 5.

® O

Oxygen 0%~
Ligands

Cr3+
Spin-down

¢

Schematic representation of the two 180° antiferromagnetic domains grown by magnetoelectric annealing with

antiparallel (left panel) and parallel (right panel) electric (E) and magnetic (H) fields

are parallel to the z axis of the reference frame of the
experiment and that the magnetoelectric tensor of the
crystal is diagonal (with ag, = ayy) in the reference
frame of the crystal. The magnetocrystalline energy of
the crystallite is therefore proportional to (see [77])

Uurp(0;))=-E-a-H=—-FEH(a,, cos? 6; 4+ a,, sin” 6;)

for a domain of the magnetoelectric type and to
—Unp(6;) for domains of other types. At the tem-
perature T, the polarization ratio is given by

Ume (0;)
Fan i ) (15)

n(4) =N

= PME (90 = th <
N(+) T 1)
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The XOA experiments refer to tensors (Tg"’e))y
that not only are parity-odd but also change sign for
domains of different types. For a crystallite i, the ten-
sors in the reference frame of the experiment become

Z ng;)ﬁ(dsl 9;'., 1/)1')<T/(3b"9)>x tanh(UME(Hi)/kTN).
B/

To obtain the tensor components (Tgb’9)>p of the pow-

der, we calculate the average of the last expression over
¢i,0;, and ;. The average over ¢; and ; gives 3’ =0
and f = 0. From

DE)I()]) <¢i70i7wi) = Pb(COS 91>
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(where P, is a Legendre polynomial), we find that

(TS, = 05.0(TY ") x I,

where
I = /p,, (2)th {a [(1+ £2) 2> — §%]) da,
0

with

azz

L _ FEHao., .
kTN

We note that the integral is restricted to the range 0 to

1 by symmetry. In this context, the macroscopic mag-

netoelectric susceptibility J» = (215 + Ip) /3 measured

with a powdered sample must be given by [76]

<1, a=

GQzzy

1

Iy = /x2th{a [(1+62) 2* — B2} do.

0

In Table 6, we have regrouped the calculated values
of the integrals I, (< 3) for typical values of the pa-
rameters o and $2. Because the efficiency of the mag-
netoelectric annealing procedure carried out with the
single crystal is not known, the values listed in Table 6
are systematically normalized with a constant scaling
factor slightly less than unity, th ag &~ 0.995 if ag = 3.
Following [76], we have assumed in the first two exam-
ples that at least near the Néel temperature Ty, 3% ~ 0,
and we compared the integrals obtained with ag = 3
and « = 1. In the last simulation, which seems to be
a reasonable approximation of our experimental condi-
tions, we selected o = 1 and 32 = 0.15. In all cases, I3
is quite small (< 0.05); it even reverses its sign when
the magnetoelectric polarization of a well-oriented crys-
tallite is assumed to be as effective as in the case of a
single crystal (ag = 3). We also note that the exper-
imental value Jy &~ 0.3 reported in [75] is very close
to the asymptotic value that should be measured when
the annealing process is as effective in the powder as in
the single crystal. In practice, unless very careful an-
nealing procedures are used (e.g., heating the powder
at 1300°C under inert atmosphere), the local electric
field in the powder can be dramatically reduced due to
the hygroscopic character of the powder, while the con-
ductivity increases, as pointed out in [77]. As a result,
we expect a certainly lower efficiency of our annealing,
as reflected by tha &~ 0.76 for a = 1.

An important result of this calculation is that

1"((]3’_1)> should have only a very small contribution

in the powdered sample; because the two XMyD spec-
tra displayed in Fig. 4 exhibit only minor differences,
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we are therefore led to the important conclusion that
the application of the sum rule to the XMyD spectrum
recorded with the single crystal should yield a reason-
able estimate of the orbital anapole moment.

A further question is whether nonreciprocal XMLD
spectra can also be recorded using powdered samples.
The answer strongly depends on how the magnetoelec-
tric annealing procedure is conducted. We can assume,
for instance, that the same type of annealing is again
performed with a powdered sample of CroOgz, but in
the different geometry, E || H L k. In other terms, we
have set a different direction of quantification for the
magnetoelectric domains in the laboratory coordinates
{X,Y, Z}, whereas the free energy in the cristallite co-
ordinates {z,y, z} remains unchanged. Hence,

(W) = (M)

1
. / [(azz - amm) xQ + axx]o’r‘b x
0

2,—1 2,—1
W) = (v

x th{a [(1+ f%) 2> — B?] }da.

We thus expect a nonreciprocal XMLD (S3) signal to
be measurable in the powdered sample: it should now
be proportional to .J5, under the assumption that

(a:: — Aga),,, 7 0.

It would be interesting to compare such a nonrecipro-
cal XMLD spectrum with a test experiment carried out
with a single crystal in a geometry satisfying the con-
dition ¢ L k, with the magnetoelectric annealing still
performed with E || H || ¢. A comparison of this type
would yield valuable information regarding the impor-
tance of the septor term in XMLD experiments.

In powdered samples, as suggested in [78], anneal-
ing could be carried out in electric and magnetic fields
arbitrarily oriented with respect to each other. In the
cristallite coordinates {z,y, z}, the relevant magneto-
electric free energy must be replaced by

Unp o« —EH[(as: cos® §; + ag, sin® 0;) cos B +

+ (a2, — gy ) sin@; cos 6; sin ¢; sin Fo].

Because the term proportional to sin ¢; has zero aver-
age in the calculation of the modified integral .J,, we
can anticipate that the price to be paid is a further
reduction of the annealing efficiency proportional to
cos g, where 3y denotes the angle between the elec-
tric and magnetic fields. This result was not really
unexpected. It is, however, restricted to magnetoelec-
tric solids that have a diagonal magnetoelectric ten-
sor with a > —ay. We will consider the general
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Table 6.  Rotational average integrals for powdered samples
Parameters [0 11 IQ 13 J2
ap=3.0,a=3.0,52=0.0 0.565 0.387 0.150 —0.008 0.289
ap=3.0,a=10,52=0.0 0.296 0.218 0.109 0.026 0.172
ag =30, a=1.0,52=0.15 0.202 0.184 0.131 0.051 0.155

case of the magnetoelectric annealing of powdered sam-
ples depending on the magnetoelectric symmetry of the
cristallites elsewhere [79].

