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h 2003Di�erent theoreti
al approa
hes to the famous two-state Landau�Zener problem are brie�y dis
ussed. Apartfrom traditional methods of the adiabati
 perturbation theory, Born�Oppenheimer approximation with geometri
phase e�e
ts, two-level approa
h, and momentum spa
e representation, the problem is treated semi
lassi
allyin the 
oordinate spa
e. In the framework of the instanton approa
h, we present a full and uni�ed des
riptionof the 1D Landau�Zener problem of level 
rossing. The method enables us to treat all four transition points(appearing at two-level 
rossing) a

urately, while the standard WKB approa
h takes only two of them intoa

ount. The latter approximation is adequate for 
al
ulating the transition probability or for studying s
atteringpro
esses, but it does not work in �nding the 
orresponding 
hemi
al rea
tions rates, where all four transitionpoints 
an often be relevant in the typi
al range of parameters. Appli
ations of the method and of the resultsmay 
on
ern various systems in physi
s, 
hemistry, and biology.PACS: 05.45.-a, 72.10.-d1. INTRODUCTIONThe title of this paper might sound perplexing at�rst sight. What else 
an be said about the Landau�Zener (LZ) problem after the numerous des
riptions inboth resear
h and textbook literature? But althoughtheoreti
al (and experimental) investigations of di�er-ent LZ systems began more than seventy years ago,it still remains an a
tive area of resear
h. Variousapproa
hes to the LZ problem that have appeared in*E-mail: bender�i
p.a
.ru**E-mail: kats�
pd.landau.a
.ru

the literature (see, e.g., the list of publi
ations [1�67℄,whi
h is by no means 
omplete) are not fully 
onsis-tent with ea
h other. We therefore think that it isimportant to dis
uss all these approa
hes in a singlepaper. We study the 1D LZ problem [1℄ of quantumme
hani
al transitions between the levels of a two-levelsystem at the avoided level 
rossing. In the LZ theory,a quantum system is pla
ed in a slowly varying external�eld. Naturally, the system then adiabati
ally followsvariation of an initially prepared dis
rete state untilits time-dependent energy level 
rosses another level.Near the 
rossing point, the adiabati
ity 
ondition isevidently violated (be
ause the semi
lassi
al behavior259 2*



V. A. Benderskii, E. V. Vetoshkin, E. I. Kats ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003is violated near turning points). The slow variation ofthe perturbation implies that the duration of the tran-sition pro
ess is very long, and therefore the 
hange inthe a
tion during this time is large. In this sense, theLZ problem is a semi
lassi
al one (but with respe
t totime instead of a 
oordinate in the standard semi
las-si
al problems).It is well known that the problem presents the mostbasi
 model of nonadiabati
 transitions that play a veryimportant role in many �elds of physi
s, 
hemistry,and biology. It is therefore not surprising that numer-ous monographs and a great number of papers havebeen devoted to this subje
t. In the literature, thereare roughly speaking three approa
hes to semi
lassi
almodeling of the LZ problem,(i) two-level system approa
h [2�8℄,(ii) adiabati
 perturbation theory [9�21℄ (also seereview paper [6℄),(iii) momentum spa
e representation [22�25℄.Be
ause di�erent approa
hes to the LZ problemhave been proposed, one of the immediate motivationsof the present paper is to develop a uniform and system-ati
 pro
edure for handling this problem. We show thatthe three methods listed above are equivalent for treat-ing tunneling and over-barrier regions of parameters,and none of them 
an be applied, to the intermediateregion of parameters where all the four states involvedin the LZ system are relevant. To study this regionis our main obje
tive in this paper. We also addressthe so-
alled 
onne
tion matri
es. In the standardtextbook treatment of the LZ problem, only transitionprobabilities are 
al
ulated and expressed in terms ofthe genuine two-level LZ formula su

essively appliedat ea
h diabati
 level interse
tion. Evidently, su
h apro
edure is an approximation to the general LZ prob-lem, whi
h in
ludes at least four energy levels even inthe simplest 
ase. To solve many important physi
al or
hemi
al problems, one must �nd the 4 � 4 (not only2� 2) 
onne
tion matri
es relating these four states.While this paper is not intended as a 
omprehen-sive review, we detail the key results of the standardWKB and instanton approa
hes from our own resear
hand the literature within the 
ontext of di�erent fa
-tors that we feel are important in studying the LZproblem. Spe
i�
ally, we fo
us in Se
. 2 on the Born�Oppenheimer approximation, whi
h is a ben
hmark intesting semi
lassi
al approximations. In Se
. 3, we laythe foundation of treating the LZ problem, the adia-bati
 perturbation theory. Se
tion 4 is devoted to thegeneralization of the instanton method that enables usto investigate the LZ problem in the momentum spa
e.We show that for a potential that is linear in a 1D 
o-

ordinate under 
onsideration, the WKB semi
lassi
alwave fun
tions in the momentum spa
e 
oin
ide withthe instanton wave fun
tions. For the quadrati
ally ap-proximated (paraboli
) potentials, the instanton wavefun
tions are exa
t and have no singularities (unlikethe WKB wave fun
tions; we re
all that relations ofthe same type hold for the WKB and instanton wavefun
tions in the 
oordinate spa
e [26�29℄).We advo
ate the instanton approa
h in this paper,but it is worth noting that many important resultshave nevertheless been obtained in the framework ofthe WKB approa
h [1�8℄. For example, one of the verye�
ient te
hniques (the so-
alled propagator method)was proposed and elaborated by Miller and 
ollabora-tors [34�36℄ (also see [26℄). This approa
h uses semi-
lassi
 propagators (of the Van Vle
k�Gutzwiller type),with the 
ontribution 
oming from the 
ontour arounda 
omplex turning point automati
ally taken into a
-
ount in terms of the general WKB formalism. Thea

ura
y of the WKB method 
an be improved 
on-siderably [2; 5; 30; 31℄ (more re
ent referen
es on theso-
alled Lapla
e 
ontour integration 
an also be foundin [32℄) by the appropriate 
hoi
e of the integrationpath around the turning point. This method appearsto be quite a

urate for the tunneling and over-barrierregions, but be
omes inadequate in the intermediateenergy region. This has been overlooked in the previ-ous investigations treating this region by a simple inter-polation from the tunneling region (with a monotoni
de
ay of the transition probability) to the over-barrierregion (with os
illating behavior).In Se
. 5, we present all details of the LZ problemfor two ele
troni
 states using the instanton des
rip-tion of the LZ problem in the 
oordinate spa
e. Thetwo basi
 se
ond-order di�erential (S
hrödinger) equa-tions that we 
onsider are written in the so-
alled dia-bati
 state representation (i.e., in the basis of �
rossed�levels). Negle
ting higher-order spatial derivatives, we�nd asymptoti
 solutions, and using the adiabati
�diabati
 transformation, we mat
h the solutions in theintermediate region. The 
omplete s
attering matrixfor the LZ problem is derived in Se
. 6. In Se
. 7,we derive the quantization rules for 
rossing diabati
potentials and brie�y dis
uss the appli
ation of the ob-tained results in some parti
ular models of level 
ross-ings that are relevant for the interpretation and des
rip-tion of experimental data on spe
tros
opy of nonrigidmole
ules, on inelasti
 atomi
 
ollisions [33℄, and non-radiative transitions arising from �intersystem� 
ross-ings of potential energy surfa
es in mole
ular spe
-tros
opy and 
hemi
al dynami
s (see, e.g., [26℄ and ref-eren
es therein). In Se
. 8, we draw our 
on
lusions.260
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onsider only the 1D 
ase in what follows. TheLZ problem for 1D potentials 
oupled to the thermalbath of harmoni
 os
illators is shown to redu
e to a 
er-tain renormalization of the Massey parameter, wherethe longitudinal velo
ity entering the expression for thisparameter is de
reased due to the 
oupling to trans-verse os
illations (see [26℄ and referen
es therein, andalso [66; 67℄ for more re
ent referen
es). Of 
ourse, theenergy pro�le of any real system is 
hara
terized bya multidimensional surfa
e. But it is often possibleto identify a rea
tion 
oordinate su
h that the energybarrier between the initial and �nal states is minimizedalong this spe
i�
 dire
tion, and the system 
an there-fore be e�e
tively treated as 1D. In 
ertain systems,the physi
al interpretation of the rea
tion 
oordinate isimmediate (e.g., the relative bond length in diatomi
mole
ules), but sometimes �nding it is not an easy task(if possible at all) be
ause of a large number of possibil-ities involved. The latter (multidimensional) 
ase willbe studied elsewhere. Unfortunately, the a

ura
y ofthe WKB method near the barrier top is too poor tomake any numbers realisti
 and it is one more moti-vation to use a semi
lassi
al formalism alternative tothe WKB, namely, the extreme tunneling traje
tory orinstanton te
hnique.2. BORN�OPPENHEIMER APPROXIMATIONIt may be useful to illustrate the essential physi
sof the LZ problem starting with a very well known pi
-ture 
orresponding to the Born�Oppenheimer approxi-mation [1; 37℄. It leads to the separation of nu
lear andele
troni
 motions and is valid only be
ause the ele
-trons are mu
h lighter than the nu
lei and thereforemove mu
h faster. The small parameter of the Born�Oppenheimer approximation is therefore given by� = �mem �1=4 � 1; (2.1)where me and m are ele
troni
 and nu
lear masses re-spe
tively. On the other hand, the semi
lassi
al pa-rameter is 
 = m
a2~ � 1; (2.2)where a is the 
hara
teristi
 length in the problem and
 / m�1=2 is the 
hara
teristi
 nu
lear vibration fre-quen
y; therefore, 
 / ��2. Important 
on
lusions aredrawn from this simple fa
t. Indeed, the semi
lassi
al
ondition 
 � 1 
an be satis�ed by formally taking~ ! 0 or equivalently � ! 0. This 
orresponden
e al-lows us to apply either the Born�Oppenheimer or the

semi
lassi
al approximation to the separation of s
alesfor nu
lear and ele
troni
 motions on the same footing.In the traditional Born�Oppenheimer approa
h, thesolution 	 to the full S
hrödinger equation (in
ludingthe ele
troni
 Hamiltonian He depending on ele
troni

oordinates r and the nu
lear Hamiltonian dependingon nu
lear 
oordinates R) is given by an expansion overthe ele
troni
 Hamiltonian eigenfun
tions �n,	 =Xn �n(R)�n(r; R): (2.3)The ele
troni
 eigenvalues En depend on the nu
lear
oordinates, and the expansion 
oe�
ients �n(R) aredetermined by the Born�Oppenheimer equations24� ~22mr2R +En(R) + ~22mXk 6=nAnkAkn �E35�n == � ~22m Xk;m6=n(ÆnkrR � iAnk)�� (ÆkmrR � iAkm)�m; (2.4)where for m 6= k,Amk = ih�mjrR�ki; (2.5)and all the diagonal matrix elements Ann = 0.From (2.4), we 
an �nd that in the ele
troni
 eigen-state En, the nu
lei move in the e�e
tive potentialUn(R) = En(R) + ~22mXk 6=nAnkAkn; (2.6)and transitions between the ele
troni
 states n andm are related to the nonadiabati
 operator in theright-hand side of (2.4). This simple observation al-lows us to rewrite e�e
tive potential (2.6) asUn(R) = En(R)�� ~22m Xm6=n h�njrRHej�mih�mjrRHej�ni(En �Em)2 : (2.7)From this seemingly trivial expression, we derive thefollowing important 
on
lusions:(i) 
orre
tions to En have the same order O(
�2) asthe ratio of the nu
lear kineti
 energy to the potential;(ii) o�-diagonal matrix elements of the nonadiabati
perturbation operator are also small (/ O(
�2)); thisfa
t is formulated as the so-
alled adiabati
 theoremstating that no transitions between unperturbed stateso

