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INSTANTON VERSUS TRADITIONAL WKB APPROACHTO THE LANDAU�ZENER PROBLEMV. A. Benderskii *Institute for Problems of Chemial Physis, Russian Aademy of Sienes142432, Chernogolovka, Mosow region, RussiaLaue-Langevin InstituteF-38042, Grenoble, FraneE. V. VetoshkinInstitute for Problems of Chemial Physis, Russian Aademy of Sienes142432, Chernogolovka, Mosow region, RussiaE. I. Kats **Laue-Langevin InstituteF-38042, Grenoble, FraneLandau Institute for Theoretial Physis, Russian Aademy of Sienes142432, Chernogolovka, Mosow region, RussiaSubmitted 14 Marh 2003Di�erent theoretial approahes to the famous two-state Landau�Zener problem are brie�y disussed. Apartfrom traditional methods of the adiabati perturbation theory, Born�Oppenheimer approximation with geometriphase e�ets, two-level approah, and momentum spae representation, the problem is treated semilassiallyin the oordinate spae. In the framework of the instanton approah, we present a full and uni�ed desriptionof the 1D Landau�Zener problem of level rossing. The method enables us to treat all four transition points(appearing at two-level rossing) aurately, while the standard WKB approah takes only two of them intoaount. The latter approximation is adequate for alulating the transition probability or for studying satteringproesses, but it does not work in �nding the orresponding hemial reations rates, where all four transitionpoints an often be relevant in the typial range of parameters. Appliations of the method and of the resultsmay onern various systems in physis, hemistry, and biology.PACS: 05.45.-a, 72.10.-d1. INTRODUCTIONThe title of this paper might sound perplexing at�rst sight. What else an be said about the Landau�Zener (LZ) problem after the numerous desriptions inboth researh and textbook literature? But althoughtheoretial (and experimental) investigations of di�er-ent LZ systems began more than seventy years ago,it still remains an ative area of researh. Variousapproahes to the LZ problem that have appeared in*E-mail: bender�ip.a.ru**E-mail: kats�pd.landau.a.ru

the literature (see, e.g., the list of publiations [1�67℄,whih is by no means omplete) are not fully onsis-tent with eah other. We therefore think that it isimportant to disuss all these approahes in a singlepaper. We study the 1D LZ problem [1℄ of quantummehanial transitions between the levels of a two-levelsystem at the avoided level rossing. In the LZ theory,a quantum system is plaed in a slowly varying external�eld. Naturally, the system then adiabatially followsvariation of an initially prepared disrete state untilits time-dependent energy level rosses another level.Near the rossing point, the adiabatiity ondition isevidently violated (beause the semilassial behavior259 2*



V. A. Benderskii, E. V. Vetoshkin, E. I. Kats ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003is violated near turning points). The slow variation ofthe perturbation implies that the duration of the tran-sition proess is very long, and therefore the hange inthe ation during this time is large. In this sense, theLZ problem is a semilassial one (but with respet totime instead of a oordinate in the standard semilas-sial problems).It is well known that the problem presents the mostbasi model of nonadiabati transitions that play a veryimportant role in many �elds of physis, hemistry,and biology. It is therefore not surprising that numer-ous monographs and a great number of papers havebeen devoted to this subjet. In the literature, thereare roughly speaking three approahes to semilassialmodeling of the LZ problem,(i) two-level system approah [2�8℄,(ii) adiabati perturbation theory [9�21℄ (also seereview paper [6℄),(iii) momentum spae representation [22�25℄.Beause di�erent approahes to the LZ problemhave been proposed, one of the immediate motivationsof the present paper is to develop a uniform and system-ati proedure for handling this problem. We show thatthe three methods listed above are equivalent for treat-ing tunneling and over-barrier regions of parameters,and none of them an be applied, to the intermediateregion of parameters where all the four states involvedin the LZ system are relevant. To study this regionis our main objetive in this paper. We also addressthe so-alled onnetion matries. In the standardtextbook treatment of the LZ problem, only transitionprobabilities are alulated and expressed in terms ofthe genuine two-level LZ formula suessively appliedat eah diabati level intersetion. Evidently, suh aproedure is an approximation to the general LZ prob-lem, whih inludes at least four energy levels even inthe simplest ase. To solve many important physial orhemial problems, one must �nd the 4 � 4 (not only2� 2) onnetion matries relating these four states.While this paper is not intended as a omprehen-sive review, we detail the key results of the standardWKB and instanton approahes from our own researhand the literature within the ontext of di�erent fa-tors that we feel are important in studying the LZproblem. Spei�ally, we fous in Se. 2 on the Born�Oppenheimer approximation, whih is a benhmark intesting semilassial approximations. In Se. 3, we laythe foundation of treating the LZ problem, the adia-bati perturbation theory. Setion 4 is devoted to thegeneralization of the instanton method that enables usto investigate the LZ problem in the momentum spae.We show that for a potential that is linear in a 1D o-

ordinate under onsideration, the WKB semilassialwave funtions in the momentum spae oinide withthe instanton wave funtions. For the quadratially ap-proximated (paraboli) potentials, the instanton wavefuntions are exat and have no singularities (unlikethe WKB wave funtions; we reall that relations ofthe same type hold for the WKB and instanton wavefuntions in the oordinate spae [26�29℄).We advoate the instanton approah in this paper,but it is worth noting that many important resultshave nevertheless been obtained in the framework ofthe WKB approah [1�8℄. For example, one of the verye�ient tehniques (the so-alled propagator method)was proposed and elaborated by Miller and ollabora-tors [34�36℄ (also see [26℄). This approah uses semi-lassi propagators (of the Van Vlek�Gutzwiller type),with the ontribution oming from the ontour arounda omplex turning point automatially taken into a-ount in terms of the general WKB formalism. Theauray of the WKB method an be improved on-siderably [2; 5; 30; 31℄ (more reent referenes on theso-alled Laplae ontour integration an also be foundin [32℄) by the appropriate hoie of the integrationpath around the turning point. This method appearsto be quite aurate for the tunneling and over-barrierregions, but beomes inadequate in the intermediateenergy region. This has been overlooked in the previ-ous investigations treating this region by a simple inter-polation from the tunneling region (with a monotonideay of the transition probability) to the over-barrierregion (with osillating behavior).In Se. 5, we present all details of the LZ problemfor two eletroni states using the instanton desrip-tion of the LZ problem in the oordinate spae. Thetwo basi seond-order di�erential (Shrödinger) equa-tions that we onsider are written in the so-alled dia-bati state representation (i.e., in the basis of �rossed�levels). Negleting higher-order spatial derivatives, we�nd asymptoti solutions, and using the adiabati�diabati transformation, we math the solutions in theintermediate region. The omplete sattering matrixfor the LZ problem is derived in Se. 6. In Se. 7,we derive the quantization rules for rossing diabatipotentials and brie�y disuss the appliation of the ob-tained results in some partiular models of level ross-ings that are relevant for the interpretation and desrip-tion of experimental data on spetrosopy of nonrigidmoleules, on inelasti atomi ollisions [33℄, and non-radiative transitions arising from �intersystem� ross-ings of potential energy surfaes in moleular spe-trosopy and hemial dynamis (see, e.g., [26℄ and ref-erenes therein). In Se. 8, we draw our onlusions.260



ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003 Instanton versus traditional WKB : : :We onsider only the 1D ase in what follows. TheLZ problem for 1D potentials oupled to the thermalbath of harmoni osillators is shown to redue to a er-tain renormalization of the Massey parameter, wherethe longitudinal veloity entering the expression for thisparameter is dereased due to the oupling to trans-verse osillations (see [26℄ and referenes therein, andalso [66; 67℄ for more reent referenes). Of ourse, theenergy pro�le of any real system is haraterized bya multidimensional surfae. But it is often possibleto identify a reation oordinate suh that the energybarrier between the initial and �nal states is minimizedalong this spei� diretion, and the system an there-fore be e�etively treated as 1D. In ertain systems,the physial interpretation of the reation oordinate isimmediate (e.g., the relative bond length in diatomimoleules), but sometimes �nding it is not an easy task(if possible at all) beause of a large number of possibil-ities involved. The latter (multidimensional) ase willbe studied elsewhere. Unfortunately, the auray ofthe WKB method near the barrier top is too poor tomake any numbers realisti and it is one more moti-vation to use a semilassial formalism alternative tothe WKB, namely, the extreme tunneling trajetory orinstanton tehnique.2. BORN�OPPENHEIMER APPROXIMATIONIt may be useful to illustrate the essential physisof the LZ problem starting with a very well known pi-ture orresponding to the Born�Oppenheimer approxi-mation [1; 37℄. It leads to the separation of nulear andeletroni motions and is valid only beause the ele-trons are muh lighter than the nulei and thereforemove muh faster. The small parameter of the Born�Oppenheimer approximation is therefore given by� = �mem �1=4 � 1; (2.1)where me and m are eletroni and nulear masses re-spetively. On the other hand, the semilassial pa-rameter is  = m
a2~ � 1; (2.2)where a is the harateristi length in the problem and
 / m�1=2 is the harateristi nulear vibration fre-queny; therefore,  / ��2. Important onlusions aredrawn from this simple fat. Indeed, the semilassialondition  � 1 an be satis�ed by formally taking~ ! 0 or equivalently � ! 0. This orrespondene al-lows us to apply either the Born�Oppenheimer or the

semilassial approximation to the separation of salesfor nulear and eletroni motions on the same footing.In the traditional Born�Oppenheimer approah, thesolution 	 to the full Shrödinger equation (inludingthe eletroni Hamiltonian He depending on eletronioordinates r and the nulear Hamiltonian dependingon nulear oordinates R) is given by an expansion overthe eletroni Hamiltonian eigenfuntions �n,	 =Xn �n(R)�n(r; R): (2.3)The eletroni eigenvalues En depend on the nulearoordinates, and the expansion oe�ients �n(R) aredetermined by the Born�Oppenheimer equations24� ~22mr2R +En(R) + ~22mXk 6=nAnkAkn �E35�n == � ~22m Xk;m6=n(ÆnkrR � iAnk)�� (ÆkmrR � iAkm)�m; (2.4)where for m 6= k,Amk = ih�mjrR�ki; (2.5)and all the diagonal matrix elements Ann = 0.From (2.4), we an �nd that in the eletroni eigen-state En, the nulei move in the e�etive potentialUn(R) = En(R) + ~22mXk 6=nAnkAkn; (2.6)and transitions between the eletroni states n andm are related to the nonadiabati operator in theright-hand side of (2.4). This simple observation al-lows us to rewrite e�etive potential (2.6) asUn(R) = En(R)�� ~22m Xm6=n h�njrRHej�mih�mjrRHej�ni(En �Em)2 : (2.7)From this seemingly trivial expression, we derive thefollowing important onlusions:(i) orretions to En have the same order O(�2) asthe ratio of the nulear kineti energy to the potential;(ii) o�-diagonal matrix elements of the nonadiabatiperturbation operator are also small (/ O(�2)); thisfat is formulated as the so-alled adiabati theoremstating that no transitions between unperturbed statesour at adiabati perturbations (�! 0).261



