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Different theoretical approaches to the famous two-state Landau-Zener problem are briefly discussed. Apart
from traditional methods of the adiabatic perturbation theory, Born-Oppenheimer approximation with geometric
phase effects, two-level approach, and momentum space representation, the problem is treated semiclassically
in the coordinate space. In the framework of the instanton approach, we present a full and unified description
of the 1D Landau—Zener problem of level crossing. The method enables us to treat all four transition points
(appearing at two-level crossing) accurately, while the standard WKB approach takes only two of them into
account. The latter approximation is adequate for calculating the transition probability or for studying scattering
processes, but it does not work in finding the corresponding chemical reactions rates, where all four transition
points can often be relevant in the typical range of parameters. Applications of the method and of the results
may concern various systems in physics, chemistry, and biology.

PACS: 05.45.-a, 72.10.-d
1. INTRODUCTION

The title of this paper might sound perplexing at
first sight. What else can be said about the Landau-
Zener (LZ) problem after the numerous descriptions in
both research and textbook literature? But although
theoretical (and experimental) investigations of differ-
ent LZ systems began more than seventy years ago,
it still remains an active area of research. Various
approaches to the LZ problem that have appeared in
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the literature (see, e.g., the list of publications [1-67],
which is by no means complete) are not fully consis-
tent with each other. We therefore think that it is
important to discuss all these approaches in a single
paper. We study the 1D LZ problem [1] of quantum
mechanical transitions between the levels of a two-level
system at the avoided level crossing. In the LZ theory,
a quantum system is placed in a slowly varying external
field. Naturally, the system then adiabatically follows
variation of an initially prepared discrete state until
its time-dependent energy level crosses another level.
Near the crossing point, the adiabaticity condition is
evidently violated (because the semiclassical behavior
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is violated near turning points). The slow variation of
the perturbation implies that the duration of the tran-
sition process is very long, and therefore the change in
the action during this time is large. In this sense, the
LZ problem is a semiclassical one (but with respect to
time instead of a coordinate in the standard semiclas-
sical problems).

It is well known that the problem presents the most
basic model of nonadiabatic transitions that play a very
important role in many fields of physics, chemistry,
and biology. It is therefore not surprising that numer-
ous monographs and a great number of papers have
been devoted to this subject. In the literature, there
are roughly speaking three approaches to semiclassical
modeling of the LZ problem,

(i) two-level system approach [2-8],

(ii) adiabatic perturbation theory [9-21] (also see
review paper [6]),

(iii) momentum space representation [22-25].

Because different approaches to the LZ problem
have been proposed, one of the immediate motivations
of the present paper is to develop a uniform and system-
atic procedure for handling this problem. We show that
the three methods listed above are equivalent for treat-
ing tunneling and over-barrier regions of parameters,
and none of them can be applied, to the intermediate
region of parameters where all the four states involved
in the LZ system are relevant. To study this region
is our main objective in this paper. We also address
the so-called connection matrices. In the standard
textbook treatment of the LZ problem, only transition
probabilities are calculated and expressed in terms of
the genuine two-level LZ formula successively applied
at each diabatic level intersection. Evidently, such a
procedure is an approximation to the general LZ prob-
lem, which includes at least four energy levels even in
the simplest case. To solve many important physical or
chemical problems, one must find the 4 x 4 (not only
2 x 2) connection matrices relating these four states.

While this paper is not intended as a comprehen-
sive review, we detail the key results of the standard
WKB and instanton approaches from our own research
and the literature within the context of different fac-
tors that we feel are important in studying the LZ
problem. Specifically, we focus in Sec. 2 on the Born—
Oppenheimer approximation, which is a benchmark in
testing semiclassical approximations. In Sec. 3, we lay
the foundation of treating the LZ problem, the adia-
batic perturbation theory. Section 4 is devoted to the
generalization of the instanton method that enables us
to investigate the LZ problem in the momentum space.
We show that for a potential that is linear in a 1D co-
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ordinate under consideration, the WKB semiclassical
wave functions in the momentum space coincide with
the instanton wave functions. For the quadratically ap-
proximated (parabolic) potentials, the instanton wave
functions are exact and have no singularities (unlike
the WKB wave functions; we recall that relations of
the same type hold for the WKB and instanton wave
functions in the coordinate space [26-29]).

We advocate the instanton approach in this paper,
but it is worth noting that many important results
have nevertheless been obtained in the framework of
the WKB approach [1-8]. For example, one of the very
efficient techniques (the so-called propagator method)
was proposed and elaborated by Miller and collabora-
tors [34-36] (also see [26]). This approach uses semi-
classic propagators (of the Van Vleck—-Gutzwiller type),
with the contribution coming from the contour around
a complex turning point automatically taken into ac-
count in terms of the general WKB formalism. The
accuracy of the WKB method can be improved con-
siderably [2,5,30,31] (more recent references on the
so-called Laplace contour integration can also be found
in [32]) by the appropriate choice of the integration
path around the turning point. This method appears
to be quite accurate for the tunneling and over-barrier
regions, but becomes inadequate in the intermediate
energy region. This has been overlooked in the previ-
ous investigations treating this region by a simple inter-
polation from the tunneling region (with a monotonic
decay of the transition probability) to the over-barrier
region (with oscillating behavior).

In Sec. 5, we present all details of the LZ problem
for two electronic states using the instanton descrip-
tion of the LZ problem in the coordinate space. The
two basic second-order differential (Schrédinger) equa-
tions that we consider are written in the so-called dia-
batic state representation (i.e., in the basis of «crossed»
levels). Neglecting higher-order spatial derivatives, we
find asymptotic solutions, and using the adiabatic—
diabatic transformation, we match the solutions in the
intermediate region. The complete scattering matrix
for the LZ problem is derived in Sec. 6. In Sec. 7,
we derive the quantization rules for crossing diabatic
potentials and briefly discuss the application of the ob-
tained results in some particular models of level cross-
ings that are relevant for the interpretation and descrip-
tion of experimental data on spectroscopy of nonrigid
molecules, on inelastic atomic collisions [33], and non-
radiative transitions arising from «intersystems cross-
ings of potential energy surfaces in molecular spec-
troscopy and chemical dynamics (see, e.g., [26] and ref-
erences therein). In Sec. 8, we draw our conclusions.
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We consider only the 1D case in what follows. The
LZ problem for 1D potentials coupled to the thermal
bath of harmonic oscillators is shown to reduce to a cer-
tain renormalization of the Massey parameter, where
the longitudinal velocity entering the expression for this
parameter is decreased due to the coupling to trans-
verse oscillations (see [26] and references therein, and
also [66, 67] for more recent references). Of course, the
energy profile of any real system is characterized by
a multidimensional surface. But it is often possible
to identify a reaction coordinate such that the energy
barrier between the initial and final states is minimized
along this specific direction, and the system can there-
fore be effectively treated as 1D. In certain systems,
the physical interpretation of the reaction coordinate is
immediate (e.g., the relative bond length in diatomic
molecules), but sometimes finding it is not an easy task
(if possible at all) because of a large number of possibil-
ities involved. The latter (multidimensional) case will
be studied elsewhere. Unfortunately, the accuracy of
the WKB method near the barrier top is too poor to
make any numbers realistic and it is one more moti-
vation to use a semiclassical formalism alternative to
the WKB, namely, the extreme tunneling trajectory or
instanton technique.

2. BORN-OPPENHEIMER APPROXIMATION

It may be useful to illustrate the essential physics
of the LZ problem starting with a very well known pic-
ture corresponding to the Born—Oppenheimer approxi-
mation [1,37]. It leads to the separation of nuclear and
electronic motions and is valid only because the elec-
trons are much lighter than the nuclei and therefore
move much faster. The small parameter of the Born—
Oppenheimer approximation is therefore given by

/\:< )1/4<<1.,

where m, and m are electronic and nuclear masses re-

Me

= (2.1)

spectively. On the other hand, the semiclassical pa-
rameter is
mQa?
= > 1, (2.2)

where a is the characteristic length in the problem and
Q o« m~"/? is the characteristic nuclear vibration fre-
quency; therefore, v oc A~2. Important conclusions are
drawn from this simple fact. Indeed, the semiclassical
condition 7 > 1 can be satisfied by formally taking
h — 0 or equivalently A — 0. This correspondence al-
lows us to apply either the Born—Oppenheimer or the
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semiclassical approximation to the separation of scales
for nuclear and electronic motions on the same footing.

In the traditional Born—Oppenheimer approach, the
solution ¥ to the full Schrodinger equation (including
the electronic Hamiltonian H, depending on electronic
coordinates r and the nuclear Hamiltonian depending
on nuclear coordinates R) is given by an expansion over
the electronic Hamiltonian eigenfunctions ¢,,,

The electronic eigenvalues F, depend on the nuclear
coordinates, and the expansion coefficients ®,,(R) are
determined by the Born—Oppenheimer equations

h? h?
_%V% + En(R) + % Z AnkAkn -FE ¢n =

k#n
h2
=—5- > (0nkVr —iAng) x
k,m#n
X (5kaR - iAkm)¢m (24)
where for m # k,
Amk = i<¢m|vR¢k>7 (25)

and all the diagonal matrix elements A,,,, = 0.
From (2.4), we can find that in the electronic eigen-
state E,, the nuclei move in the effective potential

h2
En Py An A ns
(R) + 5 % KAk

Un(R) (2.6)

and transitions between the electronic states n and
m are related to the nonadiabatic operator in the
right-hand side of (2.4). This simple observation al-
lows us to rewrite effective potential (2.6) as

h2 <¢n|vRHe‘¢m><¢m|vRHe‘¢n>
_ %n%:n R @27

From this seemingly trivial expression, we derive the
following important conclusions:

(i) corrections to E, have the same order O(y~2) as
the ratio of the nuclear kinetic energy to the potential;

(ii) off-diagonal matrix elements of the nonadiabatic
perturbation operator are also small (oc O(y~?)); this
fact is formulated as the so-called adiabatic theorem
stating that no transitions between unperturbed states
occur at adiabatic perturbations (A — 0).
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Because the nonadiabatic effects are characterized
by the only small parameter y~! (the semiclassical
parameter), they can be described in the framework
of semiclassical approaches (e.g., WKB or instanton
ones). But we must bear in mind the main problem
of the Born—Oppenheimer method: the approximation
assumes that the electronic wave functions are real-
valued and form a complete basis, but it is impossible
to construct such a basis in the entire space including
classically accessible and forbidden regions.