4. APPLICATIONS OF X-RAY OPTICAL
ACTIVITY

4.1. Magnetoelectric symmetry
4.1.1. Chromium sesquioxide: Cr;Oj3

The detection of rather intense XMyD spectra in
the magnetoelectric phase of CroO3 (eskolaite) is some-
what puzzling because the universally cited magnetic
group of CryQg3, i.e., §'m’, does not admit the anapole

as an irreducible representation, Qél) = 0. According

to Table 3, the septor I‘g”_l) must have only a single
nonzero component, but the table itself does not tell us
whether this component is for f = 0. This is precisely
where the method developed in Sec. 2.3 can help us.

For the magnetic group 3'm/, we obtain that

<T231’71)> - 07
<T(2’+1)> - 01
<ng, 1)> — 55 ng, 1)

TgS,fl) + T&Séfl)
5 .

The other components of T(~1) are zero, including

the one for f = 0. Morever, we note that when the
wave vector is directed along the z axis of the refer-
ence frame (which is also the ¢ axis of the crystal),
then T;™" = 0. In other terms, TG~ cannot be
detected in this geometry. In conclusion, there is no
optical activity of any type compatible with the group
3'm', in the geometry of the experiment.

It must also be kept in mind that whatever the true
magnetic group of CroO3 may ultimately be, a com-
ponent F((]3’_1)., if any, should give only a very weak
contribution to the spectrum recorded in the powdered
sample. It was argued in the previous section that the
spectrum recorded with the single crystal should yield

a reasonable estimate of some orbital anapole moment.
In all cases, this would imply a reduction of the mag-
netic symmetry in what we have previously called a
pseudoground state. At this stage, we are left with
interpretations of two types, which we now consider
successively.

1. The observed reduction of the ground state mag-
netic symmetry of CryOgj is related to experimental
conditions favoring some metamagnetic phase.

Some ambiguity may possibly stem from the fact
that the XMyD spectra were recorded in the presence
of a rather modest magnetic field (0.5 T) directed along
the ¢ axis. We recall that this magnetic field was re-
quired only to grow single antiferromagnetic domains,
no magnetic field being a priori needed to record the
XMyD spectra. It has been argued that the axial mag-
netic field can modify magnetic symmetry of the sample
and that metamagnetic domains of symmetry 3m’ can
(eventually) contaminate the measurements. This is,
however, contradicted by the fact that the sample did
not exhibit any measurable XMCD spectrum at the Cr
K-edge. Moreover, a quick inspection of Table 3 im-
mediately shows that the group 3m' again admits only
the septor but not the anapole as irreducible represen-
tations.

It has been known for decades that the magnetic
group of CroO3 changes beyond the critical spin-flop
transition [80, 81]. Recent investigations initiated
in [82-84] have confirmed that when a strong mag-
netic field (up to 20 T) is applied along the ¢ axis,
a toroidal order can be detected that is associated with
the spin-flop magnetic group 2'/m. Because the criti-
cal spin-flop field at 100 K is 5.8 T [85], it is very un-
likely that spin-flop domains could develop in a field of
0.5 T. Recent crystal topography experiments carried
out with the powerful method of polarized second har-
monic generation have proved that no spin-flop domain
can be detected below the critical spin-flop field [85].

There are further experimental data that also con-
cur to rule out any contribution of spin-flop domains.
Unpublished X-ray linear dichroism spectra, e.g., XLD
(S1) spectra, were recorded in the presence of a higher
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Fig.6. Cr K-edge XLD spectra of Cr203 with or with-

out magnetoelectric annealing using a 3 T magnetic

field. The crystal and the geometry of the experiment

were the same as for recording XMxD spectra (cl||k).

The upper trace reproduces a XANES spectrum (raw
data) for comparison

magnetic field (3 T) following a magnetoelectric an-
nealing procedure carried out with a strong elec-
tric field (1kV/cm) in the geometry E|H|c|k. Un-
der such experimental conditions, one would expect
the hypothetical spin-flop domains to have a stronger
weight, with the practical consequence that recip-
rocal/nonreciprocal XLD signals should become de-
tectable. As illustrated in Fig. 6, we found no con-
clusive evidence of such a dichroism. For compari-
son, we have included in Fig. 6 a natural XLD spec-
trum recorded in the absence of any magnetic field:
the goal was to check carefully whether the (possibly)
imperfect alignment of the ¢ axis with the wave vec-
tor k can generate any artefactual dichroism. This is
clearly not the case. These negative experiments sup-
port our view that it is very unlikely that spin-flop
domains can contribute to the XMyD experiment per-
formed with a much weaker magnetic field (0.5T). It
is also noteworthy that all diagonal terms of the mag-
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netoelectric tensor are expected to vanish in the 2'/m
spin-flop phase [50]: no effective magnetoelectric an-
nealing can then occur in the geometry of our XMyD
experiment and the separation of domains of opposite
time-reversality becomes impossible.

2. There is a reduction of the magnetic symmetry
due to some partially unquenched angular momentum
that has a different quantization axis than the spins.

There is nothing sacrilegious to envisage that the or-
bital part of the magnetoelectric tensor [aqg],,, (Which
has never been measured so far) can reveal a symmetry
reduction with respect to the point group 3m®©, which
admits 3'm’ as a subgroup. We recall that this sub-
group corresponds to the highest magnetic symmetry
compatible with the chemical cell (measured above T)
and with the antiferromagnetic spin configuration. As
pointed out in [86], the angular momentum unquenched
by covalent bonding, with a different quantization axis
than the spins, must be a widespread phenomenon in
antiferromagnetic solids.