ur at adiabati
 perturbations (�! 0).261
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ause the nonadiabati
 e�e
ts are 
hara
terizedby the only small parameter 
�1 (the semi
lassi
alparameter), they 
an be des
ribed in the frameworkof semi
lassi
al approa
hes (e.g., WKB or instantonones). But we must bear in mind the main problemof the Born�Oppenheimer method: the approximationassumes that the ele
troni
 wave fun
tions are real-valued and form a 
omplete basis, but it is impossibleto 
onstru
t su
h a basis in the entire spa
e in
luding
lassi
ally a

essible and forbidden regions.If the requirement of a real-valued basis is relaxed,the diagonal matrix elements Ann 6= 0, and the e�e
tiveadiabati
 part of the Born�Oppenheimer Hamiltoniantakes the formĤn = Un(R) + ~22m(rR � iAnn(R))2; (2.8)similarly to the Hamiltonian of a 
harged parti
le inthe magneti
 �eld B / jrR � Annj. We 
an therefore
hange the phases of the ele
troni
 and nu
lear wavefun
tions as �n ! �n exp(i�n(R));�n ! �n exp(�i�n(R)) (2.9)by 
hanging the �ve
tor potential� appropriately,Ann(R)! Ann(R) +rR�n(R): (2.10)Thus, we 
onfront an important and, at times, mys-terious 
on
ept of the geometri
 (or Berry) phase fa
-tor that a quantum me
hani
al wave fun
tion a
quiresupon a 
y
li
 evolution [38�47℄. Most 
hara
teristi
of the 
on
ept of the Berry phase is the existen
e ofa 
ontinuous parameter spa
e in whi
h the state ofthe system 
an travel along a 
losed path. In our
ase, the phase is determined by a nonadiabati
 in-tera
tion (for more details related to the geometri
phase for the Born�Oppenheimer systems, see, e.g., re-view [48℄). This phenomenon (whi
h originally man-ifested itself as a 
ertain extra phase shift appearingupon some external parameter 
y
li
 evolution) hasbeen generalized for the nonadiabati
, non
y
li
, andnonunitary 
ases [49; 50℄, although most of the Berryphase appli
ations 
on
ern the systems undergoing anadiabati
 evolution (see, e.g., review [51℄). We also notethat in addition to the Berry phase, some higher-or-der 
orre
tions to the Born�Oppenheimer approxima-tion also exist (traditionally, and slightly misleadingly
alled the geometri
 magnetism or deterministi
 fri
-tion, see [52℄). A pra
ti
ally useful appli
ation of theBerry phase 
on
ept is the energy level displa
ementspredi
ted in [53℄ and observed by NMR [54℄.

The essential physi
s of these phenomena 
an be il-lustrated as follows. There are two subsystems, the fastand the slow ones. The fast subsystem a
quires a Berryphase be
ause of the evolution of the slow subsystem.There is a 
ertain feedba
k e�e
t of the geometri
 phaseon the slow subsystem. As a result, the latter is framedby a gauge �eld a�e
ting its evolution. The gauge �eldprodu
es additional (Lorentz-like and ele
tri
 �eld-like)for
es that must be in
luded into the 
lassi
al equa-tion of motion. In the 
ase of sto
hasti
 external for
es(e.g., from surrounding thermal �u
tuation media), theBerry phase produ
es some level broadening for thefast subsystem. In the limit of low temperatures andstrong damping, the slow subsystem dynami
s 
an bedes
ribed by equations of the Langevin type [55℄. Thegeneral message that we 
an learn from this fa
t is thatthe geometri
 phases are sour
es of the dissipative pro-
esses for LZ systems.Thanks to its fundamental origin, this geometri
phase has attra
ted 
onsiderable theoreti
al and ex-perimental attention, but its experimentally observable
onsequen
es have been s
ar
e until now. Ea
h oppor-tunity of improving this situation is therefore worthtrying. In this respe
t, the Born�Oppenheimer geo-metri
 phase provides a unique opportunity for obser-vation of the geometri
 phase be
ause it must appearas a nonadiabati
 
ontribution to the standard Bohr�Sommerfeld quantization ruleS0n + �n = 2�~; (2.11)where S0n is the adiabati
 a
tion.We note that 
are must be taken whenjEn(R) � Em(R)j be
omes small 
ompared to the
hara
teristi
 nu
lear os
illation energy ~
. Thismeans that the nonadiabati
 intera
tion energy 
annotthen be 
onsidered as a small perturbation in adiabati
representation (2.4). Fortunately, in the limitjEn(R)�Em(R)j < ~
;we 
an start from the other limit with 
rossing weakly
oupled diabati
 states and 
onsider the adiabati
 
ou-pling as a perturbation. To perform the pro
edure ex-pli
itly, we then need the adiabati
�diabati
 transfor-mations ~�(R) = exp(i��y)�(R) (2.12)for the wave fun
tions and~H = exp(i��y)H exp(�i��y) (2.13)for the Hamiltonians, where (H;�) and ( ~H; ~�) arethe adiabati
 and diabati
 representations respe
-tively, �y is the 
orresponding Pauli matrix, and � is262
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�diabati
 transformation parameter (theso-
alled adiabati
 angle).To illustrate how this works, we 
onsider two 
oup-led 
rossing e�e
tive ele
troni
 potentials U1(R) andU2(R) (U12 is the 
oupling energy). The 
orrespondingadiabati
 and diabati
 Hamiltonians areH = � ~22m(rR)2 + 12(U1 + U2) +�12(U1 � U2) 
os(2�(R)) + U12 sin(2�(R))��3 ++ 12 ��12(U1 � U2) sin(2�(R))++ U12 
os(2�(R))��1; (2.14)and~H = � ~22m(rR)2 + 12(U1 + U2) ++ 12(U1 � U2)�3U12�1; (2.15)where �1;2;3 are the Pauli matri
es and the adiabati
angle is 
hosen to eliminate the leading intera
tion termbetween the adiabati
 states,
os(2�(R)) = U1 � U22U12 : (2.16)The adiabati
�diabati
 transformation 
an also bebrought to a more elegant form [16; 56℄(rR � iÂ)T̂ = 0; (2.17)where T̂ is the sought transformation matrix and thematrix Â � Ann was introdu
ed above (see (2.5)). Theformal solution of Eq. (2.17) 
an be represented as a
ontour integralT̂ (s) = T̂ (s0) exp0�� sZs0 Â(s0)ds01A ; (2.18)where s0 and s are the initial and �nal points of the
ontour. Solution (2.18) uniquely determines the trans-formation matrix T̂ for a 
url-free �eld Â,T̂ (t0) = D̂T̂ (0); (2.19)where the diagonal matrix D̂ 
an be found from (2.17)and is expressed in terms of the geometri
 phase fa
toras Dkn = Ækn exp(i�k): (2.20)

Relations (2.11) and (2.20) 
ompletely des
ribe thenonadiabati
 transitions, the 
ornerstone of the LZproblem. In addition, (2.11) and (2.20) show that thegeometri
 Born�Oppenheimer phases o

ur from thediabati
 potentials 
rossing points and enter the quan-tization rules additively with the 
ontributions from theturning points. Therefore, our main 
on
lusion in thisse
tion is that nonadiabati
 phenomena must (and 
an)be in
luded into the general s
heme of the semi
lassi
alapproa
h through the 
orresponding 
onne
tion matri-
es [57℄ (also see [29℄) for the appropriate 
ombinationsof 
rossing and turning points in the problem.3. ADIABATIC PERTURBATION THEORYIt is almost a 
ommon student's wisdom nowadaysthat any solution to the adiabati
ally time-dependentS
hrödinger equation 
an be represented as an expan-sion over the 
omplete set of stationary (time-indepen-dent) eigenfun
tions [1℄. In the 
ase under investiga-tion (two-level 
rossing for the ele
troni
 HamiltonianHe(r; t)), this expansion is given by	(r; t) = 
1(t)�1(r) + 
2(t)�2(r); (3.1)where the wave fun
tions �1;2 are stationary withrespe
t to a nu
lear motion. The time-dependentS
hrödinger equation 
an be exa
tly rewritten as two�rst-order equations (with respe
t to time derivatives)for 
1 and 
2,i~ _
1_
2 ! =  ~H11 ~H12~H21 ~H22 ! 
1
2 ! ; (3.2)where ~Hkk0 = h�k j ~H(t)j�k0 i; k; k0 = 1; 2 (3.3)are the matrix elements for the diabati
 Hamiltonian.The phase transformation
k(t) = ak(t) exp�� i~ Z ~Hkk(t)dt� (3.4)(see, [6; 8; 10℄) redu
es (3.2) to the 
oupled �rst-orderequationsi~ _a1 = ~H12a2 exp�i Z 
12(t)dt� ;i~ _a2 = ~H21a1 exp��i Z 
12(t)dt� ; (3.5)where 
12 = 1~( ~H22 � ~H11): (3.6)263
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k(t) = ~�k(t) exp� i2~ Z ( ~H11 + ~H22)dt� (3.7)preserves the se
ond-order S
hrödinger-like form of theequations for the diabati
 fun
tions ~�1;2,~2 d2 ~�1dt2 � 24 ~H11 � ~H222 !2 + ~H12 ~H21++ i~2 ddt ( ~H11 � ~H22)35 ~�1 = 0: (3.8)To 
larify the mapping of this time-dependent pertur-bation theory to the two-level 
rossing problem and theBorn�Oppenheimer approa
h des
ribed in Se
. 2, we
onsider the two-state Born�Oppenheimer equations inthe diabati
 representation. From (2.15) for one a
tivespa
e 
oordinate X , we have� ~22m d2 ~�1dX2 + ( ~H11 �E)~�1 = ~H12 ~�2 (3.9)and � ~22m d2 ~�2dX2 + ( ~H22 �E)~�2 = ~H21 ~�1: (3.10)If we 
an negle
t the se
ond-order derivatives~22m d2 ~�1;2dX2and repla
e the time derivative by vd=dX (wherev = p2E=m is the velo
ity), the 
hange of the vari-ables ~�1;2 = exp(ik0X)
1;2; k20 = 2mE~2 (3.11)transforms the two Born�Oppenheimer equations (3.9)and (3.10) into the two level-
rossing equations (3.2) forthe slow time-dependent perturbations. Obviously, were
ognize the standard semi
lassi
al approa
h in thispro
edure.A mapping of the same kind 
an also be performedfor the adiabati
 amplitudes C1;2(t) that are relatedto the diabati
 amplitudes 
1;2(t) by the adiabati
�diabati
 transformation matrix depending on the adia-bati
 angle �, C1(t)C2(t) ! =  
os � sin �� sin � 
os � ! 
1(t)
2(t) ! : (3.12)