If the requirement of a real-valued basis is relaxed,
the diagonal matrix elements A, # 0, and the effective
adiabatic part of the Born—Oppenheimer Hamiltonian
takes the form

A h2 .
Hy, = Un(R) + %(VR - ZAnn(R))27 (28)
similarly to the Hamiltonian of a charged particle in
the magnetic field B o |Vr x Au,|. We can therefore
change the phases of the electronic and nuclear wave

functions as

bn — dnexp(ixn(R)),

By = By exp(—ixa(R)) (29)

by changing the «vector potential» appropriately,

Ann(R) = Ann(R) + VrXa(R). (2.10)

Thus, we confront an important and, at times, mys-
terious concept of the geometric (or Berry) phase fac-
tor that a quantum mechanical wave function acquires
upon a cyclic evolution [38-47]. Most characteristic
of the concept of the Berry phase is the existence of
a continuous parameter space in which the state of
the system can travel along a closed path. In our
case, the phase is determined by a nonadiabatic in-
teraction (for more details related to the geometric
phase for the Born—Oppenheimer systems, see, e.g., re-
view [48]). This phenomenon (which originally man-
ifested itself as a certain extra phase shift appearing
upon some external parameter cyclic evolution) has
been generalized for the nonadiabatic, noncyclic, and
nonunitary cases [49,50], although most of the Berry
phase applications concern the systems undergoing an
adiabatic evolution (see, e.g., review [51]). We also note
that in addition to the Berry phase, some higher-or-
der corrections to the Born—Oppenheimer approxima-
tion also exist (traditionally, and slightly misleadingly
called the geometric magnetism or deterministic fric-
tion, see [52]). A practically useful application of the
Berry phase concept is the energy level displacements
predicted in [53] and observed by NMR [54].
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The essential physics of these phenomena can be il-
lustrated as follows. There are two subsystems, the fast
and the slow ones. The fast subsystem acquires a Berry
phase because of the evolution of the slow subsystem.
There is a certain feedback effect of the geometric phase
on the slow subsystem. As a result, the latter is framed
by a gauge field affecting its evolution. The gauge field
produces additional (Lorentz-like and electric field-like)
forces that must be included into the classical equa-
tion of motion. In the case of stochastic external forces
(e.g., from surrounding thermal fluctuation media), the
Berry phase produces some level broadening for the
fast subsystem. In the limit of low temperatures and
strong damping, the slow subsystem dynamics can be
described by equations of the Langevin type [55]. The
general message that we can learn from this fact is that
the geometric phases are sources of the dissipative pro-
cesses for LZ systems.

Thanks to its fundamental origin, this geometric
phase has attracted considerable theoretical and ex-
perimental attention, but its experimentally observable
consequences have been scarce until now. Each oppor-
tunity of improving this situation is therefore worth
trying. In this respect, the Born—-Oppenheimer geo-
metric phase provides a unique opportunity for obser-
vation of the geometric phase because it must appear
as a nonadiabatic contribution to the standard Bohr—
Sommerfeld quantization rule

S% 4\, = 27h, (2.11)

where SU is the adiabatic action.

We note that care must be taken when
|En(R) — Ep(R)| becomes small compared to the
characteristic nuclear oscillation energy hf).  This
means that the nonadiabatic interaction energy cannot
then be considered as a small perturbation in adiabatic
representation (2.4). Fortunately, in the limit

|En(R) — Em(R)| < B,

we can start from the other limit with crossing weakly
coupled diabatic states and consider the adiabatic cou-
pling as a perturbation. To perform the procedure ex-
plicitly, we then need the adiabatic—diabatic transfor-
mations

®(R) = exp(ifo,)®(R) (2.12)
for the wave functions and
H = exp(ifo,)H exp(—ifo,) (2.13)

for the Hamiltonians, where (H,®) and (H,®) are
the adiabatic and diabatic representations respec-
tively, o, is the corresponding Pauli matrix, and 6 is
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the adiabatic—diabatic transformation parameter (the
so-called adiabatic angle).

To illustrate how this works, we consider two coup-
led crossing effective electronic potentials Uy (R) and
Us(R) (Uya is the coupling energy). The corresponding
adiabatic and diabatic Hamiltonians are

H= —%(VR)2 + %(U1 +U,) +
[%(Ul — Uy) cos(26(R)) + Ur» sin(QH(R))] o5+
g {—%(Ul _ 1) sin(26(R))+
e cos(29(R))] o1, (2.14)
and
A= wpre lo v+

1
+§(U1 —U2)0'3U120'1, (215)

where o1 23 are the Pauli matrices and the adiabatic
angle is chosen to eliminate the leading interaction term
between the adiabatic states,

U -U,

COS(QG(R)) = W

(2.16)
The adiabatic-diabatic transformation can also be
brought to a more elegant form [16, 56]

(Ve —iA)T =0, (2.17)
where T is the sought transformation matrix and the
matrix A = A,, was introduced above (see (2.5)). The

formal solution of Eq. (2.17) can be represented as a
contour integral

T(s) = T(s) exp —/fl(s')ds' : (2.18)

where sg and s are the initial and final points of the
contour. Solution (2.18) uniquely determines the trans-
formation matrix 7" for a curl-free field A,

T(ty) = DT(0), (2.19)
where the diagonal matrix D can be found from (2.17)
and is expressed in terms of the geometric phase factor
as

Dy = Opn exp(ixg)- (2.20)

Relations (2.11) and (2.20) completely describe the
nonadiabatic transitions, the cornerstone of the LZ
problem. In addition, (2.11) and (2.20) show that the
geometric Born—Oppenheimer phases occur from the
diabatic potentials crossing points and enter the quan-
tization rules additively with the contributions from the
turning points. Therefore, our main conclusion in this
section is that nonadiabatic phenomena must (and can)
be included into the general scheme of the semiclassical
approach through the corresponding connection matri-
ces [57] (also see [29]) for the appropriate combinations
of crossing and turning points in the problem.

3. ADIABATIC PERTURBATION THEORY

It is almost a common student’s wisdom nowadays
that any solution to the adiabatically time-dependent
Schréodinger equation can be represented as an expan-
sion over the complete set of stationary (time-indepen-
dent) eigenfunctions [1]. In the case under investiga-
tion (two-level crossing for the electronic Hamiltonian
H(r,t)), this expansion is given by

U(r,t) =ci(t)pr(r) + ca(t)pa(r),

where the wave functions ¢, are stationary with
respect to a nuclear motion. The time-dependent
Schrédinger equation can be exactly rewritten as two
first-order equations (with respect to time derivatives)
for ¢; and ¢,

ih 1 _ ﬁn ﬁlQ 1
éa Hsy Hi e )

where

(3.1)

(3.2)

Hypr = ($xH(8)|opr), koK' = 1,2

are the matrix elements for the diabatic Hamiltonian.
The phase transformation

(3.3)

cr(t) = ap(t) exp (—%/ﬁkk(t)dt> (3.4)

(see, [6,8,10]) reduces (3.2) to the coupled first-order
equations

zha1 = fflgaz exp <Z/912 (t)dt) N

(3.5)
Zhaz = ﬁglal exp <—i/912(t)dt> s
where
1 - ~
912 = ﬁ(HQQ — Hll)- (36)
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A slightly different phase transformation

(% /(ﬁn + ﬁ22)dt>

preserves the second-order Schrédinger-like form of the
equations for the diabatic functions @, »,

cr(t) = @ (t) exp (3.7)

- ~ ~ 2
> Hyy — H .
B2 dt21 . ( 11 . 22> + HyyHo +
ihd - - -
+ 5%(1{11 — Hy)| & =0. (3.8)

To clarify the mapping of this time-dependent pertur-
bation theory to the two-level crossing problem and the
Born—-Oppenheimer approach described in Sec. 2, we
consider the two-state Born—-Oppenheimer equations in
the diabatic representation. From (2.15) for one active
space coordinate X, we have

R d*® . - L
5 dX; + (Hyy — E)®, = Hy»®, (3.9)
and
R d*® . - L
—5 de + (Hop — B)dy = Ho &y (3.10)

If we can neglect the second-order derivatives

P
2m dX?2

and replace the time derivative by vd/dX (where
v = y/2E/m is the velocity), the change of the vari-
ables

@0 = exp(ikoX)er, ki = 27;;—2]3 (3.11)
transforms the two Born—Oppenheimer equations (3.9)
and (3.10) into the two level-crossing equations (3.2) for
the slow time-dependent perturbations. Obviously, we
recognize the standard semiclassical approach in this
procedure.

A mapping of the same kind can also be performed
for the adiabatic amplitudes C(t) that are related
to the diabatic amplitudes ¢ 2(¢) by the adiabatic—

diabatic transformation matrix depending on the adia-

() )

Ci (1)
Cs(t)

cosf  sind 1 (1)

\ ) (3.12)

—sinf cosé ot
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In the adiabatic basis, we have the set of the first-order
equations corresponding to (3.2),
) , (3.13)

()= )

where the nonadiabatic coupling coefficient 6 can be
related to the off-diagonal operator A;» in (2.5) (or to
the geometric phase, see Sec. 2)

—if
Hy,

Ch
C

Hll
i

Ci
C>

3

i = Ay = i{d1]do). (3.14)

Transformation (3.11) allows reducing the Born-
Oppenheimer equations (for the nuclear wave functions
®, -, in the adiabatic representation) to (3.13) if and
only if the second-order derivatives are neglected (in
the spirit of the semiclassical approach) and only o kg
terms are kept in the nonadiabatic matrix elements
(i.e., higher-order contributions with respect to 1/kq
are neglected). Expressions (3.12)-(3.14) do allow an
entry point into the adiabatic perturbation theory
developed by Landau [1] and Dykhne [10,11] (also
see [15,16]). We follow the same method closely.