V. A. Benderskii, E. V. Vetoshkin, E. I. Kats ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003Beause the nonadiabati e�ets are haraterizedby the only small parameter �1 (the semilassialparameter), they an be desribed in the frameworkof semilassial approahes (e.g., WKB or instantonones). But we must bear in mind the main problemof the Born�Oppenheimer method: the approximationassumes that the eletroni wave funtions are real-valued and form a omplete basis, but it is impossibleto onstrut suh a basis in the entire spae inludinglassially aessible and forbidden regions.If the requirement of a real-valued basis is relaxed,the diagonal matrix elements Ann 6= 0, and the e�etiveadiabati part of the Born�Oppenheimer Hamiltoniantakes the formĤn = Un(R) + ~22m(rR � iAnn(R))2; (2.8)similarly to the Hamiltonian of a harged partile inthe magneti �eld B / jrR � Annj. We an thereforehange the phases of the eletroni and nulear wavefuntions as �n ! �n exp(i�n(R));�n ! �n exp(�i�n(R)) (2.9)by hanging the �vetor potential� appropriately,Ann(R)! Ann(R) +rR�n(R): (2.10)Thus, we onfront an important and, at times, mys-terious onept of the geometri (or Berry) phase fa-tor that a quantum mehanial wave funtion aquiresupon a yli evolution [38�47℄. Most harateristiof the onept of the Berry phase is the existene ofa ontinuous parameter spae in whih the state ofthe system an travel along a losed path. In ourase, the phase is determined by a nonadiabati in-teration (for more details related to the geometriphase for the Born�Oppenheimer systems, see, e.g., re-view [48℄). This phenomenon (whih originally man-ifested itself as a ertain extra phase shift appearingupon some external parameter yli evolution) hasbeen generalized for the nonadiabati, nonyli, andnonunitary ases [49; 50℄, although most of the Berryphase appliations onern the systems undergoing anadiabati evolution (see, e.g., review [51℄). We also notethat in addition to the Berry phase, some higher-or-der orretions to the Born�Oppenheimer approxima-tion also exist (traditionally, and slightly misleadinglyalled the geometri magnetism or deterministi fri-tion, see [52℄). A pratially useful appliation of theBerry phase onept is the energy level displaementspredited in [53℄ and observed by NMR [54℄.

The essential physis of these phenomena an be il-lustrated as follows. There are two subsystems, the fastand the slow ones. The fast subsystem aquires a Berryphase beause of the evolution of the slow subsystem.There is a ertain feedbak e�et of the geometri phaseon the slow subsystem. As a result, the latter is framedby a gauge �eld a�eting its evolution. The gauge �eldprodues additional (Lorentz-like and eletri �eld-like)fores that must be inluded into the lassial equa-tion of motion. In the ase of stohasti external fores(e.g., from surrounding thermal �utuation media), theBerry phase produes some level broadening for thefast subsystem. In the limit of low temperatures andstrong damping, the slow subsystem dynamis an bedesribed by equations of the Langevin type [55℄. Thegeneral message that we an learn from this fat is thatthe geometri phases are soures of the dissipative pro-esses for LZ systems.Thanks to its fundamental origin, this geometriphase has attrated onsiderable theoretial and ex-perimental attention, but its experimentally observableonsequenes have been sare until now. Eah oppor-tunity of improving this situation is therefore worthtrying. In this respet, the Born�Oppenheimer geo-metri phase provides a unique opportunity for obser-vation of the geometri phase beause it must appearas a nonadiabati ontribution to the standard Bohr�Sommerfeld quantization ruleS0n + �n = 2�~; (2.11)where S0n is the adiabati ation.We note that are must be taken whenjEn(R) � Em(R)j beomes small ompared to theharateristi nulear osillation energy ~
. Thismeans that the nonadiabati interation energy annotthen be onsidered as a small perturbation in adiabatirepresentation (2.4). Fortunately, in the limitjEn(R)�Em(R)j < ~
;we an start from the other limit with rossing weaklyoupled diabati states and onsider the adiabati ou-pling as a perturbation. To perform the proedure ex-pliitly, we then need the adiabati�diabati transfor-mations ~�(R) = exp(i��y)�(R) (2.12)for the wave funtions and~H = exp(i��y)H exp(�i��y) (2.13)for the Hamiltonians, where (H;�) and ( ~H; ~�) arethe adiabati and diabati representations respe-tively, �y is the orresponding Pauli matrix, and � is262



ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003 Instanton versus traditional WKB : : :the adiabati�diabati transformation parameter (theso-alled adiabati angle).To illustrate how this works, we onsider two oup-led rossing e�etive eletroni potentials U1(R) andU2(R) (U12 is the oupling energy). The orrespondingadiabati and diabati Hamiltonians areH = � ~22m(rR)2 + 12(U1 + U2) +�12(U1 � U2) os(2�(R)) + U12 sin(2�(R))��3 ++ 12 ��12(U1 � U2) sin(2�(R))++ U12 os(2�(R))��1; (2.14)and~H = � ~22m(rR)2 + 12(U1 + U2) ++ 12(U1 � U2)�3U12�1; (2.15)where �1;2;3 are the Pauli matries and the adiabatiangle is hosen to eliminate the leading interation termbetween the adiabati states,os(2�(R)) = U1 � U22U12 : (2.16)The adiabati�diabati transformation an also bebrought to a more elegant form [16; 56℄(rR � iÂ)T̂ = 0; (2.17)where T̂ is the sought transformation matrix and thematrix Â � Ann was introdued above (see (2.5)). Theformal solution of Eq. (2.17) an be represented as aontour integralT̂ (s) = T̂ (s0) exp0�� sZs0 Â(s0)ds01A ; (2.18)where s0 and s are the initial and �nal points of theontour. Solution (2.18) uniquely determines the trans-formation matrix T̂ for a url-free �eld Â,T̂ (t0) = D̂T̂ (0); (2.19)where the diagonal matrix D̂ an be found from (2.17)and is expressed in terms of the geometri phase fatoras Dkn = Ækn exp(i�k): (2.20)

Relations (2.11) and (2.20) ompletely desribe thenonadiabati transitions, the ornerstone of the LZproblem. In addition, (2.11) and (2.20) show that thegeometri Born�Oppenheimer phases our from thediabati potentials rossing points and enter the quan-tization rules additively with the ontributions from theturning points. Therefore, our main onlusion in thissetion is that nonadiabati phenomena must (and an)be inluded into the general sheme of the semilassialapproah through the orresponding onnetion matri-es [57℄ (also see [29℄) for the appropriate ombinationsof rossing and turning points in the problem.3. ADIABATIC PERTURBATION THEORYIt is almost a ommon student's wisdom nowadaysthat any solution to the adiabatially time-dependentShrödinger equation an be represented as an expan-sion over the omplete set of stationary (time-indepen-dent) eigenfuntions [1℄. In the ase under investiga-tion (two-level rossing for the eletroni HamiltonianHe(r; t)), this expansion is given by	(r; t) = 1(t)�1(r) + 2(t)�2(r); (3.1)where the wave funtions �1;2 are stationary withrespet to a nulear motion. The time-dependentShrödinger equation an be exatly rewritten as two�rst-order equations (with respet to time derivatives)for 1 and 2,i~ _1_2 ! =  ~H11 ~H12~H21 ~H22 ! 12 ! ; (3.2)where ~Hkk0 = h�k j ~H(t)j�k0 i; k; k0 = 1; 2 (3.3)are the matrix elements for the diabati Hamiltonian.The phase transformationk(t) = ak(t) exp�� i~ Z ~Hkk(t)dt� (3.4)(see, [6; 8; 10℄) redues (3.2) to the oupled �rst-orderequationsi~ _a1 = ~H12a2 exp�i Z 
12(t)dt� ;i~ _a2 = ~H21a1 exp��i Z 
12(t)dt� ; (3.5)where 
12 = 1~( ~H22 � ~H11): (3.6)263



V. A. Benderskii, E. V. Vetoshkin, E. I. Kats ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003A slightly di�erent phase transformationk(t) = ~�k(t) exp� i2~ Z ( ~H11 + ~H22)dt� (3.7)preserves the seond-order Shrödinger-like form of theequations for the diabati funtions ~�1;2,~2 d2 ~�1dt2 � 24 ~H11 � ~H222 !2 + ~H12 ~H21++ i~2 ddt ( ~H11 � ~H22)35 ~�1 = 0: (3.8)To larify the mapping of this time-dependent pertur-bation theory to the two-level rossing problem and theBorn�Oppenheimer approah desribed in Se. 2, weonsider the two-state Born�Oppenheimer equations inthe diabati representation. From (2.15) for one ativespae oordinate X , we have� ~22m d2 ~�1dX2 + ( ~H11 �E)~�1 = ~H12 ~�2 (3.9)and � ~22m d2 ~�2dX2 + ( ~H22 �E)~�2 = ~H21 ~�1: (3.10)If we an neglet the seond-order derivatives~22m d2 ~�1;2dX2and replae the time derivative by vd=dX (wherev = p2E=m is the veloity), the hange of the vari-ables ~�1;2 = exp(ik0X)1;2; k20 = 2mE~2 (3.11)transforms the two Born�Oppenheimer equations (3.9)and (3.10) into the two level-rossing equations (3.2) forthe slow time-dependent perturbations. Obviously, wereognize the standard semilassial approah in thisproedure.A mapping of the same kind an also be performedfor the adiabati amplitudes C1;2(t) that are relatedto the diabati amplitudes 1;2(t) by the adiabati�diabati transformation matrix depending on the adia-bati angle �, C1(t)C2(t) ! =  os � sin �� sin � os � ! 1(t)2(t) ! : (3.12)