In the adiabati
 basis, we have the set of the �rst-orderequations 
orresponding to (3.2), _C1_C2 ! =  H11 �i _�i _� H22 ! C1C2 ! ; (3.13)where the nonadiabati
 
oupling 
oe�
ient _� 
an berelated to the o�-diagonal operator A12 in (2.5) (or tothe geometri
 phase, see Se
. 2),i _� = A12 � ih�1j _�2i: (3.14)Transformation (3.11) allows redu
ing the Born�Oppenheimer equations (for the nu
lear wave fun
tions�1;2 in the adiabati
 representation) to (3.13) if andonly if the se
ond-order derivatives are negle
ted (inthe spirit of the semi
lassi
al approa
h) and only / k0terms are kept in the nonadiabati
 matrix elements(i.e., higher-order 
ontributions with respe
t to 1=k0are negle
ted). Expressions (3.12)�(3.14) do allow anentry point into the adiabati
 perturbation theorydeveloped by Landau [1℄ and Dykhne [10; 11℄ (alsosee [15; 16℄). We follow the same method 
losely.We 
an make one step further and �nd the 
ombi-nation of the two-level system amplitudes a1;2 in (3.4)and (3.5),Y (t) = 
�1=212 exp�� i2 Z 
12dt� a1 ++ i
�1=212 exp� i2 Z 
12dt� a2; (3.15)satisfying the simple equation�Y (t) + 
2124 Y = 0; (3.16)whi
h is identi
al to (3.8) and des
ribes os
illationsaround the 
rossing point in the adiabati
 potential(inverted adiabati
 barrier). In the adiabati
 pertur-bation theory, the level-
rossing problem is thereforeformally redu
ed to the well-known quantum me
hani-
al phenomenon, the over-barrier re�e
tion. In the lat-ter problem, moreover, the re�e
tion 
oe�
ient is equalto 1, in full agreement with the adiabati
 theorem.Evidently, two adiabati
 potentials have no real
rossing points in the 1D 
ase, and the 
rossing is there-fore possible only at 
omplex values X or t,
12(�
) = 0; U1 � U2 = �iU12jt=�
 : (3.17)In the vi
inity of these points, it follows from (3.6) that
12 / (t� �
)1=2; (3.18)264
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b

Fig. 1. Stokes (dashed) and anti-Stokes (solid) linesfor a pair of 
lose linear turning points repla
ed by onese
ond-order turning point; a � 
lassi
ally forbiddenregion, b � 
lassi
ally a

essible regionand therefore Z 
12dt � 23(t� �
)3=2; (3.19)i.e., the 
rossing points are square root bifur
ationpoints for the fun
tion 
12(t). Using (3.19), we de-pi
ted the Stokes and anti-Stokes lines for Eq. (3.16)in Fig. 1. The diagram shown in this �gure is identi
alto that 
orresponding to the semi
lassi
al over-barrierre�e
tion problem with linear turning points under 
on-sideration. In the leading approximation, the transition

E0

1

4

3

2

E

U#

U# − U12

U# + U12

Fig. 2. Adiabati
 (3 , 4 ) and diabati
 (1 , 2 ) potentialsfor the LZ problemprobability P12 is determined by integration over the
ontour C(�
) going around the bifur
ation point �
,P12 � exp8><>:2~ IC(�
) (H11 �H22)dt9>=>; : (3.20)In the simplest form of the LZ problem, the dia-bati
 potentials are assumed to be linear fun
tions of tor X (whi
h is the same be
ause t = X=v), see Fig. 2for illustration, U1(2) = U# � FX: (3.21)Substituting (3.21) in the general expression for thetransition probability (3.20), we then �ndP12 � exp(�2��); (3.22)where � = U212=2~vF is the so-
alled Massey parameterand v =r2jE � U#jmis the velo
ity.Some 
omments about the validity range of the ap-proximation are in order. A question of primary impor-tan
e for the LZ problem is related to the semi
lassi
alnature of the phenomenon. To illustrate this, we notethat for 
212 = U212 + v2F 2X2;Equation (3.16) is the Weber equation for the realpoint X = 0 (the 
rossing point of diabati
 poten-tials). Evidently, this 
orresponden
e between two
omplex-
onjugate linear 
rossing points ��
 and onereal 
rossing point X = 0 for the Weber equation is the265
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orresponden
e between two linear and onese
ond-order turning points in the standard semi
las-si
al treatment of the S
hrödinger equation. We 
antherefore apply the WKB or instanton methods to theLZ problem in the same way as in any semi
lassi
alproblem. We now 
ompare the a

ura
y of the two ap-proa
hes. If jE�U#j � ~
 (where 
 is the 
hara
ter-isti
 frequen
y of the adiabati
 potentials), the WKBmethod works quite well if two isolated linear turningpoints in this problem are 
onsidered (this is the limitof k0a� 1, 
orresponding to the adiabati
 approxima-tion). If this is not the 
ase, the diabati
 representationmust be used.4. INSTANTON METHOD IN MOMENTUMSPACEWe do not explain the instanton method in de-tail here and summarize only the most essential points(see [26�29; 58; 59℄). The re
ipe to �nd the instanton isbased on minimizing the 
lassi
al a
tion fun
tional inthe spa
e of paths 
onne
ting the minima in the upsi-de-down potential. It is well known [1℄ that the expan-sion of an arbitrary wave fun
tion 	(x) in terms of themomentum eigenfun
tions is simply a Fourier integral,	(x) = 12�~ 1Z�1 exp� ipx~ ��(p)dp: (4.1)The wave fun
tion in the momentum representation�(p) 
an be written in the semi
lassi
al form�(p) = A(p) exp�� iW (p)~ � ; (4.2)where the a
tion W (p) is determined by the 
lassi
altraje
tory x0(p) in a

ordan
e with the de�nitiondWdp = x0(p): (4.3)We use the dimensionless variables � = E=
0 for theenergy, V = U=

0 for the potential, and X = x=a0for the 
oordinate, where E and U are the 
orrespond-ing dimensional values of the energy and of the poten-tial, a0 is a 
hara
teristi
 length of the problem (e.g.,the tunneling distan
e), and 
0 is a 
hara
teristi
 fre-quen
y (e.g., the os
illation frequen
y around the po-tential minimum). The dimensionless momentum 
anbe de�ned as P = pa0
~ ; (4.4)

where 
 is the semi
lassi
al parameter (we re
all that
 � m
0a20=~, where m is the mass of the parti
le, andwe believe that 
 � 1).Introdu
ing the semi
lassi
al form (4.2) of themomentum-representation wave fun
tion in the stan-dard one-parti
le 1D S
hrödinger equation, we 
antransform it to the form�P 2 + 2V̂ �X0 + i 1
 ddP �� 2
 ��A(P ) = 0: (4.5)In the momentum spa
e, V̂ is the potential energy op-erator, whi
h 
an be expanded in a semi
lassi
al serieswith respe
t to 1=
 (or equivalently, with respe
t to~; we set ~ = 1 in what follows, measuring energiesin the units of frequen
y, ex
ept in some intermediateequations where the o

urren
es of ~ are ne
essary forunderstanding). This expansion allows us to 
onsiderV̂ as a fun
tion V of two independent variables X0 andd=dP , and we �nally obtainV �X0 + i
 ddP � = V (X0) ++ i
 � dVdX0 ddP + 12 d2VdX20 dX0dP �++� i
�2 " d2VdX20 d2dP 2 � 12 d3VdX30 �dX0dP ddP � 13 d2X0dP 2 �++ 124 d4VdX40 �dX0dP �2#+ : : : ; (4.6)where the dots denote all higher-order expansion terms.In a

ordan
e with the general semi
lassi
al rules,we 
an easily �nd from (4.5) and (4.6) that the �rst-and the se
ond-order terms in 
�1 be
ome identi
allyzero if the energy-dependent traje
tory X0(P ) is deter-mined by the equationP 2 + 2V (X0) = 2�
 (4.7)and if the so-
alled transport equation (TE)dVdX0 dAdP + 12 d2VdX20 d2WdP 2 A; (4.8)is also satis�ed. The solution of TE (4.8) 
an be foundexpli
itly as A = � dVdX0��1=2 : (4.9)266
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lassi
alWKB wave fun
-tion (4.2) has singularities at all stationary points of thepotential V . These points are therefore turning pointsin the momentum spa
e. This illustrates fundamen-tal di�
ulties of the WKB pro
edure, whi
h 
onsist inmat
hing the solutions that be
ome singular on 
aus-ti
 lines separating manifolds with real and imaginarymomenta in phase spa
e.To also illustrate the se
ond drawba
k of the WKBmethod, we 
onsider the linear (V = FX) and har-moni
 (V = X2=2) potentials. The traje
tories X0(P )
an be trivially determined from (4.7). For the lin-ear potential, X0(P ) is the inverted parabola with themaximum X0m = �F=
 at P = 0. The left and theright bran
hes of the parabola 
orrespond to the oppo-site motion dire
tions in the 
lassi
ally a

essible regionX0 < X0m. For the linear potential, the semi
lassi
alWKB wave fun
tion in the momentum spa
e,�(P ) = 1pF exp�� iF ��P � 
 P 36 �� ; (4.10)is the Fourier transform of the 
oordinate-spa
e Airyfun
tion. For the harmoni
 potential, the 
orrespond-ing traje
tories (4.7) are ellipses, and the wave fun
-tions have the same fun
tional form in both spa
es (mo-mentum and 
oordinate). It is worthwhile to note thatalthough the WKB fun
tions are not exa
t, the 
orre-sponding eigenvalues 
oin
ide with the exa
t quantumme
hani
al ones.As we have shown re
ently [27�29℄, many importantsemi
lassi
al problems 
an be su

essfully analyzed bythe instanton method. Having in mind momentumspa
e in this se
tion, we re
all the main ideas of theinstanton approa
h. The �rst step of the approa
h de-rived in [58℄ and [59℄ is the so-
alled Wi
k rotation ofthe phase spa
e 
orresponding to the transformationto imaginary time t ! �it. Under the transforma-tion, both potential and kineti
 energies 
hange theirsigns, and the Lagrangian is repla
ed by the Hamilto-nian in the 
lassi
al equation of motion. In the momen-tum spa
e, the low-energy instanton wave fun
tions 
anbe 
onstru
ted using Wi
k rotation in the momentumspa
e (i.e., the transformation P ! iP ); in addition,the term with the energy � in (4.7) must be removedfrom this equation and taken into a

ount in TE (4.8).In the instanton formalism, the traje
tory X0(P ) de-s
ribes zero-energy motion in the 
lassi
ally forbiddenregion of the momentum spa
e, where the wave fun
-tion has the form�(P ) = � dVdX0��1=2Q(P ) exp[�
W (P )℄; (4.11)

a b
Fig. 3. Stokes (dashed) and anti-Stokes (solid) lines inthe vi
inity of: (a) 
onjugate bifur
ation points �i�
;(b) diabati
 potentials 
rossing point X = 0and the additional prefa
tor Q(P ) 
an be representedas lnQ(P ) = � Z � dVdX0��1 dP: (4.12)In the parti
ular 
ase of a linear potential(V (X) = FX), the instanton and WKB fun
tionshave the same form. For an arbitrary (n-th order)anharmoni
 potential, the S
hrödinger equation inthe momentum spa
e is redu
ed to the n-th orderdi�erential equation, but the n-th order derivativesde
rease proportionally to 
�n, and the 
orrespondingterms 
an therefore be taken into a

ount perturba-tively. A rigorous mathemati
al method to performthis pro
edure (whi
h we use in this paper) has beendeveloped by Fedoryuk [68�70℄.To illustrate the instanton approa
h, we 
onsiderthe simplest form of the LZ problem illustrated inFig. 3. For linear potentials with arbitrary line slopes,we have two se
ond-order 
oupled equations, in the di-abati
 state representation� d2�1dX2 = 
2(�+ f1X)�1 = 
2��2;� d2�2dX2 = 
2(�+ f2X)�2 = 
2��1; (4.13)where �1;2 are the eigenfun
tions of the 
orrespondingstates and
2 = a2F 2mU12 ; F =pF1jF2j; 
 = a3Fm1=2U1=212 ;� = 2U0 �E