In our case, there can be no anapole component
Qo along the ¢ axis without a (small) orbital moment
L and an orthogonal electric dipole in directions per-
pendicular to ¢ at the Cr sites. We can therefore ex-
pect a (small) canting of the total magnetic moment.
We here reopen a fairly old debate that started when
Foner [87] reported that the parallel magnetic suscep-
tibility of CroO3 does not drop to zero below 4 K. This
led to active search for a canted structure of the mag-
netic moments until Silverstein and Jacobs found that
Van Vleck susceptibility calculations can explain the
residual contribution of x| [88]. We recall that the Van
Vleck susceptibility accounts for localized orbital mo-
ments consistent with a Zeeman perturbation restricted
to the first and second order,

Nug

3kT

o 2N 5~ (% ]
n#g

{<\I'g‘ L; |‘I'g> <‘I'g| L; ‘\I'g>} +

‘I'n> <‘I'n‘ L; |‘I'g>
E, - E,

it
Xorb =

where N is the Avogadro number. In the particular case
where the ground state is orbitally nondegenerate, the
first term vanishes. This was assumed by Silverstein
and Jacobs, who considered a Cr ion in a cubic crystal
field with a weak trigonal field. The Van Vleck sus-
ceptibility can then only result from the temperature-
independent second term, which couples the ground
state to higher crystal field levels. Parallel suscepti-
bility measurements refer to the component L., but
the weak trigonal field splitting of the corundum struc-
ture yields an even higher coupling for L, , resulting in
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stronger Van Vleck contributions to x 1 [89]. The angu-
lar momentum alone cannot yield the orbital anapole
moment; we also need electric dipoles. Recently, Muto
et al. [90] tried to simulate magnetoelectric spectra at
optical wavelengths and pointed out that an antisym-
metric twist field with trigonal symmetry must be in-
troduced in the microscopic model in order to mix odd-
parity orbitals in the stationary states of the system.
This antisymmetric twist is clearly essential to produce
a nonzero local orbital anapole moment. At this stage,
it is tempting to conclude that the symmetry reduc-
tion is caused by a substantial admixture of low-lying
crystal field levels in the virtual ground state. We do
not even require an external field to induce the Zee-
man second-order perturbation; the strong exchange
field responsible for the antiferromagnetic order and
the spin—orbit coupling could play the same role. We
recall that the strong local perturbation caused by the
deep core hole can obviously also cause such a substan-
tial coupling as predicted in Sec. 2.1 (see Eq. (3)).

It remains to be proved experimentally, however,
that there is no unquenched angular momentum in the
ground state of CroOs; one should also reinvestigate
whether some small ordered canting of the magnetic
moments associated with angular momentum can oc-
cur. Careful neutron diffraction studies [91] failed to
detect any large, ordered canting of the magnetic mo-
ments, but the authors admitted openly that neutron
diffraction cannot disprove models with canting angles
less than 3 degrees. This implies that with the mea-
sured spin moment 2.48up at each Cr site, orthogonal
orbital moments as large as 0.13up may not be seen.
This leaves ample space for some orbital magnetism
involving only the ground state wave functions. The
authors of [92] suspected that the covalent character
in the Cr-O bonds might involve «a small spin trans-
fer from the Cr (3d) orbitals to the O (2p) shell» but
they noted that the transferred moment is too small
to be detected by neutron diffraction. This problem
was recently reconsidered in [93] via spherical neutron
polarimetry, and it was confirmed that a reduction of
(S.) from 2.98up to 2.48up is definitely too large to be
explained solely by the Heisenberg «zero-point devia-
tion» (8 %) deduced from neutron inelastic scattering
measurements in [92]. Using a simple model based on
a covalent overlap of the metal 3d(ts4) orbitals with
the oxygen 2p orbitals, Brown et al. [93] pointed out
that the symmetry constraints preclude a net magne-
tization of the oxygen atoms, and the only effect of a
covalent mixing is therefore to lower the measured mo-
ment (S.) on the Cr sites; no change of the accepted
§'m’magnetic group is required. This is only true if
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the spin—orbit coupling can be neglected as discussed
below.

More sophisticated unrestricted Hartree—Fock cal-
culations [94, 95] revealed that covalency effects are
particularly important in chromium sesquioxide and
can explain the well-known differences in the magnetic
structures of Cry03 and FeoO3. Contrary to the model
in [93], Dovesi et al. [94] found a large splitting be-
tween the spin-up (#5,) and spin-down (tgg) states and
observed that the covalent electron transfer involves a
substantial contribution of the Cr 3d(e4) orbitals in the
ground state. This result suggests that there should be
a significant contribution of the first term of the orbital
susceptibility x o expressed by Eq. (16). In the general
framework of band structure calculations, the orbital
part of susceptibility must also include terms, such as
those predicted in [96], that have the same source as
the temperature-independent Van Vleck susceptibility
in localized ions.

A quick inspection of our XMyD spectra convinced
us that the E1E2 dichroic signal is most intense for
mixed parity excited states that can be identified as
{p(0) + €2} and {p(0) + €5} above the Fermi level in
the unrestricted Hartree-Fock calculations in [94]. As
a consequence of the crystal field symmetry, there can-
not be any net spin moment delocalized on the oxygen
atoms. However, the calculations produce clear evi-
dence of a local polarization of each oxygen atom: the
part of the electron cloud facing Cry (a) is 8 polarized,
while that facing Crs (f) is a polarized, the maximum
polarization occurring along the directions of the chem-
ical bonds. Regarding orbital moments possibly asso-
ciated with the covalent bonding, one should keep in
mind that the spin—orbit coupling is expected to lower
the crystal field symmetry, especially in the plane per-
pendicular to the ¢ axis. Thus, the calculation in [94]
strongly suggests that a small orbital magnetic moment
perpendicular to ¢ can occur at every chromium site.
This is also fully consistent with the observation in [36]
that highly aspherical spin densities with zero spatial
average are most often associated with nonzero angular
momentum distributions.

Dovesi et al. [94, 95] reiterated the claim that the
magnetic symmetry of the antiferromagnetic phase of
Cry03 is reduced to R3e¢ (class 3m), which is a sub-
group of R3e. It is not transparent from their paper
how this claim was justified. It seems that the only
magnetic constraint imposed on the calculation was
that the difference between the numbers of majority-
spin and minority-spin electrons per unit cell n, — ng
was set to zero, while the program was expected to re-
tain only solutions for which two consecutive Cr atoms
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have a and S-type net atomic spin densities. Indeed,
the group 3m would ideally explain our XOA experi-
ments:

1) the magnetic crystal class 3m (space group R3c)
admits the anapole as an irreducible representation,
which is consistent with the observation of the XMyD
spectra;

2) the crystal class 3m does not admit the pseudode-
viator W(2~1 as an irreducible representation, which
is consistent with the absence of detectable XMLD
(S1,S2) spectra [14];

3) the crystal class 3m admits the septor T
as an irreducible representation; using the procedure
described in Sec. 2.3, we were able to check that

(37_1)

<1"((]3’_1)> # 0. From the experiment carried out with

the powdered sample, we expect only a small contribu-
tion of this septor term to the XMyD spectra. On the
I‘ﬂf{l)> = 0.