In the adiabati basis, we have the set of the �rst-orderequations orresponding to (3.2), _C1_C2 ! =  H11 �i _�i _� H22 ! C1C2 ! ; (3.13)where the nonadiabati oupling oe�ient _� an berelated to the o�-diagonal operator A12 in (2.5) (or tothe geometri phase, see Se. 2),i _� = A12 � ih�1j _�2i: (3.14)Transformation (3.11) allows reduing the Born�Oppenheimer equations (for the nulear wave funtions�1;2 in the adiabati representation) to (3.13) if andonly if the seond-order derivatives are negleted (inthe spirit of the semilassial approah) and only / k0terms are kept in the nonadiabati matrix elements(i.e., higher-order ontributions with respet to 1=k0are negleted). Expressions (3.12)�(3.14) do allow anentry point into the adiabati perturbation theorydeveloped by Landau [1℄ and Dykhne [10; 11℄ (alsosee [15; 16℄). We follow the same method losely.We an make one step further and �nd the ombi-nation of the two-level system amplitudes a1;2 in (3.4)and (3.5),Y (t) = 
�1=212 exp�� i2 Z 
12dt� a1 ++ i
�1=212 exp� i2 Z 
12dt� a2; (3.15)satisfying the simple equation�Y (t) + 
2124 Y = 0; (3.16)whih is idential to (3.8) and desribes osillationsaround the rossing point in the adiabati potential(inverted adiabati barrier). In the adiabati pertur-bation theory, the level-rossing problem is thereforeformally redued to the well-known quantum mehani-al phenomenon, the over-barrier re�etion. In the lat-ter problem, moreover, the re�etion oe�ient is equalto 1, in full agreement with the adiabati theorem.Evidently, two adiabati potentials have no realrossing points in the 1D ase, and the rossing is there-fore possible only at omplex values X or t,
12(�) = 0; U1 � U2 = �iU12jt=� : (3.17)In the viinity of these points, it follows from (3.6) that
12 / (t� �)1=2; (3.18)264
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Fig. 1. Stokes (dashed) and anti-Stokes (solid) linesfor a pair of lose linear turning points replaed by oneseond-order turning point; a � lassially forbiddenregion, b � lassially aessible regionand therefore Z 
12dt � 23(t� �)3=2; (3.19)i.e., the rossing points are square root bifurationpoints for the funtion 
12(t). Using (3.19), we de-pited the Stokes and anti-Stokes lines for Eq. (3.16)in Fig. 1. The diagram shown in this �gure is identialto that orresponding to the semilassial over-barrierre�etion problem with linear turning points under on-sideration. In the leading approximation, the transition
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Fig. 2. Adiabati (3 , 4 ) and diabati (1 , 2 ) potentialsfor the LZ problemprobability P12 is determined by integration over theontour C(�) going around the bifuration point �,P12 � exp8><>:2~ IC(�) (H11 �H22)dt9>=>; : (3.20)In the simplest form of the LZ problem, the dia-bati potentials are assumed to be linear funtions of tor X (whih is the same beause t = X=v), see Fig. 2for illustration, U1(2) = U# � FX: (3.21)Substituting (3.21) in the general expression for thetransition probability (3.20), we then �ndP12 � exp(�2��); (3.22)where � = U212=2~vF is the so-alled Massey parameterand v =r2jE � U#jmis the veloity.Some omments about the validity range of the ap-proximation are in order. A question of primary impor-tane for the LZ problem is related to the semilassialnature of the phenomenon. To illustrate this, we notethat for 
212 = U212 + v2F 2X2;Equation (3.16) is the Weber equation for the realpoint X = 0 (the rossing point of diabati poten-tials). Evidently, this orrespondene between twoomplex-onjugate linear rossing points �� and onereal rossing point X = 0 for the Weber equation is the265



V. A. Benderskii, E. V. Vetoshkin, E. I. Kats ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003same as the orrespondene between two linear and oneseond-order turning points in the standard semilas-sial treatment of the Shrödinger equation. We antherefore apply the WKB or instanton methods to theLZ problem in the same way as in any semilassialproblem. We now ompare the auray of the two ap-proahes. If jE�U#j � ~
 (where 
 is the harater-isti frequeny of the adiabati potentials), the WKBmethod works quite well if two isolated linear turningpoints in this problem are onsidered (this is the limitof k0a� 1, orresponding to the adiabati approxima-tion). If this is not the ase, the diabati representationmust be used.4. INSTANTON METHOD IN MOMENTUMSPACEWe do not explain the instanton method in de-tail here and summarize only the most essential points(see [26�29; 58; 59℄). The reipe to �nd the instanton isbased on minimizing the lassial ation funtional inthe spae of paths onneting the minima in the upsi-de-down potential. It is well known [1℄ that the expan-sion of an arbitrary wave funtion 	(x) in terms of themomentum eigenfuntions is simply a Fourier integral,	(x) = 12�~ 1Z�1 exp� ipx~ ��(p)dp: (4.1)The wave funtion in the momentum representation�(p) an be written in the semilassial form�(p) = A(p) exp�� iW (p)~ � ; (4.2)where the ation W (p) is determined by the lassialtrajetory x0(p) in aordane with the de�nitiondWdp = x0(p): (4.3)We use the dimensionless variables � = E=
0 for theenergy, V = U=
0 for the potential, and X = x=a0for the oordinate, where E and U are the orrespond-ing dimensional values of the energy and of the poten-tial, a0 is a harateristi length of the problem (e.g.,the tunneling distane), and 
0 is a harateristi fre-queny (e.g., the osillation frequeny around the po-tential minimum). The dimensionless momentum anbe de�ned as P = pa0~ ; (4.4)

where  is the semilassial parameter (we reall that � m
0a20=~, where m is the mass of the partile, andwe believe that  � 1).Introduing the semilassial form (4.2) of themomentum-representation wave funtion in the stan-dard one-partile 1D Shrödinger equation, we antransform it to the form�P 2 + 2V̂ �X0 + i 1 ddP �� 2 ��A(P ) = 0: (4.5)In the momentum spae, V̂ is the potential energy op-erator, whih an be expanded in a semilassial serieswith respet to 1= (or equivalently, with respet to~; we set ~ = 1 in what follows, measuring energiesin the units of frequeny, exept in some intermediateequations where the ourrenes of ~ are neessary forunderstanding). This expansion allows us to onsiderV̂ as a funtion V of two independent variables X0 andd=dP , and we �nally obtainV �X0 + i ddP � = V (X0) ++ i � dVdX0 ddP + 12 d2VdX20 dX0dP �++� i�2 " d2VdX20 d2dP 2 � 12 d3VdX30 �dX0dP ddP � 13 d2X0dP 2 �++ 124 d4VdX40 �dX0dP �2#+ : : : ; (4.6)where the dots denote all higher-order expansion terms.In aordane with the general semilassial rules,we an easily �nd from (4.5) and (4.6) that the �rst-and the seond-order terms in �1 beome identiallyzero if the energy-dependent trajetory X0(P ) is deter-mined by the equationP 2 + 2V (X0) = 2� (4.7)and if the so-alled transport equation (TE)dVdX0 dAdP + 12 d2VdX20 d2WdP 2 A; (4.8)is also satis�ed. The solution of TE (4.8) an be foundexpliitly as A = � dVdX0��1=2 : (4.9)266



ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003 Instanton versus traditional WKB : : :It follows from (4.9) that semilassialWKB wave fun-tion (4.2) has singularities at all stationary points of thepotential V . These points are therefore turning pointsin the momentum spae. This illustrates fundamen-tal di�ulties of the WKB proedure, whih onsist inmathing the solutions that beome singular on aus-ti lines separating manifolds with real and imaginarymomenta in phase spae.To also illustrate the seond drawbak of the WKBmethod, we onsider the linear (V = FX) and har-moni (V = X2=2) potentials. The trajetories X0(P )an be trivially determined from (4.7). For the lin-ear potential, X0(P ) is the inverted parabola with themaximum X0m = �F= at P = 0. The left and theright branhes of the parabola orrespond to the oppo-site motion diretions in the lassially aessible regionX0 < X0m. For the linear potential, the semilassialWKB wave funtion in the momentum spae,�(P ) = 1pF exp�� iF ��P �  P 36 �� ; (4.10)is the Fourier transform of the oordinate-spae Airyfuntion. For the harmoni potential, the orrespond-ing trajetories (4.7) are ellipses, and the wave fun-tions have the same funtional form in both spaes (mo-mentum and oordinate). It is worthwhile to note thatalthough the WKB funtions are not exat, the orre-sponding eigenvalues oinide with the exat quantummehanial ones.As we have shown reently [27�29℄, many importantsemilassial problems an be suessfully analyzed bythe instanton method. Having in mind momentumspae in this setion, we reall the main ideas of theinstanton approah. The �rst step of the approah de-rived in [58℄ and [59℄ is the so-alled Wik rotation ofthe phase spae orresponding to the transformationto imaginary time t ! �it. Under the transforma-tion, both potential and kineti energies hange theirsigns, and the Lagrangian is replaed by the Hamilto-nian in the lassial equation of motion. In the momen-tum spae, the low-energy instanton wave funtions anbe onstruted using Wik rotation in the momentumspae (i.e., the transformation P ! iP ); in addition,the term with the energy � in (4.7) must be removedfrom this equation and taken into aount in TE (4.8).In the instanton formalism, the trajetory X0(P ) de-sribes zero-energy motion in the lassially forbiddenregion of the momentum spae, where the wave fun-tion has the form�(P ) = � dVdX0��1=2Q(P ) exp[�W (P )℄; (4.11)

