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UNDERSTANDING ATOMIC PROCESSES IN TERMSOF COULOMB SINGULARITIEST. Suri¢ *R. Bo²kovi¢ Institute, Zagreb, P.O. Box 180, 10000 Zagreb, CroatiaE. G. Drukarev **Petersburg Nu
lear Physi
s Institute188300, Gat
hina, Leningrad region, RussiaR. H. PrattDepartment of Physi
s and Astronomy, University of PittsburghPittsburgh, PA 15260, USASubmitted 30 De
ember 2002Many aspe
ts of high-energy atomi
 pro
esses 
an be des
ribed in terms of singularities of a many-body Hamil-tonian using the generalized asymptoti
 Fourier transform (AFT) theory. The study of matrix elements indi�erent kinemati
 regimes is related to the study of singularities (points of nondi�erentiability) of the wavefun
tions and the e�
 intera
tion. These singularities re�e
t the singularities of the many-body Hamiltonian.We illustrate the prin
iples of the AFT approa
h in the simple example of photoabsorption by the ele
tronbound in a potential with a Coulomb singularity. We exhibit two general results that are important for anymany-body system: 1) the quality of approximate results in di�erent forms (�gauges�) depends on the qualityof the des
ription of the wave fun
tions in the vi
inity of singularities and 2) due to the 
hara
ter of the Coulombsingularity, photoabsorption 
ross se
tions 
onverge slowly to their asymptoti
 form as the energy in
reases. Butthe slowly 
onverging behavior of these 
ross se
tions is due to one 
ommon fa
tor (the Stobbe fa
tor), whi
h
an be obtained analyti
ally in terms of the 
hara
terization of the vi
inity of the singularity. The 
ommonStobbe fa
tor explains why ratios of 
ross se
tions 
onverge more rapidly than the 
ross se
tions themselves.PACS: 32.80.Fb 1. INTRODUCTIONHigh-energy atomi
 pro
esses 
an be des
ribed interms of singularities of the many-body Hamiltonian.The asymptoti
 Fourier transform (AFT) theory [1, 2℄
an provide su
h a des
ription. In this paper, we ap-ply the AFT approa
h to photoabsorption (at high butnonrelativisti
 energies) in a simple atomi
 system, theele
tron in a potential with a Coulomb singularity. Thisserves to illustrate general points that are important ina variety of more 
omplex systems. In parti
ular, weillustrate: 1) dependen
e of the required wave fun
tionquality on the intera
tion form (�gauge�) utilized and2) extra
tion of a 
ommon fa
tor (the Stobbe fa
tor)*E-mail: tiho�lei2.irb.hr**E-mail: drukarev�thd.pnpi.spb.ru

that 
ontains all slow 
onvergen
e of the matrix ele-ments to their high-energy limit.The study of single-photon ionization pro
esses re-sulting in single [3, 4℄ or multiple [5, 6℄ ionization of anatom is of fundamental and pra
ti
al importan
e. Newexperimental possibilities, modern syn
hrotron sour
esand experimental methods [7℄ result in better under-standing of the ele
tron 
orrelation e�e
ts in 
omplexsystems and in pro
esses involving these systems [8�12℄.Re
ently, we have proposed a uni�ed des
ription [1, 2℄of the pro
esses of high-energy1) ionization by photoab-sorption, based on the mathemati
ally well foundedAFT theory. The idea is based on the 
lose relation1) By high energy, we mean that the photon energy ! � EB(where EB is the binding energy of the state that is ionized), butstill ! � m (for a nonrelativisti
 des
ription of ele
trons).243
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tions with singularities (by a sin-gularity, we mean a point where a fun
tion is not dif-ferentiable).A

ording to the AFT theory, the asymptoti
Fourier transform of a fun
tion with singularities is de-termined by the behavior of the fun
tion in the vi
inityof these singularities [13; 14℄. Be
ause photoabsorptionat high photon energies requires at least one large out-going ele
tron momentum p, we 
an generally arguethat the analysis is equivalent to the analysis of theasymptoti
 forms of Fourier transforms (FT). A slowasymptoti
 de
rease for large p, su
h as 1=pn for ex-ample, of the FT of a well-lo
alized fun
tion, resultsonly from singularities of that fun
tion. By studyingsingularity stru
tures of the wave fun
tions, whi
h fol-low from the S
hrödinger equation, one is then ableto address various, quite general, issues of the matrixelement (su
h as the intera
tion-form dependen
e ofapproximate matrix elements and the nature of 
onver-gen
e with energy to high-energy forms) without need-ing the full knowledge of the many-body wave fun
-tions. The AFT approa
h has been applied to doubleionization [1℄ of He-like systems and single ionizationof more 
omplex atoms [2℄.In this paper, we des
ribe this approa
h to photoab-sorption (and perhaps other related) pro
esses at highbut nonrelativisti
 energies. We use the example of sin-gle ionization within a 
entral �eld independent parti
leapproximation (IPA) model and assume that the IPApotential near the nu
leus is point Coulomb. We usethis simple and familiar model in order to illustrate themain points of our general approa
h in the 
ontext ofa relatively simple and familiar situation where mostfeatures 
an 
learly be seen. We view the idea of theAFT approa
h very general, and by presenting it in arelatively simple situation we want to motivate its ap-pli
ation to other pro
esses. The kinemati
 situationsthat o

ur in high-energy photoabsorption 
an also o
-
ur in other pro
esses, e.g., in 
harged parti
le s
at-tering. In su
h situations, the AFT approa
h 
onne
tsmatrix element of the pro
ess with the singularities ofthe system involved in the pro
ess.Another important motivation in 
onsidering thesimple system is to illustrate and emphasize two oftennegle
ted points, whi
h are general for any photoab-sorption pro
ess, and for whi
h purpose an IPA modelis su�
ient. The �rst point is 
on
erned with how thequality of approximate results depends on both thequality of approximate wave fun
tions used and theintera
tion form 
hosen. For example, a plane-wavedes
ription of fast ele
trons is generally inadequate, as

dis
ussed in [15�18℄. The se
ond point is that due tothe Coulomb singularity, any high-energy photoabsorp-tion 
ross se
tion (for ionization of a system with an in-tera
tion having a Coulomb singularity) has the Stobbefa
tor, whi
h must be extra
ted in order to obtain a fast
onvergen
e of the results. This is very important forhigh-energy studies of photoabsorption. For example,be
ause absolute measurements at higher energies areless a

urate than at lower energies, the high-energyresults are often obtained from lower energy resultsassuming some asymptoti
 behavior. It is sometimesassumed [5; 19℄ that at some �nite energy (not takensu�
iently high), the 
ross se
tions for photoabsorp-tion follow the leading-order Born result. This 
auseserrors in reported 
ross se
tions.We 
onsider the adequa
y of various forms of ma-trix elements (length (L), velo
ity (V) or a

eler-ation (A) forms) in using approximate wave fun
-tions of various qualities in the vi
inity of a singu-larity. We demonstrate that nonrelativisti
 IPA high-energy photoabsorption is determined (up to 
orre
-tions O(1=p2) � O(1=!), where p is the outgoing ele
-tron momentum) by the initial state normalization andthe point Coulomb singularity. This result is form-independent, but whether the information about thesingularity 
omes from the intera
tion (as in the A-form) or from the initial and �nal state (as in the L-and V-forms), is form-dependent. In su
h a way, we areable to identify ne
essary 
onditions for all the threeforms to give the 
orre
t high-energy result in the IPA
ase. We also expli
itly obtain the order of magnitudeof the error resulting from the error in the des
riptionof the wave fun
tions in the vi
inity of the singularity.We 
onsider this at two levels of a