Unfortunately, the magnetoelectric group 3m is def-
initely incompatible with all published magnetoelectric
susceptibility measurements, including the magneto-
electric annealing procedure that we used, because it
is easy to verify that the generic magnetoelectric ten-
sor of this group has no diagonal term [50].

The point raised by Dovesi et al. that a struc-
tural change could occur below T would be consis-
tent with the observation reported by several authors
long ago that the lattice parameters change quite sig-
nificantly below T [97]. Unfortunately, very high
quality crystal structure data are required to refine
the true magnetic space group. If we trust the in-
terpretation that our XMyD spectra imply a reduc-
tion of magnetic symmetry below Ty, then we must
seek a magnetoelectric group consistent with both XOA
and the well-established magnetoelectric susceptibility
measurements. The only magnetic groups that can rec-
oncile these two experiments are 3 and 3: this is be-
cause their generic magnetoelectric tensors simultane-
ously have the same diagonal terms as the group 3m'
and the same off-diagonal terms as the group 3m [50].
We note that only the group 3 is suitable for an anti-
ferromagnetic solid, whereas the group 3 would imply
that the system is ferromagnetic, which is not the case.
Similarly, a very important observation [39] is that the
existence of a magnetoelectric toroidal group requires
that in the high-temperature paramagnetic phase, the
compound must belong to one of the 8 ordinary groups:

other hand, it is easy to check that <

mmm, 4/mmm, 3m, 6m2, 6/mmm, m3, 43m, m3m.

Therefore, as far as the corundum point group 3m
is concerned, the only antiferromagnetic toroidal sub-
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groups that deserve attention are 3, 3m, and 3 m,
which are all subgroups of 3'm'/. We note that only
3 has a magnetoelectric tensor with diagonal elements.
This was the basic argument that led us to propose this
group as the true magnetic group describing the spin
and orbital magnetoelectric effects in CroOg [14]. Ac-
cording to Table 3, the magnetic group 3’ must admit
irreducible representations of the type W(BZ’_l). Using

Eq. (6), we find that W(fé_l) = 0 in our experimental
configuration (H || E || ¢ || k). This is fully consistent
with the fact that we failed to detect any nonrecip-
rocal XMLD signal in this geometry. As discussed in
Sec. 3.3.2, anonreciprocal dichroism XMLD (.S2) might
however be detected if the wave vector k is set perpen-
dicular to the c axis, the annealing being still performed
with H || E || ¢. Unfortunately, no experiment has yet
been performed in this geometry.

4.1.2. Vanadium sesquioxides: (V1_,Cr,)203

The magnetic structure of the chromium doped
vanadium sesquioxides (Vi_,Cr;)203 in the so-called
antiferromagnetic «insulating» low-temperature phase
is another controversial subject. It dates back to 1980
when Word et al. [98] reported a careful neutron diffrac-
tion study on pure vanadium sesquioxide (karelianite).
They confirmed that in the monoclinic antiferromag-
netic insulating phase, the crystal has a distorted 12/a
symmetry and that the vanadium atoms carry a mag-
netic moment approximately given by 1.2upg, tilted
away from the trigonal ¢ axis by 71° and perpendicular
to the a axis. However, the observation of a forbidden
reflection for ¢ = 6h + 3 [99] led them to envisage that
the magnetic group might not be 2/m ® © as is usu-
ally accepted but rather a low-symmetry group 2 [98].
They tentatively explained this symmetry reduction by
a small magnetic contribution of the oxygen lattice [99].
This puzzling observation was nevertheless considered
a «minor issue» even though it was admittted by Moon
himself [100] and by von Laar and Yethiraj [101] that a
reduction of the magnetic symmetry could be perfectly
envisaged. Moon explicitly mentioned in his paper that
orbital moments could result in a reduction of symme-
try.

The neutron diffraction study in [98] is pertinent
here because the class 2 is magnetoelectric; according
to Table 3, it simultaneously admits Q=1 WZ-1),
and T3~ as irreducible representations, and the
measurement of nonreciprocal XMLD (S, Ss2) spec-
tra must then be allowed by symmetry. Using a
crystal of chromium doped vanadium sesquioxide, i.e.,
(V1-,Cr,)203 with 2 = 0.028, we observed in the mon-
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Fig.7. V K-edge nonreciprocal XMLD spectra of
(V(1—2)Crz )203 recorded in the monoclinic antifer-
romagnetic insulating phase below Ty after magneto-
electric annealing performed with either parallel (+) or
antiparallel (—) electric and magnetic fields in the ge-
ometry (c||k||E||H). The differential absorption spec-
tra refer to the domains grown under the condition of
time-reversality after magnetoelectric annealing. The
upper trace reproduces a high energy resolution (de-
convoluted) XANES spectrum

oclinic low-temperature phase what is still believed to
be the first example of a nonreciprocal X-ray magnetic
linear dichroism [15]. The crystal borrowed from Pao-
lasini was initially assumed to be cleaved perpendicu-
larly to the hexagonal ¢ axis, but it was realized re-
cently that it was slightly miscut. Thus, the nonre-
ciprocal XMLD (.51) spectra reproduced in Fig. 7 were
recorded after a magnetoelectric annealing process con-
ducted in the geometry E||/H|k with ¢ tilted away from
k by approximately 10°. Because the signal was found
to change its sign when the annealing was performed
with parallel or antiparallel electric/magnetic fields and
to vanish above the Néel temperature Ty = 181 K,
we feel that there is very little doubt left regarding
the nonreciprocal character of this signal. We empha-

size that the orientations of the crystallographic axes a
and b were unfortunately unknown in this experiment:
this makes it impossible to clarify whether the nonre-
ciprocal dichroism that was measured is to be inter-
preted as the Jones dichroism XMLD (Ss) associated
with the effective operator [Wb(f’*l) - Wég’fl)] or as a
true dichroism of the type XMLD (S;) associated with
the symmetric off-diagonal terms [Wﬁ’_l) + Wb(j_l)} .
We note that we refer here to the crystal axes and not
to the laboratory frame. Clearly, future experiments of
this type would call for a detailed (systematic) analysis
of the angular dependence of the signal with respect
to 21, even though one can anticipate that such ex-
periments should be very demanding in terms of beam
time allocation. Moreover, because no experiment has
yet been performed with a powdered sample, no indica-
tions are available as to whether the septor terms give
any significant contribution.