a b
Fig. 3. Stokes (dashed) and anti-Stokes (solid) lines inthe viinity of: (a) onjugate bifuration points �i�;(b) diabati potentials rossing point X = 0and the additional prefator Q(P ) an be representedas lnQ(P ) = � Z � dVdX0��1 dP: (4.12)In the partiular ase of a linear potential(V (X) = FX), the instanton and WKB funtionshave the same form. For an arbitrary (n-th order)anharmoni potential, the Shrödinger equation inthe momentum spae is redued to the n-th orderdi�erential equation, but the n-th order derivativesderease proportionally to �n, and the orrespondingterms an therefore be taken into aount perturba-tively. A rigorous mathematial method to performthis proedure (whih we use in this paper) has beendeveloped by Fedoryuk [68�70℄.To illustrate the instanton approah, we onsiderthe simplest form of the LZ problem illustrated inFig. 3. For linear potentials with arbitrary line slopes,we have two seond-order oupled equations, in the di-abati state representation� d2�1dX2 = 2(�+ f1X)�1 = 2��2;� d2�2dX2 = 2(�+ f2X)�2 = 2��1; (4.13)where �1;2 are the eigenfuntions of the orrespondingstates and
2 = a2F 2mU12 ; F =pF1jF2j;  = a3Fm1=2U1=212 ;� = 2U0 �E
 ; f1;2 = 2aF1;2
 ; � = 2U12
 :Equations (4.13) an be transformed into the momen-tum spae and an then be rewritten as a single se-ond-order equation267



V. A. Benderskii, E. V. Vetoshkin, E. I. Kats ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003d2	1dk2 + q(k)	1(k) = 0; (4.14)where we introdue	1 = �1 exp �i�3=22 � 1f1 + 1f2��k + k33 �� ; (4.15)�1 is the Fourier transform of �1, k = P=p�, andq(k) is a fourth-order harateristi polynomialq(k) = �2(1 + k2)2 + 2�(ik � 2�) (4.16)depending on two parameters� = 12�3=2� 1f1 � 1f2� ; � = v22(f1 � f2)p�: (4.17)The �rst parameter � plays the role of the new semilas-sial parameter in the momentum representation andthe seond is the known Massey parameter (alreadyde�ned in (3.22)).Fortunately, all roots of harateristi polyno-mial (4.16) an be found analytially quite auratelyin the physially most interesting region of parameters.To simplify the expressions (while keeping the ompletephysial ontent), we present the results only in thesimplest ase where f1 = �f2 � f (symmetri slopesof the diabati potentials). In the lassially forbiddenregion U# � E > 0, � > 0, at � � 1 (equivalently, at�� (f=)2=3), all the four roots of the polynomial arelose to �i,k�1 = i 1�r1+�2� ! ; k�2 = �r1��2� �i: (4.18)In the lassially aessible region (U#�E < 0; � < 0),the roots are lose to �1 if � � 1 (or if��� (f=)2=3),k�1 = 1� p1 + ~�2 + ~�4~� !1=2 �� i p1 + ~�2 � ~�4~� !1=2 ;k�2 = �1� p1 + ~�2 + ~�4~� !1=2 �� p1 + ~�2 � ~�4~� !1=2 (4.19)
(the tilde means that in the orresponding quantity, �must be replaed with its modulus).The roots of harateristi polynomial (4.16) inthe lassially forbidden region, Eq. (4.18), and in the

�2 �1 0 21
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Fig. 4. Stokes (dashed) and anti-Stokes (solid) linesfor linear turning points orresponding to lassially for-bidden (a) and aessible (b) energy regions of the LZproblemlassially aessible region, Eq. (4.19), are formallyequivalent to the transition or turning points forthe system of two potential barriers or two potentialwells respetively. We an therefore use all the WKBand instanton results known in these ases (see, e.g.,our reent paper [29℄ and referenes therein for thedetails). Beause only asymptoti solutions and theironnetions via transition or turning points on theomplex plane are usually onsidered in the semilas-sial analysis, the famous Stokes phenomenon [30; 57℄of asymptoti solutions plays an essential role, and thedistribution of the transition points (whih are nothingbut the zero points of the harateristi polynomial)and Stokes and anti-Stokes lines determines thephenomenon. We show all the lines emanating fromlinear turning points in Fig. 2. In the ase where the268



ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003 Instanton versus traditional WKB : : :roots form a pair of lose linear turning points, everysuh pair an be replaed with one seond-order turn-ing points. The orresponding Stokes and anti-Stokeslines are depited in Fig. 4.In the lassially forbidden region, the instantonwave funtions an be found using roots (4.18),�+1 = (1� ik)��1(1 + ik)�+1 exp�i��k + k33 �� ;��1 = (1� ik)��(1 + ik)�� exp��i��k + k33 �� : (4.20)As jkj ! 1, the funtion �+1 dereases proportion-ally to jkj�2 and ��1 is redued to the Airy fun-tion [71; 72℄. In the viinity of the seond-order turningpoints k = �i, the fourth-order harateristi polyno-mial is redued to a seond-order one, and Eq. (4.14)is redued to the Weber equation with the known fun-damental solutions [71℄D��(�2p�(k + i))as jk + ij ! 0 andD���1(�2p�(k � i))as jk � ij ! 0. The same proedure applied to thelassially aessible region leads to the solutions�+1 = (1� k)i~��1(1 + k)i~�+1 exp �i~��k � k33 �� ;��1 = (1 + k)i~�(1� k)i~� exp ��i~��k � k33 �� ; (4.21)

and it is also redued to the fundamental solutions ofthe Weber equationDi~� ��2p~�(k + 1) exp i�4 �as jk + 1j ! 0 andDi~��1��2p~�(k � 1) exp i�4 �as jk � 1j ! 0.The same solutions an be obtained for the LZ prob-lem in the two-level approximation using the instantonmethod in the oordinate spae. The reason for this isquite transparent and is based on the fat that for lin-ear diabati potentials, the limit k ! �1 orrespondsto the limit x! �1, and the asymptoti behaviors ofthe solutions are therefore the same in the momentumand in the oordinate spae.The entire analysis an be brought into a more om-pat form by introduing the so-alled onnetion ma-tries. In the instanton approah, we onsider asymp-toti solutions and their onnetions on the omplexoordinate plane. It is therefore important to knowthe onnetion matries. The needed onnetion mat-ries an easily be found by mathing solutions (4.20)or (4.21) at the seond-order turning points throughthe orresponding fundamental solutions of the Weberequation. This gives the onnetion matriesM̂1 = 0BBB� � os(��) p2� exp(�2�)�(�)�(�) exp(2�) sin2(��)p2� os(��) 1CCCA ; (4.22)where � = � � (� � 1=2) ln �2 ;and M̂2 = 0BBB� � exp(��~�) p2� exp(��~�) exp(�2~�)�(�i~�)1p2� 2�(�i~�) exp���~�2 � exp(2~�) sh(�~�) exp(��~�) 1CCCA ; (4.23)where ~� = �i��4 + ~�(1� ln ~�)�+ 14 ln ~�: 269



V. A. Benderskii, E. V. Vetoshkin, E. I. Kats ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003As a note of aution at the end of this setion, weremind the reader that for the linear diabati poten-tials, we initially had two orresponding Shrödingerequations, eah of whih possesses two fundamental so-lutions. Therefore, the full LZ problem is haraterizedby four fundamental solutions that are asymptoti tothe left of a given turning point and four fundamentalsolutions that are asymptoti to the right of the sameturning point. Generally speaking, the onnetion ma-tries must therefore be 4� 4 ones. But beause of thesymmetry of the potentials, these 4� 4 matries havetwo 2� 2 blok strutures for the funtions �1 and �2,given in (4.22) and in (4.23).5. LZ PROBLEM FOR TWO ELECTRONSTATES (INSTANTON APPROACH INCOORDINATE SPACE)In Ses. 2�4, we investigated the LZ problem inthe framework of the adiabati perturbation theory,the two-level approximation, and the momentum rep-resentation. All the three methods are equivalent andsemilassial by their nature, and are therefore appli-able in the tunneling and over-barrier energy regions;they beome inadequate within the intermediate region(of the order of �2=3) near the level rossing point.The fat is that the auray of these methods dependson the �renormalized� (energy-dependent) semilassi-al parameter � in (4.17), whih an be small in theintermediate region (� � 1 even for  � 1). To treatthis region, we must use the oordinate spae presen-tation, beause we need to know the onnetion matri-es for nonadiabati transitions. In the latter problem,the wave funtions outside the level rossing point aremore onvenient (and have a more ompat mathemat-ial form) in the oordinate spae.5.1. Tunneling and over-barrier regionsFor the smoothness of presentation, we �rst re-produe the results found in the previous setions forthe tunneling and over-barrier energy regions in theoordinate spae. In the diabati representation, wean rewrite two seond-order LZ di�erential equations(4.13) as the fourth-order linear di�erential equationwith onstant oe�ients at the derivativesd4�1dX4 � 22�d2�1dX2 �� 22f d�1dX + 4(�2 � v2 � f2X2)�1 = 0 (5.1)