ura
y (dependingon the a

ura
y of the des
ription of the wave fun
tionsin the vi
inity of the singularity). We �rst 
onsider theleading-order results in 1=p that 
an be obtained bytaking a simple des
ription of the wave fun
tions inthe vi
inity of the singularity. To illustrate the sour
eof the general Stobbe fa
tor, we then use a des
rip-tion that 
ompletely in
ludes the strong e�N Coulombintera
tion.We begin in Se
. 2 with a general dis
ussion of theAFT of singular fun
tions. We dis
uss the 
onne
tionwith the photoabsorption matrix element and di�er-en
es (modi�
ations of the asymptoti
 AFT) requireddue to the presen
e of Coulomb fun
tions. In Se
. 3,we begin the dis
ussion of the behavior of the photoef-fe
t matrix element in an IPA potential. Here, we takethe simplest des
ription of the wave fun
tions, whi
hprovides an illustration of the main ideas. In Se
. 4, we
onsider the simplest 
ase, photoabsorption by an s-244
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 pro
esses : : :state in a purely Coulomb potential, negle
ting retarda-tion in order to make 
omparison with the well-knownresults obtained in the Born expansion approa
h. Wethere illustrate our AFT approa
h in more detail. InSe
. 5�7, we remove the 
onstraints of the simplest 
ase,identifying the resulting additional features. We showhow the approa
h works for non-s-states (Se
. 5) andfor a general IPA potential with a point Coulomb singu-larity (Se
. 6). We dis
uss relativisti
 and retardation
ontributions in Se
. 7. Finally, in Se
. 8, we show howmore a

urate results (together with a measure of theirerror) 
an be obtained by fully in
luding in the wavefun
tions the intera
tions that are strong in the vi
inityof the singularity (e�N). We also assess the importan
eof the 
ontributions arising from intera
tions that areweak in the vi
inity of the singularity (s
reening, or 
or-relations more generally). We dis
uss the 
onvergen
eof the results to asymptoti
 forms with in
reasing en-ergy. We expli
itly obtain a 
ommon fa
tor (the Stobbefa
tor) arising from the e�N intera
tion that 
ontainsall the slowly 
onverging behavior. This explains whyratios of 
ross se
tions 
onverge to asymptoti
 formsmu
h more rapidly than the 
ross se
tions themselves.In Se
. 9, we summarize our 
on
lusions.2. GENERAL CONSIDERATIONSIn general, the �nal-state wave fun
tion inhigh-energy photoionization of a many-ele
tron atomis of the form exp(ip � r1)�p;�, where p denotes thelarge momentum of one eje
ted ele
tron (there must beat least one), r1 is its spa
e 
oordinate, and � denotesquantum numbers of other ele
trons in the �nalstate. Be
ause the outgoing ele
tron wave fun
tionis des
ribed by a plane wave and in
oming spheri
alwaves at large distan
es (with appropriate long-rangeCoulomb logarithmi
 fa
tors), these os
illations limitthe range in r1 that 
ontributes to the matrix elementintegral, whi
h 
an be viewed as a FT in the ele
tronmomentum p of slowly varying fun
tions. (Be
ausewe have assumed nonrelativisti
 energies, there are noos
illations of any retardation fa
tor in the intera
tionin this range.) We dis
uss the remaining p-dependen
ein the Coulomb wave fun
tion in this range below. Be-
ause large ! ne
essarily implies large p, the study ofthe photoabsorption matrix element at large energiesis equivalent to the study of the asymptoti
 form ofthe FT.The study of the asymptoti
 form of the FT arisingin our problems is based on the theory of generalizedfun
tions [13℄. By de�nition [14℄, a good fun
tion f is

an in�nitely di�erentiable fun
tion of n variables su
hthat Rl �f�x�1�x�2 : : : �x�n ! 0; R!1 (1)for any l and m and any 
hoi
e of the indi
es �1,�2; : : : ; �n (with �1 + �2 + : : : + �n = m), whereR � (x21 + x22 + : : : + x2n)1=2. (In the terminologyof [14℄, these are 
alled � fun
tions.) The theorem [13,Theorem 2, p. 15℄ says that the FT of a good fun
-tion is a good fun
tion [13; 14℄. This implies thatasymptoti
ally, the Fourier transform g(p1; : : : ; pn) ofa good fun
tion de
reases faster than any power ofp � (p21 + p22 + : : : + p2n)1=2. We 
all this the AFTtheorem. An example of su
h a fun
tion in three di-mensions is given by f1(r) = exp(�r2). For large p,the FT F1(p) / exp(�p2=2) of this fun
tion de
reasesexponentially, i.e., faster than any power of 1=p, in a
-
ordan
e with the AFT theorem.The fun
tions that appear in our photoionizationmatrix elements, even for the photoionization of a par-ti
le in a potential, are well lo
alized (be
ause thebound state is lo
alized), but are singular [20℄, i.e., non-di�erentiable, at 
oales
en
e points. The wave fun
-tions, whi
h are eigenstates of a many-body Hamil-tonian with Coulomb intera
tions, have singularitiesat the singularities of the Hamiltonian, whi
h are lo-
ated at points where the parti
les 
oales
e. We usethe term 
oales
en
e points for the lo
ations of thesesingularities. In general, there are double 
oales
en
epoints where two parti
les meet2) and multiple 
oales-
en
e points where more than two parti
les 
oin
ide.The properties of wave fun
tions in the near vi
inity ofthese singularities, whi
h are well understood for boundstates [20; 21℄, 
an be extra
ted from the S
hrödingerequation. They are known as 
oales
en
e properties,and for s-states, they are often 
alled Kato 
usp 
on-ditions. We use the term Kato 
usp 
onditions moregenerally, to denote exa
t behavior of the wave fun
-tions at a two-parti
le singularity. (There must also besingularities in the e�
 intera
tion operator, dependingon the form that we take.)In the vi
inity of a singularity, the fun
tions whoseFT is 
al
ulated 
an be written in terms of simplerfun
tions fs (with s standing for �simple�) whose FT isknown and a remainder O whose FT is asymptoti
ally2) Finite nu
lear size does not a�e
t our 
on
lusions in anyway be
ause the distan
es probed at nonrelativisti
 energies aremu
h larger than the size of the nu
leus. A �nite nu
lear size
annot be relevant for photoabsorption (when the total 
ross se
-tion is 
onsidered, for example) even at ultrarelativisti
 energies,see Se
. 7.245
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all this the partitioning (fs+O) of fun
-tions. A

ording to the theory of generalized fun
tions,the FT of a generalized fun
tion with singularities isapproximated by the FT of these simpler fun
tions fs,while the size of the FT of the remainder O gives a mea-sure of the a

ura
y of the approximation. The pointis that by taking fs more a

urately in the vi
inity ofthe singularity, we 
an in prin
iple a
hieve arbitrarya

ura
y [14, Theorem 19, p. 52℄. A simple example ofsu
h a singular fun
tion is given by f2(r) = exp(�r).The FT of this fun
tion is F2(p) / (1 + p2)�2, whi
hindeed de
reases as a power of p. By partitioning f2 interms of polynomials3) in r and usinglim"!0 Z exp [�("r + ip � r)℄ rnd3r == 4�(n+ 1)!(ip)n+3 ( 0; even n � 0,1; odd n > 0 (2)(where we assume that p 6= 0, and therefore do not in-
lude Æ-fun
tion terms), we reprodu
e the expansion ofF2(p) in powers of 1=p. If we used some other parti-tionings, we would not obtain powers in 1=p, but rathersome other fun
tion of p, depending on the nature offs used. The point is that the asymptoti
 FTs of su
hsimpler fun
tions approa
h the exa
t FT for large p andthe FT of the remainder vanishes faster, in a

ordan
ewith the theory of the FT of generalized fun
tions.This is an illustration of the general idea. The fun
-tions that appear in our matrix element 
an be writtenin terms of simpler fun
tions, whi
h are required bythe Kato 
onditions to have the Coulomb behavior inthe vi
inity of a two-parti
le singularity, as explainedbelow. In obtaining leading-order results, or in simple
ases that we 
onsider for illustration, we use polyno-mials in r (the interparti
le distan
e) as our simplerfun
tions. These polynomials 
an be viewed as expan-sions in r (whi
h 
an exist in IPA potentials). But inmore general situations (with more ele
trons involved,e.g., as 
onsidered in [1℄) we 
annot assume that sin-gular fun
tions are expandable in in�nite series in r inthe vi
inity of any singularity. In su
h 
ases, we 
anstill partition a singular fun
tion in the vi
inity of asingularity into a simple fun
tion (perhaps a polyno-mial or the Coulomb fun
tion) and a remainder, whi
hmay not ne
essarily be expandable but whi
h vanishesfaster than the simple fun
tion as r approa
hes the sin-gularity. In obtaining our full IPA results in Se
. 8,3) Polynomial partitioning requires a 
onvergen
e pro
edure;we multiply ea
h term in fs with exp(�"r) and let "! 0 after theintegration is performed. This is 
onsistent with the de�nitionof the FT of generalized fun
tions [14, p. 33℄.