We note that the nonreciprocal XMLD signal mea-
sured in (Vi_,Cr;)203 and the nonreciprocal XMyD
signal of CryOg3 are of approximately the same order
of magnitude, the nonreciprocal XMLD signal being
perhaps slightly less intense. We insist that several
reasons make it impossible to interpret the spectra re-
produced in Fig. 7 as classical magneto-optical (recip-
rocal) XMLD spectra [48]: (i) a nonreciprocal dichro-
ism changes its sign when the magnetic field is re-
versed, while this is not the case for the magneto-
optical XMLD spectra; (i) in the experiment illus-
trated with Fig. 7, the magnetic field was oriented along
the direction of the wavevector k, whereas the magnetic
field is typically set perpendicular to k in magneto-
optical experiments; (iii) the intensity of our nonrecip-
rocal XMLD signal is exceeding (by one order of mag-
nitude at least) the highest intensity that one would
expect for a reciprocal, ®-even XMLD signal. Every-
one who has tried to measure a reciprocal XMLD signal
at a K-edge would agree with us that this is always a
very challenging experiment.

As pointed out in [15], a careful examination of the
spectra reproduced in Fig. 7 reveals that there is un-
ambiguously a weak dichroism contribution that does
not change its sign when the magnetic field is reversed.
Our interpretation is that this residual reciprocal signal
can result either from the (small) monoclinic distortion
or from the fact that the crystal was slightly miscut (or
both).

As in the case of CryOs, the dichroism inten-
sity seems to be most intense for the final states of
mixed parity 3d(ey) + O(p). Dovesi et al. [95] also
performed unrestricted Hartree-Fock calculations on
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V303, but their calculations were unfortunately con-
ducted with the high-temperature corundum structure
of V503 and still with the previous magnetic group
R3c. Tt would be desirable to reproduce such calcu-
lations with the distorted monoclinic structure I2/a
that is widely accepted for the low-temperature anti-
ferromagnetic phase.

In a recent theoretical study of V5,03, Di Matteo
et al. [102] have identified two magnetoelectric sub-
groups of 2/m ® O that can be compatible with the
X-ray diffraction data in [103]: 2/m’ and 2'/m. From
the tensor tables in [50], it immediately follows that the
generic magnetoelectric tensor of the group 2'/m has
no diagonal terms and cannot give any dichroism of
the type XMLD (S2). Moreover, because [ac.] = 0, no
magnetoelectric annealing is possible in our experimen-
tal configuration. In contrast, [a..] # 0 for the group
2/m' which looks like the ideal choice for nonrecipro-
cal XOA experiments in our experimental configuration
because this magnetic group admits the anapole as the
irreducible representation along the ¢ axis, while

(Wi —w@=h] #0

and
2,-1 2,-1 )
W ] £0
it is also easy to verify that
3,—1 —
[Fl()bc - Fz(zb;c 1)] 7£ 0
and
[+ V] #o.

As in the case of CrsQO3, there are several indica-
tions suggesting that orbital magnetism should also ex-
ist in Vo03. We would like to draw the attention to
the experimental fact that the parallel magnetic sus-
ceptibility does not drop to zero at low temperatures
for V203 and CroO3 [104, 105]. This was again inter-
preted as the signature of a temperature-independent
Van Vleck orbital magnetism. Very recently, Tanaka
developed an interesting model [106] according to which
each vanadium ion with S = 1 also has an orbital mag-
netic moment approximately given by 0.7up; it was
even suggested in [106] that these orbital moments can
be slightly tilted away from the plane of the antifer-
romagnetic spin lattice, with the practical consequence
that the 2/m ® © symmetry is broken, thus making the
low-temperature phase magnetoelectric. This would
be consistent with the observation of a nonreciprocal
XMLD spectrum if we additionally admit that there
is locally some ordered electric dipole. Precisely this
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was recently considered in [27], where it was suggested
that some cooperative Jahn—Teller distortion occurring
at the monoclinic phase transition would also tilt the
electric moments. We note that the development of an
antiferroelectric order is compatible with the magneto-
electric group 2/m’ and can possibly explain the highly
destructive character of the phase transition for single
crystals of any size. Indeed, as discussed in the pre-
vious subsection, there is still the risk that due to the
core hole perturbation, the cross terms in Eq. (3) al-
low probing some pseudoground state of artificially re-
duced symmetry because core hole perturbation mixes
the true ground state with low crystal field levels.

Recently, Di Matteo and Jansen [107] reported that
they failed to measure any magnetoelectric suscepti-
bility using the same single crystal as the one used
in our nonreciprocal XMLD experiment, and they im-
mediately questioned our interpretation. They also
doubted the efficiency of the annealing process in our
experiment by alleging that the conductivity of the
(Vi-,Cr,;)203 crystal would exceed the conductiv-
ity losses of CroO3 by 15 orders of magnitude. Ac-
cording to our own tests, this figure is erroneously
At the Neéel temperature Ty, the con-
ductivity of the (V;_,Cr;)203 crystal (approximately
3-10° Q- cm [108]) was estimated to be 5 orders
of magnitude higher than the measured conductivity
(0.3 G2 - cm) of our Cry0O3 crystal. Under such con-
ditions, the calculated dielectric relaxation time 7g
~ 0.36 ms (to be compared with 7 &~ 36 s for Cra03)
still looks compatible with the fast microscopic dynam-
ics of the magnetoelectric annealing process, as long as
one accepts a low leakage current (< 10uA)) at the
polarizing electrodes in order to evacuate the accumu-
lated charges'). It seems to us that the static magnetic
field method apparently used in [107] to measure the
magnetoelectric susceptibility of this chromium-doped
vanadium sesquioxide crystal is totally inappropriate
for systems that have rather large conductivity losses
as explained in classical textbooks on magnetoelectric
media [51]; this is precisely why pulse methods or meth-
ods exploiting magnetic fields modulated at a very high
frequency were developed by several groups in the late
sixties, in particular by Al’shin and Astrov, who used
an alternating magnetic field at the frequency 4 MHz.
Thus, due to the conductivity losses of the crystal,
the failure of the experiments reported in [107] is not
unexpected, but the inadequacy of the experimental

excessive.