(where we onsider the ase with a symmetri slopef1 = �f2 � f for simpliity). In the mathematialformalism elaborated by Fedoryuk [68�70℄, Eq. (5.1) isredued by a semilassial substitution in a set of equa-tions of the order n. The harateristi polynomial for(5.1) is given byF (�) = �4 � 2�2�2 � 22f�++ 4(�2 � v2 � f2X2); (5.2)where � = dW=dX by de�nition.Solving the equation F (�) = 0 perturbatively in�1 � 1, we �nd �j = �0j + uj ; (5.3)where �0j = � h(��pv2 + f2X2)i1=2 (5.4)and uj = f2 �(�0j )2 � ���1 : (5.5)Four asymptoti solutions of (5.1) an then be repre-sented asfyjg � f�++;��+;�+�;���g == (v2 + f2X2)�1=4 exp24 XZ0 �j(X 0)dX 035 : (5.6)They desribe the motion with an imaginary momen-tum in the upper and lower adiabati potentials2ma2~2 �U� �E� = 2 ���pv2 + f2X2 � :The subsripts in (5.6) orresponds to the upper orlower adiabati levels, and the supersripts indiate thesign of the ation.Before onsidering the onnetion matries, we usethe substitution �1 = exp(�X)�; (5.7)and hoose the � value suh that the �rst derivativein (5.1) vanishes,�3 � 2��� 122f = 0: (5.8)At � > 3(f=4)2=3, we an expand the roots of (5.8) interms of the parameterÆ = f4��3=2 < 13p3 : (5.9)270



ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003 Instanton versus traditional WKB : : :We thus �nd�1 = p��1 + Æ2� ;�2 = p���1 + Æ2� ; �3 = p�Æ: (5.10)Under ondition (5.9), the oe�ients at the fourth andat the third-order derivatives in (5.1) are small (propor-tional to Æ and pÆ respetively) and the fourth-orderequation (5.1) an be rewritten as two seond-orderWeber equations with the solutionsDp(1;2)(�(1;2)X);where p1 = �1 + Æ2 � � �1� 3Æ2 � ;p2 = Æ2 � � �1 + 3Æ2 � ;�(1;2) = �2f2� �1=4�1� 3Æ4 � : (5.11)
The leading terms of these solutions are the same asthose found in Se. 4. But the Fedoryuk methodalso gives higher-order orretions in Æ in tunneling re-gion (5.8).In the over-barrier energy region where� < �3(f=4)2=3, the roots of Eq. (5.8) are om-plex onjugate,�(1;2)p� = � ~Æ2 � i 1 + 3~Æ28 ! ; (5.12)and ~Æ = f4j�j3=2 (5.13)plays the role of a small parameter. Similarly tothe ase with the tunneling region, the oe�ients athigher-order derivatives are small, and the funtion �in (5.7) therefore satis�es the Weber equation with thefundamental solutionsD~p(1;2)( ~�(1;2)X);

where ~p1 = �1 + i3~Æ2 + i� 1 + 3~Æ4 ! ;~p2 = i3~Æ2 + i� 1� 3~Æ4 ! ;~�1 = exp i�4 �2f2j�j �1=4 ;~�2 = exp�� i3�4 ��2f2j�j �1=4 :
(5.14)

As was the ase with tunneling region (5.11), the lead-ing terms of expansion (5.14) oinide with the resultsfound in the previous setions, but (5.14) also allowsomputing orretions to the leading terms.We an now �nd the onnetion matries. To dothis in the tunneling region, we must establish the or-respondene between solutions of fourth-order di�eren-tial equation (5.1) and solutions for the states loalizedin the left (L) and in the right (R) wells. In the asewhere � � f jX j, the ation an be omputed for dia-bati potentials starting from both wells (R and L),WL � WL0 + k0X + �24 X2;WR � WR0 � k0X + �24 X2; (5.15)where k0 = �2m(U# �E)~2 �1=2 � p�is the imaginary momentum and WL;R0 are the ationsomputed from an arbitrary distant point in the L orR wells respetively to the point X = 0. On the otherhand, in the adiabati potentialsU� = U# �qU212 + f2X2;the orresponding ations an be represented asW� � W�0 = k0X � �24 X2signX: (5.16)Expliitly omparing the semilassial wave funtionsin both representations (adiabati and diabati ones),it is easy to see that the adiabati funtions in thepotential U� oinide with the diabati funtions forloalized L and R states at X < 0 and X > 0 respe-tively. The adiabati funtions for the upper potential271



V. A. Benderskii, E. V. Vetoshkin, E. I. Kats ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003U+ orrespond to the tails of the diabati wave fun-tions loalized in the opposite wells. In the level ros-sing region, the L=R diabati funtions are thereforetransformed into the R=L funtions, and the intera-tion entangles the diabati states with the same sign ofk0X . Thus, we have only four nonzero amplitudes ofthe following transitions:h�+L j��Ri; h��L j�+Ri; h�+Rj��L i; h��Rj�+Li: (5.17)Realling that
W� =  Z ���pv2 + f2X2�1=2 �� k0X � �24 X2 � �2 (1� ln �); (5.18)we onlude that quantum solutions (5.11), asymp-totially valid in the viinity of the level rossingpoint, math inreasing and dereasing solutions (5.6)smoothly, whih leads to the Landau desription [1℄ ofthe level rossing transitions depited in Fig. 5.Using expressions (4.22) and (4.23) relating the fun-damental solutions of the Weber equation, we an �ndthe 4� 4 onnetion matrix orresponding to (5.17),0BBBB� �+R��R�+L��L 1CCCCA = 2666666666664

p2� exp(�2�)�(�) 0 0 � os(��)0 �(�) exp(2�) sin2(��) � os(��) 00 os(��) p2� exp(�2�)�(�) 0os(��) 0 0 �(�) exp(2�) sin2(��)p2�
3777777777775��0BBBB� ��L�+L��R�+R 1CCCCA ; (5.19)where � = �2 � 12 �� � 12� ln �as above. The matrix in (5.19) has a 2� 2 blok stru-ture, with eah of the idential bloks onneting in-reasing and dereasing diabati solutions. However,these diagonal bloks do not orrespond to the L�Rtransitions for the lower and upper adiabati potentialsseparately. Indeed, the 2 � 2 matrix orresponding tothese transitions is �+R��L ! == 26664 p2� exp(�2�)�(�) � os(��)os(��) �(�) exp(2�) sin2(��)p2� 37775�� ��L�+R ! : (5.20)

In the diabati limit (i.e., as � ! 0) the diagonal matrixelements are small (/ �1=2 and �3=2 respetively), andthe o�-diagonal elements tend to �1, as it should bebeause by de�nition, there are no transitions betweenthe diabati potentials.In the adiabati limit � � 1, the diagonal matrixelements tend to 1, whih implies that the dereasingL solution transforms only into the inreasing R solu-tion, and vie versa. Therefore, the onnetion matrixin the tunneling region depends only on the Massey pa-rameter �. We reall that the bloks of the 4� 4 on-netion matrix in (5.19) orrespond to the two isolatedseond-order turning points with the Stokes onstant(see, e.g., [29℄) T2 = p2��(�) exp(�2�): (5.21)The over-barrier region an be studied similarly.Repeating the proedure desribed above for the tun-neling region (with the evident replaements k0 ! �ik0and �2 ! i�2), we obtain the 4� 4 onnetion matrix272



ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003 Instanton versus traditional WKB : : :Û =
= 2666666666666664

p2� exp(�2~�)�(�i�) 0 0 � exp(���)0 2�(�i�) exp(���) exp(2~�) sh(��)p2� � exp(���) 00 exp(���) p2� exp(�2~�)�(�i�) 0exp(���) 0 0 2�(�i�) exp(2~�) exp(���) sh(��)p2�
3777777777777775 ;(5.22)where~� = � i2 h�4 + �(1� ln �)i + 14(�� + ln �): (5.23)As already mentioned for the tunneling region, thebloks in (5.22) orrespond to the two isolated seond-order turning points with the Stokes onstant [29℄~T2 = p2��(�i�) exp(�2~�): (5.24)Thus, we arrive at the important onlusion that themain peuliarity of the LZ level rossing (in omparisonwith the standard, e.g., one-potential problems) is thatthe seond-order turning points haraterizing the dia-bati level rossing for the LZ problem possesses di�er-ent Stokes onstants T2, Eq. (5.21), and ~T2, Eq. (5.24),in the tunneling and in the over-barrier regions.5.2. Intermediate energy regionWe an now reap the fruits of our e�ort in the pre-vious subsetion. We �rst note that Eqs. (5.11) and(5.14) imply that as the energy approahes the top ofthe barrier, the exponents p(i) and ~p(i) of the paraboliylinder funtions inrease and therefore more andmore deviate from the value presribed by the Masseyparameter �. Seond, �(i) inreases as j�j dereases,resulting in a derease of the values of jX j where theasymptoti smooth mathing of the solutions mustbe performed. As Æ ! 0, these jX j values are lo-ated deeply in the lassially forbidden region, wherethe potentials are lose to the diabati potentials; forÆ � 2p3=3, these oordinates jX j are of the order of thequantum zero-point osillation amplitudes, and there-fore the adiabati representation must be used to �ndthe solution in this region.These two simple observations give us a onjeturehow to treat the LZ problem in the intermediate en-ergy region. We must �rst �nd the energy �window�

for the intermediate region. It is onvenient to hoosethe adiabati potential frequeny 
 = F=pmU12 as theenergy sale suh that the inequality j�j < 3jf=4j2=3beomesjU� �Ej � 32U1=312 �
2 �2=3 � U�12: (5.25)In other words, the harateristi interation energy atthe boundaries of the intermediate region is indepen-dent of U12. But the positions of the linear turningpoints jX�j orresponding to the energies U��U�12 de-pend on the ratio U12=U�12. These points are loatedinside or outside the interval [�a0�1=2; a0�1=2℄ atU12=U�12 < 1 and at U12=U�12 > 1, respetively, and themathing onditions in the intermediate energy regionare therefore di�erent in the two ases. In the formerase, the potentials an be reasonably approximatedby a parabola in the asymptoti mathing region, andwe must therefore work with the Weber equations. Inthe latter ase, the mathing is performed in the regionwhere the potentials are linear, and the equations aretherefore redued to the Airy equations.We �rst investigate the ase where U12=U�12 > 1.Using the Born�Oppenheimer approah desribed inSe. 2, we see that the Shrödinger equations for thewave funtions 	� are deoupled in the adiabati rep-resentation with the auray up to �2,�d2	�dX2 + 2 ���pv2 + f2X2 �	� = 0: (5.26)For jX j < v=f , Eqs. (5.26) are redued to the Weberequations with the fundamental solutionsD�1=2�q1(�p2X)and D�1=2+iq2 �� exp�� i�4 �p2X� ;where3 ÆÝÒÔ, âûï. 2 (8) 273
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Fig. 5. Relative plaement of the adiabati lev-els; a � U12 > U�12, b � U12 < U�12(U�12 � (3=2)(~2F 2=4m)1=3)q1 =  v + �2 ; q2 =  v � �2 ; (5.27)are independent of the Massey parameter �. Two realsolutions of (5.26) orrespond to the upper adiabatipotential (lassially forbidden region), and two om-plex solutions orrespond to the lassially allowed mo-tion under the lower adiabati potential.The argument of the Weber funtions is / Xp,and under the ondition X < v=f , their asymptotiexpansions determine the interval where the mathingis to be performed,�1=2�U12
 �1=2 > �1=2: (5.28)This inequality an be satis�ed only at U12=U�12 > 1,when the intermediate region is su�iently broad in