 ; f1;2 = 2aF1;2

 ; � = 2U12

 :Equations (4.13) 
an be transformed into the momen-tum spa
e and 
an then be rewritten as a single se-
ond-order equation267
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e	1 = �1 exp �i
�3=22 � 1f1 + 1f2��k + k33 �� ; (4.15)�1 is the Fourier transform of �1, k = P=
p�, andq(k) is a fourth-order 
hara
teristi
 polynomialq(k) = �2(1 + k2)2 + 2�(ik � 2�) (4.16)depending on two parameters� = 12
�3=2� 1f1 � 1f2� ; � = 
v22(f1 � f2)p�: (4.17)The �rst parameter � plays the role of the new semi
las-si
al parameter in the momentum representation andthe se
ond is the known Massey parameter (alreadyde�ned in (3.22)).Fortunately, all roots of 
hara
teristi
 polyno-mial (4.16) 
an be found analyti
ally quite a

uratelyin the physi
ally most interesting region of parameters.To simplify the expressions (while keeping the 
ompletephysi
al 
ontent), we present the results only in thesimplest 
ase where f1 = �f2 � f (symmetri
 slopesof the diabati
 potentials). In the 
lassi
ally forbiddenregion U# � E > 0, � > 0, at � � 1 (equivalently, at�� (f=
)2=3), all the four roots of the polynomial are
lose to �i,k�1 = i 1�r1+�2� ! ; k�2 = �r1��2� �i: (4.18)In the 
lassi
ally a

essible region (U#�E < 0; � < 0),the roots are 
lose to �1 if � � 1 (or if��� (f=
)2=3),k�1 = 1� p1 + ~�2 + ~�4~� !1=2 �� i p1 + ~�2 � ~�4~� !1=2 ;k�2 = �1� p1 + ~�2 + ~�4~� !1=2 �� p1 + ~�2 � ~�4~� !1=2 (4.19)
(the tilde means that in the 
orresponding quantity, �must be repla
ed with its modulus).The roots of 
hara
teristi
 polynomial (4.16) inthe 
lassi
ally forbidden region, Eq. (4.18), and in the

�2 �1 0 21
�1
10
�2

a

b

Fig. 4. Stokes (dashed) and anti-Stokes (solid) linesfor linear turning points 
orresponding to 
lassi
ally for-bidden (a) and a

essible (b) energy regions of the LZproblem
lassi
ally a

essible region, Eq. (4.19), are formallyequivalent to the transition or turning points forthe system of two potential barriers or two potentialwells respe
tively. We 
an therefore use all the WKBand instanton results known in these 
ases (see, e.g.,our re
ent paper [29℄ and referen
es therein for thedetails). Be
ause only asymptoti
 solutions and their
onne
tions via transition or turning points on the
omplex plane are usually 
onsidered in the semi
las-si
al analysis, the famous Stokes phenomenon [30; 57℄of asymptoti
 solutions plays an essential role, and thedistribution of the transition points (whi
h are nothingbut the zero points of the 
hara
teristi
 polynomial)and Stokes and anti-Stokes lines determines thephenomenon. We show all the lines emanating fromlinear turning points in Fig. 2. In the 
ase where the268
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lose linear turning points, everysu
h pair 
an be repla
ed with one se
ond-order turn-ing points. The 
orresponding Stokes and anti-Stokeslines are depi
ted in Fig. 4.In the 
lassi
ally forbidden region, the instantonwave fun
tions 
an be found using roots (4.18),�+1 = (1� ik)��1(1 + ik)�+1 exp�i��k + k33 �� ;��1 = (1� ik)��(1 + ik)�� exp��i��k + k33 �� : (4.20)As jkj ! 1, the fun
tion �+1 de
reases proportion-ally to jkj�2 and ��1 is redu
ed to the Airy fun
-tion [71; 72℄. In the vi
inity of the se
ond-order turningpoints k = �i, the fourth-order 
hara
teristi
 polyno-mial is redu
ed to a se
ond-order one, and Eq. (4.14)is redu
ed to the Weber equation with the known fun-damental solutions [71℄D��(�2p�(k + i))as jk + ij ! 0 andD���1(�2p�(k � i))as jk � ij ! 0. The same pro
edure applied to the
lassi
ally a

essible region leads to the solutions�+1 = (1� k)i~��1(1 + k)i~�+1 exp �i~��k � k33 �� ;��1 = (1 + k)i~�(1� k)i~� exp ��i~��k � k33 �� ; (4.21)

and it is also redu
ed to the fundamental solutions ofthe Weber equationDi~� ��2p~�(k + 1) exp i�4 �as jk + 1j ! 0 andDi~��1��2p~�(k � 1) exp i�4 �as jk � 1j ! 0.The same solutions 
an be obtained for the LZ prob-lem in the two-level approximation using the instantonmethod in the 
oordinate spa
e. The reason for this isquite transparent and is based on the fa
t that for lin-ear diabati
 potentials, the limit k ! �1 
orrespondsto the limit x! �1, and the asymptoti
 behaviors ofthe solutions are therefore the same in the momentumand in the 
oordinate spa
e.The entire analysis 
an be brought into a more 
om-pa
t form by introdu
ing the so-
alled 
onne
tion ma-tri
es. In the instanton approa
h, we 
onsider asymp-toti
 solutions and their 
onne
tions on the 
omplex
oordinate plane. It is therefore important to knowthe 
onne
tion matri
es. The needed 
onne
tion mat-ri
es 
an easily be found by mat
hing solutions (4.20)or (4.21) at the se
ond-order turning points throughthe 
orresponding fundamental solutions of the Weberequation. This gives the 
onne
tion matri
esM̂1 = 0BBB� � 
os(��) p2� exp(�2�)�(�)�(�) exp(2�) sin2(��)p2� 
os(��) 1CCCA ; (4.22)where � = � � (� � 1=2) ln �2 ;and M̂2 = 0BBB� � exp(��~�) p2� exp(��~�) exp(�2~�)�(�i~�)1p2� 2�(�i~�) exp���~�2 � exp(2~�) sh(�~�) exp(��~�) 1CCCA ; (4.23)where ~� = �i��4 + ~�(1� ln ~�)�+ 14 ln ~�: 269
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aution at the end of this se
tion, weremind the reader that for the linear diabati
 poten-tials, we initially had two 
orresponding S
hrödingerequations, ea
h of whi
h possesses two fundamental so-lutions. Therefore, the full LZ problem is 
hara
terizedby four fundamental solutions that are asymptoti
 tothe left of a given turning point and four fundamentalsolutions that are asymptoti
 to the right of the sameturning point. Generally speaking, the 
onne
tion ma-tri
es must therefore be 4� 4 ones. But be
ause of thesymmetry of the potentials, these 4� 4 matri
es havetwo 2� 2 blo
k stru
tures for the fun
tions �1 and �2,given in (4.22) and in (4.23).5. LZ PROBLEM FOR TWO ELECTRONSTATES (INSTANTON APPROACH INCOORDINATE SPACE)In Se
s. 2�4, we investigated the LZ problem inthe framework of the adiabati
 perturbation theory,the two-level approximation, and the momentum rep-resentation. All the three methods are equivalent andsemi
lassi
al by their nature, and are therefore appli-
able in the tunneling and over-barrier energy regions;they be
ome inadequate within the intermediate region(of the order of 
�2=3) near the level 
rossing point.The fa
t is that the a

ura
y of these methods dependson the �renormalized� (energy-dependent) semi
lassi-
al parameter � in (4.17), whi
h 
an be small in theintermediate region (� � 1 even for 
 � 1). To treatthis region, we must use the 
oordinate spa
e presen-tation, be
ause we need to know the 
onne
tion matri-
es for nonadiabati
 transitions. In the latter problem,the wave fun
tions outside the level 
rossing point aremore 
onvenient (and have a more 
ompa
t mathemat-i
al form) in the 
oordinate spa
e.5.1. Tunneling and over-barrier regionsFor the smoothness of presentation, we �rst re-produ
e the results found in the previous se
tions forthe tunneling and over-barrier energy regions in the
oordinate spa
e. In the diabati
 representation, we
an rewrite two se
ond-order LZ di�erential equations(4.13) as the fourth-order linear di�erential equationwith 
onstant 
oe�
ients at the derivativesd4�1dX4 � 2
2�d2�1dX2 �� 2
2f d�1dX + 
4(�2 � v2 � f2X2)�1 = 0 (5.1)

(where we 
onsider the 
ase with a symmetri
 slopef1 = �f2 � f for simpli
ity). In the mathemati
alformalism elaborated by Fedoryuk [68�70℄, Eq. (5.1) isredu
ed by a semi
lassi
al substitution in a set of equa-tions of the order 
n. The 
hara
teristi
 polynomial for(5.1) is given byF (�) = �4 � 2�
2�2 � 2
2f�++ 
4(�2 � v2 � f2X2); (5.2)where � = dW=dX by de�nition.Solving the equation F (�) = 0 perturbatively in
�1 � 1, we �nd �j = �0j + uj ; (5.3)where �0j = � h
(��pv2 + f2X2)i1=2 (5.4)and uj = 
f2 �(�0j )2 � �
��1 : (5.5)Four asymptoti
 solutions of (5.1) 
an then be repre-sented asfyjg � f�++;��+;�+�;���g == (v2 + f2X2)�1=4 exp24 XZ0 �j(X 0)dX 035 : (5.6)They des
ribe the motion with an imaginary momen-tum in the upper and lower adiabati
 potentials2ma2~2 �U� �E� = 
2 ���pv2 + f2X2 � :The subs
ripts in (5.6) 
orresponds to the upper orlower adiabati
 levels, and the supers
ripts indi
ate thesign of the a
tion.Before 
onsidering the 
onne
tion matri
es, we usethe substitution �1 = exp(�X)�; (5.7)and 
hoose the � value su
h that the �rst derivativein (5.1) vanishes,�3 � 
2��� 12
2f = 0: (5.8)At � > 3(f=4
)2=3, we 
an expand the roots of (5.8) interms of the parameterÆ = f4
��3=2 < 13p3 : (5.9)270
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p��1 + Æ2� ;�2 = 
p���1 + Æ2� ; �3 = 
p�Æ: (5.10)Under 
ondition (5.9), the 
oe�
ients at the fourth andat the third-order derivatives in (5.1) are small (propor-tional to Æ and pÆ respe
tively) and the fourth-orderequation (5.1) 
an be rewritten as two se
ond-orderWeber equations with the solutionsDp(1;2)(�(1;2)X);where p1 = �1 + Æ2 � � �1� 3Æ2 � ;p2 = Æ2 � � �1 + 3Æ2 � ;�(1;2) = �
2f2� �1=4�1� 3Æ4 � : (5.11)
The leading terms of these solutions are the same asthose found in Se
. 4. But the Fedoryuk methodalso gives higher-order 
orre
tions in Æ in tunneling re-gion (5.8).In the over-barrier energy region where� < �3(f=4
)2=3, the roots of Eq. (5.8) are 
om-plex 
onjugate,�(1;2)
p� = � ~Æ2 � i 1 + 3~Æ28 ! ; (5.12)and ~Æ = f4
j�j3=2 (5.13)plays the role of a small parameter. Similarly tothe 
ase with the tunneling region, the 
oe�
ients athigher-order derivatives are small, and the fun
tion �in (5.7) therefore satis�es the Weber equation with thefundamental solutionsD~p(1;2)( ~�(1;2)X);

where ~p1 = �1 + i3~Æ2 + i� 1 + 3~Æ4 ! ;~p2 = i3~Æ2 + i� 1� 3~Æ4 ! ;~�1 = exp i�4 �
2f2j�j �1=4 ;~�2 = exp�� i3�4 ��
2f2j�j �1=4 :
(5.14)