partitioning in terms of Coulomb fun
tions is required(be
ause all orders in the e�N intera
tion are required).Su
h a 
hoi
e is su�
ient for our purposes; it gives a
-
urate results negle
ting the order m�2=p2 (we use thesystem of units ~ = 
 = 1) and allows us to 
olle
t allCoulomb slowly 
onverging terms in (powers of) �a=p(when full Coulomb fun
tions are used), a = mZ�,where Z is the nu
lear 
harge and m is the ele
tronmass. If better a

ura
y is required, one must go be-yond fun
tions with the Coulomb shape in the vi
inityof a singularity.Expansion of wave fun
tions around the origin(whi
h is the position of the e�N singularity) interms of polynomials has been used previously inboth single and double ionization by photoabsorp-tion [16; 17; 22; 23℄ and in 
ollisions [23℄. Here, we il-lustrate generalizations of these approa
hes using theAFT theory [1, 2℄. We 
an partition (e.g., use Coulombfun
tions, whi
h are mu
h better fun
tions than poly-nomials near the singular point) around singular pointsthat do not have to be at the origin in general and
onsider all singularities on the same footing. An im-portant point of this approa
h is that it 
lari�es whi
hsingularities must be 
onsidered for these partitionings(there are more than one singularity in many-bodywave fun
tions and intera
tions in general [1℄). Asshown in [1℄, the singularities that must be 
onsideredare determined by the kinemati
s of outgoing ele
tronmomenta, identifying situations in whi
h the numberof the asymptoti
 FTs is minimized. Another impor-tant point of our approa
h is that we start from exa
tmatrix elements (with exa
t wave fun
tions) and ex-tra
t and 
olle
t all 
ontributions in the leading powerof 1=p, whi
h determine the high-energy behavior (andthe leading 
orre
tions in some 
ases). With our ap-proa
h, we identify the dominant terms and avoid los-ing any of them; we also avoid un
ontrolled introdu
-tion of spurious 
ontributions. It is illustrated in [1℄how both these problems have arisen in the use of ap-proximate wave fun
tions.There is however a point of di�eren
e between ourasymptoti
 matrix element and the asymptoti
 FT.Namely, after isolating the fast os
illating terms ofthe plane wave, the fun
tion left in the integrand stilldepends on the large momentum variable p (
omingfrom the �nal-state wave fun
tion) through the pr-dependen
e (as for example in 
on�uent hypergeomet-ri
 fun
tions in the Coulomb 
ase). It might thereforebe more appropriate to talk about a generalization ofthe FT. We see in what follows that this additionalp-dependen
e is not a problem. The Coulomb modi�-
ation of the FT results, as we demonstrate in Se
. 8,246
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 pro
esses : : :in a slowly 
onverging fa
tor, the Stobbe fa
tor.A

urate evaluation of the matrix element at highenergies requires knowledge of both initial and �nalstate ele
tron wave fun
tions at the singular point orat all singular points in general, if one goes beyond theIPA. However, how mu
h of this knowledge is a
tu-ally needed in a given 
al
ulation depends on the formof the matrix element used for that 
al
ulation. Aswe demonstrate in 
onsidering the leading-order result,only the normalization of the initial wave fun
tion atthe e�N 
oales
en
e is required if the A-form is used.With other forms (V and L), we generally need furtherinformation about both the initial and �nal states. Theex
eption is for the s-state ionization in the V-form, forwhi
h we need only the normalization and slope of theinitial state at the 
oales
en
e. In any 
ase, this knowl-edge gives us the leading 
ontribution of the high-ener-gy matrix element, whi
h is generally a

urate to therelative order O(�mZ�=p).3. SINGULARITIES OF THE IPA MATRIXELEMENT INTEGRANDFor a single ele
tron in a potential, in the lowestorder of the ele
tron�photon intera
tion, the matrix el-ement for photoionization by photoabsorption is givenby (in units ~ = 
 = 1)M = Z 	(�)�p (r)I(r)	i(r)d3r; (3)where 	i(r) = Rnl(r)Y ml (r̂) is the initial boundstate normalized to unit integrated probability den-sity (the hat denotes the unit ve
tor), 	p(r) == exp(ip � r)�(�)p (r) is the �nal ele
tron 
ontinuumstate normalized on the momentum s
ale (to asymp-toti
ally approa
h a distorted plane wave of the mo-mentum p with the amplitude (2�)�3=2), and I(r) isthe intera
tion operator, given in the three 
ommonlyused forms (keeping retardation to all orders) asIV = �ieik�r� � r; (4)IL = im�! � k22m� � � reik�r � eik�r(� � r)(k � r); (5)IA = �! � k22m��1 �� �ieik�r(� � r)V (r)� 1meik�r(k � r)(� � r)� : (6)

Here, � is the photon polarization and V (r) is an IPApotential energy of the type V (r) = �(Z�=r)S(r),where S(r) is a s
reening fun
tion, whi
h we assume4)
an be des
ribed as a polynomial in r for small r,S(r) = (1+s1r+s2r2+: : : ); the potential therefore hasonly a Coulomb divergen
e and is di�erentiable ex
eptat r = 0. The singularity of the potential energy resultsin singularities in the wave fun
tions 	p and 	i. Thesefun
tions are not di�erentiable at the origin. The e�
intera
tion operator in the L- and V-forms is regular inthis sense, while in the A-form it is singular be
ause itinvolves the singular potential V (r), Eqs. (4)�(6). Thelarge-p behavior of the Fourier transform of a slowlyvarying fun
tion of r is determined by its behavior nearthe 
oales
en
e point (be
ause pr � 1, large p 
orre-sponds to small r) and only depends on the singularparts of the fun
tion. We thus partition the fun
tions	i(r) and �(�)p (r) around the 
oales
en
e point r = 0(the only singular point here). The small-r behaviorof these slowly varying portions of the integrand deter-mine the AFT.The partitioning fs + O in terms of polynomialsof the initial (bound) state with quantum numbers(n; l;m) in an IPA potential with the Coulomb singu-larity is	i(r) = N IPAi rl �� �1� al + 1r + �2r2 + �3r3 +O(r4)�Y ml (r̂): (7)In the simple fun
tion fs (in whi
h the terms are al-ternately regular and singular, with the regular �rstterm, rlY ml (r̂)), the �rst two terms are determinedsolely by the Coulomb singularity of the potential andare therefore known independently of the s
reening, ex-
ept for the overall normalization fa
tor N IPAi (whi
hdepends on the 
hoi
e of the IPA potential). Higher-or-der terms in fs in Eq. (7) depend on the s
reening ofthe IPA potential, whi
h determines the �i 
oe�
ients.The fa
t that the �rst two terms in the parenthesis inEq. (7) are determined by the Coulomb singularity iswell known; it is a spe
ial 
ase of the general behavior ofwave fun
tions at 
oales
en
e points of many-ele
tronatoms [20; 21℄. Namely, in the des
ription of a bound-state many-ele
tron atom wave fun
tion around any
oales
en
e (whi
h in
ludes any ele
tron�ele
tron 
o-ales
en
e) in terms of the relative 
oordinate of the4) Here, we assume a potential that 
an be expanded in integralpowers of r in the vi
inity of a singularity. Using a potential thatis expandable in nonintegral powers of r (e.g., the Thomas�Fer-mi potential VTF = �Z�=r + CTF + O(pr), where CTF is a
onstant) would lead to nonintegral powers of 1=p.247
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oales
ing parti
les, the �rst two terms are deter-mined by the singularity of the 
orresponding part ofthe Coulomb potential, up to an overall fa
tor, andthere is a remainder that vanishes more rapidly thanlinearly in the 
oordinate. These two terms and thenormalization 
onstant are all that we need from theinitial-state wave fun
tion (we also need informationfrom the �nal state) in order to determine the leading
ontribution in 1=p to high-energy photoabsorption inany form.In the �nal-state ele
tron wave fun
tion, the sit-uation is very similar, ex
ept that the normalizationis not a�e
ted by s
reening in the limit of high mo-menta. A