We can make one step further and find the combi-
nation of the two-level system amplitudes a2 in (3.4)
and (3.5),

Y(t) = 05 % exp <—%/ngdt> ar +
+ 'L'Q;21/2 exp <% / ngdt> as, (315)

satisfying the simple equation

. 2
Y(t) + %Y =0,

(3.16)
which is identical to (3.8) and describes oscillations
around the crossing point in the adiabatic potential
(inverted adiabatic barrier). In the adiabatic pertur-
bation theory, the level-crossing problem is therefore
formally reduced to the well-known quantum mechani-
cal phenomenon, the over-barrier reflection. In the lat-
ter problem, moreover, the reflection coefficient is equal
to 1, in full agreement with the adiabatic theorem.

Evidently, two adiabatic potentials have no real
crossing points in the 1D case, and the crossing is there-
fore possible only at complex values X or t,

QlZ(Tc) 0;, U —-U;= iiUlQ‘t:q—c~ (317)

In the vicinity of these points, it follows from (3.6) that

Quy o (t —7)2, (3.18)
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Fig.1. Stokes (dashed) and anti-Stokes (solid) lines

for a pair of close linear turning points replaced by one

second-order turning point; a — classically forbidden
region, b — classically accessible region

and therefore

/det ~ %(t —1,)3/2, (3.19)

i.e., the crossing points are square root bifurcation
points for the function Qq2(¢). Using (3.19), we de-
picted the Stokes and anti-Stokes lines for Eq. (3.16)
in Fig. 1. The diagram shown in this figure is identical
to that corresponding to the semiclassical over-barrier
reflection problem with linear turning points under con-
sideration. In the leading approximation, the transition
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Fig.2. Adiabatic (3, 4) and diabatic (1, 2) potentials
for the LZ problem

probability Py is determined by integration over the
contour C(7.) going around the bifurcation point 7.,

2
P12 ~ exp E % (HH — H22)dt (320)

C(re)

In the simplest form of the LZ problem, the dia-
batic potentials are assumed to be linear functions of ¢
or X (which is the same because t = X/v), see Fig. 2
for illustration,

Uiy = U* £ FX. (3.21)

Substituting (3.21) in the general expression for the
transition probability (3.20), we then find

Py & exp(—27v), (3.22)

where v = U}, /2hwF is the so-called Massey parameter

and
[2|E — U#|
V=4 —
m
is the velocity.

Some comments about the validity range of the ap-
proximation are in order. A question of primary impor-
tance for the LZ problem is related to the semiclassical
nature of the phenomenon. To illustrate this, we note
that for

0f, = Upy +0°F2 X2,

Equation (3.16) is the Weber equation for the real
point X 0 (the crossing point of diabatic poten-
tials). Evidently, this correspondence between two
complex-conjugate linear crossing points £7. and one
real crossing point X = 0 for the Weber equation is the
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same as the correspondence between two linear and one
second-order turning points in the standard semiclas-
sical treatment of the Schrodinger equation. We can
therefore apply the WKB or instanton methods to the
LZ problem in the same way as in any semiclassical
problem. We now compare the accuracy of the two ap-
proaches. If |E —U#| > hQ) (where (2 is the character-
istic frequency of the adiabatic potentials), the WKB
method works quite well if two isolated linear turning
points in this problem are considered (this is the limit
of kga > 1, corresponding to the adiabatic approxima-
tion). If this is not the case, the diabatic representation
must be used.

4. INSTANTON METHOD IN MOMENTUM
SPACE

We do not explain the instanton method in de-
tail here and summarize only the most essential points
(see [26-29, 58, 59]). The recipe to find the instanton is
based on minimizing the classical action functional in
the space of paths connecting the minima in the upsi-
de-down potential. It is well known [1] that the expan-
sion of an arbitrary wave function ¥(x) in terms of the
momentum eigenfunctions is simply a Fourier integral,

U(z) = ﬁlh fexp <%> ®(p)dp. (4.1)

The wave function in the momentum representation
®(p) can be written in the semiclassical form

).

where the action W(p) is determined by the classical
trajectory xo(p) in accordance with the definition

_iW(p)
h

®(p)

(4.2)

A(p) exp <

dw

o = o) (4.3)

We use the dimensionless variables € = E/Qq for the
energy, V = U/7§ for the potential, and X = z/aqg
for the coordinate, where F and U are the correspond-
ing dimensional values of the energy and of the poten-
tial, ag is a characteristic length of the problem (e.g.,
the tunneling distance), and Qg is a characteristic fre-
quency (e.g., the oscillation frequency around the po-
tential minimum). The dimensionless momentum can
be defined as

= P%o

P
yh'

(4.4)
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where 7 is the semiclassical parameter (we recall that
v = mQpad/h, where m is the mass of the particle, and
we believe that v > 1).

Introducing the semiclassical form (4.2) of the
momentum-representation wave function in the stan-
dard one-particle 1D Schrodinger equation, we can
transform it to the form

In the momentum space, V is the potential energy op-
erator, which can be expanded in a semiclassical series
with respect to 1/ (or equivalently, with respect to
h; we set h = 1 in what follows, measuring energies
in the units of frequency, except in some intermediate
equations where the occurrences of h are necessary for
understanding). This expansion allows us to consider
V as a function V of two independent variables X, and
d/dP, and we finally obtain

. 1 d
P24V [ Xo+i- —
|: + < 0+ny iP

2

76] A(P)=0. (4.5)

i d
V<X0+%ﬁ>=V(XO)+
PV 1PV X
v \dX, dP " 2 dX2 dP
(Y| BV @ LAV (AN d 1)
v) |dX2 dp? 2 dX3 \ dP dP 3 dP?
1 d*V [dX,

., (46)

2
()
where the dots denote all higher-order expansion terms.

In accordance with the general semiclassical rules,
we can easily find from (4.5) and (4.6) that the first-
and the second-order terms in v~ ! become identically
zero if the energy-dependent trajectory Xo(P) is deter-
mined by the equation

24 dX}

2
P? +2V(X,) = 76 (4.7)
and if the so-called transport equation (TE)
dvV dA ldQV d*wW (4.8)
dXo dP ~ 2 dX? dP?"" '

is also satisfied. The solution of TE (4.8) can be found

explicitly as
< av )‘1/2

dXo

A

(4.9)
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It follows from (4.9) that semiclassical WKB wave func-
tion (4.2) has singularities at all stationary points of the
potential V. These points are therefore turning points
in the momentum space. This illustrates fundamen-
tal difficulties of the WKB procedure, which consist in
matching the solutions that become singular on caus-
tic lines separating manifolds with real and imaginary
momenta in phase space.

To also illustrate the second drawback of the WKB
method, we consider the linear (V' = FX) and har-
monic (V = X?2/2) potentials. The trajectories Xq(P)
can be trivially determined from (4.7). For the lin-
ear potential, Xo(P) is the inverted parabola with the
maximum Xy, = eF'/y at P = 0. The left and the
right branches of the parabola correspond to the oppo-
site motion directions in the classically accessible region
Xo < Xom. For the linear potential, the semiclassical
WKB wave function in the momentum space,

— . r ) } . (4.10)

| ep = ~H—
\/Fexp{ F(e 76

is the Fourier transform of the coordinate-space Airy
function. For the harmonic potential, the correspond-
ing trajectories (4.7) are ellipses, and the wave func-
tions have the same functional form in both spaces (mo-
mentum and coordinate). It is worthwhile to note that
although the WKB functions are not exact, the corre-
sponding eigenvalues coincide with the exact quantum
mechanical ones.

As we have shown recently [27-29], many important
semiclassical problems can be successfully analyzed by
the instanton method. Having in mind momentum
space in this section, we recall the main ideas of the
instanton approach. The first step of the approach de-
rived in [58] and [59] is the so-called Wick rotation of
the phase space corresponding to the transformation
to imaginary time ¢ — —it. Under the transforma-
tion, both potential and kinetic energies change their
signs, and the Lagrangian is replaced by the Hamilto-
nian in the classical equation of motion. In the momen-
tum space, the low-energy instanton wave functions can
be constructed using Wick rotation in the momentum
space (i.e., the transformation P — iP); in addition,
the term with the energy € in (4.7) must be removed
from this equation and taken into account in TE (4.8).
In the instanton formalism, the trajectory Xo(P) de-
scribes zero-energy motion in the classically forbidden
region of the momentum space, where the wave func-
tion has the form

3
®(P) =

av

—-1/2
W) QP)explW(P)),  (411)

d(P) = (

267

Fig.3. Stokes (dashed) and anti-Stokes (solid) lines in
the vicinity of: (a) conjugate bifurcation points +ir.;
() diabatic potentials crossing point X =0

and the additional prefactor Q(P) can be represented

as
InQ(P) = e/ v - dPpP. (4.12)
B dXo ' "
In the particular case of a linear potential
(V(X) = FX), the instanton and WKB functions

have the same form. For an arbitrary (n-th order)
anharmonic potential, the Schrédinger equation in
the momentum space is reduced to the n-th order
differential equation, but the n-th order derivatives
decrease proportionally to y~", and the corresponding
terms can therefore be taken into account perturba-
tively. A rigorous mathematical method to perform
this procedure (which we use in this paper) has been
developed by Fedoryuk [68-70].

To illustrate the instanton approach, we consider
the simplest form of the LZ problem illustrated in
Fig. 3. For linear potentials with arbitrary line slopes,
we have two second-order coupled equations, in the di-
abatic state representation

C)
- ngl =7’ (a+ f1X)01 = 7*10,
(4.13)
d’>e
- W; =7 (a+ oX)0s =7°v0;,

where O » are the eigenfunctions of the corresponding
states and

2 12 3 1/2
s G F a’F'm
= , F=+\/F||Fs|, = —FF,
mU12/ 1| 2|/ ’y 112/2
Uy—E aF o Uiz
a S0 fi,2 S0 v -0

Equations (4.13) can be transformed into the momen-
tum space and can then be rewritten as a single se-
cond-order equation
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d>W,

—z Hak) (k) =0,

(4.14)

where we introduce

10t (1 1Y (R
(e 7) (0 5))

®, is the Fourier transform of ©1, k = P/vy/a, and
q(k) is a fourth-order characteristic polynomial

‘111 = ‘131 exp |:Z

q(k) = N2 (14 E*)? + 2X\(ik — 2v) (4.16)
depending on two parameters
1 5 (1 1 yv?
A= Ly <___>, ym U 4ar
2 \A TR 2~ e 17

The first parameter A plays the role of the new semiclas-
sical parameter in the momentum representation and
the second is the known Massey parameter (already
defined in (3.22)).