omparison with 
. The exponents q1 and q2 inEq. (5.27) are then large, and our aim is to �nd theexpliit asymptoti expansions of solutions in this ase.For this, we losely follow the method in [73℄ (also seemonograph [72℄), whih is in fat an expansion of thefundamental Weber solutions in the small parameters1=jqij. This method leads to the asymptoti solution ofEq. (5.26) at X > 0 given by	�+(X) � Y �1=2+ (X + Y+)�q1 exp(�XY+);	��(X) � Y �1=2� (X + Y�)iq2 exp(iXY�); (5.29)where Y� = pv � �+X2. Using the known relationbetween the fundamental solutions of the Weber equa-tion [71; 72℄,D�(z) = exp(�i��)D�(z) ++ p2��(��) exp��i��+ 12 �D���1(iz);we an �nd the other two solutions (omplementaryto (5.29)) as	++(X) = Y �1=2+ "� sin(�q1)(X + Y+)�q1 �� exp(�XY+) + exp(�2�1)�� p2��(1=2 + q1) (X + Y+)q1 exp(XY+)# ; (5.30)and	+�(X) == Y �1=2+ "� i exp(��q2)(X + Y�)iq2 exp(iXY�)++ exp(�2�2) p2��(1=2� iq2) (X + Y�)iq2 �� exp(�iXY�)# ; (5.31)where we introdue the notation�1 = 12 �q1 + 12�� q12 ln�q1 + 12� ;�2 = �12 �iq2 � 12�+ iq22 ��i�2 + ln�q2 + i2�� :Not surprisingly, solutions (5.29)�(5.31) an be repre-sented as a linear ombination of the semilassial so-lutions ��� in (5.6) with the oe�ientsos(2�(1;2)) = Xpv � �+X2 : (5.32)274



ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003 Instanton versus traditional WKB : : :These energy-dependent angles �(1;2) oinide withthe adiabati angles introdued above (see (2.12)and (3.12)) at the level rossing point � = 0, andf jX j < v. Both angles take only slightly di�erent val-ues over the entire intermediate region j�j < v. We an now �nd all the onnetion matries forthese funtions. Although the alulation is straitfor-ward, it must be done with aution (e.g., beause theX-dependent matries have di�erent funtional formsat positive and negative X). For X > 0, we obtain
0BBBB� 	��	+�	�+	++ 1CCCCA =

2666666666666664
os �2 0 0 0�i exp(��q2) os �2 p2� exp(�2�2) os �2�(1=2� iq2) 0 00 0 sin �1 00 0 � sin(�q1) sin �1 p2� exp(�2�1) sin �1�(1=2 + q1)

3777777777777775��0BBBB� �+������+�++ 1CCCCA ; (5.33)and for X < 0,0BBBB� 	��	+�	�+	++ 1CCCCA = 26666666664
p2� exp(�2�2) os �2�(1=2� iq2) �i exp(��q2) os �2 0 00 os �2 0 00 0 sin �1p2� exp(�2�1)�(1=2 + q1) � sin(�q1) sin �10 0 0 sin �1

37777777775��0BBBB� ����+��++��+ 1CCCCA : (5.34)The produt of the matrix inverse to (5.33) and the matrix in (5.34) determines the sought onnetion matrixrelating the semilassial solutions in the intermediate energy region (f. the onnetion matries for the tunnelingand over-barrier energy regions in (5.20) and (5.22)). Performing this simple algebra, we �nally obtainUross == 26666666664
p2� exp(�2�2)�(1=2� iq2) i exp(��q2) 0 0�i exp(��q2) 2 exp(2�2)�(1=2� iq2) h(�q2) 0 00 0 p2� exp(�2�1)�(1=2 + q1) sin(�q1)0 0 � sin(�q1) os2(�q1)�(1=2 + q1) exp(2�1)

37777777775 :(5.35)275 3*
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Fig. 6. The E, U12 phase diagram (I � tunnelingregion, II � over-barrier region. The two intermedi-ate energy regions III and III0 are separated by the line�� = 0:325)This matrix has a two 2 � 2 blok struture, similarlyto the onnetion matries (5.19) and (5.22) for thetunneling and over-barrier regions. But unlike ma-tries (5.19) and (5.22) desribing the transitions be-tween the diabati states, matrix (5.35) orrespondsto transitions between adiabati states. Indeed, at astrong level oupling (U12 > U�12), the eigenfuntionsare lose to the adiabati funtions and only nonadia-bati perturbations indue transitions. Therefore, theo�-diagonal matrix elements in (5.35), whih have themeaning of the probability that the diabati state re-mains unhanged after the transition, are zero. Theblok with real-valued matrix elements orresponds tothe minimum of the upper adiabati potential, i.e., toan isolated seond-order turning point where [29℄q1 = U� �E + U12
 : (5.36)The omplex-valued blok is assoiated with the max-imum of the lower adiabati potential, and similarlyto (5.36), we an �nd the relationiq2 = �iU� �E + U12
 (5.37)for the turning point. For weak level oupling, namelyat jU� � Ej < U�12 and U12 < U�12 in the inter-
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Fig. 7. Transition matrix element M11 as a funtionof U12=U�12, omputed at � = 0: on the boundary be-tween tunneling and intermediate energy regions (a); atE = U# (b), on the boundary between the intermedi-ate and over-barrier regions (); lines 1, 2, 3, 1 0, 2 0, 3 0,1 00, 2 00, 3 00 are omputed for the orresponding energyregions using (5.19), (5.25), and (5.36), respetivelymediate energy region, the adiabati potentials anbe linearized everywhere exept a small neighborhoodjX j < v=f ! 0 of the level rossing point, i.e., an berepresented as ��f jX j. Asymptoti solutions (5.6) arethen redued to a linear ombination of the funtions276



ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003 Instanton versus traditional WKB : : :��+ / (f jX j)�1=2 exp(��+signX);��� / (f jX j)�1=2 exp(���signX);�� = 23f (f jX j � �)3=2: (5.38)All the matrix elements required an now be al-ulated in the framework of the Landau perturbationtheory [1℄, whih an be formulated in terms of thedimensionless variables~� = 3 � 2�4=3U� �EU12 ; ~� = 3 � 2�4=3U12U�12in order to avoid a divergeny of the parameter � as� ! 0. The results of our analysis are shown inFig. 6. The tunneling and over-barrier regions are sep-arated from the intermediate energy region by the linesjU�12 � Ej = U�12. The intermediate region is also splitinto two parts by the line � = �� = 0:325, where �� isthe value of the Massey parameter � at U12=U�12 = 1and jU��Ej = U�12. In the region � < ��, the perturba-tion theory is an adequate tool for the problem, and thetransition matrix elements are proportional to U12=U�12.At � > ��, we an use onnetion matrix (5.35). Toillustrate the auray of the approximations, we haveomputed the matrix element M11. The results areshown in Fig. 7. Our omputations demonstrate a suf-�iently good preision, seured up to two stable digits.

The auray of the results on the boundaries betweenthe intermediate and over-barrier or tunneling regionsis not worse than 3�5%, and an easily be improvedusing interpolation approahes.6. SCATTERING MATRIXPhenomena of the LZ type an be onsidered as(and applied to) sattering proesses. The expressionsfor 4 � 4 onnetion matries found in Se. 5 an beused to alulate the sattering operator (or matrix) Ŝthat onverts an inoming wave into an outgoing one.We �rst onsider the over-barrier region in therossing problem with two linear potentials. In thisase, in addition to the rossing point hosen asX = 0, there are two linear (�rst-order) turning pointsX0 = �j�j=f (eah turning point for eah of the di-abati potentials denoted by L and R). The sat-tering matrix that relates the asymptoti solutions atX � �X0 and X � X0 is the produt of the 4�4 on-netion matrix (5.22) and the two known semilassialonnetion matries [57℄ (also see [29℄) desribing thewave funtion evolution from the turning point �X0 tothe rossing point 0, and from this point to the turningpoint +X0, respetively. We thus obtain a 2�2 matrixwith the blok matrix elementsT11 = Aif " exp(i(�� �0)) 00 exp(�i(�� �0)) # ;T12 = T �21 = (1�A2if ) exp iW �2 " i �1=2� exp(�iW �) (i=2) exp(�iW �) # ;T22 = Aif " 2 os(W � � (�� �0)) � sin(W � � (� � �0))sin(W � � (�� �0)) (1=4) os(W � � (�� �0)) # ; (6.1)
where Aif = (1� exp(���))1=2is the LZ amplitude of the transition between the di-abati states, � � �0 = ~� (see (5.23)), and W � is theation between the linear turning points.The diagonal elements in (6.1), proportional to thetransition amplitude Aif , desribe propagating waves(i.e., solutions of the Shrödinger equation in the loweradiabati potential), and the osillating bloks or-respond to solutions in the upper adiabati poten-tial. O�-diagonal bloks, proportional to the probabil-ity that the initial diabati states remain unhanged,