ording to [24�27℄, the wave fun
tion of ahigh-energy 
ontinuum ele
tron state of momentum pin the vi
inity of the Coulomb singularity of the IPApotential is essentially of a Coulomb form. As shownin [27℄ using the analyti
 perturbation theory, the 
or-re
tions to the Coulomb wave fun
tion due to s
reeningin the vi
inity of the nu
leus (r � 1=a, where a = mZ�
hara
terizes the uns
reened nu
lear 
harge) de
reasewith the ele
tron momentum as O(1=p2) relative to theCoulomb fun
tions. This means that in the vi
inity ofthe Coulomb singularity (r � 1=a), the wave fun
tionrepresenting the outgoing ele
tron of momentum p� a
an be written, following [25; 27℄, as	(�)p (r) = NCp eip�r �1F1 ��iap ; 1;�ipr(1+
os#)�++ O� 1p2 ; pr; 
os#; si�� ; (8)where 
os# = p̂ � r̂, the �rst term in the right-handside is the Coulomb term while the se
ond term is theremainder, whi
h vanishes faster than 1=p (denotedby 1=p2 in O). The fun
tional dependen
e of O isalso shown; the remainder 
ontains all information ons
reening, symbolized by the 
oe�
ients si 
hara
ter-izing the small-distan
e behavior of the s
reened po-tential. A

ording to the analyti
 perturbation the-ory [25; 27℄, an even more a

urate 
ontinuum wavefun
tion of the Coulomb shape is obtained in the re-gion r � 1=a by shifting the ele
tron momentum inEq. (8) from p to pC , by an amount determined by theparameters of the s
reened potential, and by repla
ingthe normalization NCp (if the momentum s
ale normal-ization is used) bypp
=pNCpC . However, although su
ha Coulomb fun
tion is more a

urate, its error still de-
reases as 1=p2 with large momentum p. We thereforedo not need it here, but we use it in Se
. 8.The result in Eq. (8) is important for our approa
hbe
ause as we show below, it implies that the terms

in the partitioning of the �nal state around the 
oa-les
en
e that 
ontribute to the high-energy matrix el-ement are not a�e
ted by s
reening. We show this tothe leading order in 1=p, further simplifying fs in thepartitioning of Eq. (8). Be
ause distan
es involved inthe pro
ess are r � 1=p and be
ause we 
onsider highenergies for whi
h p� mZ�, while the wave fun
tionsare 
onsidered at �xed pr, the terms that are importantfor our dis
ussion here involve terms up to linear in theparameter mZ�=p, with further terms 
ontributing tohigher orders in 1/p. We write	(�)p (r) = NCp eip�r �1� iapg(�) (i(pr + p � r)) ++ O� 1p2 ; pr; 
os#; si�� ; (9)where O in
ludes all 
ontributions of the order a2=p2and higher-order 
ontributions from the full Coulombfun
tion in Eq. (8), andg(�)(i�) = � 12�i I� e�i�t ln� t� 1t � dtt == 1Z0 �e�i�t � 1� dtt (10)determines all 
ontributions of the order a=p to thefull Coulomb wave fun
tion for pr � 1. Here, � is a
ounter
lo
kwise oriented 
losed 
ontour en
ir
ling the
ut [0; 1℄. By inserting Eqs. (9) and (7) in Eq. (3),we obtain a series of integrals of fun
tions that 
ontainpowers of r, the g(�) fun
tion, and angular fun
tions.The fun
tion g(�)(i�) is needed in 
al
ulating the lead-ing 
ontribution to the high-energy matrix element ingeneral. It 
ontains p-dependen
e through pr, whi
hmay appear undesirable, at �rst sight, if we want toview this high-energy matrix element as a FT. It fol-lows from expli
it 
al
ulations, however, that there isno additional p-dependen
e in a FT integral also in-volving g(�) fun
tion despite the p-dependen
e of theg(�) fun
tion.The fa
tor exp(�"r) is introdu
ed in order toa
hieve a 
onvergent integration of ea
h term in the se-ries; after the integration is performed, the limit "! 0is taken. As noted in Se
. 2, this pro
edure is 
onsis-tent with the de�nition of the FT of generalized fun
-tions [13℄. For the AFT theorem (and we also assumefor the AFT involving the g(�) fun
tion), we must un-derstand the singularities of the integrand. The singu-larity properties of the wave fun
tions are immediatelyidenti�able in these series, whi
h involve powers of r248
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 pro
esses : : :and angular fun
tions su
h as powers of p̂ � r̂ = 
os#and spheri
al harmoni
s. For example, r and 
os# aresingular at the origin (as fun
tions of x, y, and z), buttheir produ
t is not (r 
os# = z), nor are their squares(we also note that rlY ml is regular).We see in what follows that the leading 
ontributionto the high-energy matrix element 
an be obtained inany form using only the �rst two terms in fs of therespe
tive partitioning of the initial and �nal state inEqs. (7) and (9), while negle
ting some of these �rsttwo terms may lead to erroneous results in some forms.Higher-order terms in the expansion give higher-or-der 
ontributions in 1=p, as is explained below and isdemonstrated using simple examples in Se
s. 4 and 5.To the leading order in 1=p, the form-independent high-energy matrix element for photoabsorption in an IPAmodel is obtained fromM = N IPAi NC�p lim"!0 Z exp(�ip � r� "r)�� �1 + iapg(�)� (i(pr + p � r))� I(r)rl �� �1� al + 1r�Y ml d3r; (11)where I(r) 
an take forms like Eqs. (4)�(6), whi
h also
ontain di�erent powers of r and angular fun
tions.Expression (11) is a form-independent term thatgives the leading order in 1=p for large p. We seefrom Eq. (11) that the only di�eren
e from the purelyCoulomb 
ase is in the initial-state normalization,whi
h depends on the IPA potential. All other termsare determined by the Coulomb singularity. There-fore, in an IPA model with a Coulomb singularity,information about s
reening persists at high energiesonly in the initial-state normalization. This behaviorfor high-energy photoabsorption in an IPA potential isknown [26℄, but it is just one aspe
t of the persisten
eof the ele
tron�ele
tron intera
tion in high-energy pho-toabsorption, dis
ussed within the AFT approa
h fortwo-ele
tron atoms in [2℄.In a matrix-element form, in whi
h the intera
tionoperator is regular (su
h as the V-form and L-form, tobe denoted by IRV and IRL ) rather than singular (as inthe A-form, ISA), the 
ontribution from the term in theintegrand involving the �rst terms of the simple fun
-tions fs of both the partitionings of 	i and of �(�)vanishes for any l (while in the A-form, this term givesthe leading nonvanishing 
ontribution). The leadingnonvanishing 
ontributions in su
h forms (L or V) in-volve the produ
t of the �rst term from �(�) (whi
h isregular, to be denoted as Rf ) with the se
ond term in

	i (singular, Si) and the produ
t of the se
ond termfrom �(�) (singular, Sf ) with the �rst term in 	i (regu-lar, Ri). These two 
ontributions are of the same orderin 1=p. In summary, in the leading order in 1=p, weobtain the nonvanishing 
ontribution fromM = Z exp(�ip � r� "r) [Rf + Sf ℄�� 264 IRLIRVISA 375 [Ri + Si℄!! Z exp(�ip � r�"r)264 Rf IRLSi+Sf IRLRiRf IRV Si+Sf IRV RiRf ISARi 375 : (12)We expli
itly evaluate Eq. (11) for an H-like po-tential in the next two se
tions, and we dis
uss theobtained leading-order results further, 
omparing themwith the Born-approximation results in di�erent forms.The two approa
hes must of 
ourse agree. We notethat the results in Eqs. (11) and (12) re�e
t the im-portan
e of the singularity region. This means that ifone wants to improve results, one needs to partitionfun
tions in terms of fun
tions that better des
ribe thebehavior in the vi
inity of the singularity. (This is onlyone of the points of distin
tion from a perturbative ap-proa
h, e.g., the Born expansion. The Born expansiongives the same weight to all regions, while the AFT ap-proa
h tells us that the singularity region is importantfor high-energy photoabsorption.) Partitioning of thewave fun
tions in terms of fun
tions that are more a
-
urate in the vi
inity of the singularity provides morea