As was the 
ase with tunneling region (5.11), the lead-ing terms of expansion (5.14) 
oin
ide with the resultsfound in the previous se
tions, but (5.14) also allows
omputing 
orre
tions to the leading terms.We 
an now �nd the 
onne
tion matri
es. To dothis in the tunneling region, we must establish the 
or-responden
e between solutions of fourth-order di�eren-tial equation (5.1) and solutions for the states lo
alizedin the left (L) and in the right (R) wells. In the 
asewhere � � f jX j, the a
tion 
an be 
omputed for dia-bati
 potentials starting from both wells (R and L),
WL � 
WL0 + k0X + �24 X2;
WR � 
WR0 � k0X + �24 X2; (5.15)where k0 = �2m(U# �E)~2 �1=2 � 
p�is the imaginary momentum and WL;R0 are the a
tions
omputed from an arbitrary distant point in the L orR wells respe
tively to the point X = 0. On the otherhand, in the adiabati
 potentialsU� = U# �qU212 + f2X2;the 
orresponding a
tions 
an be represented as
W� � 
W�0 = k0X � �24 X2signX: (5.16)Expli
itly 
omparing the semi
lassi
al wave fun
tionsin both representations (adiabati
 and diabati
 ones),it is easy to see that the adiabati
 fun
tions in thepotential U� 
oin
ide with the diabati
 fun
tions forlo
alized L and R states at X < 0 and X > 0 respe
-tively. The adiabati
 fun
tions for the upper potential271
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orrespond to the tails of the diabati
 wave fun
-tions lo
alized in the opposite wells. In the level 
ros-sing region, the L=R diabati
 fun
tions are thereforetransformed into the R=L fun
tions, and the intera
-tion entangles the diabati
 states with the same sign ofk0X . Thus, we have only four nonzero amplitudes ofthe following transitions:h�+L j��Ri; h��L j�+Ri; h�+Rj��L i; h��Rj�+Li: (5.17)Re
alling that

W� = 
 Z ���pv2 + f2X2�1=2 �� k0X � �24 X2 � �2 (1� ln �); (5.18)we 
on
lude that quantum solutions (5.11), asymp-toti
ally valid in the vi
inity of the level 
rossingpoint, mat
h in
reasing and de
reasing solutions (5.6)smoothly, whi
h leads to the Landau des
ription [1℄ ofthe level 
rossing transitions depi
ted in Fig. 5.Using expressions (4.22) and (4.23) relating the fun-damental solutions of the Weber equation, we 
an �ndthe 4� 4 
onne
tion matrix 
orresponding to (5.17),0BBBB� �+R��R�+L��L 1CCCCA = 2666666666664

p2� exp(�2�)�(�) 0 0 � 
os(��)0 �(�) exp(2�) sin2(��) � 
os(��) 00 
os(��) p2� exp(�2�)�(�) 0
os(��) 0 0 �(�) exp(2�) sin2(��)p2�
3777777777775��0BBBB� ��L�+L��R�+R 1CCCCA ; (5.19)where � = �2 � 12 �� � 12� ln �as above. The matrix in (5.19) has a 2� 2 blo
k stru
-ture, with ea
h of the identi
al blo
ks 
onne
ting in-
reasing and de
reasing diabati
 solutions. However,these diagonal blo
ks do not 
orrespond to the L�Rtransitions for the lower and upper adiabati
 potentialsseparately. Indeed, the 2 � 2 matrix 
orresponding tothese transitions is �+R��L ! == 26664 p2� exp(�2�)�(�) � 
os(��)
os(��) �(�) exp(2�) sin2(��)p2� 37775�� ��L�+R ! : (5.20)

In the diabati
 limit (i.e., as � ! 0) the diagonal matrixelements are small (/ �1=2 and �3=2 respe
tively), andthe o�-diagonal elements tend to �1, as it should bebe
ause by de�nition, there are no transitions betweenthe diabati
 potentials.In the adiabati
 limit � � 1, the diagonal matrixelements tend to 1, whi
h implies that the de
reasingL solution transforms only into the in
reasing R solu-tion, and vi
e versa. Therefore, the 
onne
tion matrixin the tunneling region depends only on the Massey pa-rameter �. We re
all that the blo
ks of the 4� 4 
on-ne
tion matrix in (5.19) 
orrespond to the two isolatedse
ond-order turning points with the Stokes 
onstant(see, e.g., [29℄) T2 = p2��(�) exp(�2�): (5.21)The over-barrier region 
an be studied similarly.Repeating the pro
edure des
ribed above for the tun-neling region (with the evident repla
ements k0 ! �ik0and �2 ! i�2), we obtain the 4� 4 
onne
tion matrix272
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= 2666666666666664

p2� exp(�2~�)�(�i�) 0 0 � exp(���)0 2�(�i�) exp(���) exp(2~�) sh(��)p2� � exp(���) 00 exp(���) p2� exp(�2~�)�(�i�) 0exp(���) 0 0 2�(�i�) exp(2~�) exp(���) sh(��)p2�
3777777777777775 ;(5.22)where~� = � i2 h�4 + �(1� ln �)i + 14(�� + ln �): (5.23)As already mentioned for the tunneling region, theblo
ks in (5.22) 
orrespond to the two isolated se
ond-order turning points with the Stokes 
onstant [29℄~T2 = p2��(�i�) exp(�2~�): (5.24)Thus, we arrive at the important 
on
lusion that themain pe
uliarity of the LZ level 
rossing (in 
omparisonwith the standard, e.g., one-potential problems) is thatthe se
ond-order turning points 
hara
terizing the dia-bati
 level 
rossing for the LZ problem possesses di�er-ent Stokes 
onstants T2, Eq. (5.21), and ~T2, Eq. (5.24),in the tunneling and in the over-barrier regions.5.2. Intermediate energy regionWe 
an now reap the fruits of our e�ort in the pre-vious subse
tion. We �rst note that Eqs. (5.11) and(5.14) imply that as the energy approa
hes the top ofthe barrier, the exponents p(i) and ~p(i) of the paraboli

ylinder fun
tions in
rease and therefore more andmore deviate from the value pres
ribed by the Masseyparameter �. Se
ond, �(i) in
reases as j�j de
reases,resulting in a de
rease of the values of jX j where theasymptoti
 smooth mat
hing of the solutions mustbe performed. As Æ ! 0, these jX j values are lo-
ated deeply in the 
lassi
ally forbidden region, wherethe potentials are 
lose to the diabati
 potentials; forÆ � 2p3=3, these 
oordinates jX j are of the order of thequantum zero-point os
illation amplitudes, and there-fore the adiabati
 representation must be used to �ndthe solution in this region.These two simple observations give us a 
onje
turehow to treat the LZ problem in the intermediate en-ergy region. We must �rst �nd the energy �window�

for the intermediate region. It is 
onvenient to 
hoosethe adiabati
 potential frequen
y 
 = F=pmU12 as theenergy s
ale su
h that the inequality j�j < 3jf=4
j2=3be
omesjU� �Ej � 32U1=312 �
2 �2=3 � U�12: (5.25)In other words, the 
hara
teristi
 intera
tion energy atthe boundaries of the intermediate region is indepen-dent of U12. But the positions of the linear turningpoints jX�j 
orresponding to the energies U��U�12 de-pend on the ratio U12=U�12. These points are lo
atedinside or outside the interval [�a0
�1=2; a0
�1=2℄ atU12=U�12 < 1 and at U12=U�12 > 1, respe
tively, and themat
hing 
onditions in the intermediate energy regionare therefore di�erent in the two 
ases. In the former
ase, the potentials 
an be reasonably approximatedby a parabola in the asymptoti
 mat
hing region, andwe must therefore work with the Weber equations. Inthe latter 
ase, the mat
hing is performed in the regionwhere the potentials are linear, and the equations aretherefore redu
ed to the Airy equations.We �rst investigate the 
ase where U12=U�12 > 1.Using the Born�Oppenheimer approa
h des
ribed inSe
. 2, we see that the S
hrödinger equations for thewave fun
tions 	� are de
oupled in the adiabati
 rep-resentation with the a

ura
y up to 
�2,�d2	�dX2 + 
2 ���pv2 + f2X2 �	� = 0: (5.26)For jX j < v=f , Eqs. (5.26) are redu
ed to the Weberequations with the fundamental solutionsD�1=2�q1(�p2
X)and D�1=2+iq2 �� exp�� i�4 �p2
X� ;where3 ÆÝÒÔ, âûï. 2 (8) 273
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�X��Æ X� Æ X1
U# + U12U#U# � U12U# + U�12
U# � U�12U# � U�12 � ~
2 �X1

b�Æ X1ÆX�
U# + U12
U# � U12U# � U�12U#U# + U�12

U# � U�12 � ~
2 �X��X1

a

Fig. 5. Relative pla
ement of the adiabati
 lev-els; a � U12 > U�12, b � U12 < U�12(U�12 � (3=2)(~2F 2=4m)1=3)q1 = 
 v + �2 ; q2 = 
 v � �2 ; (5.27)are independent of the Massey parameter �. Two realsolutions of (5.26) 
orrespond to the upper adiabati
potential (
lassi
ally forbidden region), and two 
om-plex solutions 
orrespond to the 
lassi
ally allowed mo-tion under the lower adiabati
 potential.The argument of the Weber fun
tions is / Xp
,and under the 
ondition X < v=f , their asymptoti
expansions determine the interval where the mat
hingis to be performed,
�1=2�U12
 �1=2 > 
�1=2: (5.28)This inequality 
an be satis�ed only at U12=U�12 > 1,when the intermediate region is su�
iently broad in


omparison with 
. The exponents q1 and q2 inEq. (5.27) are then large, and our aim is to �nd theexpli
it asymptoti
 expansions of solutions in this 
ase.For this, we 
losely follow the method in [73℄ (also seemonograph [72℄), whi
h is in fa
t an expansion of thefundamental Weber solutions in the small parameters1=jqij. This method leads to the asymptoti
 solution ofEq. (5.26) at X > 0 given by	�+(X) � Y �1=2+ (X + Y+)�q1 exp(�
XY+);	��(X) � Y �1=2� (X + Y�)iq2 exp(i
XY�); (5.29)where Y� = pv � �+X2. Using the known relationbetween the fundamental solutions of the Weber equa-tion [71; 72℄,D�(z) = exp(�i��)D�(z) ++ p2��(��) exp��i��+ 12 �D���1(iz);we 
an �nd the other two solutions (
omplementaryto (5.29)) as	++(X) = Y �1=2+ "� sin(�q1)(X + Y+)�q1 �� exp(�
XY+) + exp(�2�1)�� p2��(1=2 + q1) (X + Y+)q1 exp(
XY+)# ; (5.30)and	+�(X) == Y �1=2+ "� i exp(��q2)(X + Y�)iq2 exp(i
XY�)++ exp(�2�2) p2��(1=2� iq2) (X + Y�)iq2 �� exp(�i
XY�)# ; (5.31)where we introdu
e the notation�1 = 12 �q1 + 12�� q12 ln�q1 + 12� ;�2 = �12 �iq2 � 12�+ iq22 ��i�2 + ln�q2 + i2�� :Not surprisingly, solutions (5.29)�(5.31) 
an be repre-sented as a linear 
ombination of the semi
lassi
al so-lutions ��� in (5.6) with the 
oe�
ients
os(2�(1;2)) = Xpv � �+X2 : (5.32)274
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oin
ide withthe adiabati
 angles introdu
ed above (see (2.12)and (3.12)) at the level 
rossing point � = 0, andf jX j < v. Both angles take only slightly di�erent val-ues over the entire intermediate region j�j < v. We 
an now �nd all the 
onne
tion matri
es forthese fun
tions. Although the 
al
ulation is straitfor-ward, it must be done with 
aution (e.g., be
ause theX-dependent matri
es have di�erent fun
tional formsat positive and negative X). For X > 0, we obtain
0BBBB� 	��	+�	�+	++ 1CCCCA =