Fortunately, all roots of characteristic polyno-
mial (4.16) can be found analytically quite accurately
in the physically most interesting region of parameters.
To simplify the expressions (while keeping the complete
physical content), we present the results only in the
simplest case where f; = —fy = f (symmetric slopes
of the diabatic potentials). In the classically forbidden
region U# — E > 0, a > 0, at A > 1 (equivalently, at
a > (f/~)?/?), all the four roots of the polynomial are
close to +i,

1 -
kE = (ud%), B =i

In the classically accessible region (U# —E < 0, a < 0),

(4.18)

the roots are close to +£1 if A > 1 (or if
—a> (f/7)*7%),
1/2
=3 | -~
EF=14 M +
4\
1/2
L (viEE i)
i| —— .
4\ ’
(4.19)

1/2
" Vi+ 240
ky =—-1F | ———— +
4\
1/2
+ V1i+92 -0

4\

(the tilde means that in the corresponding quantity, «
must be replaced with its modulus).

The roots of characteristic polynomial (4.16) in
the classically forbidden region, Eq. (4.18), and in the

1
1
1
1
1
1

Fig.4. Stokes (dashed) and anti-Stokes (solid) lines

for linear turning points corresponding to classically for-

bidden (a) and accessible (b) energy regions of the LZ
problem

classically accessible region, Eq. (4.19), are formally
equivalent to the transition or turning points for
the system of two potential barriers or two potential
wells respectively. We can therefore use all the WKB
and instanton results known in these cases (see, e.g.,
our recent paper [29] and references therein for the
details). Because only asymptotic solutions and their
connections via transition or turning points on the
complex plane are usually considered in the semiclas-
sical analysis, the famous Stokes phenomenon [30, 57]
of asymptotic solutions plays an essential role, and the
distribution of the transition points (which are nothing
but the zero points of the characteristic polynomial)
and Stokes and anti-Stokes lines determines the
phenomenon. We show all the lines emanating from
linear turning points in Fig. 2. In the case where the
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roots form a pair of close linear turning points, every
such pair can be replaced with one second-order turn-
ing points. The corresponding Stokes and anti-Stokes
lines are depicted in Fig. 4.
In the classically forbidden region, the instanton
wave functions can be found using roots (4.18),
1—ik)v—! . k3
df = Wexp [1/\ <k—|— ?)} ,
(4.20)
1\ —V 3
o = %exp [—i)\ <k-|— %)} .
As |k| — oo, the function ®] decreases proportion-
ally to |k|=2 and @] is reduced to the Airy func-
tion [71,72]. In the vicinity of the second-order turning
points k& = +i, the fourth-order characteristic polyno-
mial is reduced to a second-order one, and Eq. (4.14)
is reduced to the Weber equation with the known fun-
damental solutions [71]

D_,(£2VA(k +1))
as |k +i| — 0 and
D, 1 (£2VA(k — i)

as |k —i| — 0. The same procedure applied to the
classically accessible region leads to the solutions

L (1 _ k.)iﬂfl - B k_3
®] _7(1+k)i’7+1 exp |iA | k 3 ,

and it is also reduced to the fundamental solutions of
the Weber equation

as |k + 1| — 0 and
Diz’/fl <:i:2\/§(k - ].) exp %)

as [k —1] = 0.

The same solutions can be obtained for the LZ prob-
lem in the two-level approximation using the instanton
method in the coordinate space. The reason for this is
quite transparent and is based on the fact that for lin-
ear diabatic potentials, the limit k& — +o0o corresponds
to the limit 2 — 00, and the asymptotic behaviors of
the solutions are therefore the same in the momentum
and in the coordinate space.

The entire analysis can be brought into a more com-
pact form by introducing the so-called connection ma-
trices. In the instanton approach, we consider asymp-
totic solutions and their connections on the complex
coordinate plane. It is therefore important to know
the connection matrices. The needed connection mat-
rices can easily be found by matching solutions (4.20)

B (4.21) or (4.21) at the second-order turning points through
d — (1+ k)" ox {_ A\ <k _ kj)} the corresponding fundamental solutions of the Weber
1= v OXP |t ' . L . .
(1 — k)™ 3 equation. This gives the connection matrices
V2mexp(—2x)
— cos(7v) _—
. T'(v)
M, = , (4.22)
['(v) exp(2y) sin’(7v) cos(mv)
V2T
where L]
N CESVLIL)
2
and
V2w exp(—nw) exp(—2X)
—exp(—7p) pye
. [(—iv)
M, = . } , (4.23)
1%
—=2I'(—iv) exp | —— | exp(2Y) sh(7D exp(—mv
=ar(-iv)exp (=37 ) expl20)shino) p(~17)
where
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As a note of caution at the end of this section, we
remind the reader that for the linear diabatic poten-
tials, we initially had two corresponding Schrédinger
equations, each of which possesses two fundamental so-
lutions. Therefore, the full LZ problem is characterized
by four fundamental solutions that are asymptotic to
the left of a given turning point and four fundamental
solutions that are asymptotic to the right of the same
turning point. Generally speaking, the connection ma-
trices must therefore be 4 x 4 ones. But because of the
symmetry of the potentials, these 4 x 4 matrices have
two 2 x 2 block structures for the functions ®; and ®»,
given in (4.22) and in (4.23).

5. LZ PROBLEM FOR TWO ELECTRON
STATES (INSTANTON APPROACH IN
COORDINATE SPACE)

In Secs. 2-4, we investigated the LZ problem in
the framework of the adiabatic perturbation theory,
the two-level approximation, and the momentum rep-
resentation. All the three methods are equivalent and
semiclassical by their nature, and are therefore appli-
cable in the tunneling and over-barrier energy regions;
they become inadequate within the intermediate region
(of the order of y~2/3) near the level crossing point.
The fact is that the accuracy of these methods depends
on the «renormalized» (energy-dependent) semiclassi-
cal parameter A in (4.17), which can be small in the
intermediate region (A < 1 even for v > 1). To treat
this region, we must use the coordinate space presen-
tation, because we need to know the connection matri-
ces for nonadiabatic transitions. In the latter problem,
the wave functions outside the level crossing point are
more convenient (and have a more compact mathemat-
ical form) in the coordinate space.

5.1. Tunneling and over-barrier regions

For the smoothness of presentation, we first re-
produce the results found in the previous sections for
the tunneling and over-barrier energy regions in the
coordinate space. In the diabatic representation, we
can rewrite two second-order LZ differential equations
(4.13) as the fourth-order linear differential equation
with constant coefficients at the derivatives

Ao, , &®
ax? Caxe

d®
— 272fd—X1 + 74(a2 — % = f2X2)<I>1 =0 (5.1)

270

(where we consider the case with a symmetric slope
fi = —fo = f for simplicity). In the mathematical
formalism elaborated by Fedoryuk [68-70], Eq. (5.1) is
reduced by a semiclassical substitution in a set of equa-
tions of the order 4. The characteristic polynomial for
(5.1) is given by
FA) =M =209\ — 292 f A +
+ 94 —v? - f2X?),  (5.2)
where A = dW/dX by definition.
Solving the equation F(\) = 0 perturbatively in
v~ <« 1, we find

Aj =AY +uy, (5.3)
where
0 2 2 v2 1/2
/\jzi[ﬂy(a:t v +fX)] (5.4)
and
_f 042 -1
uj = = [(/\j) - oz'y] . (5.5)

2

Four asymptotic solutions of (5.1) can then be repre-
sented as

{yj} = {@i,@;/@t’q):} =

X
= (02 4 f2X?) " Yexp /)\j(X’)dX’ . (5.6)
0

They describe the motion with an imaginary momen-
tum in the upper and lower adiabatic potentials

2ma?
72
The subscripts in (5.6) corresponds to the upper or
lower adiabatic levels, and the superscripts indicate the
sign of the action.
Before considering the connection matrices, we use
the substitution

(U* - E) =42 (ai v2—|—f2X2).

P = exp(kX)o, (5.7)

and choose the x value such that the first derivative
in (5.1) vanishes,

1
K2 —yak — 572}‘ =0. (5.8)

At a > 3(f/47v)?/3, we can expand the roots of (5.8) in
terms of the parameter

-/
o= 1

1
3V3'

a™3? < (5.9)
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We thus find

e}

)
Ko = vV <—1+§> , K3 =YVadb.

(5.10)

Under condition (5.9), the coefficients at the fourth and
at the third-order derivatives in (5.1) are small (propor-
tional to & and v/d respectively) and the fourth-order
equation (5.1) can be rewritten as two second-order
Weber equations with the solutions

D2 (B1,2)X),

where

(5.11)

B 721’2 1/4 30
ﬂ(172)—< o ) <1iz>_

The leading terms of these solutions are the same as
those found in Sec. 4. But the Fedoryuk method
also gives higher-order corrections in ¢ in tunneling re-
gion (5.8).

In the over-barrier energy region where
a < —3(f/47)*/3, the roots of Eq. (5.8) are com-
plex conjugate,

Koz 8 [, 38
=241+, 12
Va 5 z( + (5.12)
and
N f
f=— 7 5.13
TaPP? (5:13)

plays the role of a small parameter. Similarly to
the case with the tunneling region, the coefficients at
higher-order derivatives are small, and the function ¢
in (5.7) therefore satisfies the Weber equation with the
fundamental solutions

D2 (B(1,2)X),

where

51=—1+%‘5+w<1+%‘5>,
) )
ﬁ2=i%+iu<1—%>,

. ) 9 g 1/4
mee (5) ()

As was the case with tunneling region (5.11), the lead-
ing terms of expansion (5.14) coincide with the results
found in the previous sections, but (5.14) also allows
computing corrections to the leading terms.