desribe the waves re�eted from the linear turningpoints. The re�etion (R) and transmission (T ) o-e�ients, interesting in physial appliations, an befound from (6.1) by a straightforward alulation,R = �i(1�A2if )[A2if exp(iW ��2i(���0))++ exp(�iW �)℄�1;T = 2Aif os(W � � (�� �0))�� [A2if exp(iW � � 2i(�� �0)) ++ exp(�iW �)℄�1: (6.2)
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ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003 Instanton versus traditional WKB : : :os[2(W � � (�� �0))℄ == ��1� 12 exp(�2��)� (1� exp(�2��))�1=2: (6.3)The ation is omplex-valued at the resonane points,Re(W � � (�� �0)) = �n+ 12��;Im(W � � (�� �0)) = �12 ln(1� exp(�2��)): (6.4)The poles of the sattering matrix are in the lower half-plane of omplex E on the vertial lines orrespond-ing to the onventional Bohr�Sommerfeld quantizationrules (W � = �(n + 1=2)) for the upper adiabati po-tential. In the diabati limit (� ! 0), the imaginarypart of the pole positions tends to in�nity, and in theadiabati limit (� ! 1), the poles move to the realaxis. Thus, we see that the eigenstates of the up-per adiabati potential are always quasistationary ones.The resonane widths are determined by the residues ofthe sattering matrix elements at the poles and an be

shown to be monotonially dereasing funtions of �.In Fig. 8, we show the energy dependene of the trans-mission oe�ient T . In the diabati limit, T ! 0,and it inreases as U12 inreases. In the over-barrierregion, there appear resonanes with the widths �n in-reasing with the energy inrease, beause the Masseyparameter then dereases and �n / exp(�2��).We illustrate the energy dependene of the trans-mitted wave phase in Fig. 9. In aordane with thegeneral sattering theory [1℄, there are �-jumps of thephase at eah quasidisrete energy level of the up-per adiabati potential. At U12=U�12 < 1, the reso-nane widths are of the order of the inter-level spaings.The amplitudes of the deaying solutions (loalized inthe well formed by the upper adiabati potential) in-rease near the resonanes; this behavior is illustratedin Fig. 10. A primarily important point is that theinformation about deaying solutions ontained in the4 � 4 onnetion matrix (e.g., (5.22)) is lost when weuse 2� 2 sattering matrix (6.1).The sattering matrix for the tunneling region anbe found by minor modi�ations of the expression al-ready derived. Instead of matrix (6.1), we thus obtainT11 = " (1=4)M11 exp(�W �) +M22 exp(W �) i((1=4)M11 exp(�W �)�M22 exp(W �))�i((1=4)M11 exp(�W �)�M22 exp(W �)) (1=4)M11 exp(�W �) +M22 exp(W �) # ;T12 = T �21 = os(��) exp iW �2 " i �(1=2) exp(�W �)�1 (i=2) exp(�W �) # ;T22 = " M11 00 M22 # ; (6.5)
where M11 and M22 are the orresponding matrix elements from (5.19).We also ompute the re�etion and transmission oe�ientsR = �i �exp(W �)� 14M211 exp(�W �)� �exp(W �) + 14M211 exp(�W �)��1 ;T = M11 �exp(W �) + 14M211 exp(�W �)��1 : (6.6)In the intermediate energy region, the only blok matrix element T11 requires a speial alulation taking theontributions from the omplex turning points into aount,T11 = 26664 p2� exp(��q2=2)�(1=2� iq2) i exp(��q2)�i exp(��q2) 2�(1=2� iq2) exp(��q2=2) h(�q2)p2� 37775 : (6.7)279



V. A. Benderskii, E. V. Vetoshkin, E. I. Kats ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003The other matrix elements are the same as in (5.34).Finally, we also �nd the re�etion and the transmissionoe�ients in the intermediate energy region,R = exp(��q2)p1 + exp(�2�q2) exp h�i��� �2�i ;T = 1p1 + exp(�2�q2) exp(�i�); (6.8)where � = arg[�(1=2� iq2)℄.7. QUANTIZATION RULES FOR CROSSINGDIABATIC POTENTIALSAlthough instanton trajetories are rather simpleobjets and an relatively easily be found analytially,alulations of the quantization rules within the instan-ton approah are rather involved and require the knowl-edge of the sattering matrix and all the onnetionmatries alulated in the previous setions. In thissetion, we apply these results to �nd the quantiza-tion rules for the rossing diabati potentials shown inFig. 11. Depending on the Massey parameter, the situ-ations shown in the �gure exhaust all ases pratiallyrelevant for spetrosopy of nonrigid moleules (sym-metri or asymmetri double-well and deaying poten-tials).Within the instanton approah, the quantizationrule an be formulated as the vanishing ondition forthe amplitudes of the solutions �+L and �+R that expo-nentially inrease at X > 0 and X < 0, respetively.Taking into aount that W �L = W �R (the ations inthe orresponding wells of the lower adiabati poten-tial) and using onnetion matrix (5.19), we obtain thequantization ruletg(W �L) = �2p exp(W �B); (7.1)where W �B is the ation in the barrier formed in thelower adiabati potential and p � U11 is the orre-sponding matrix element of onnetion matrix (5.19).Quantization ondition (7.1) di�ers from the well-known [1℄ quantization rule for the symmetri doub-le-well potential only by the fator 1=p varying from 0to 1 in the diabati and adiabati limits. Therefore,the tunneling splitting at �nite values of the Masseyparameter � an be represented as the produt�n = �0n p(�) (7.2)of the tunneling splitting �0n in the adiabati potentialand the fatorp(�) = p2��(�)��1=2 exp(��) (7.3)

2U12
a

b 
Fig. 11. The diabati level rossing phenomena: a �rossing region, b � bound initial and deay �nalstates,  � bound initial and �nal statesassoiated with the transition amplitudes between thediabati potentials in the rossing region.It is partiularly instrutive to onsider (7.1) as thestandard [1℄ Bohr�Sommerfeld quantization rule, withboth the geometri 'n and tunneling �n phases in-luded additively in the right-hand side. In the adi-abati limit p(�) ! 1, we �nd that 'n ! 0 and (7.1)redues to the quantization of the symmetri double-well potential. In the diabati limit, 'n = ��n andthe geometri phase ompensates the tunneling one.The physial argument leading to this ompensationan easily be rationalized as follows. At the re�etionat the rossing pointX = 0, the trajetories in the las-sially forbidden energy region are the same as those forthe tunneling region but with the phase shift �.We now fous on quantization rules for the over-barrier energy region. Closely following the above anal-ysis for the tunneling region (replaing onnetion ma-trix (5.19) by matrix (5.22) and making some otherself-evident replaements), after some tedious algebrawe �nally obtain the quantization rule280



ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003 Instanton versus traditional WKB : : :(1� exp(�2��)) os(2W �L + (�� �0))�� os(W � � (� � �0)) ++ exp(�2��) os2�W �L + W �2 � = 0; (7.4)where W � is the ation in the well formed by the up-per adiabati potential and � � �0 = ~� is determinedfrom (5.23). Equation (7.4) implies that the eigenstatesare determined by the parameterB = exp(�2��)1� exp(�2��) : (7.5)In the diabati limit � ! 0, and hene B ! 1=(2��),the main ontribution to (7.4) is due to the seondterm, whih leads to a splitting of degenerate levelsin the diabati potentials. Moreover, beause �W �L + W �2 � = ��n+ 12��2� sin ��W �L + W �2 �� �+ �0�� ; (7.6)the splitting inreases as the Massey parameter � in-reases; the splitting is an osillating funtion of theinteration U12.In the adiabati limit, as � ! 1, � � �0 ! 0, andtherefore B � exp(�2��) in aordane with (7.5), themain ontribution to (7.4) omes from the �rst term,whih determines the quantization rule for the upperone-well potential and for the lower double-well poten-tial in the over-barrier energy region. In this limit, theparameter B plays the role of the tunneling transitionmatrix element. For B smaller than the nearest levelspaings for the lower and upper potentials, we an �ndtwo sets of quantization rules from (7.4) that lead totwo sets of independent energy levelsW � = ��n1 + 12� ; 2W �L = ��n2 + 12� : (7.7)Beause the eigenstate energy level displaements de-pend on U12, resonanes an our at ertain valuesof this parameter, where the independent quantizationrules in (7.7) are not orret any more. The widths ofthese resonanes are proportional to exp(�2��) and aretherefore strongly diminished as the Massey parameter� inreases. This behavior is easily understood, beausethe wave funtions of the exited states for the lowerpotential are deloalized in the limit, and their am-plitudes in the loalization regions for the low-energystates of the upper potential are very small.A more ompliated problem is to derive the quanti-zation rule in the intermediate energy region. We must
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V. A. Benderskii, E. V. Vetoshkin, E. I. Kats ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003respetive subsripts 0 and e denote the ground andthe �rst exited states) orrespond to the two possibletypes of level rossings.In Fig. 12, we shematially depit the dependeneof the level positions on the oupling U12. In theenergy region E � U� + U12, where only disrete le-vels of the lower adiabati potentials exist, there arepairs of the alternating parity levels (	+e ; 	�0 ) and(	+0 ; 	�e ). The tunneling splittings inrease monoton-ially beause the Massey parameter � inreases, andthe barrier dereases with U12. The same level andparity lassi�ation remains orret for the energy re-gion above the barrier of the lower adiabati potential,where the spetrum beomes almost equidistant. Butin the over-barrier region, the resonanes our betweenlevels of the same parity; the sequene of the odd andof the even levels is broken, and level displaements arenot monotoni funtions of U12. Some of the levels ofdi�erent parities an pairwise ross. For the upper adi-abati potential, the level sequene is opposite to thatfor the lower adiabati potential. We have heked theresults of our semilassial approah and found a re-markably good agreement with the numerial quantumdiagonalization.The seond instrutive example involves the ross-ing of one-well and linear diabati potentials. It leadsto the lower adiabati deay potential and to the upperone-well adiabati potential. The quantization rulesthen orrespond to the vanishing amplitudes for theexponentially inreasing solutions as X ! �1; in ad-diton, we must require that no waves propagate fromthe region of in�nite motion, i.e., the region X > 1=2.Performing the same proedure as above, we �nd thatin the tunneling energy region, the eigenstates are theroots of the equationtg(W �L) = �i 4p2(�) exp(2W �B); (7.10)with the same notation as above.To proeed further, it is onvenient to introdue aomplex ation to desribe quasistationary states,W �L = ��En
 � i�n2
� ; (7.11)where 
 = �WL=�E is evidently independent of E.The real and imaginary parts of the quantized eigen-states determined from (7.11) are given byEn = 
�n+ 12� ;�n = p2(�) 
2� exp(�2W �B): (7.12)