urate results. The results in Se
. 8, for example, areobtained using partitioning in terms of Coulomb fun
-tions (whi
h in
lude the e�N intera
tion to all orders).The integrals involved in evaluating Eq. (11) areelementary and are of two types. The integrals that in-volve the �rst term in the square bra
kets from the �nalstate and powers of r and produ
ts of spheri
al harmon-i
s from the e�
 intera
tion and the initial state5) aregiven byJ1 = lim"!0 Z exp(�ip � r� "r)rnY ML (r̂)d3r == 2�(n+ 2)!(ip)n+3 Y ML (p̂)fLn+3; (13)where5) These produ
ts of spheri
al harmoni
s 
an be 
ombined intoone YML .249
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ond type, involving g(�)(i(pr + p � r)) fromthe �nal state and powers of r and produ
ts of spher-i
al harmoni
s from the e�
 intera
tion and the initialstate, are given byJ2 == lim"!0 Z exp(�ip � r�"r)g(�)�(i(pr+p�r))rnYML d3r == 2�(n+ 2)!(ip)n+3 YML (p̂)hLn ; (15)wherehLn = 1Z�1 dxPL(x)��8<:n+1Xj=0 (�1)n�j(x� i")n+2�j � 1(n+ 2� j)(x� i")n+3 ++ i� + ln(x� i")(x� i")n+3 9=; : (16)In performing the radial integration in Eq. (15), weused the integral form (the se
ond form in Eq. (10)) ofthe fun
tion g(�)(i(pr+ p � r). The integrations over xin Eqs. (14) and (16) are elementary, and we evaluatethem for spe
i�
 L in Se
s. 4 and 5.Expressions (13) and (15) show how higher powersin r lead to higher powers in 1=p. We note that whileJ2 gives a nonzero result for any n and L (be
ause g
ontains both regular and irregular terms), J1 is zerofor n and L for whi
h rnY ML is regular, in a

ordan
ewith the AFT theorem. Therefore, depending on theform used, at least one of the two �rst terms in the fsfun
tions of ele
tron states gives a 
ontribution to theleading order of the matrix element, while all furtherterms beyond the �rst two give higher-order 
ontribu-tions.4. THE SIMPLEST CASE: GROUND STATEIONIZATION OF AN H-LIKE ATOMWe now dis
uss how the leading 
ontribution tothe matrix element is obtained in the three forms inEqs. (4)�(6), in the simple and familiar 
ase of pho-toionization of the ground state of an H-like atom withretardation negle
ted.

When we negle
t retardation and use the nu
learCoulomb potential, the A-, V-, and L-forms of the ma-trix element are obtained usingIA = iZ�! � � r̂r2 ; IV = �i� � r; IL = im!� � r (17)for the intera
tion operators, where ! is the photonenergy and � is the photon polarization. The V- andL-forms of the intera
tion operator are regular, but theA-form is not, be
ause it was obtained by taking thegradient of the potential. We note that the A-formis irregular at the origin both be
ause it is divergentand be
ause its value near the origin depends on thedire
tion of approa
h.As we have seen, the large-p asymptoti
 behaviorof the FT of a slowly varying fun
tion of r is deter-mined by its behavior near the 
oales
en
e point; itonly depends on the singular parts of the fun
tion inthe small-r limit. We therefore begin by partitioningthe fun
tions 	i(r) and �(�)p (r) around the 
oales
en
epoint r = 0 (the only singular point here). We write	i(r) = Ni(1� ar + : : : );�(�)p (r) = NCp �1�iapg(�) (i(pr+p � r)) + : : :� : (18)If we pro
eed as des
ribed in the previous se
tion,we obtain the familiar high-energy expression, whi
h isusually obtained in the V-form by assuming that theenergeti
 outgoing ele
tron 
an be regarded free and
an be represented by a plane wave [28�30℄. But in ourpro
edure, we must be more 
areful and must not makesu
h an assumption, whi
h is in
orre
t in general (e.g.,for non-s-states or even for s-states in the L-form).Substituting Eqs. (18) and (17) in the matrix el-ement in Eq. (3), we obtain a series of integrals in-volving powers of r and powers of 
os#. (We 
hoosethe p dire
tion as the z axis in this integration, andonly fun
tions of 
os# therefore appear). Applying� � r	i = � � r̂ (�a + a2r + : : : ), we obtain integralsof the two types in Eqs. (14) and (16). The integralinvolving the �rst term from fs of the partitioning of�(�)p and terms from the partitioning of 	i is [1℄Z exp [�("+ ip � r)℄ rn� � r̂ d3r == 2�(n+ 2)! � � p̂(ip)n+3 Cn;Cn =8><>: �2=(n+ 1); even n � �2,0; odd n > �1,i�; n = �1. (19)
250
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 pro
esses : : :We note that the zero result for odd n > �1 followsfrom the AFT theorem be
ause the integrand fun
tionis not singular; for even n and for n = �1, the inte-grand fun
tion is singular. Integrals involving the termg(�)(pr; 
os#) in the partitioning of �(�)p are easily per-formed using the integral representation in Eq. (10).We obtain [1℄Z exp [�("+ip � r)℄ g(�)� (i(pr+p � r)) rn� � r̂ d3r == 2�� � p̂(ip)n+3Dn; (20)where Dn = 2(n+ 2)! (1� i�)=(n+ 1)for even n � 0 andDn = (n�1)=2Xk=0 2k + 2n� 2kfor odd n > 0, D�2 = i��2, andD�1 = ��2=2�i��2.In both Eqs. (19) and (20), the p-dependen
e of theresults is seen by inspe
tion, resulting from the natureof the s
aling in pr. Equation (19) shows that higherpowers in r lead to higher powers in 1=p, but nonva-nishing 
ontributions 
ome only from singular terms.We use this behavior in identifying the leading 
ontri-butions in 1=p in our 
al
ulations. In the partitioning ofthe �nal-state wave fun
tion in Eq. (18), the �rst termis of 
ourse regular, while the se
ond term (g(�)) is sin-gular. The same is true for the initial state, not onlyfor this s-state, but for any state with angular momen-tum l for whi
h the �rst terms of fs in the partitioningaround r = 0 are	i � rlY ml (1� ar=(l + 1) + : : : ):We further note that in the 
ase of an s-state, the
ontributions from the �rst term of 	 (whi
h is then a
onstant) vanish in the V-form be
ause of the deriva-tive in the intera
tion operator � � r. For non-s-states,there are nonvanishing 
ontributions from this �rstterm (when multiplied with g from �(�)), whi
h mustbe taken into a

ount in order to obtain the 
orre
thigh-energy matrix element, whi
h would be missing ifa 
ontinuum plane wave had been assumed (negle
tingthe terms in g).Therefore, in the V-form for the s-state 
ase, theleading 
ontribution involves only the �rst term in �and the se
ond term in the partitioning of the initialstate 	, justifying the usual 
al
ulation involving theplane-wave approximation for the �nal state. Using