2666666666666664

os �2 0 0 0�i exp(��q2) 
os �2 p2� exp(�2�2) 
os �2�(1=2� iq2) 0 00 0 sin �1 00 0 � sin(�q1) sin �1 p2� exp(�2�1) sin �1�(1=2 + q1)

3777777777777775��0BBBB� �+������+�++ 1CCCCA ; (5.33)and for X < 0,0BBBB� 	��	+�	�+	++ 1CCCCA = 26666666664
p2� exp(�2�2) 
os �2�(1=2� iq2) �i exp(��q2) 
os �2 0 00 
os �2 0 00 0 sin �1p2� exp(�2�1)�(1=2 + q1) � sin(�q1) sin �10 0 0 sin �1

37777777775��0BBBB� ����+��++��+ 1CCCCA : (5.34)The produ
t of the matrix inverse to (5.33) and the matrix in (5.34) determines the sought 
onne
tion matrixrelating the semi
lassi
al solutions in the intermediate energy region (
f. the 
onne
tion matri
es for the tunnelingand over-barrier energy regions in (5.20) and (5.22)). Performing this simple algebra, we �nally obtainU
ross == 26666666664
p2� exp(�2�2)�(1=2� iq2) i exp(��q2) 0 0�i exp(��q2) 2 exp(2�2)�(1=2� iq2) 
h(�q2) 0 00 0 p2� exp(�2�1)�(1=2 + q1) sin(�q1)0 0 � sin(�q1) 
os2(�q1)�(1=2 + q1) exp(2�1)

37777777775 :(5.35)275 3*
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III

III
′

III
′

0 0.5 1.5−1.5
(E − U#)/U∗

12

−0.5 1.0−1.0
0

0.5

1.0

1.5
U12/U∗

12

Fig. 6. The E, U12 phase diagram (I � tunnelingregion, II � over-barrier region. The two intermedi-ate energy regions III and III0 are separated by the line�� = 0:325)This matrix has a two 2 � 2 blo
k stru
ture, similarlyto the 
onne
tion matri
es (5.19) and (5.22) for thetunneling and over-barrier regions. But unlike ma-tri
es (5.19) and (5.22) des
ribing the transitions be-tween the diabati
 states, matrix (5.35) 
orrespondsto transitions between adiabati
 states. Indeed, at astrong level 
oupling (U12 > U�12), the eigenfun
tionsare 
lose to the adiabati
 fun
tions and only nonadia-bati
 perturbations indu
e transitions. Therefore, theo�-diagonal matrix elements in (5.35), whi
h have themeaning of the probability that the diabati
 state re-mains un
hanged after the transition, are zero. Theblo
k with real-valued matrix elements 
orresponds tothe minimum of the upper adiabati
 potential, i.e., toan isolated se
ond-order turning point where [29℄q1 = U� �E + U12
 : (5.36)The 
omplex-valued blo
k is asso
iated with the max-imum of the lower adiabati
 potential, and similarlyto (5.36), we 
an �nd the relationiq2 = �iU� �E + U12
 (5.37)for the turning point. For weak level 
oupling, namelyat jU� � Ej < U�12 and U12 < U�12 in the inter-

2:00:5 1:00 1:5 U12=U�120:20:40:60:81:0jM11j 1:5 2:00:50 1:0 U12=U�120:20:40:60:81:0M11
123

1 0

2 00 3 00 1 00

2 0 3 0
a

b




2:0 3:00 1:0 U12=U�120:20:40:60:81:0M11

Fig. 7. Transition matrix element M11 as a fun
tionof U12=U�12, 
omputed at � = 0: on the boundary be-tween tunneling and intermediate energy regions (a); atE = U# (b), on the boundary between the intermedi-ate and over-barrier regions (
); lines 1, 2, 3, 1 0, 2 0, 3 0,1 00, 2 00, 3 00 are 
omputed for the 
orresponding energyregions using (5.19), (5.25), and (5.36), respe
tivelymediate energy region, the adiabati
 potentials 
anbe linearized everywhere ex
ept a small neighborhoodjX j < v=f ! 0 of the level 
rossing point, i.e., 
an berepresented as ��f jX j. Asymptoti
 solutions (5.6) arethen redu
ed to a linear 
ombination of the fun
tions276



ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003 Instanton versus traditional WKB : : :��+ / (f jX j)�1=2 exp(��+signX);��� / (f jX j)�1=2 exp(���signX);�� = 23f (f jX j � �)3=2: (5.38)All the matrix elements required 
an now be 
al-
ulated in the framework of the Landau perturbationtheory [1℄, whi
h 
an be formulated in terms of thedimensionless variables~� = 3 � 2�4=3U� �EU12 ; ~� = 3 � 2�4=3U12U�12in order to avoid a divergen
y of the parameter � as� ! 0. The results of our analysis are shown inFig. 6. The tunneling and over-barrier regions are sep-arated from the intermediate energy region by the linesjU�12 � Ej = U�12. The intermediate region is also splitinto two parts by the line � = �� = 0:325, where �� isthe value of the Massey parameter � at U12=U�12 = 1and jU��Ej = U�12. In the region � < ��, the perturba-tion theory is an adequate tool for the problem, and thetransition matrix elements are proportional to U12=U�12.At � > ��, we 
an use 
onne
tion matrix (5.35). Toillustrate the a

ura
y of the approximations, we have
omputed the matrix element M11. The results areshown in Fig. 7. Our 
omputations demonstrate a suf-�
iently good pre
ision, se
ured up to two stable digits.

The a

ura
y of the results on the boundaries betweenthe intermediate and over-barrier or tunneling regionsis not worse than 3�5%, and 
an easily be improvedusing interpolation approa
hes.6. SCATTERING MATRIXPhenomena of the LZ type 
an be 
onsidered as(and applied to) s
attering pro
esses. The expressionsfor 4 � 4 
onne
tion matri
es found in Se
. 5 
an beused to 
al
ulate the s
attering operator (or matrix) Ŝthat 
onverts an in
oming wave into an outgoing one.We �rst 
onsider the over-barrier region in the
rossing problem with two linear potentials. In this
ase, in addition to the 
rossing point 
hosen asX = 0, there are two linear (�rst-order) turning pointsX0 = �j�j=f (ea
h turning point for ea
h of the di-abati
 potentials denoted by L and R). The s
at-tering matrix that relates the asymptoti
 solutions atX � �X0 and X � X0 is the produ
t of the 4�4 
on-ne
tion matrix (5.22) and the two known semi
lassi
al
onne
tion matri
es [57℄ (also see [29℄) des
ribing thewave fun
tion evolution from the turning point �X0 tothe 
rossing point 0, and from this point to the turningpoint +X0, respe
tively. We thus obtain a 2�2 matrixwith the blo
k matrix elementsT11 = Aif " exp(i(�� �0)) 00 exp(�i(�� �0)) # ;T12 = T �21 = (1�A2if ) exp i
W �2 " i �1=2� exp(�i
W �) (i=2) exp(�i
W �) # ;T22 = Aif " 2 
os(
W � � (�� �0)) � sin(
W � � (� � �0))sin(
W � � (�� �0)) (1=4) 
os(
W � � (�� �0)) # ; (6.1)
where Aif = (1� exp(���))1=2is the LZ amplitude of the transition between the di-abati
 states, � � �0 = ~� (see (5.23)), and W � is thea
tion between the linear turning points.The diagonal elements in (6.1), proportional to thetransition amplitude Aif , des
ribe propagating waves(i.e., solutions of the S
hrödinger equation in the loweradiabati
 potential), and the os
illating blo
ks 
or-respond to solutions in the upper adiabati
 poten-tial. O�-diagonal blo
ks, proportional to the probabil-ity that the initial diabati
 states remain un
hanged,

des
ribe the waves re�e
ted from the linear turningpoints. The re�e
tion (R) and transmission (T ) 
o-e�
ients, interesting in physi
al appli
ations, 
an befound from (6.1) by a straightforward 
al
ulation,R = �i(1�A2if )[A2if exp(i
W ��2i(���0))++ exp(�i
W �)℄�1;T = 2Aif 
os(
W � � (�� �0))�� [A2if exp(i
W � � 2i(�� �0)) ++ exp(�i
W �)℄�1: (6.2)
277
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1:00 2:0 3:0 4:0�1:0�2:0
1:00:60:8

(E � U#)=U�1200:20:4
jT j2 (E � U#)=U�12�2:0 0 2:0 3:0�1:0 1:0 4:000:20:40:60:81:0jT j2




b

a1:0
00:20:40:60:8jT j2

(E � U#)=U�121:00 3:0�2:0 4:0�1:0 2:0

Fig. 8. The T versus E dependen
e for: (a) U12 = U�12,(b) U12 = 0:5U�12, (
) U12 = 0:25U�12 ; stars mark theboundaries of region III0, thin lines show the results forthe over-barrier and tunneling regions and bold lines forthe intermediate energy regionThe poles of the s
attering matrix 
an also be easilyfound from (6.1), and the 
orresponding resonan
e 
on-dition is

0

−0.3

−0.6

0.3

0.6

2.0 3.0 4.01.0
(E − U#)/U∗

12

1

π
argT

Fig. 9. Transmitted wave phase as a fun
tion of E inthe over-barrier region at U12 = U�12
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(E − U#)/U∗

12

0

5.0

1.0

2.0

3.0

4.0

|C−

L
|2

1

2

3

Fig. 10. Amplitudes of the de
aying solutions ��Lat X > 0 versus E for: (1 ) U12 = U�12, (2 )U12 = 0:5U�12 , (3 ) U12 = 0:25U�12278
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os[2(
W � � (�� �0))℄ == ��1� 12 exp(�2��)� (1� exp(�2��))�1=2: (6.3)The a
tion is 
omplex-valued at the resonan
e points,Re(
W � � (�� �0)) = �n+ 12��;Im(
W � � (�� �0)) = �12 ln(1� exp(�2��)): (6.4)The poles of the s
attering matrix are in the lower half-plane of 
omplex E on the verti
al lines 
orrespond-ing to the 
onventional Bohr�Sommerfeld quantizationrules (
W � = �(n + 1=2)) for the upper adiabati
 po-tential. In the diabati
 limit (� ! 0), the imaginarypart of the pole positions tends to in�nity, and in theadiabati
 limit (� ! 1), the poles move to the realaxis. Thus, we see that the eigenstates of the up-per adiabati
 potential are always quasistationary ones.The resonan
e widths are determined by the residues ofthe s
attering matrix elements at the poles and 
an be

shown to be monotoni
ally de
reasing fun
tions of �.In Fig. 8, we show the energy dependen
e of the trans-mission 
oe�
ient T . In the diabati
 limit, T ! 0,and it in
reases as U12 in
reases. In the over-barrierregion, there appear resonan
es with the widths �n in-
reasing with the energy in
rease, be
ause the Masseyparameter then de
reases and �n / exp(�2��).We illustrate the energy dependen
e of the trans-mitted wave phase in Fig. 9. In a