D F. de Bergevin drew our attention to this important point.
This led us to check the reality of a low leakage current which
we had neglected in our reports.



MKIT®, Tom 124, Boin. 2 (8), 2003

X-ray optical activity ...

method does not allow them to draw any conclusion re-
garding the questioned magnetoelectric nature of this
(Vi_2Cr,)203 crystal in the low-temperature mono-
clinic phase.

Anyhow, comparison of XOA experiments with
magnetoelectric susceptibility measurements is not
straightforward, as is illustrated by the following dif-
ferences.

1) Nonreciprocal XOA probes only the orbital part
of some average, spinless, one-electron magnetoelec-
tric tensor. In contrast, macroscopic magnetoelectric
susceptibility measurements have been discussed up to
now essentially by considering in the first place how the
spins are supposed to be ordered in a given low-tem-
perature phase. Nothing is really known, however, re-
garding the relative contributions of the spin and or-
bital currents in such a magnetoelectric solid and it is
not even clear whether magnetoelectric susceptibility
measurements would be sensitive enough to detect a
contribution of orbital currents. One can easily imag-
ine a situation where some terms of the magnetoelec-
tric tensor have a purely orbital origin or a vanish-
ingly small spin contribution: in this case, the stan-
dard magnetoelectric susceptibility measurement can
possibly fail and lead to erroneous conclusions. One
may also envisage the converse case of magnetoelectric
solids where the orbital part of the magnetoelectric ten-
sor is partially quenched: there might exist geometries
under which no XOA can be detected, even though the
standard magnetoelectric susceptibility measurements
allow expecting a signal.

2) Nonreciprocal XOA yields a local, element-
selective information that cannot be obtained by con-
ventional magnetoelectric susceptibility measurements.
This could be turned into a formidable advantage if sev-
eral absorption edges can be probed selectively. This
advantage has a counterpart, however, the perturba-
tion induced by the deep core hole might jeopardize
the possibility to draw firm conclusions regarding the
magnetic symmetry of the true ground state as a con-
sequence of Eq. (3).

3) Macroscopic magnetoelectric susceptibility mea-
surements require the use of intense electric or magnetic
fields. In contrast, nonreciprocal XOA experiments per
se do not require any electric/magnetic field and are
inherently insensible to the conductivity losses of the
sample. In the experiment discussed in this section, a
magnetoelectric annealing process was used only to cre-
ate remanent magnetoelectric states of opposite time-
reversality. Other types of annealing could possibly
produce the same result, for example, galvanomagnetic
annealing or simply magnetic annealing could suffice
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under proper symmetry conditions. Figure 1 is a typi-
cal example where the action of the magnetic field on
a spin anapole induces a local electric polarization and
can induce the nucleation of an antiferroelectric order,
without applying any electric field. The existence of an
orbital anapole could possibly play the same role.

4.2. Effective operators and cross densities of
states

4.2.1. Applications of the XOA sum rules

In this subsection, we wish to report on the first
attempts that we made to use Carra—Jerez—Marri
Eqs. (7)-(9) in order to derive the expectation values of
the relevant E1E2 effective operators. It is instructive
to first compare some practical details concerning the
XOA sum rules and the XMCD sum rules in the soft
X-ray range [24, 110].

1) Renormalizing the XOA dichroism spectra
against the XANES spectra cannot exempt us from
calculating the two radial integrals REM) numerically.
We found that this can be most conveniently done with
the so-called FDMNES code [111], because we could
easily check that these integrals are nearly constant
over the energy range selected for the integration.

2) The XOA sum rules do not introduce any renor-
malization with respect to the number of holes in the
band accepting the photoelectron, as this is typically
the case with the XMCD sum rules.

3) In establishing the sum rules, we implicitly con-
sidered transitions between atomic multiplets of pure
configurations, with (., ¢, and ¢' being well identi-
fied quantum numbers. This may restrict Eqs. (7)—(9)
to E1E2 transitions towards partially filled, localized
bands of the finite width

AE = Ecutoff — Erermi-

There is some ambiguity regarding the definition of
Ecutopf, however. It is rather unclear whether one
should set the cutoff energy at the inflexion point of
the edge spectrum or beyond the most intense signa-
tures of the dichroism spectra, i.e., slightly above the
absorption edge. In order to warrant the numerical sta-
bility of the calculations, we were led to systematically
set Feytoff above the edge, but this is rather question-
able when strong shape resonances of chiral-EXAFS
signatures contribute to the experimental spectra.

4) In our opinion, the most serious difficulty is still
of experimental nature and concerns the extreme sen-
sitivity of the sum rules to baseline distortions that
may be caused by instabilities of the X-ray beam or
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by radiation damages to the sample. These problems
can hardly be avoided over long data acquisition times.
Error bars therefore strongly depend on the amplitude
of the measured dichroism.

In Table 7, we have regrouped the expectation val-
ues of the effective operators that were extracted from
our nonreciprocal XOA experiments using Eqs. (8) and
(9). Two calculations were carried out systematically.
In the first one, we assumed that the contribution of
the septor I‘((fg;) can be neglected; in the second, we
assumed that the whole dichroism is entirely due to
this septor term. As discussed in the previous sections,
the second assumption is highly improbable regarding
the measured XMyD spectra of CryOg; this is why the
corresponding result is only quoted in parentheses. For
the nonreciprocal XMLD experiments, the situation is
more ambiguous due to the lack of information regard-
ing the exact orientation of the crystal. Under the
present conditions, the only option is to refer to the
laboratory frame, and therefore the relevant effective
operator is to be written as Wg{l) + W;,Z)’;l)]. By
analogy with the previous case, one may guess that the
contribution of the septor terms must be negligible.