We can now find the connection matrices. To do
this in the tunneling region, we must establish the cor-
respondence between solutions of fourth-order differen-
tial equation (5.1) and solutions for the states localized
in the left (L) and in the right (R) wells. In the case
where a > f|X|, the action can be computed for dia-
batic potentials starting from both wells (R and L),

(5.14)

2

YWE AW + ko X + IX?,
(5.15)

2
AWE ~ AyWE — ko X + IX2’
where

ko = <%¢Z_E)>l/2 =v/a

is the imaginary momentum and WOL " are the actions
computed from an arbitrary distant point in the L or
R wells respectively to the point X = 0. On the other
hand, in the adiabatic potentials

U* =U# +,/UL + f2X2,

the corresponding actions can be represented as

2
AWE — Wit = ko X + %X%ian. (5.16)
Explicitly comparing the semiclassical wave functions
in both representations (adiabatic and diabatic ones),
it is easy to see that the adiabatic functions in the
potential U~ coincide with the diabatic functions for
localized L and R states at X < 0 and X > 0 respec-
tively. The adiabatic functions for the upper potential
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U+ correspond to the tails of the diabatic wave func-
tions localized in the opposite wells. In the level cros-
sing region, the L/R diabatic functions are therefore
transformed into the R/L functions, and the interac-
tion entangles the diabatic states with the same sign of
koX. Thus, we have only four nonzero amplitudes of
the following transitions:

(@F|®5), (B, |DF), (PL|®,). (®L]|®]). (5.17)
Recalling that
[ V27 exp(—2x)
—_— 0
I'(v)
dt
R
= 0 [(v) exp(2y) sin’(7v)
R —
oF 0 cos(mv)
oy
cos(mv) 0
\
where

v 1 1 1
X—i‘i(”‘i) ny

as above. The matrix in (5.19) has a 2 x 2 block struc-
ture, with each of the identical blocks connecting in-
creasing and decreasing diabatic solutions. However,
these diagonal blocks do not correspond to the L—-R
transitions for the lower and upper adiabatic potentials
separately. Indeed, the 2 x 2 matrix corresponding to
these transitions is

(4)-

V27 exp(—2x)

_ T T — cos(mv) )
cos(mv) I eXp(j%SiIP (mv)
&
X ( q)% ) (5.20)

272

'yWi:'y/(ozi v2+f2X2)1/2~

62 2 v

~rkoX £ ZX + 5(1 —Ilnv), (5.18)
we conclude that quantum solutions (5.11), asymp-
totically valid in the vicinity of the level crossing
point, match increasing and decreasing solutions (5.6)
smoothly, which leads to the Landau description [1] of

the level crossing transitions depicted in Fig. 5.
Using expressions (4.22) and (4.23) relating the fun-
damental solutions of the Weber equation, we can find
the 4 x 4 connection matrix corresponding to (5.17)

Y

0 — cos(mv) W
— cos(nv) 0
V2 exp(—2x) 0 x
I'(v)
0 ['(v) exp(2y) sin®(7v)
V2r J
1
)
. (5.19
| 5 | 6
®

In the diabatic limit (i.e., as v — 0) the diagonal matrix
elements are small (o< v/ and v3/2 respectively), and
the off-diagonal elements tend to £1, as it should be
because by definition, there are no transitions between
the diabatic potentials.

In the adiabatic limit » > 1, the diagonal matrix
elements tend to 1, which implies that the decreasing
L solution transforms only into the increasing R solu-
tion, and vice versa. Therefore, the connection matrix
in the tunneling region depends only on the Massey pa-
rameter v. We recall that the blocks of the 4 x 4 con-
nection matrix in (5.19) correspond to the two isolated
second-order turning points with the Stokes constant
(see, e.g., [29])

V2
Ty = — —2y).
2= ) exp(—2x)
The over-barrier region can be studied similarly.
Repeating the procedure described above for the tun-
neling region (with the evident replacements kg — —ikq
and 3% — i3%), we obtain the 4 x 4 connection matrix

(5.21)
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0 —exp(—nv)
—exp(—mv) 0
V3T exp(—2) . ’
[(—iv)
0 2T'(—iv) exp(2Y) exp(—nv) sh(nv)
V2r |

(5.22)

MKIT®, Tom 124, Boin. 2 (8), 2003
U =
['(—iv)
0 2T (—iv) exp(—nv) exp(2Y) sh(wv)
) Vo
0 exp(—mv)
L exp(—mv) 0
where
- i[m 1
X=-3 Z+1/(1—lnu) +Z(7r1/+1n1/). (5.23)

As already mentioned for the tunneling region, the
blocks in (5.22) correspond to the two isolated second-
order turning points with the Stokes constant [29]

V2r
L(—w)

T, =

exp(—2X). (5.24)
Thus, we arrive at the important conclusion that the
main peculiarity of the LZ level crossing (in comparison
with the standard, e.g., one-potential problems) is that
the second-order turning points characterizing the dia-
batic level crossing for the LZ problem possesses differ-
ent Stokes constants Ty, Eq. (5.21), and Ty, Eq. (5.24),
in the tunneling and in the over-barrier regions.

5.2. Intermediate energy region

We can now reap the fruits of our effort in the pre-
vious subsection. We first note that Eqs. (5.11) and
(5.14) imply that as the energy approaches the top of
the barrier, the exponents p(¥ and p(¥) of the parabolic
cylinder functions increase and therefore more and
more deviate from the value prescribed by the Massey
parameter v. Second, f3(; increases as |a| decreases,
resulting in a decrease of the values of |X| where the
asymptotic smooth matching of the solutions must
be performed. As 6 — 0, these |X| values are lo-
cated deeply in the classically forbidden region, where
the potentials are close to the diabatic potentials; for
§ > 21/3/3, these coordinates | X | are of the order of the
quantum zero-point oscillation amplitudes, and there-
fore the adiabatic representation must be used to find
the solution in this region.

These two simple observations give us a conjecture
how to treat the LZ problem in the intermediate en-
ergy region. We must first find the energy «window»

3 ZKOT®, srm. 2 (8) 273

for the intermediate region. It is convenient to choose
the adiabatic potential frequency Q = F///mUj, as the
energy scale such that the inequality |a| < 3|f/4v|*/*

becomes
2/3
) =Uy,.

In other words, the characteristic interaction energy at
the boundaries of the intermediate region is indepen-
dent of Ujs. But the positions of the linear turning
points | X *| corresponding to the energies U* £ Uy, de-
pend on the ratio Uja/U;,. These points are located
inside or outside the interval [—agy~'/2 apy~"/?] at
Ui2/Ufy < 1 and at Uya/Ujy > 1, respectively, and the
matching conditions in the intermediate energy region
are therefore different in the two cases. In the former
case, the potentials can be reasonably approximated
by a parabola in the asymptotic matching region, and
we must therefore work with the Weber equations. In
the latter case, the matching is performed in the region
where the potentials are linear, and the equations are
therefore reduced to the Airy equations.

We first investigate the case where U2 /Uy > 1.
Using the Born—-Oppenheimer approach described in
Sec. 2, we see that the Schrodinger equations for the
wave functions ¥ are decoupled in the adiabatic rep-

resentation with the accuracy up to 2,

Q

5 (5.25)

o -5 < 30l

>V
dXx?

For | X| < v/f, Egs. (5.26) are reduced to the Weber
equations with the fundamental solutions

D71/27q1 (i\/ 27X)

g (a + /02 ¥ f2X2) T, =0. (5.26)

and )
T
D71/2+iq2 <:t exp <—Z> \/ 2’7X> 5

where
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U# 4 U —

U#+Up— — — —

Fig.5. Relative placement of the adiabatic lev-
els;, a — U > Ufg, b — Uiz < Ul*g
(Ui> = (3/2)(B*F? [4m)'/?)
v+« U=«
Nn=7"5— L=V (5.27)

are independent of the Massey parameter v. Two real
solutions of (5.26) correspond to the upper adiabatic
potential (classically forbidden region), and two com-
plex solutions correspond to the classically allowed mo-
tion under the lower adiabatic potential.

The argument of the Weber functions is o< X/7,
and under the condition X < v/f, their asymptotic
expansions determine the interval where the matching
is to be performed,

U\ /2
172 (Ur2 ~1/2

This inequality can be satisfied only at Uy2/Usy > 1,
when the intermediate region is sufficiently broad in

(5.28)

274

comparison with Q. The exponents ¢; and ¢ in
Eq. (5.27) are then large, and our aim is to find the
explicit asymptotic expansions of solutions in this case.
For this, we closely follow the method in [73] (also see
monograph [72]), which is in fact an expansion of the
fundamental Weber solutions in the small parameters
1/|¢i|. This method leads to the asymptotic solution of
Eq. (5.26) at X > 0 given by

~
~

VL (X) ~ VTP(X 4+ V)T exp(—y XY
U (X))~ V- Y3(X 4+ V) exp(ivXYL),

3

(5.29)

where Y1 = Vv + a + X2. Using the known relation
between the fundamental solutions of the Weber equa-
tion [71, 72],

Dy(2) = exp(~imu) Dy(2) +

+ % exp (—iw%“) D_—1(iz),

we can find the other two solutions (complementary
to (5.29)) as

vH(xX) =y [— sin(rgy)(X +Y4) ™% x

x exp(—yXY,) + exp(—2x1) X

V2r

X —— = (X +Y)"exp(v XYL,

(5.30)
and
vH(X) =

=y, 12 [_ i exp(—mga) (X + Y_)" exp(iy XY_)+

+exp(—2x2)r( Vor

— (X +Y_)® x
1/2 —iqo) )

(X

x exp(—iyXY_)|, (5.31)

where we introduce the notation

1 1 Q1 1
= — — | - =1 -,
X1 2<Q1+2> 2H<Q1+2>,
1/ 1 Q2 T i
X2 = 2<zq2 2>+ 5 [ 22+ID<Q2+2>:|.

Not surprisingly, solutions (5.29)—(5.31) can be repre-
sented as a linear combination of the semiclassical so-
lutions & in (5.6) with the coefficients

X

VTS ol

c0s(20(1 2)) =
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These energy-dependent angles 6 5) coincide with
the adiabatic angles introduced above (see (2.12)
and (3.12)) at the level crossing point @ = 0, and
f1X| < v. Both angles take only slightly different val-

ues over the entire intermediate region |a| < v.

and for X < 0,

(

(

cos B

—iexp(—mga) cos By

V2mexp(—2x2) cos by

We can now find all the connection matrices for

these functions.