ordan
e with thegeneral s
attering theory [1℄, there are �-jumps of thephase at ea
h quasidis
rete energy level of the up-per adiabati
 potential. At U12=U�12 < 1, the reso-nan
e widths are of the order of the inter-level spa
ings.The amplitudes of the de
aying solutions (lo
alized inthe well formed by the upper adiabati
 potential) in-
rease near the resonan
es; this behavior is illustratedin Fig. 10. A primarily important point is that theinformation about de
aying solutions 
ontained in the4 � 4 
onne
tion matrix (e.g., (5.22)) is lost when weuse 2� 2 s
attering matrix (6.1).The s
attering matrix for the tunneling region 
anbe found by minor modi�
ations of the expression al-ready derived. Instead of matrix (6.1), we thus obtainT11 = " (1=4)M11 exp(�
W �) +M22 exp(
W �) i((1=4)M11 exp(�
W �)�M22 exp(
W �))�i((1=4)M11 exp(�
W �)�M22 exp(
W �)) (1=4)M11 exp(�
W �) +M22 exp(
W �) # ;T12 = T �21 = 
os(��) exp i
W �2 " i �(1=2) exp(�
W �)�1 (i=2) exp(�
W �) # ;T22 = " M11 00 M22 # ; (6.5)
where M11 and M22 are the 
orresponding matrix elements from (5.19).We also 
ompute the re�e
tion and transmission 
oe�
ientsR = �i �exp(
W �)� 14M211 exp(�
W �)� �exp(
W �) + 14M211 exp(�
W �)��1 ;T = M11 �exp(
W �) + 14M211 exp(�
W �)��1 : (6.6)In the intermediate energy region, the only blo
k matrix element T11 requires a spe
ial 
al
ulation taking the
ontributions from the 
omplex turning points into a

ount,T11 = 26664 p2� exp(��q2=2)�(1=2� iq2) i exp(��q2)�i exp(��q2) 2�(1=2� iq2) exp(��q2=2) 
h(�q2)p2� 37775 : (6.7)279
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tion and the transmission
oe�
ients in the intermediate energy region,R = exp(��q2)p1 + exp(�2�q2) exp h�i��� �2�i ;T = 1p1 + exp(�2�q2) exp(�i�); (6.8)where � = arg[�(1=2� iq2)℄.7. QUANTIZATION RULES FOR CROSSINGDIABATIC POTENTIALSAlthough instanton traje
tories are rather simpleobje
ts and 
an relatively easily be found analyti
ally,
al
ulations of the quantization rules within the instan-ton approa
h are rather involved and require the knowl-edge of the s
attering matrix and all the 
onne
tionmatri
es 
al
ulated in the previous se
tions. In thisse
tion, we apply these results to �nd the quantiza-tion rules for the 
rossing diabati
 potentials shown inFig. 11. Depending on the Massey parameter, the situ-ations shown in the �gure exhaust all 
ases pra
ti
allyrelevant for spe
tros
opy of nonrigid mole
ules (sym-metri
 or asymmetri
 double-well and de
aying poten-tials).Within the instanton approa
h, the quantizationrule 
an be formulated as the vanishing 
ondition forthe amplitudes of the solutions �+L and �+R that expo-nentially in
rease at X > 0 and X < 0, respe
tively.Taking into a

ount that W �L = W �R (the a
tions inthe 
orresponding wells of the lower adiabati
 poten-tial) and using 
onne
tion matrix (5.19), we obtain thequantization ruletg(
W �L) = �2p exp(
W �B); (7.1)where W �B is the a
tion in the barrier formed in thelower adiabati
 potential and p � U11 is the 
orre-sponding matrix element of 
onne
tion matrix (5.19).Quantization 
ondition (7.1) di�ers from the well-known [1℄ quantization rule for the symmetri
 doub-le-well potential only by the fa
tor 1=p varying from 0to 1 in the diabati
 and adiabati
 limits. Therefore,the tunneling splitting at �nite values of the Masseyparameter � 
an be represented as the produ
t�n = �0n p(�) (7.2)of the tunneling splitting �0n in the adiabati
 potentialand the fa
torp(�) = p2��(�)
��1=2 exp(��) (7.3)

2U12
a

b 

Fig. 11. The diabati
 level 
rossing phenomena: a �
rossing region, b � bound initial and de
ay �nalstates, 
 � bound initial and �nal statesasso
iated with the transition amplitudes between thediabati
 potentials in the 
rossing region.It is parti
ularly instru
tive to 
onsider (7.1) as thestandard [1℄ Bohr�Sommerfeld quantization rule, withboth the geometri
 'n and tunneling �n phases in-
luded additively in the right-hand side. In the adi-abati
 limit p(�) ! 1, we �nd that 'n ! 0 and (7.1)redu
es to the quantization of the symmetri
 double-well potential. In the diabati
 limit, 'n = ��n andthe geometri
 phase 
ompensates the tunneling one.The physi
al argument leading to this 
ompensation
an easily be rationalized as follows. At the re�e
tionat the 
rossing pointX = 0, the traje
tories in the 
las-si
ally forbidden energy region are the same as those forthe tunneling region but with the phase shift �.We now fo
us on quantization rules for the over-barrier energy region. Closely following the above anal-ysis for the tunneling region (repla
ing 
onne
tion ma-trix (5.19) by matrix (5.22) and making some otherself-evident repla
ements), after some tedious algebrawe �nally obtain the quantization rule280
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os(2
W �L + (�� �0))�� 
os(
W � � (� � �0)) ++ exp(�2��) 
os2�
W �L + 
W �2 � = 0; (7.4)where W � is the a
tion in the well formed by the up-per adiabati
 potential and � � �0 = ~� is determinedfrom (5.23). Equation (7.4) implies that the eigenstatesare determined by the parameterB = exp(�2��)1� exp(�2��) : (7.5)In the diabati
 limit � ! 0, and hen
e B ! 1=(2��),the main 
ontribution to (7.4) is due to the se
ondterm, whi
h leads to a splitting of degenerate levelsin the diabati
 potentials. Moreover, be
ause
 �W �L + W �2 � = ��n+ 12��2� sin �
�W �L + W �2 �� �+ �0�� ; (7.6)the splitting in
reases as the Massey parameter � in-
reases; the splitting is an os
illating fun
tion of theintera
tion U12.In the adiabati
 limit, as � ! 1, � � �0 ! 0, andtherefore B � exp(�2��) in a

ordan
e with (7.5), themain 
ontribution to (7.4) 
omes from the �rst term,whi
h determines the quantization rule for the upperone-well potential and for the lower double-well poten-tial in the over-barrier energy region. In this limit, theparameter B plays the role of the tunneling transitionmatrix element. For B smaller than the nearest levelspa
ings for the lower and upper potentials, we 
an �ndtwo sets of quantization rules from (7.4) that lead totwo sets of independent energy levels
W � = ��n1 + 12� ; 2
W �L = ��n2 + 12� : (7.7)Be
ause the eigenstate energy level displa
ements de-pend on U12, resonan
es 
an o

ur at 
ertain valuesof this parameter, where the independent quantizationrules in (7.7) are not 
orre
t any more. The widths ofthese resonan
es are proportional to exp(�2��) and aretherefore strongly diminished as the Massey parameter� in
reases. This behavior is easily understood, be
ausethe wave fun
tions of the ex
ited states for the lowerpotential are delo
alized in the limit, and their am-plitudes in the lo
alization regions for the low-energystates of the upper potential are very small.A more 
ompli
ated problem is to derive the quanti-zation rule in the intermediate energy region. We must
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Fig. 12. Level displa
ements versus U12 for two diabati

rossing potentials (1 � X)2=2. Dashed lines show theintermediate energy region, dotted-dashed lines show dis-pla
ements for the top and for the bottom of the adiabati
potentials. k, n, and n0 are quantum numbers for the di-abati
, lower adiabati
, and upper adiabati
 potentialsuse 
onne
tion matrix (5.35) and take the 
ontributionsfrom the imaginary turning points into a

ount. Ne-vertheless, the quantization rule 
an �nally be writtenin the simple and 
ompa
t form
os(2
W �L) = � exp(��q2); (7.8)where q2 = 
(v � �)=2 is determined by (5.27).It is useful to illustrate the essen
e of the generalresult given above by simple (but nontrivial) examples.We �rst 
onsider two identi
al paraboli
 potentials withtheir minima at X = �1 and with the 
oupling thatdoes not depend on X . Be
ause of the symmetry, so-lutions of the S
hrödinger equation in this 
ase 
an berepresented as symmetri
 and antisymmetri
 
ombina-tions of the lo
alized fun
tions	� = 1p2(�L ��R): (7.9)The fun
tions are orthogonal, and in addition, the twosets of fun
tions (	+e ; 	�0 ) and (	+0 ; 	�e ) (where the281
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tive subs
ripts 0 and e denote the ground andthe �rst ex
ited states) 
orrespond to the two possibletypes of level 
rossings.In Fig. 12, we s
hemati
ally depi
t the dependen
eof the level positions on the 
oupling U12. In theenergy region E � U� + U12, where only dis
rete le-vels of the lower adiabati
 potentials exist, there arepairs of the alternating parity levels (	+e ; 	�0 ) and(	+0 ; 	�e ). The tunneling splittings in
rease monoton-i
ally be
ause the Massey parameter � in
reases, andthe barrier de
reases with U12. The same level andparity 
lassi�
ation remains 
orre
t for the energy re-gion above the barrier of the lower adiabati
 potential,where the spe
trum be
omes almost equidistant. Butin the over-barrier region, the resonan
es o

ur betweenlevels of the same parity; the sequen
e of the odd andof the even levels is broken, and level displa
ements arenot monotoni
 fun
tions of U12. Some of the levels ofdi�erent parities 
an pairwise 
ross. For the upper adi-abati
 potential, the level sequen
e is opposite to thatfor the lower adiabati
 potential. We have 
he
ked theresults of our semi
lassi
al approa
h and found a re-markably good agreement with the numeri
al quantumdiagonalization.The se
ond instru
tive example involves the 
ross-ing of one-well and linear diabati
 potentials. It leadsto the lower adiabati
 de
ay potential and to the upperone-well adiabati
 potential. The quantization rulesthen 
orrespond to the vanishing amplitudes for theexponentially in
reasing solutions as X ! �1; in ad-diton, we must require that no waves propagate fromthe region of in�nite motion, i.e., the region X > 1=2.Performing the same pro
edure as above, we �nd thatin the tunneling energy region, the eigenstates are theroots of the equationtg(
W �L) = �i 4p2(�) exp(2
W �B); (7.10)with the same notation as above.To pro
eed further, it is 
onvenient to introdu
e a
omplex a
tion to des
ribe quasistationary states,
W �L = ��En
 � i�n2
� ; (7.11)where 
 = �WL=�E is evidently independent of E.The real and imaginary parts of the quantized eigen-states determined from (7.11) are given byEn = 
�n+ 12� ;�n = p2(�) 
2� exp(�2
W �B): (7.12)