It appears clearly from Table 7 that the expectation
value of the anapole moment is rather small for CryO3.
Because we missed any pertinent reference for compar-
ison, we tried to convert the calculated orbital anapole
moment into an average toroidal dipole moment per
unit cell using the relation

Mggb — N<6(20>

= 0.02upag,

where N is here the number of Cr atoms per unit cell
and ag is the Bohr radius. It then becomes immedi-
ately obvious that Mfc’l”b is several orders of magnitude

smaller than the spin toroidal dipole moment
Mffi’m =45upgag

that was reported recently for the magnetoelectric
crystal Gas_,Fe, O3 [109]. If this comparison makes
sense, it would leave virtually no hope to extract
the orbital part of the magnetoelectric tensor [aas],,,
from magnetoelectric susceptibility measurements, be-
cause such measurements are not sufficiently accu-
rate at present. Interestingly, the values quoted for
(73 )+ (W35
sulating phase of the (Vi_,Cr;)203 crystal are one
order of magnitude larger. As expected, the sign is
reversed for magnetoelectric domains of opposite time-
reversality. We recall that in our nonreciprocal XMLD
experiments, we essentially measure a linear combina-

2] ana )+ wie ],

>] in the antiferromagnetic in-

tion of Wb(bz’_l) — Wéa
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whereas in XMyD experiments, one would measure
(2,-1) (2,-1)
[Wab - Wba

quoted in Table 7 for

(W& D)+ (W )] ~ 08 au,

looks rather consistent with the model proposed
in [106], where a rather large ground state orbital
moment is predicted for VoOg, while this is certainly
not true for Crs0s3.

Thus, the preliminary result

To illustrate the case of the XNCD sum rules, we
have selected the cobalt K-edge XNCD spectra of the
two enantiomeric complexes

1) = 2[Co(en)3Cls] - NaCl - 6H,0

(see [18]), which were introduced in Sec. 3.2.1. In Tab-
le 8, we have also included additional results taken from
our XNCD spectra data base:

1) the titanium K-edge XNCD spectra of two
nonenantiomorphous crystals of potassium titanyl
phosphate, i.e., 3 = KTiOPO, (space group Pna2i,
class mm?2); these crystals were cut normal to the
conjugated directions [120] and [120];

2) the iodine Li-edge XNCD spectrum of lithium
iodate, i.e., 4 = LilO3 (space group P63, class 6);

3) the tellurium Lj-edge XNCD spectrum of
paratellurite, i.e., 5 = TeOs (space group P4;2;2,
class 422).

As confirmed by Table 8, the pseudodeviators

<N(2,+1)> _ <[L_,Q]<2>>

of the enantiomers 1(*) and 1(=) have nearly the same
absolute value but opposite signs as anticipated from
symmetry. In fact, the complex 1(*) turned to be the
most favorable example due to its very strong pre-edge
XNCD signal. For the potassium titanyl phosphate
crystals, one would expect (N(+1)) to exhibit inverted
signs in the case of XNCD spectra recorded with the
wave vector parallel to the directions [120] and [120].
In practice, the situation is much less favorable because
there are two inequivalent Ti sites in the unit cell and
we found them to contribute to dichroisms of the op-
posite signs [112]. The XNCD signal measured at the
Ti K-edge is therefore very weak and the poor signal-
to-noise ratio makes it more difficult to exploit the sum
rule quantitatively. Nevertheless, the calculated values
of (N(2+1) have the expected opposite signs and their
low magnitudes are consistent with the average of the
effective operator over the two inequivalent Ti sites.
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Table 7.  Expectation values of the nonreciprocal XOA operators
Compound Cr K-edge Cry03 V K-edge V503 [HY] V K-edge V503 [H]
Effective operator Q. I‘ES) W)%), + W3(,2))( F@,Z - F(;)XZ W)%), + W;,Z))( F@,Z — F()g)xz
atom. units 0.03 (—0.03) —0.84 (—0.48) +0.90 (+0.52)
RM rad. integral | —8.21-107° | —=8.21-107° | —9.47-107° | —9.47-10"° | —9.47-107° | —9.47-107°
R(® rad. integral | —7.62-107%| -7.62-107% | —1.03-107° | —1.03-10~> | =1.03-107° | —1.03-107°
Table 8.  Expectation values of the XNCD operators
Compound Coens[+] Coens[—] | KTiOPO4 [120] | KTiOPOy4 [120] LiIO; TeO»
Absorption edge | Co K-edge | Co K-edge Ti K-edge Ti K-edge I Li-edge | Te Li-edge
Effective operator | ([L, Q) | (L,Q®) | (L) (L,®) | (L.®) | (L )
atom. units +0.424 —0.409 +0.016 —0.011 +0.50 +0.77
R rad. integral | —=5.31-107° | =5.31-10"°| —1.15-10"* -1.15-1074 2.33-107° | 2.53-107°
R® rad. integral | =3.96-107% | -3.96-10"% | —1.27-107° -1.27-107% | -2.16-107%|-2.57-10"°¢

4.2.2. Cross densities of states

The requirement that the final states are localized is
a severe restriction, especially in the so-called «chiral-
EXAFS» regime which we have explored in the case
of TeOy [19]. One may thus question whether Eq. (7)
is suitable to analyze the iodine Li-edge XNCD spec-
trum of a-LilO3, because in this particular example,
the most intense signatures are clearly located in the
continuum [16], i.e., well beyond the intense 2s — 5p
white line. In the continuum of states, we are con-
vinced that it may be a better strategy in the context
of XOA to transpose the so-called «differentialy formu-
lation of the sum rule, which is now commonly used to
analyze the K-edge X-ray magnetic circular dichroism
(XMCD) spectra in the so-called «Magnetic-EXAFS»
regime [113-115]. Such a «differential» reformulation
of Eq. (2) is given by

V5 5,

STVRVRY y (0,0) x
B

Ao (E) _dr’a
E? T he

w4
iE

x (v NG (0.0

vr) s (D)
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where N+ can be identified with [L,€]® and
v (€, ¢") is a numerical factor. In this monoelectronic ap-
proach, we can define cross densities of states (X-DOS)
(N1 (E)) that are related to the retarded one-
electron Green'’s function G* (E) by

<N(2,+1) (E)> —
1

=——Tr
m

{N(2’+1) (¢,¢)Im G+ (E)} . (18)
It follows from this definition that these cross densities
of states refer to the effective operator of XNCD, i.e.,

N® = [L,0]? .

According to Eq. (17), experimentally measured XNCD
spectra must be directly proportional to the X-DOSs.
This is confirmed by Fig. 8, where experimental and
simulated iodine Li-edge XNCD spectra of a-LilOj3 are
compared with the (p —d) X-DOS calculated with a
LMTO code [116]. The agreement looks very encourag-
ing and clearly stimulates us to try extending Eqs. (17),
(18) to nonreciprocal optical activity.