Although the calculation is straitfor-

ward, it must be done with caution (e.g., because the
X-dependent matrices have different functional forms
at positive and negative X ). For X > 0, we obtain

T(1/2 —ig)

0
0

0 0 0
V2w exp(—2x2) cos by 0 0
[(1/2 —ig)
0 sin 6 0
27 exp(—2x1) sin 6y
0 — si sin 6
nrg)singy TR 20
ot
[
>< —
@,
v
—iexp(—mga) cos by 0 0
cos 6 0 0
sin 61/2m exp(—2x1) . .
0 -3 sin 6
T2+ ) in(mqq) sin 64
0 0 sin 0
o
¢+
" i
¥
U

(5.33)

(5.34)

The product of the matrix inverse to (5.33) and the matrix in (5.34) determines the sought connection matrix
relating the semiclassical solutions in the intermediate energy region (cf. the connection matrices for the tunneling

and over-barrier energy regions in (5.20) and (5.22)). Performing this simple algebra, we finally obtain

Ucross =
\/EQXP( 2x2)
T(1/2 —ig)
_ —iexp(—7mq2)
0
i 0

iexp(—mqa)

0

2exp(2x2)['(1/2 —iqa) ch(mge)
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0
V2m exp(—2x1)
L(1/2+q)

—sin(7qr)

0

sin(mq)

cos?(mq1)T(1/2+ 1) exp(2x1) |

(5.35)

3*
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Fig.6. The E, U2 phase diagram (I — tunneling 2 3
region, Il — over-barrier region. The two intermedi- 0.2 E_ b _§
ate energy regions Il and IlI" are separated by the line E 3
v* = 0.325) AT P T SRR
0 0.5 1.0 1.5 2.0
| M| U2 /U7,
This matrix has a two 2 x 2 block structure, similarly 1.0 LT A
to the connection matrices (5.19) and (5.22) for the 52” : E
tunneling and over-barrier regions. But unlike ma- 08 3 3 3 i [ 3
trices (5.19) and (5.22) describing the transitions be- 2 ! E
tween the diabatic states, matrix (5.35) corresponds 0.6 3 : E
to transitions between adiabatic states. Indeed, at a 2 / I E
strong level coupling (Uya > Uj,), the eigenfunctions 0.4 = ' E
are close to the adiabatic functions and only nonadia- g : 3
batic perturbations induce transitions. Therefore, the 0.2 é_ I ¢ _%
off-diagonal matrix elements in (5.35), which have the :.........I.........i.........l.........E
meaning of the probability that the diabatic state re- 0 0.5 1.0 1.5 2.0
mains unchanged after the transition, are zero. The Ui2/Ut>

block with real-valued matrix elements corresponds to
the minimum of the upper adiabatic potential, i.e., to
an isolated second-order turning point where [29]

U* — E + U
—q
The complex-valued block is associated with the max-

imum of the lower adiabatic potential, and similarly
to (5.36), we can find the relation

g1 = (5-36)

; __,U*—E+U12
q2 = 170

for the turning point. For weak level coupling, namely
at |U* — E| < Uf, and U;o < Uf, in the inter-

(5.37)
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Fig. 7. Transition matrix element Mj; as a function
of Ui2/Uys, computed at a = 0: on the boundary be-
tween tunneling and intermediate energy regions (a); at
E = U¥ (b), on the boundary between the intermedi-
ate and over-barrier regions (¢); lines 1, 2, 3, 17, 2', 3,
1", 2", 3" are computed for the corresponding energy
regions using (5.19), (5.25), and (5.36), respectively

mediate energy region, the adiabatic potentials can
be linearized everywhere except a small neighborhood
|X| < v/f — 0 of the level crossing point, i.e., can be
represented as a £ f| X |. Asymptotic solutions (5.6) are
then reduced to a linear combination of the functions
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= o (fIX]) 72 exp(d£ysign X),
= oc (X)) /2 exp(+£-sign X),

& =

(5.38)
2 /
3f(f\X|ia)3 2,

All the matrix elements required can now be cal-
culated in the framework of the Landau perturbation
theory [1], which can be formulated in terms of the
dimensionless variables
g-13U" — E

U12

a=3- U=
in order to avoid a divergency of the parameter v as
a — 0. The results of our analysis are shown in
Fig. 6. The tunneling and over-barrier regions are sep-
arated from the intermediate energy region by the lines
|Ufy — E| = Uy,. The intermediate region is also split
into two parts by the line v = v* = 0.325, where v* is
the value of the Massey parameter v at U;»/Us, = 1
and |[U*—E| = U{,. In the region v < v*, the perturba-
tion theory is an adequate tool for the problem, and the
transition matrix elements are proportional to Uy /U7,.
At v > v*, we can use connection matrix (5.35). To
illustrate the accuracy of the approximations, we have
computed the matrix element Mj;. The results are
shown in Fig. 7. Our computations demonstrate a suf-
ficiently good precision, secured up to two stable digits.

The accuracy of the results on the boundaries between
the intermediate and over-barrier or tunneling regions
is not worse than 3-5%, and can easily be improved
using interpolation approaches.

6. SCATTERING MATRIX

Phenomena of the LZ type can be considered as
(and applied to) scattering processes. The expressions
for 4 x 4 connection matrices found in Sec. 5 can be
used to calculate the scattering operator (or matrix) S
that converts an incoming wave into an outgoing one.

We first consider the over-barrier region in the
crossing problem with two linear potentials. In this
case, in addition to the crossing point chosen as
X =0, there are two linear (first-order) turning points
Xo = £|a|/f (each turning point for each of the di-
abatic potentials denoted by L and R). The scat-
tering matrix that relates the asymptotic solutions at
X « =X and X > Xj is the product of the 4 x 4 con-
nection matrix (5.22) and the two known semiclassical
connection matrices [57] (also see [29]) describing the
wave function evolution from the turning point — Xy to
the crossing point 0, and from this point to the turning
point 4+ Xy, respectively. We thus obtain a 2 X 2 matrix
with the block matrix elements

ex
T = Ay p(i(¢ — ¢o))
0 exp(—i ¢ o))
-1/2
Tio = T3, = (1— 42))exp . 2 ., (6.1)
— exp —wW ) (i/2) exp(—in W)
T 4,y | 26050 = (0= ) —Sin(a W~ (6~ dn)
sin(YW* = (¢ — ¢o))  (1/4) cos(YW* = (¢ — o)) |
where describe the waves reflected from the linear turning
Aip = (1 = exp(—mv))'/? points. The reflection (R) and transmission (T') co-

is the LZ amplitude of the transition between the di-
abatic states, @ — ¢o = X (see (5.23)), and W* is the
action between the linear turning points.

The diagonal elements in (6.1), proportional to the
transition amplitude A;r, describe propagating waves
(i.e., solutions of the Schrodinger equation in the lower
adiabatic potential), and the oscillating blocks cor-
respond to solutions in the upper adiabatic poten-
tial. Off-diagonal blocks, proportional to the probabil-
ity that the initial diabatic states remain unchanged,
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efficients, interesting in physical applications, can be
found from (6.1) by a straightforward calculation,

R = —i(1-AF)[ A7 exp(ivW* —2i(d— o))+
+ exp(—inW*)] 1,
T =2A4s cos(YW" = (¢ — ¢p)) X

x [A7; exp(iyW™* — 2i(¢ — ¢o)) +

+ exp(—iyW*)] !
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Fig.10. Amplitudes of the decaying solutions &}
at X > 0 versus E for: (1) Uiz = Uja, (2)

The poles of the scattering matrix can also be easily y .
U12 = 0.5U12, (3) U12 = 025U12

found from (6.1), and the corresponding resonance con-
dition is
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shown to be monotonically decreasing functions of v.
In Fig. 8, we show the energy dependence of the trans-
mission coefficient 7. In the diabatic limit, 7" — 0,
and it increases as Ujo increases. In the over-barrier
region, there appear resonances with the widths I';, in-
creasing with the energy increase, because the Massey
parameter then decreases and I'), o exp(—27v).

cos[2(YW™ = (¢ — ¢0))] =

1
=— <1 ~5 exp(—27r1/)> (1 —exp(=27v)) V2. (6.3)
The action is complex-valued at the resonance points,

)
7T7

n+§

We illustrate the energy dependence of the trans-
mitted wave phase in Fig. 9. In accordance with the
general scattering theory [1], there are m-jumps of the
phase at each quasidiscrete energy level of the up-
per adiabatic potential. At Uj»/Ufy < 1, the reso-
nance widths are of the order of the inter-level spacings.
The amplitudes of the decaying solutions (localized in
the well formed by the upper adiabatic potential) in-
crease near the resonances; this behavior is illustrated
in Fig. 10. A primarily important point is that the
information about decaying solutions contained in the
4 x 4 connection matrix (e.g., (5.22)) is lost when we
use 2 x 2 scattering matrix (6.1).

Re(r17™* — (6 — du)) = ( o

(717 (6 ~ 60)) = — 5 In(1 ~ exp(~270).

The poles of the scattering matrix are in the lower half-
plane of complex E on the vertical lines correspond-
ing to the conventional Bohr-Sommerfeld quantization
rules (yW* = m(n + 1/2)) for the upper adiabatic po-
tential. In the diabatic limit (v — 0), the imaginary
part of the pole positions tends to infinity, and in the
adiabatic limit (v — oc), the poles move to the real

axis. Thus, we see that the eigenstates of the up-

per adiabatic potential are always quasistationary ones.
The resonance widths are determined by the residues of
the scattering matrix elements at the poles and can be

T = l (1/4) My exp(—yW?) + Moz exp(YW?)
—i((1/4) M1y exp(—=yW™) — Mas exp(yW))

The scattering matrix for the tunneling region can
be found by minor modifications of the expression al-
ready derived. Instead of matrix (6.1), we thus obtain

i((1/4) M1y exp(=yW*) — Mo exp(yW*))
(1/4) My exp(—yW™*) + Mas exp(yIV*)

iyW* i —(1/2 —yW*
T2 = Ty, = cos(mv) expL ! ( /2) exp(=1W") , (6.5)
2 -1 (i/2)exp(—W")
M 0
T22 - [ . ‘| )
0 Ms
where My and M,y are the corresponding matrix elements from (5.19).
We also compute the reflection and transmission coefficients
1 1 !
R=—i {exp(vW*) - 7Mh exp(—vW*)} [exp(vW*) + My exp(—y V)
(6.6)

1 -1
T =M, [exp(’yW*) + ZMlQl exp(—'yW*)} .