This relation des
ribes the nonadiabati
 tunneling de-
ay of quasistationary states of the lower adiabati
potential. Similarly to the 
ase with the 
rossing oftwo paraboli
 potentials, Eq. (7.2), the tunneling andthe adiabati
 fa
tors here enter the de
ay rate multi-pli
atively. Be
ause the de
ay rate is proportional tothe square of the tunneling matrix element, we have�n / p2(�), as it should be.In the over-barrier energy region, the quantizationrule is(1� exp(�2��) exp[�i(
W �L + �� �0)℄�� 
os(
W � � �+ �0) + exp(�2��)�� exp�� i
W �2 � 
os�
W �L + 
W �2 � = 0; (7.13)and the a
tions depend on the energy E as
W �L = �E
 ; 
W = ���U� + U12
1 + E
1� ; (7.14)where 
 and 
1 are E-dependent frequen
ies of thediabati
 and the upper adiabati
 potentials.In the diabati
 limit, the de
ay rate is proportionalto the Massey parameter and is given by�n � �� 
os2(
W � �+ �0): (7.15)In the opposite, adiabati
 limit, the de
ay rate is�n � exp(�2��)[1� sin(2
W �L + �� �0)℄: (7.16)In both limits, the de
ay rate is an os
illating fun
-tion of U12. We illustrate the dependen
e �(U12) forthe 
rossing diabati
 potentials U1 = (1 + X)2=2 andU2 = 1=2�X in Fig. 13. We note that while the tun-neling de
ay rate of low-energy states in
reases mono-toni
ally with the Massey parameter �, the de
ay rateof highly ex
ited states tends to zero in both (diabati
and adiabati
) limits. There are 
ertain 
hara
teris-ti
 values of U12 at whi
h the right-hand side of (7.15)or (7.16) vanishes, and therefore �n = 0.The last, more general example that we 
onsiderin this se
tion des
ribes two nonsymmetri
 potentials
rossing at X = 0,U1 = 12(1 +X)2; U2 = 12b(X2 � 2bX + b): (7.17)In a 
ertain sense, this is the generi
 
ase, and as theparameter b entering potential (7.17) varies from 1 to1, we re
over the two parti
ular examples 
onsideredabove and pass from two identi
al paraboli
 potentialsto the 
rossing of the one-well and linear diabati
 po-tentials. Potentials U2 of this type were re
ently inves-tigated by two of the authors (V. B. and E. K.) [64℄ with282
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Fig. 13. �n versus U12 for the quasistationary states atthe diabati
 potentials (1+X)2=2 and 1=2�X 
ross-ing; (a) 1�4 are the level energies 0:042, 0:125, 0:208,and 0:292 for the lower adiabati
 potential, (b) 1 0�3 0are the level energies 0:625, 0:708, 0:792 for the upperadiabati
 potentialthe aim to study the 
rossover behavior from 
oherentto in
oherent tunneling with the in
rease of the pa-rameter b; the larger b is, the larger the density of �nalstates be
omes. The 
riterion for 
oherent�in
oherent
rossover behavior found in [64℄ is based on 
ompar-ison of the transition matrix elements and the inter-

P0:81:0
0:60:40:20 100 200 400 500300 t

b

a0:81:0
0:60:40:20 100 200 400 500300 t

P

Fig. 14. Survival probability for the lo
alized n = 0state; (a) b = 1500, dashed lines U12 = 0:15, solid linesU12 = 0:21; (b) b = 1500, dashed lines U12 = 0:28,solid lines U12 = 0:21level spa
ings in the �nal state. A similar 
riterionshould hold for LZ level 
rossing problem, but the tun-neling transition matrix elements must then be mul-tiplied by the small adiabati
 fa
tor. Therefore, the
oherent�in
oherent tunneling 
rossover region movesto the denser density of �nal states, and the larger U12is, the smaller the region for in
oherent tunneling be-
omes.A totally di�erent situation o

urs for highly ex-283
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ited states. In the diabati
 limit, the transition ma-trix element in
reases with the Massey parameter �,and therefore at a given b value, the system moves tomore in
oherent behavior. In the adiabati
 limit, thetransition matrix element is exponentially small and 
o-heren
e of the inter-well transitions should be restored.But be
ause the matrix elements are os
illating fun
-tions of U12 for the intermediate range of this 
oupling,
oherent�in
oherent tunneling rates are also nonmono-toni
ally varying fun
tions. These unusual phenomenaare illustrated in Fig. 14, where we show time depen-den
e of the survival probability P for the initially pre-pared state n = 0 lo
alized in the left well.8. CONCLUSIONSWe have re
onsidered a very basi
 subje
t, the LZproblem. Currently, about 100 publi
ations per yearare related to the LZ problem. Clearly, it is impos-sible to give a 
omplete analysis of the a
hievementsin this �eld. Our aim was therefore only to showsome re
ent trends and our new results, to help be-ginners and experts �nd 
ross-referen
es between themany physi
al phenomena related to the LZ prob-lem. The problem was �rst addresses long ago, andmany results, already 
lassi
, are now known from text-books [1; 37℄. Although exa
t quantum-me
hani
al 
al-
ulations are still prohibitively di�
ult, many impor-tant results have been obtained in the framework ofthe WKB approa
h [1�65℄. The a

ura
y of the modi-�ed WKB methods 
an be improved 
onsiderably; wenote, e.g., [30℄, where the standard WKB was extendedby the in
lusion of a spe
ial type of traje
tories in the
omplex phase plane su
h that the semi
lassi
al motionalong these traje
tories is des
ribed by the Weber fun
-tions. This method, as
ending to Landau [1℄, is equiv-alent to the appropriate 
hoi
e of the integration patharound the turning point. It appears to be quite a

u-rate for the tunneling and over-barrier regions, wherethe 
hara
teristi
 fourth-order polynomial (see (4.16))
an be redu
ed to a se
ond-order polynomial (two pairsof roots are nearly degenerate). But even in this 
ase,some 
orre
tions have been found in [23�25℄ that 
an-not be negle
ted. In the intermediate energy region,where all four roots are noti
eably di�erent, the methodbe
omes invalid. In addition, the 
hoi
e of these addi-tional spe
ial traje
tories (whi
h must be in
luded toimprove the a

ura
y of the WKB method near thebarrier top) depends on a detailed form of the poten-tial far from the top, and therefore a nonuniversal pro-


edure is to be performed from the very beginning inea
h parti
ular 
ase.We believe we are the �rst to expli
itly addressesthe problem of the behavior in the intermediate energyregion. In all previous publi
ations, this region was
onsidered as a very narrow and insigni�
ant one, or atmost, the results were obtained by a simple interpola-tion from the tunneling region (with a monotoni
 de
ayof the transition probability) to the over-barrier region(with os
illating behavior). The fa
t is that 
lassi
altraje
tories 
an be separated into two 
lasses, �lo
al-ized� and �delo
alized�, in the following sense. If theenergy is su�
iently 
lose to the minimum or maxi-mum of the potentials, the traje
tories 
an be 
alled
on�ned, be
ause they are determined by the universalfeatures of the potentials in the vi
inity of these ex-tremal points. Evidently, this is not the 
ase in the in-termediate energy region. In this paper, we have foundthat 
ontrary to a 
ommon belief, the instanton tra-je
tory is a rather simple obje
t and 
an be expli
itly
omputed even for the intermediate energy region.Within the framework of the instanton approa
h,we present a full and uni�ed des
ription of the 1D LZproblem, whi
h 
an very often be quite a reasonableapproximation for real systems. Be
ause di�erent ap-proa
hes have been proposed to study the LZ problem,we develop a uniform and systemati
 pro
edure for han-dling the problem. We reprodu
ed all the known resultsfor tunneling and over-barrier regions, and studied theintermediate energy region. Spe
i�
ally, we appliedour approa
h to the Born�Oppenheimer s
heme, for-mulated the instanton method in the momentum spa
e,and presented all the details of the LZ problem for twoele
troni
 states also using the instanton des
riptionof the LZ problem in the 
oordinate spa
e. Negle
t-ing higher-order spa
e derivatives, we found asymptoti
solutions; using the adiabati
�diabati
 transformation,we then mat
hed the solutions in the intermediate re-gion. Based on these results, we derived the 
ompletes
attering matrix for the LZ problem, the quantizationrules for 
rossing diabati
 potentials. Our results 
anbe applied to several models of level 
rossings that arerelevant in the interpretation and des
ription of experi-mental data on spe
tros
opy of nonrigid mole
ules andon other systems undergoing 
rossing and relaxationphenomena.We also note that in spite of a su�
iently long his-tory of the LZ phenomena, the study is still in an a
-
elerating stage, and a number of questions remain tobe 
lari�ed (we mention only several new features ofthe phenomena that attra
ted attention re
ently, likethe LZ interferometry for qubits [74℄, LZ theory for284
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ondensates [75℄, and multi-parti
le andmulti-level LZ problems [76�79℄). Mu
h of the ex
ite-ment arises from the possibility of dis
overing novelphysi
s beyond the semi
lassi
al paradigms dis
ussedhere. For example, we found in Se
s. 2 and 3 thatthe wave fun
tions of nu
lei moving along periodi
 or-bits a
quire geometri
 phases (the e�e
t is analogousto the Aharonov�Bohm e�e
t [38℄, but is related not toexternal magneti
 �elds, but to nonadiabati
 intera
-tions). The relation between the two phenomena, thegeometri
 phases and the periodi
 orbits, 
an be estab-lished using the Lagrangian (instead of Hamiltonian)formulation of the problem, whi
h enables taking thetime dependen
e of the adiabati
 pro
ess under 
onsid-eration into a

ount expli
itly, using propagator te
h-nique [34�36℄ (also see, e.g., [4; 43℄). Properly handlingthese aspe
ts is beyond the s
ope of our work, how-ever. Further experimental and theoreti
al investiga-tions are required for revealing the detailed mi
ros
opi
and ma
ros
opi
 properties of di�erent LZ systems.In the fundamental problems of 
hemi
al dynami
sand mole
ular spe
tros
opy, transitions from the ini-tial to �nal states 
an be treated as a 
ertain motionalong the potential energy surfa
es of the system un-der 
onsideration. These surfa
es are usually deter-mined within the Born�Oppenheimer approximation(see Se
. 2). However, the approximation be
omes in-adequate for the ex
ited vibrational states when theirenergies are of the order of the ele
troni
 inter-level en-ergy spa
ing or near the disso
iation limit. In both
ases, nonadiabati
 transitions should be taken intoa

ount, and most of the nonradiative pro
esses o
-
ur owing to this nonadiabati
ity. Typi
al examplesinvestigated in [80℄ are the so-
alled pre-disso
iation,singlet�triplet or singlet�singlet 
onversion, and vibra-tional relaxation phenomena.Slow atomi
 
ollisions provide other examples ofnonadiabati
 transitions between ele
troni
 states,where the time dependen
e of the states is determinedby distan
e and by the relative velo
ity of the 
ollidingparti
les [33℄. Some examples of nonadiabati
 transi-tions relevant in semi
ondu
tor physi
s 
an be foundin [81℄, those pertaining to nu
lear or elementaryparti
le physi
s in [82℄, and those relevant in laser ornonlinear opti
 physi
s in [83�86℄. The latter topi
 isinteresting not only in its own right, but also as anillustration of novel and fundamental quantum e�e
tsrelated to the LZ model. The o�-diagonal ele
troni
state intera
tions arise from the dipole for
es in this
ase. For relatively short laser pulses, this leads to thetime-dependent LZ problem for two ele
troni
 states,
onsidered in our paper in detail (also see the laser

opti
 formulation in [83�85℄). The probability to �ndthe system in the upper state after a single resonantpassage 
an be 
omputed in the framework of the LZmodel. This is related to one important aspe
t of theLZ problem, namely dissipative and noisy environ-ments. When external a
tions (e.g., �elds) driving LZtransitions are reversed from large negative to largepositive values, the dissipation redu
es tunneling andthe system remains in the ground state, or in otherwords, the thermal ex
itation from the ground state tothe ex
ited one suppresses su
h adiabati
 transitions.But for the �eld swept from the resonan
e point, thetunneling probability be
omes larger in the presen
e ofdissipation (see, e.g., [67℄). The in
reasing pre
ision ofexperimental tests in the femtose
ond laser pulse rangeenables one to ex
ite well-de�ned mole
ular states andto study their time evolution using the se
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