We finally note that although the definition of cross
densities of states makes no reference to the ground

state properties (¥,), this does not mean that the deep
core hole has no influence on their calculation.
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Fig.8. Comparison of the experimental iodine L1-XNCD spectrum of LilOs with the calculated p—d cross density of states
and the simulated XNCD spectrum

5. CONCLUSION

In conclusion, X-ray optical activity appears as
a new, element-specific spectroscopy to study orbital
magnetism in parity nonconserving solids. As far as
the proposed E1E2 sum rules may give us access to the
true ground state expectation values of magnetoelectric
orbital operators, the nonreciprocal XOA might reveal
hidden space—-time symmetry properties in magneto-
electric crystals, because XOA probes only the weak
orbital part of a monoelectronic magnetoelectric ten-
sor, whereas it is extremely difficult to disentangle the
orbital part from the spin part in classical magnetoelec-
tric susceptibility measurements. For instance, XOA
can reveal a reduction of the magnetic symmetry when-
ever the partially unquenched angular momentum has
a quantization axis different from the one of the spins.
We note, however, that the E1E2 sum rules can yield
the expectation values of the pertinent parity-mixing
operators only for a pseudo ground state. Due to the
strong perturbation caused by the deep core hole, we
cannot exclude a contribution of cross terms involv-
ing the ground state and low-lying excited states, as is
the case with the temperature-independent Van Vleck
paramagnetism. In this context, we note that a contri-
bution of the Van Vleck paramagnetism to XMCD has
been observed very recently at the same ESRF beam-
line in a paramagnetic insulator (EuF3) and a param-

agnetic metal (Pd) [117].

In this paper, we have clarified which time-reversal
odd effective operator should be responsible for the
magnetochiral dichroism XMyD (Sp) and the nonrecip-
rocal linear dichroisms XMLD (S;,S2). The compar-
ison of the nonreciprocal dichroism spectra recorded
with single crystals or powdered samples has been
shown to be particularly helpful in evaluating the rel-
ative importance of the higher-order septor (I'3:=1))
terms with respect to the contributions of the orbital
anapole (Q(1~1) or the pseudodeviator (W(3~1). In
the specific case of CryQOg3, there is very little doubt left
that the observed magnetochiral dichroism is related
to the orbital anapole operator. On the other hand,
the orbital toroidal moment (M;4) derived from the
sum rule was found to be several orders of magnitude
smaller than the spin M;y that was determined inde-
pendently for a typical magnetoelectric crystal from
diffraction data; this result seems to confirm that it
would be very difficult to access to the orbital part of
the magnetoelectric tensor using conventional magne-
toelectric susceptibility measurements.

Potential applications of natural XOA in inorganic
or bio-inorganic chemistry are still heavily impeded by
the prerequisite that one should first obtain large-size
single crystals of the resolved enantiomers in order to
be able to record accurate XNCD spectra. We have
shown that this difficulty can be circumvented if, for
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instance, the chiral species is soluble in a liquid crys-
tal phase that can be aligned in a magnetic field. We
are still seeking further alternative approaches. The
time-even pseudodeviator

<N(2,+1)> _ <[L_,Q](2>>

could be used to study and quantify ligand-induced
asymmetry effects that are suspected to play an
important role in asymmetric synthesis. More work is
underway in order to extend the calculation of cross
density of states and make their systematic numerical
simulations possible.
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APPENDIX

The E1E2 absorption cross section was given in

Eq. (4) as a product of spherical tensors T(Bb’e) describ-

ing the X-rays and créb’e) describing the sample. Here,

we give the relation between the sample spherical ten-
(b,0) .
sors o and the sample Cartesian tensor

Almn + ZA;mn =

= 4r%ahwki Z<¢g |7 |¢f><1/)f ‘rmrn|¢g> X
!

x 8(Ef — B, — hw), (A.1)

3

where Ajp, and A, are real. With this relation, the
tables given in [49] can be used to determine the form of
the sample spherical tensors as a function of the mag-
netic point group. From the definition of the sample
Cartesian tensor, it is clear that A;m,, = Ajm. This
property must therefore be added when using the tables
in [49]. The sample Cartesian tensor is parity-odd. To
investigate its transformation under time-reversal sym-
metry, we replace [17) and |¢,) with |©f) and |Og)
in Eq. (A.1), which gives

@(Almn + ZA;mn)

(Almn + ZA;mn)*
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Therefore, Ajp,yp is time-reversal odd and A4j, . is time-
reversal even. The relation between spherical and
Cartesian tensors is given by the following formulas:

1

V30

— Apsy FiAype + 3450y £ 204y, Fildy., +

(1,-1) _
011 =

(2A400 £ 3iAg0y — Agyy —

+ 3142952 + 3'iAzyz)a (AQ)
_ 1
o =~ \/ﬁ(sAmz +34yy: — Azaa —
— Asyy +24..2);
I N R
Otz = %( wwz T VAgys T 1Ayzz —
- Ayyz - Azzz + QZAzzy + Azyy)a
_ 1 .
0'51:21’ g - %(ilAzzy - Aﬂﬂyy +Aez: F (AS)
+ iAym + Ayzy + iAyZZ — A F iAZyz)’
0_(()2,71) — z'(Aym — Axyz);
(3,-1) 1 .
Oyz = = :Fm(Axm £ 20450y — Agyy £
+ ZAymm - 2Aymy + ZAyyy)a
0 = L (0a,, +9id,,. £2id,,. -
2V3
—2Ayy, + Aser £ 20y — Asyy)s
_ 1 . .
oY = i%(?’flxm + 2iAgay + Aayy — (A4)
—4Ay.y £ 1Ay e +2Ay0y £ 3iAyy, FAiAy..—
- 8Azmz :F SiAZyZ)v
_ 1
oV = — \/I_E(QAW + 24y, + Asae +
—+ Azyy - 2Azzz)~
Finally,
(2,+1) _ L( AL 4 A+ A+
49 - \/6 FtAyys TYz yxz
+idy,, +idl,, — 24, Fidl,),
1 . .
Ufl,ﬂ) _ %(Agmcy + ZAlxyy T ZA;ZZ _ (A.5)
- A;}mx + iA;ny + A;/zz + iA{zxz - Alzyz)’
2,41
0'(() ) = A;yz - A;;xz
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