In the intermediate energy region, the only block matrix element 73, requires a special calculation taking the
contributions from the complex turning points into account,

V2m exp(—mq2/2)
I'(1/2 —ig)

iexp(—mqa)
T = (6.7)
2I(1/2 —iqo) exp(—7qa/2) ch(mqa)

V2r

—iexp(—7g2)
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The other matrix elements are the same as in (5.34).
Finally, we also find the reflection and the transmission
coefficients in the intermediate energy region,

= o[-0 )]
1

exp(—igz&).,

1+ exp(—27gs)

where ¢ = arg[['(1/2 — ig2)].

7. QUANTIZATION RULES FOR CROSSING
DIABATIC POTENTIALS

Although instanton trajectories are rather simple
objects and can relatively easily be found analytically,
calculations of the quantization rules within the instan-
ton approach are rather involved and require the knowl-
edge of the scattering matrix and all the connection
matrices calculated in the previous sections. In this
section, we apply these results to find the quantiza-
tion rules for the crossing diabatic potentials shown in
Fig. 11. Depending on the Massey parameter, the situ-
ations shown in the figure exhaust all cases practically
relevant for spectroscopy of nonrigid molecules (sym-
metric or asymmetric double-well and decaying poten-
tials).

Within the instanton approach, the quantization
rule can be formulated as the vanishing condition for
the amplitudes of the solutions tI>'L" and @; that expo-
nentially increase at X > 0 and X < 0, respectively.
Taking into account that Wj; = W}, (the actions in
the corresponding wells of the lower adiabatic poten-
tial) and using connection matrix (5.19), we obtain the
quantization rule

* 2 *
tg(YWr) = iz—j exp(YWg), (7.1)

where W} is the action in the barrier formed in the
lower adiabatic potential and p = Uj; is the corre-
sponding matrix element of connection matrix (5.19).

Quantization condition (7.1) differs from the well-
known [1] quantization rule for the symmetric doub-
le-well potential only by the factor 1/p varying from 0
to 1 in the diabatic and adiabatic limits. Therefore,
the tunneling splitting at finite values of the Massey

parameter v can be represented as the product

of the tunneling splitting AY in the adiabatic potential
and the factor

v—1/2

exp(—v) (7.3)
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Fig.11. The diabatic level crossing phenomena: o —
crossing region, b — bound initial and decay final
states, ¢ — bound initial and final states

associated with the transition amplitudes between the
diabatic potentials in the crossing region.

It is particularly instructive to consider (7.1) as the
standard [1] Bohr—Sommerfeld quantization rule, with
both the geometric ¢, and tunneling y, phases in-
cluded additively in the right-hand side. In the adi-
abatic limit p(v) — 1, we find that ¢, — 0 and (7.1)
reduces to the quantization of the symmetric double-
well potential. In the diabatic limit, ¢, = —y, and
the geometric phase compensates the tunneling one.
The physical argument leading to this compensation
can easily be rationalized as follows. At the reflection
at the crossing point X = 0, the trajectories in the clas-
sically forbidden energy region are the same as those for
the tunneling region but with the phase shift 7.

We now focus on quantization rules for the over-
barrier energy region. Closely following the above anal-
ysis for the tunneling region (replacing connection ma-
trix (5.19) by matrix (5.22) and making some other
self-evident replacements), after some tedious algebra
we finally obtain the quantization rule
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(1 —exp(—27v)) cos(2YW[ + (¢ — ¢o)) X
x cos(YW™ = (¢ — ¢o)) +
il

+ exp(—27v) cos? (’YWE + > =0, (7.4)
where W* is the action in the well formed by the up-
per adiabatic potential and ¢ — ¢y = Y is determined
from (5.23). Equation (7.4) implies that the eigenstates
are determined by the parameter

_ exp(—2nv) . (75)

1 — exp(—27v)

In the diabatic limit ¥ — 0, and hence B — 1/(27v),
the main contribution to (7.4) is due to the second
term, which leads to a splitting of degenerate levels
in the diabatic potentials. Moreover, because

)k
VZ*)—M%H., (7.6)

the splitting increases as the Massey parameter v in-
creases; the splitting is an oscillating function of the
interaction Uys.

In the adiabatic limit, as v — oo, ¢ — ¢9 — 0, and
therefore B ~ exp(—27v) in accordance with (7.5), the
main contribution to (7.4) comes from the first term,
which determines the quantization rule for the upper
one-well potential and for the lower double-well poten-
tial in the over-barrier energy region. In this limit, the
parameter B plays the role of the tunneling transition
matrix element. For B smaller than the nearest level
spacings for the lower and upper potentials, we can find
two sets of quantization rules from (7.4) that lead to
two sets of independent energy levels

7<W£+

+2vsin {’y (Wf +

1 1
AW =7 <n1 + 5) , 2yWi=nm <n2 + 5) . (7.7)

Because the eigenstate energy level displacements de-
pend on Ups, resonances can occur at certain values
of this parameter, where the independent quantization
rules in (7.7) are not correct any more. The widths of
these resonances are proportional to exp(—27v) and are
therefore strongly diminished as the Massey parameter
v increases. This behavior is easily understood, because
the wave functions of the excited states for the lower
potential are delocalized in the limit, and their am-
plitudes in the localization regions for the low-energy
states of the upper potential are very small.

A more complicated problem is to derive the quanti-
zation rule in the intermediate energy region. We must

a n=11-
1.0
E n =11+
- n' =0
0.9F n=10-
S n = 10+
0.8 = n=9-
E n =9+
0.7 n = 8—
o n =8+
0.6 n="7—
n="7+
0.5 n=6—
n = 6+
0.4 n=>5—
gk:4 =n = 5+
0.3 = . n=4-
ngS \ -
0'25|||||||||||||||||||||||||||\| 3n = 3—
0.1 0.2 0.3 ¢r
12

Fig.12. Level displacements versus U2 for two diabatic
crossing potentials (1 + X)?/2. Dashed lines show the
intermediate energy region, dotted-dashed lines show dis-
placements for the top and for the bottom of the adiabatic
potentials. k, n, and n’ are quantum numbers for the di-
abatic, lower adiabatic, and upper adiabatic potentials

use connection matrix (5.35) and take the contributions
from the imaginary turning points into account. Ne-
vertheless, the quantization rule can finally be written
in the simple and compact form

cos(29W7}) = —exp(—7qa), (7.8)

where ¢ = y(v — a)/2 is determined by (5.27).

It is useful to illustrate the essence of the general
result given above by simple (but nontrivial) examples.
We first consider two identical parabolic potentials with
their minima at X = +1 and with the coupling that
does not depend on X. Because of the symmetry, so-
lutions of the Schrodinger equation in this case can be
represented as symmetric and antisymmetric combina-
tions of the localized functions

1
Ut = (B, +p).

V2

The functions are orthogonal, and in addition, the two
sets of functions (¥}, ¥7) and (U1, U) (where the

(7.9)
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respective subscripts 0 and e denote the ground and
the first excited states) correspond to the two possible
types of level crossings.

In Fig. 12, we schematically depict the dependence
of the level positions on the coupling Ujs. In the
energy region E < U* 4 Uja, where only discrete le-
vels of the lower adiabatic potentials exist, there are
pairs of the alternating parity levels (U}, ¥7) and
(g, U2). The tunneling splittings increase monoton-
ically because the Massey parameter v increases, and
the barrier decreases with U;s. The same level and
parity classification remains correct for the energy re-
gion above the barrier of the lower adiabatic potential,
where the spectrum becomes almost equidistant. But
in the over-barrier region, the resonances occur between
levels of the same parity; the sequence of the odd and
of the even levels is broken, and level displacements are
not monotonic functions of Ujs. Some of the levels of
different parities can pairwise cross. For the upper adi-
abatic potential, the level sequence is opposite to that
for the lower adiabatic potential. We have checked the
results of our semiclassical approach and found a re-
markably good agreement with the numerical quantum
diagonalization.

The second instructive example involves the cross-
ing of one-well and linear diabatic potentials. It leads
to the lower adiabatic decay potential and to the upper
one-well adiabatic potential. The quantization rules
then correspond to the vanishing amplitudes for the
exponentially increasing solutions as X — —oc; in ad-
diton, we must require that no waves propagate from
the region of infinite motion, i.e., the region X > 1/2.
Performing the same procedure as above, we find that
in the tunneling energy region, the eigenstates are the
roots of the equation

tg(YWr) = —i exp(27Wp), (7.10)

4
p*(v)
with the same notation as above.

To proceed further, it is convenient to introduce a
complex action to describe quasistationary states,

).

where Q@ = OW/OF is evidently independent of E.
The real and imaginary parts of the quantized eigen-
states determined from (7.11) are given by

1

Q *
T = p(v) o exp(—=29W5).

E, Ty

7WZ=7r<

(7.12)
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This relation describes the nonadiabatic tunneling de-
cay of quasistationary states of the lower adiabatic
potential. Similarly to the case with the crossing of
two parabolic potentials, Eq. (7.2), the tunneling and
the adiabatic factors here enter the decay rate multi-
plicatively. Because the decay rate is proportional to
the square of the tunneling matrix element, we have
[, x p*(v), as it should be.

In the over-barrier energy region, the quantization
rule is

(1 — exp(=27v) exp[—i(YW[ + ¢ — ¢o)] X
x cos(YW™ — ¢ + ¢g) + exp(—27v) %

iYW W
X exp <—272 ) cos <7W£ + %) =0, (7.13)
and the actions depend on the energy E as
E U*+U E
Wi=n=, AW=n <—A + —> , (7.14)
0 0

where Q and Q; are E-dependent frequencies of the
diabatic and the upper adiabatic potentials.