This relation desribes the nonadiabati tunneling de-ay of quasistationary states of the lower adiabatipotential. Similarly to the ase with the rossing oftwo paraboli potentials, Eq. (7.2), the tunneling andthe adiabati fators here enter the deay rate multi-pliatively. Beause the deay rate is proportional tothe square of the tunneling matrix element, we have�n / p2(�), as it should be.In the over-barrier energy region, the quantizationrule is(1� exp(�2��) exp[�i(W �L + �� �0)℄�� os(W � � �+ �0) + exp(�2��)�� exp�� iW �2 � os�W �L + W �2 � = 0; (7.13)and the ations depend on the energy E asW �L = �E
 ; W = ���U� + U12
1 + E
1� ; (7.14)where 
 and 
1 are E-dependent frequenies of thediabati and the upper adiabati potentials.In the diabati limit, the deay rate is proportionalto the Massey parameter and is given by�n � �� os2(W � �+ �0): (7.15)In the opposite, adiabati limit, the deay rate is�n � exp(�2��)[1� sin(2W �L + �� �0)℄: (7.16)In both limits, the deay rate is an osillating fun-tion of U12. We illustrate the dependene �(U12) forthe rossing diabati potentials U1 = (1 + X)2=2 andU2 = 1=2�X in Fig. 13. We note that while the tun-neling deay rate of low-energy states inreases mono-tonially with the Massey parameter �, the deay rateof highly exited states tends to zero in both (diabatiand adiabati) limits. There are ertain harateris-ti values of U12 at whih the right-hand side of (7.15)or (7.16) vanishes, and therefore �n = 0.The last, more general example that we onsiderin this setion desribes two nonsymmetri potentialsrossing at X = 0,U1 = 12(1 +X)2; U2 = 12b(X2 � 2bX + b): (7.17)In a ertain sense, this is the generi ase, and as theparameter b entering potential (7.17) varies from 1 to1, we reover the two partiular examples onsideredabove and pass from two idential paraboli potentialsto the rossing of the one-well and linear diabati po-tentials. Potentials U2 of this type were reently inves-tigated by two of the authors (V. B. and E. K.) [64℄ with282
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Fig. 13. �n versus U12 for the quasistationary states atthe diabati potentials (1+X)2=2 and 1=2�X ross-ing; (a) 1�4 are the level energies 0:042, 0:125, 0:208,and 0:292 for the lower adiabati potential, (b) 1 0�3 0are the level energies 0:625, 0:708, 0:792 for the upperadiabati potentialthe aim to study the rossover behavior from oherentto inoherent tunneling with the inrease of the pa-rameter b; the larger b is, the larger the density of �nalstates beomes. The riterion for oherent�inoherentrossover behavior found in [64℄ is based on ompar-ison of the transition matrix elements and the inter-
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V. A. Benderskii, E. V. Vetoshkin, E. I. Kats ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003ited states. In the diabati limit, the transition ma-trix element inreases with the Massey parameter �,and therefore at a given b value, the system moves tomore inoherent behavior. In the adiabati limit, thetransition matrix element is exponentially small and o-herene of the inter-well transitions should be restored.But beause the matrix elements are osillating fun-tions of U12 for the intermediate range of this oupling,oherent�inoherent tunneling rates are also nonmono-tonially varying funtions. These unusual phenomenaare illustrated in Fig. 14, where we show time depen-dene of the survival probability P for the initially pre-pared state n = 0 loalized in the left well.8. CONCLUSIONSWe have reonsidered a very basi subjet, the LZproblem. Currently, about 100 publiations per yearare related to the LZ problem. Clearly, it is impos-sible to give a omplete analysis of the ahievementsin this �eld. Our aim was therefore only to showsome reent trends and our new results, to help be-ginners and experts �nd ross-referenes between themany physial phenomena related to the LZ prob-lem. The problem was �rst addresses long ago, andmany results, already lassi, are now known from text-books [1; 37℄. Although exat quantum-mehanial al-ulations are still prohibitively di�ult, many impor-tant results have been obtained in the framework ofthe WKB approah [1�65℄. The auray of the modi-�ed WKB methods an be improved onsiderably; wenote, e.g., [30℄, where the standard WKB was extendedby the inlusion of a speial type of trajetories in theomplex phase plane suh that the semilassial motionalong these trajetories is desribed by the Weber fun-tions. This method, asending to Landau [1℄, is equiv-alent to the appropriate hoie of the integration patharound the turning point. It appears to be quite au-rate for the tunneling and over-barrier regions, wherethe harateristi fourth-order polynomial (see (4.16))an be redued to a seond-order polynomial (two pairsof roots are nearly degenerate). But even in this ase,some orretions have been found in [23�25℄ that an-not be negleted. In the intermediate energy region,where all four roots are notieably di�erent, the methodbeomes invalid. In addition, the hoie of these addi-tional speial trajetories (whih must be inluded toimprove the auray of the WKB method near thebarrier top) depends on a detailed form of the poten-tial far from the top, and therefore a nonuniversal pro-

edure is to be performed from the very beginning ineah partiular ase.We believe we are the �rst to expliitly addressesthe problem of the behavior in the intermediate energyregion. In all previous publiations, this region wasonsidered as a very narrow and insigni�ant one, or atmost, the results were obtained by a simple interpola-tion from the tunneling region (with a monotoni deayof the transition probability) to the over-barrier region(with osillating behavior). The fat is that lassialtrajetories an be separated into two lasses, �loal-ized� and �deloalized�, in the following sense. If theenergy is su�iently lose to the minimum or maxi-mum of the potentials, the trajetories an be alledon�ned, beause they are determined by the universalfeatures of the potentials in the viinity of these ex-tremal points. Evidently, this is not the ase in the in-termediate energy region. In this paper, we have foundthat ontrary to a ommon belief, the instanton tra-jetory is a rather simple objet and an be expliitlyomputed even for the intermediate energy region.Within the framework of the instanton approah,we present a full and uni�ed desription of the 1D LZproblem, whih an very often be quite a reasonableapproximation for real systems. Beause di�erent ap-proahes have been proposed to study the LZ problem,we develop a uniform and systemati proedure for han-dling the problem. We reprodued all the known resultsfor tunneling and over-barrier regions, and studied theintermediate energy region. Spei�ally, we appliedour approah to the Born�Oppenheimer sheme, for-mulated the instanton method in the momentum spae,and presented all the details of the LZ problem for twoeletroni states also using the instanton desriptionof the LZ problem in the oordinate spae. Neglet-ing higher-order spae derivatives, we found asymptotisolutions; using the adiabati�diabati transformation,we then mathed the solutions in the intermediate re-gion. Based on these results, we derived the ompletesattering matrix for the LZ problem, the quantizationrules for rossing diabati potentials. Our results anbe applied to several models of level rossings that arerelevant in the interpretation and desription of experi-mental data on spetrosopy of nonrigid moleules andon other systems undergoing rossing and relaxationphenomena.We also note that in spite of a su�iently long his-tory of the LZ phenomena, the study is still in an a-elerating stage, and a number of questions remain tobe lari�ed (we mention only several new features ofthe phenomena that attrated attention reently, likethe LZ interferometry for qubits [74℄, LZ theory for284



ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003 Instanton versus traditional WKB : : :Bose�Einstein ondensates [75℄, and multi-partile andmulti-level LZ problems [76�79℄). Muh of the exite-ment arises from the possibility of disovering novelphysis beyond the semilassial paradigms disussedhere. For example, we found in Ses. 2 and 3 thatthe wave funtions of nulei moving along periodi or-bits aquire geometri phases (the e�et is analogousto the Aharonov�Bohm e�et [38℄, but is related not toexternal magneti �elds, but to nonadiabati intera-tions). The relation between the two phenomena, thegeometri phases and the periodi orbits, an be estab-lished using the Lagrangian (instead of Hamiltonian)formulation of the problem, whih enables taking thetime dependene of the adiabati proess under onsid-eration into aount expliitly, using propagator teh-nique [34�36℄ (also see, e.g., [4; 43℄). Properly handlingthese aspets is beyond the sope of our work, how-ever. Further experimental and theoretial investiga-tions are required for revealing the detailed mirosopiand marosopi properties of di�erent LZ systems.In the fundamental problems of hemial dynamisand moleular spetrosopy, transitions from the ini-tial to �nal states an be treated as a ertain motionalong the potential energy surfaes of the system un-der onsideration. These surfaes are usually deter-mined within the Born�Oppenheimer approximation(see Se. 2). However, the approximation beomes in-adequate for the exited vibrational states when theirenergies are of the order of the eletroni inter-level en-ergy spaing or near the dissoiation limit. In bothases, nonadiabati transitions should be taken intoaount, and most of the nonradiative proesses o-ur owing to this nonadiabatiity. Typial examplesinvestigated in [80℄ are the so-alled pre-dissoiation,singlet�triplet or singlet�singlet onversion, and vibra-tional relaxation phenomena.Slow atomi ollisions provide other examples ofnonadiabati transitions between eletroni states,where the time dependene of the states is determinedby distane and by the relative veloity of the ollidingpartiles [33℄. Some examples of nonadiabati transi-tions relevant in semiondutor physis an be foundin [81℄, those pertaining to nulear or elementarypartile physis in [82℄, and those relevant in laser ornonlinear opti physis in [83�86℄. The latter topi isinteresting not only in its own right, but also as anillustration of novel and fundamental quantum e�etsrelated to the LZ model. The o�-diagonal eletronistate interations arise from the dipole fores in thisase. For relatively short laser pulses, this leads to thetime-dependent LZ problem for two eletroni states,onsidered in our paper in detail (also see the laser
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