Eq. (19), we obtain the familiar result for s-state ion-ization negle
ting retardation (dipole approximation),M = �A� � p̂p3 C0 = 2A� � p̂p3 ; (21)where A = 4�aNiNCp .We now show that we obtain the same result usingthe same pro
edure in the L-form. Here, the singularityof the �nal state also 
ontributes, however, and an in-
orre
t result is obtained if a plane wave is assumed toprovide an adequate des
ription of the energeti
 ele
-tron. In terms of our approa
h, su
h an assumptionwould imply taking the term in the integrand involvingthe �rst term from the partitioning of � and the se
ondterm from the partitioning of 	. This 
ontribution is6A� � p̂p3 C2 = 4A� � p̂p3(we have put ! = p2=2m), whi
h is twi
e the 
orre
t re-sult in Eq. (21). But as we have already explained, wemust in
lude all terms 
ontributing to the same powerin 1=p. We must therefore in
lude the term in the inte-grand that involves the se
ond term g(�) from �� andthe �rst term from 	i. This gives the 
ontribution�A4 � � p̂p3 D1 = �2A� � p̂p3 :The sum of the two terms gives the 
orre
t high-energylimit, Eq. (21), showing that the L-form and the V-formindeed agree.Finally, we 
an 
al
ulate the photoe�e
t matrix el-ement in the A-form using the same pro
edures. As wehave already remarked, the ele
tron�photon intera
tionoperator IA, Eq. (17), is singular at the origin in thisform, with a singularity arising from the singularity ofthe potential. The leading 
ontribution to the matrixelement in Eq. (3) in the A-form 
omes from the �rstterms in the partitioning of �(�) and 	i only (a termin the integrand that did not 
ontribute in the L- andV-form due to its regularity, not only for the s-state
ase, but for any l). All other terms 
ontribute withhigher powers in 1=p. For the s-state, the result in theA-form is easily evaluated with the help of Eq. (19) forn = �2, again giving the same result, i.e., Eq. (21).(We note that in the A-form, the next-to-leading termin 1=p 
an also be obtained without referring to s
reen-ing; it involves g(�) or ar. We use this fa
t in Se
. 8 indis
ussing 
onvergen
e toward the high-energy limit.)5. BEYOND s-STATESWe now dis
uss non-s-states, staying within oursimple H-like model without retardation, and building251
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ountered in the s-state 
ase. We again utilize the AFT theorem, identi-fying the singular part of the integrand fun
tion, andevaluating the dominant 
ontributions through the par-titioning of the bound state in Eq. (7) and the parti-tioning of the �nal state in Eq. (9) around the ele
tron�nu
leus 
oales
en
e. The required integrals are given inEqs. (13) and (14). Now, however, a plane wave doesnot adequately des
ribe the fast outgoing ele
tron, ex-
ept in the A-form, in whi
h the ele
tron�photon in-tera
tion provides the needed singular behavior for theintegrand fun
tion.The leading 
ontribution in 1=p to the high-energyphotoabsorption matrix element M in Eq. (3), whi
hin the A-form is obtained by taking the leading, regularterms in the partitioning of the initial and �nal ele
tronstates, isM l;m0 = �2imZ�NCi l!(2�)3=2(ip)l+3 4�3 ��X� Y ��1 (�) Z d
 Y �1 (r̂)Y ml (r̂)(
os#� i")l+1 : (22)The remaining angular integration involves only ele-mentary integrals (13). For l = 1, the 
ase that wedis
uss below in other forms for illustration, Eq. (22)gives M1;m0 = (�1)1�m 8�iap4 NiNCp Y m1 (�): (23)(For simpli
ity, expression (22) is obtained with thez axes taken in the dire
tion of p̂. Rotation to �xed
oordinates must be made in integrating over ele
tronangles.) We note that the part M0 of the matrix ele-ment M is obtained in the A-form using plane waves.In other forms, the 
al
ulation of M0 requires higher-order (singular) terms, from both initial and �nal statesin general. We therefore do not 
allM0 the �rst (plane-wave) Born approximation result, be
ause it is the�rst Born approximation only in the A-form and is ahigher-order Born result in other forms in general.While a plane wave is su�
ient for an initial s-statein the V-form, this is not true for l > 0, as we demon-strate. With the V-form, it is 
onvenient to express

� � r	i as� � r [Rl(r)Y ml (r̂)℄ =r4�3 1X�=�1Y ��1 (�)�� "r l + 12l+ 3 h1; �; l;mjl+ 1;m+ �iY m+�l+1 (r̂) �� � ddr � lr�Rl ��r l2l� 1 h1; �; l;mjl� 1;m+ �iY m+�l�1 (r̂) �� � ddr + l + 1r �Rl� ; (24)where h1; �; l;mjL;Mi are the Clebs
h�Gordan 
oe�-
ients. For l > 0, the term with the lowest power in r inthe partitioning of the fun
tion in Eq. (24) around the
oales
en
e (r = 0) is regular, and it 
omes from these
ond term of Eq. (24). Therefore, for the L-form, theterm g(�) from the �nal-state fun
tion �� also 
on-tributes to the lowest order. The ex
eption, for theV-form, is the s-state, as we saw in the previous sub-se
tion, be
ause the se
ond term in Eq. (24) is zero andthe lowest power in r is singular for l = 0.For illustration, we 
onsider the initial l = 1 
ase.Inserting expression Eq. (24) for l = 1, using a linearpolynomial in the partitioning around the 
oales
en
eR1 = Nir[1 � (a=2)r + O(r2)℄, in
luding 
ontributionsfrom the g(�) term, and performing the integration by
hoosing the dire
tion of p as the z axis, we obtain thematrix element in the V-form asMV = iaNiNCp Y m1 (�) Z exp(�ip � r� "r)�� � (�1)m2jmj � 3P2(
os#)r + 23r � ipg(�)� �� (ipr(1 + 
os#))� d3r == (�1)1�m 8�iap4 NiNCp Y m1 (�); (25)whi
h 
oin
ides with the result obtained in the A-form, Eq. (22). Assuming that a plane wave is anadequate representation of the fast ele
tron wave fun
-tion and therefore negle
ting the 
ontribution from the�nal-state singularity, one would obtain a nonzero re-sult (in the 
hosen frame, where p is dire
ted alongthe z axes) only for the angular momentum proje
-tion m = 0, and even that result would be erroneousby the fa
tor 2. The 
ontribution to the matrix ele-ment in Eq. (25) 
oming from the g fun
tion part is�8�iaNiNCp Y m1 (�)=p4.252
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 pro
esses : : :In both V- and L-forms, the intera
tion of the out-going ele
tron with the potential (��nal-state intera
-tion�) 
ontributes for any l > 0. In 
ontrast, in theA-form, the transition operator is singular and onlythe leading terms (the lowest powers in r) in both ini-tial and �nal states are needed for any l to obtain the
orre
t leading 
ontribution.6. SCREENED POTENTIALSWe now demonstrate that the previous results aresu�
ient to determine the asymptoti
 behavior of non-retarded photoabsorption in a general 
entral potentialto the leading order in 1=p. The entire previous dis-
ussion, although given for a nu
lear point Coulombpotential model, is in fa
t valid for a general IPA po-tential that has a singularity of the Coulomb potentialat the nu
leus. Our dis
ussion relied on the behaviorof wave fun
tions and intera
tions at this singularity.For the leading terms in the partitionings that we uti-lized, these behaviors are the same for an IPA poten-tial as long as it is Coulomb at the singularity. To seethe e�e
ts of the di�eren
e between an IPA potential(with the Coulomb singularity) and a pure Coulombpotential, we 
onsider a potential energy of the typeV (r) = �(Z�=r)S(r), where S(r) is a s
reening fun
-tion that behaves as S(r) = (1 + s1r + s2r2 + : : : ) forsmall r, as assumed in Se
. 3.The intera
tion operators in the L- and V-forms areindependent of the potential. In the A-form, we obtainIIPAA = � i! [V (r); � � r℄ = i! � � rV (r): (26)The partitioning of IIPAA around the 
oales
en
e givesIIPAA = iZ�� � r̂! � 1r2 � s2 � 2s3r + : : :� : (27)We note that the term involving s2 in Eq. (27), whi
his regular, 
ontributes three more powers relative tothe �rst term. In 
ontrast, the �rst term from wavefun
tions involving s
reening 
ontribute with two morepowers in 1=p.We thus 
on
lude that in the leading order, thesame expression for photoionization at high energiesis obtained in the IPA potential and in the Coulomb
ase (in Se
. 8, we show that this is in fa
t true in the�rst two orders). The normalization fa
tors N IPAi aredi�erent, however, and IPA predi
tions therefore dif-fer from the purely Coulomb 
ase predi
tion by thesefa
tors.