In the diabatic limit, the decay rate is proportional
to the Massey parameter and is given by

T, ~ 7vcos’ (YW — ¢ + ¢o). (7.15)

In the opposite, adiabatic limit, the decay rate is

Ty =~ exp(—27nv)[l —sin(2YW} + ¢ — ¢o)].  (7.16)

In both limits, the decay rate is an oscillating func-
tion of Upa. We illustrate the dependence T'(Ujs) for
the crossing diabatic potentials U; = (1 + X)?/2 and
Us = 1/2 — X in Fig. 13. We note that while the tun-
neling decay rate of low-energy states increases mono-
tonically with the Massey parameter v, the decay rate
of highly excited states tends to zero in both (diabatic
and adiabatic) limits. There are certain characteris-
tic values of Uyy at which the right-hand side of (7.15)
or (7.16) vanishes, and therefore T',, = 0.

The last, more general example that we consider
in this section describes two nonsymmetric potentials
crossing at X =0,

1 1
In a certain sense, this is the generic case, and as the
parameter b entering potential (7.17) varies from 1 to
00, we recover the two particular examples considered
above and pass from two identical parabolic potentials
to the crossing of the one-well and linear diabatic po-
tentials. Potentials Us of this type were recently inves-
tigated by two of the authors (V. B. and E. K.) [64] with

(1+X)?, (X2 —2bX +b). (7.17)
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Fig.13. T, versus Us2 for the quasistationary states at

the diabatic potentials (14 X)?/2 and 1/2 — X cross-

ing; (a) 1-4 are the level energies 0.042, 0.125, 0.208,

and 0.292 for the lower adiabatic potential, (b) 1'-3’

are the level energies 0.625, 0.708, 0.792 for the upper
adiabatic potential

the aim to study the crossover behavior from coherent
to incoherent tunneling with the increase of the pa-
rameter b; the larger b is, the larger the density of final
states becomes. The criterion for coherent—incoherent
crossover behavior found in [64] is based on compar-
ison of the transition matrix elements and the inter-
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Fig.14. Survival probability for the localized n = 0

state; (a) b = 1500, dashed lines Uy2 = 0.15, solid lines

Uiz = 0.21; (b) b = 1500, dashed lines U2 = 0.28,
solid lines Uy2 = 0.21

level spacings in the final state. A similar criterion
should hold for LZ level crossing problem, but the tun-
neling transition matrix elements must then be mul-
tiplied by the small adiabatic factor. Therefore, the
coherent—incoherent tunneling crossover region moves
to the denser density of final states, and the larger Uy
is, the smaller the region for incoherent tunneling be-
comes.

A totally different situation occurs for highly ex-
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cited states. In the diabatic limit, the transition ma-
trix element increases with the Massey parameter v,
and therefore at a given b value, the system moves to
more incoherent behavior. In the adiabatic limit, the
transition matrix element is exponentially small and co-
herence of the inter-well transitions should be restored.
But because the matrix elements are oscillating func-
tions of Uy for the intermediate range of this coupling,
coherent—incoherent tunneling rates are also nonmono-
tonically varying functions. These unusual phenomena
are illustrated in Fig. 14, where we show time depen-
dence of the survival probability P for the initially pre-
pared state n = 0 localized in the left well.

8. CONCLUSIONS

We have reconsidered a very basic subject, the LZ
problem. Currently, about 100 publications per year
are related to the LZ problem. Clearly, it is impos-
sible to give a complete analysis of the achievements
in this field. Our aim was therefore only to show
some recent trends and our new results, to help be-
ginners and experts find cross-references between the
many physical phenomena related to the LZ prob-
lem. The problem was first addresses long ago, and
many results, already classic, are now known from text-
books [1,37]. Although exact quantum-mechanical cal-
culations are still prohibitively difficult, many impor-
tant results have been obtained in the framework of
the WKB approach [1-65]. The accuracy of the modi-
fied WKB methods can be improved considerably; we
note, e.g., [30], where the standard WKB was extended
by the inclusion of a special type of trajectories in the
complex phase plane such that the semiclassical motion
along these trajectories is described by the Weber func-
tions. This method, ascending to Landau [1], is equiv-
alent to the appropriate choice of the integration path
around the turning point. It appears to be quite accu-
rate for the tunneling and over-barrier regions, where
the characteristic fourth-order polynomial (see (4.16))
can be reduced to a second-order polynomial (two pairs
of roots are nearly degenerate). But even in this case,
some corrections have been found in [23-25] that can-
not be neglected. In the intermediate energy region,
where all four roots are noticeably different, the method
becomes invalid. In addition, the choice of these addi-
tional special trajectories (which must be included to
improve the accuracy of the WKB method near the
barrier top) depends on a detailed form of the poten-
tial far from the top, and therefore a nonuniversal pro-

cedure is to be performed from the very beginning in
each particular case.

We believe we are the first to explicitly addresses
the problem of the behavior in the intermediate energy
region. In all previous publications, this region was
considered as a very narrow and insignificant one, or at
most, the results were obtained by a simple interpola-
tion from the tunneling region (with a monotonic decay
of the transition probability) to the over-barrier region
(with oscillating behavior). The fact is that classical
trajectories can be separated into two classes, «local-
ized» and «delocalized», in the following sense. If the
energy is sufficiently close to the minimum or maxi-
mum of the potentials, the trajectories can be called
confined, because they are determined by the universal
features of the potentials in the vicinity of these ex-
tremal points. Evidently, this is not the case in the in-
termediate energy region. In this paper, we have found
that contrary to a common belief, the instanton tra-
jectory is a rather simple object and can be explicitly
computed even for the intermediate energy region.

Within the framework of the instanton approach,
we present a full and unified description of the 1D LZ
problem, which can very often be quite a reasonable
approximation for real systems. Because different ap-
proaches have been proposed to study the LZ problem,
we develop a uniform and systematic procedure for han-
dling the problem. We reproduced all the known results
for tunneling and over-barrier regions, and studied the
intermediate energy region. Specifically, we applied
our approach to the Born—Oppenheimer scheme, for-
mulated the instanton method in the momentum space,
and presented all the details of the LZ problem for two
electronic states also using the instanton description
of the LZ problem in the coordinate space. Neglect-
ing higher-order space derivatives, we found asymptotic
solutions; using the adiabatic—diabatic transformation,
we then matched the solutions in the intermediate re-
gion. Based on these results, we derived the complete
scattering matrix for the LZ problem, the quantization
rules for crossing diabatic potentials. Our results can
be applied to several models of level crossings that are
relevant in the interpretation and description of experi-
mental data on spectroscopy of nonrigid molecules and
on other systems undergoing crossing and relaxation
phenomena.

We also note that in spite of a sufficiently long his-
tory of the LZ phenomena, the study is still in an ac-
celerating stage, and a number of questions remain to
be clarified (we mention only several new features of
the phenomena that attracted attention recently, like
the LZ interferometry for qubits [74], LZ theory for
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Bose-Einstein condensates [75], and multi-particle and
multi-level LZ problems [76-79]). Much of the excite-
ment arises from the possibility of discovering novel
physics beyond the semiclassical paradigms discussed
here. For example, we found in Secs. 2 and 3 that
the wave functions of nuclei moving along periodic or-
bits acquire geometric phases (the effect is analogous
to the Aharonov-Bohm effect [38], but is related not to
external magnetic fields, but to nonadiabatic interac-
tions). The relation between the two phenomena, the
geometric phases and the periodic orbits, can be estab-
lished using the Lagrangian (instead of Hamiltonian)
formulation of the problem, which enables taking the
time dependence of the adiabatic process under consid-
eration into account explicitly, using propagator tech-
nique [34-36] (also see, e.g., [4,43]). Properly handling
these aspects is beyond the scope of our work, how-
ever. Further experimental and theoretical investiga-
tions are required for revealing the detailed microscopic
and macroscopic properties of different LZ systems.

In the fundamental problems of chemical dynamics
and molecular spectroscopy, transitions from the ini-
tial to final states can be treated as a certain motion
along the potential energy surfaces of the system un-
der consideration. These surfaces are usually deter-
mined within the Born—-Oppenheimer approximation
(see Sec. 2). However, the approximation becomes in-
adequate for the excited vibrational states when their
energies are of the order of the electronic inter-level en-
ergy spacing or near the dissociation limit. In both
cases, nonadiabatic transitions should be taken into
account, and most of the nonradiative processes oc-
cur owing to this nonadiabaticity. Typical examples
investigated in [80] are the so-called pre-dissociation,
singlet—triplet or singlet—singlet conversion, and vibra-
tional relaxation phenomena.

Slow atomic collisions provide other examples of
nonadiabatic transitions between electronic states,
where the time dependence of the states is determined
by distance and by the relative velocity of the colliding
particles [33]. Some examples of nonadiabatic transi-
tions relevant in semiconductor physics can be found
in [81], those pertaining to nuclear or elementary
particle physics in [82], and those relevant in laser or
nonlinear optic physics in [83-86]. The latter topic is
interesting not only in its own right, but also as an
illustration of novel and fundamental quantum effects
related to the LZ model. The off-diagonal electronic
state interactions arise from the dipole forces in this
case. For relatively short laser pulses, this leads to the
time-dependent LZ problem for two electronic states,
considered in our paper in detail (also see the laser
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optic formulation in [83-85]). The probability to find
the system in the upper state after a single resonant
passage can be computed in the framework of the LZ
model. This is related to one important aspect of the
LZ problem, namely dissipative and noisy environ-
ments. When external actions (e.g., fields) driving LZ
transitions are reversed from large negative to large
positive values, the dissipation reduces tunneling and
the system remains in the ground state, or in other
words, the thermal excitation from the ground state to
the excited one suppresses such adiabatic transitions.
But for the field swept from the resonance point, the
tunneling probability becomes larger in the presence of
dissipation (see, e.g., [67]). The increasing precision of
experimental tests in the femtosecond laser pulse range
enables one to excite well-defined molecular states and
to study their time evolution using the second probing
laser beam [17].

This paper was supported in part by RFFR Grants.
One of us (E. K.) is indebted to INTAS Grant (under
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