7. RETARDATION AND RELATIVITYWe now dis
uss the in
lusion of retardation. This
hanges the forms of the intera
tion operators. In theV-form, the 
hange is simple: the retarded intera
tionis IV = �i exp(ik � r)� � r, where k is the photon mo-mentum. In the L- and A-forms, obtained by applying
ommutator relations to the V-form, the momentum kalso appears in fa
tors multiplying exp(ik �r), as 
an beseen from Eqs. (4)�(6). In evaluating the integrals, weneed to spe
ify how to deal with the photon retardationos
illating term exp(ik � r) in the e�
 intera
tion I(r).One way, parti
ularly if retardation to a 
ertain orderin k is 
onsidered, is to expand exp(ik � r) in powers ofk�r. Another way of dealing with exp(ik � r) is to atta
hit to the fast os
illating term exp(�ip � r) and 
onsiderthe FT in the variable � = p�k, be
ause p�k is largein the nonrelativisti
 region whenever p is large, andour arguments using the AFT theorem in the asymp-toti
 region apply. We note here that in the IPA sin-gle ionization from the ground state, retardation e�e
tsgive a 
ontribution of the relative order (v=
)2 [31; 32℄,where v is the velo
ity of the outgoing ele
tron, whi
h isof the same order as the relativisti
 
ontribution. Thisfa
t is used in the 
ase of a two-ele
tron atom [1℄ toargue that retardation e�e
ts have the same relative
ontribution in single ionization and in double ioniza-tion in the region, where the shake-o� me
hanism isdominant, due to fa
torization of the matrix elementinto a (retardation-independent) 
orrelation term and(generally, retardation-dependent) absorption term.We however note that at relativisti
 energies, whenp � k, neither expanding in k nor assuming � large(in 
omparison to m) is generally valid. It is still truein 
ertain kinemati
 situations, but these are not dom-inant for the photoabsorption pro
esses at those ener-gies. Namely, at relativisti
 energies (and as ! !1), aregion around the nu
leus of the Compton wavelengthdistan
es 
ontinues to 
ontribute to photoabsorption,for arbitrarily high energies. This implies that althoughit is a relatively small region, the �nal-state wave fun
-tion in the whole region, not just at the point of 
oa-les
en
e, is needed, and 
ertain knowledge to all ordersin a is required [22℄. Under the analyti
ity assumption,the region is 
hara
terized by an expansion around theorigin, and expansion of the matrix element as a seriesin a=� is still possible. The plane-wave approximationis no longer valid in any form, but partitioning in termsof Coulomb fun
tions is fully justi�ed.253



T. Suri¢, E. G. Drukarev, R. H. Pratt ÆÝÒÔ, òîì 124, âûï. 2 (8), 20038. CONVERGENCE OF THE CROSSSECTIONS TO THE HIGH-ENERGY LIMIT.THE STOBBE FACTORHere, we dis
uss the rate of 
onvergen
e toward theexa
t IPA high-energy limit for the 
ross se
tions thatwe have obtained using the asymptoti
 behavior of ma-trix element (11). The ratio of the �rst 
orre
tion to theleading 
ontribution is of the order 1=p, and it gives avery slow 
onvergen
e of the matrix elements and 
rossse
tions. In fa
t, it 
onverges as �a=p � �pEK=!,where EK is the K-shell binding energy. We note thata slowly 
onverging fa
tor (i.e., 
onverging as �a=p rel-ative to the asymptoti
 
onstant value) exists in the�nal-state normalization, whi
h isNCp = 1(2�)3=2��1 + iap� e�a=2p: (28)But there are also other Coulomb terms with this slow
onvergen
e (e.g., the �rst 
orre
tion, whi
h is unaf-fe
ted by s
reening). In fa
t, if partitioning of the ini-tial state was performed in terms of polynomials, a sim-ilar slowly 
onverging term would 
ome from ea
h termof the polynomial. Be
ause of this and also be
ause ofthe possibility of large Z, we in
lude the e�N intera
-tion 
ompletely in both the initial and �nal states bypartitioning the wave fun
tions in the vi
inity of thesingularity in terms of Coulomb fun
tions. Formally,this means that we write the initial-state wave fun
-tion as	IPAi (r) = N IPAiNCi 	Ci (r) +O �(�C2 � �2)rl+2� ; (29)where �2 (�C2 ) is the 
oe�
ient multiplying the thirdterm in a polynomial partitioning of the IPA (Coulomb)wave fun
tion (7), 	Ci (r) is a normalized Coulomb wavefun
tion with the same quantum numbers as 	IPAi (r),and O[(�C2 ��2)rl+2℄ represents the di�eren
e betweenthe Coulomb and s
reened third term in a polynomialpartitioning of the wave fun
tions and all higher-orderdi�eren
es. The terms represented by O are small, aswe dis
uss below.For the �nal state, we take the Coulomb part ofEq. (8), but with a shifted energy and with the 
or-re
ted normalization [25; 27℄. A

ording to [25; 27℄,as already mentioned, the exa
t IPA wave fun
tionis Coulomb in the vi
inity of the e�N singularity. Asu�
iently a

urate fun
tion (
ontaining the dominantterms of the relative order 1=p2) is obtained if theshifted momentum pC is used instead of the true mo-mentum p. The momentum p 
hara
terizes the ele
-tron at large distan
es from the nu
leus. If we want

to des
ribe the s
reened wave fun
tion in the vi
inityof the nu
leus by a Coulomb fun
tion, we must use,a

ording to [25; 27℄, the shifted momentum pC . Inaddition, if the fun
tion is normalized on the momen-tum s
ale, the normalization is a�e
ted and is givenby N IPAp = ppC=pNCpC . The �nal state is thereforegiven by 	(�)p (r) =rpCp 	(�)pC (r) +O� 1p2� ; (30)where the shifted momentum pC is [25℄p22m � p2C2m = jECB j � jEIPAB j; (31)with ECB (EIPAB ) denoting the hydrogen-like (IPA)binding energy of the state that is ionized.We arrive at the following approximation for theIPA matrix element:M = N IPAiNCi rpCp Z 	C(�)�p (r)IA(r)	Ci (r)d3r ++O� 1p2� = N IPAiNCi rpCp MCl +O� 1p2� : (32)From Eq. (32), it immediately follows that at high en-ergies, d�IPA = �N IPAiNCi �2 d�C +O� 1p2� ; (33)where d�C is the di�erential 
ross se
tion obtainedfrom Coulomb H-like wave fun
tions 
al
ulated at theshifted momentum pC and O indi
ates how rapidly theerror de
reases. (The momentum p from the phasespa
e 
an
els p from the fa
tor pC=p leaving onlythe shifted momentum pC in the right-hand side ofEq. (33).) The error in Eq. (33) is determined by theerrors in the wave fun
tions. A

ording to the resultsin [25℄, the di�eren
e between s
reened and Coulombfun
tions is very small when unnormalized fun
tions(with the same �rst 
oe�
ient in the expansion taken)are 
ompared; for potentials with a polynomial expan-sion, this differen
e de
reases as 1=p2 for small r6).6) We note that the use of a potential that 
annot be expandedin integral powers of r might not give a small 
orre
tion vanishingas 1=p2, as given in Eq. (33). For example, the Thomas�Fermipotential (see footnote 4) leads to a 
orre
tion vanishing slower,i.e., as 1=p3=2. However, the Thomas�Fermi model fails in thevi
inity of the nu
leus (whi
h is the region determining high-energy photoabsorption), where it predi
ts a too large ele
trondensity, see, e.g., B. G. Englert and J. S
hwinger, Phys. Rev.A 29, 2331 (1984).254
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 pro
esses : : :This implies that dominant terms of the relative order1=p2 are 
olle
ted. We illustrate the fast 
onvergen
eof this pro
edure for the 
ases involving low-Z atoms(He) and outer shells of higher-Z atoms (the L-state ofNe).For Coulomb states, the integrals in Eq. (32) 
anbe evaluated analyti
ally. As illustrative examples, wehave the 
ross se
tion per ele
tron for the ele
tron ion-ization from the 1s, 2s and 2p shells [15℄�C1s = 32�a5�p3m3!3(p2 + a2)2�ap �exp ap �� � 4 ar
tg pa���� �exp��ap �� exp���ap ���1 ; (34)�C2s = 4�a5�p(p2 + a2)3m3!3[p2 + (a=2)2℄2 2�ap �� exp �ap �� � 4 ar
tg 2pa ���� �exp��ap �� exp���ap ���1 ; (35)�C2p = �a7�p[p2 + (11=12)a2℄3m3!3[p2 + (a=2)2℄3 2�ap �� exp �ap �� � 4 ar
tg 2pa ���� �exp��ap �� exp���ap ���1 : (36)To illustrate the meaning of Eq. (33), we apply it to the
al
ulation of high-energy photoabsorption and 
om-pare the result with those obtained within the fullFo
k�Slater IPA 
al
ulations. Our 
omparison with rel-ativisti
 
al
ulations is fully justi�ed for low-Z atomsand for s-shells of higher-Z atoms, for whi
h retarda-tion and relativisti
 
ontributions 
an
el to a high de-gree even at higher energies. However, for our illustra-tive purposes, we also show p-state results for Ne, forrelatively small photon energies.In Table 1, we show the total 
ross se
tion forK-shell ionization obtained from Eq. (33) for Z = 2using (Ni=NCi )2 = 0:7358 (whi
h indi
ates large s
reen-ing) [33℄ and 
ompare it with the results of the full IPA
al
ulations from [33℄. As we see from Table 1, theagreement between the high-energy result in Eq. (33)and the full IPA 
al
ulations is already very good at

Table 1. The total 
ross se
tions �K for photoab-sorption from theK-shell of He (Z = 2) obtained usingEq. (33) in 
omparison with the full IPA 
al
ulations�KS
; exp(�a�=p) is the Stobbe fa
tor!, keV �1s, b �KS
, b exp��a�p �Eq. (33) Ref. [33℄1 396 402 0.5421.5 107 109 0.5962 41.7 43.2 0.6333 10.9 11.2 0.6824 4.20 4.23 0.7155 1.99 2.03 0.7396 1.08 1.10 0.7578 0.408 0.411 0.7841 keV, despite the large s
reening; in the energy range1�2 keV, the disagreement is around 1�2%. This is tobe 
ompared with the lowest-order result, whi
h givesabout 50% disagreement in the same energy range,as indi
ated in Table 1 by the value of the fa
torexp(�a�=p) (see the explanation for this fa
tor below).For the L-state of Ne, s
reening is even larger((Ni=NCi )2 = 0:4386 for 2s state and (Ni=NCi )2 == 0:2277 for 2p). In Table 2, we show the total 
rossse
tion for the 2s and 2p states of Ne and 
ompare themwith the full relativisti
 IPA 
al
ulations. For the 2sstate, Eq. (33) gives results that 
onverge to the fullIPA result very fast; the disagreement is around 6%at 1 keV and is less than 1% at 4 keV. Similarly, theresults in Eq. (33) for the 2p state 
onverge rapidly toIPA results in the same energy range. This very goodagreement between the results in Eq. (33) and the fullIPA results already at relatively small energies, evenfor Ne, 
an be explained by the properties of IPA wavefun
tions in the vi
inity of the Coulomb e�N singu-larity. Namely, at the photon energy region 1�2 keV,the distan
es involved (distan
es around the singular-ity at whi
h the momentum is transfered between theele
tron and the nu
leus) are within the K-shell or-bit for Ne, and well within the K-shell orbit for He,where the s
reening is small. Therefore, the shapesof the wave fun
tions at these distan
es are basi
allyCoulomb. This is a very important point that we useand generalize in our approa
h. The high-energy pho-toabsorption is essentially of the Coulomb type. Thismeans that the high-energy behavior of 
ross se
tions(we here mean the keV range, as in our examples) is de-255
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ross se
tions �2s and �2p for photoabsorption from the respe
tive subshells 2s and 2p of Ne(Z = 10) obtained using Eq. (33) in 
omparison with the full IPA 
al
ulations �2sS
 and �2pS
; exp(��a=p) is the Stobbefa
tor!, keV �2s, b �2sS
, b �2p, b �2pS
, b exp��a�p �Eq. (33) Ref. [33℄ Eq. (33) Ref. [33℄1 11276 10600 5629 5416 0.0392 1932 1895 492 495 0.0904 289 290 37.4 38.9 0.1748 38.5 39.1 2.51 2.65 0.28610 19.7 20.0 1.030 1.092 0.32515 5.67 5.77 0.1987 0.2144 0.39820 2.309 2.353 0.0607 0.0669 0.44930 0.637 0.651 0.0112 0.0128 0.51950 0.122 0.125 0.00129 0.00159 0.600termined by the properties of fun
tions near the singu-larity, whi
h is of the Coulomb type. The s
reening ef-fe
ts enter these IPA examples, of 
ourse, but in a sim-ple way as a 
onstant fa
tor. By straightforward gen-eralization of these �ndings in high-energy many-body
al
ulations, we 
an signi�
antly simplify 
al
ulationsinvolving e�e 
orrelation, as shown in [1℄.Another important point that we want to makein this subse
tion, relevant for more 
omplex sys-tems [1; 34℄, is the relatively fast 
onvergen
e of theratios of photoabsorption 
ross se
tions to the resultspredi
ted by lowest-order results (the Born approxima-tion results in the A-form). We �rst note that the slow-est 
onverging fa
tor in our examples in Eqs. (34)�(36)is exp(��a=p). In partitioning wave fun
tions aroundthe 
oales
en
e, we obtain this fa
tor by 
olle
ting allCoulomb intera
tion in the �nal state for ea
h term inthe partitioning of the initial state. The fa
tor is there-fore present for any state. The existen
e of a 
ommonslowly 
onverging fa
tor provides fast 
onverging ra-tios of the 
ross se
tions. Further, the ratios of the
ross se
tions for ionization from subshells of the sameshell 
onverge parti
ularly fast, as we illustrate usingour examples for the L-shell, Eqs. (35) and (36). In ourexamples, the ratio�2s�2p � ! + a212m +O�a2! � (37)is a nearly linear fun
tion of the photon energy ! inthe keV range. If we had used the lowest-order resultin 1=p, we would obtain �2s=�2p � !, whi
h is verysimilar to the exa
t result (in the keV range for Ne,

for example), although the �rst-order results for 
rossse
tions di�er by an order of magnitude from the exa
tresults in this energy range, as indi
ated roughly by thefa
tor exp(��a=p) in Table 2.9. CONCLUSIONSWe have illustrated the AFT nonrelativisti
 ap-proa
h to atomi
 pro
esses by studying high-energyphotoionization (with in
ident photon energies ! � m)of an ele
tron bound in a 
entral potential. We havedemonstrated that in this 
ase, high-energy ionizationby photoabsorption 
an be understood in terms of thesingularities of the Hamiltonian, whi
h also illustratesmore general situations. Our dis
ussion did not de-pend on the 
hoi
e of the form [length (L), velo
ity(V), a

eleration (A), et
.℄ of the photoionization ma-trix element.Be
ause photoabsorption at high photon energiesrequires at least one large outgoing ele
tron momen-tum, we have argued that the analysis is equivalent tothe analysis of the asymptoti
 form of the FT. Basedon the Fourier transform theory, we have shown that aslow asymptoti
 de
rease of the photoabsorption ma-trix element for large momentum p (su
h as 1=pn) isrelated to singularities of the e�N potentials. We havedemonstrated how this large-momentum behavior 
anbe obtained from the behavior of wave fun
tions andintera
tions around singularities. With this approa
h,we 
an identify the dominant terms and avoid omittingany of them.We have applied our approa
h to study the256



ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003 Understanding atomi
 pro
esses : : :high-energy total 
ross se
tion for ionization in a
entral potential with the Coulomb e�N singularity.We have demonstrated that the approa
h and the �nalresults are form (�gauge�) independent. However, thedependen
e of the �nal results on the quality of theinitial and �nal state wave fun
tions in the vi
inityof a singularity varies with form (�gauge�). We havefound that the a

eleration form, whi
h pla
es thesingularities of the Hamiltonian in the e�
 intera
tion,has the least requirement on the quality of wavefun
tions at the singularity, in situations 
onsidered.We have shown that in the A-form, the leading
ontribution to the photoabsorption matrix element isthe lowest-order Born result. In the L- and V-forms,it is generally a higher-order Born result, with theex
eption of the V-form in the ground state ionization,where it is also the lowest-order Born result. Thismeans that in general (ex
ept in the A-form), the fastele
tron 
annot be represented by a plane wave, evenin the high-energy limit. For this leading 
ontributionto the matrix element, the A-form requires only theproper normalization of the initial state at the e�Nsingularity. In 
ontrast, the L- and V-forms requireknowledge of both the normalization and slope of thewave fun
tions at the singularities.We have dis
ussed slow 
onvergen
e of the 
rossse
tions to the high-energy limit, 
onsidering theionization of an ele
tron in a s
reened potential. Wehave demonstrated that by 
olle
ting all Coulombterms in the vi
inity of the e�N singularity, we also
olle
t the dominant terms up to the relative order1=p2 and provide fast 
onvergen
e of the 
ross se
tions.Although the negle
ted terms in the matrix elementare still of the relative order 1=p2, they are negligible.Thus, we have demonstrated that the high-energybehavior of 
ross se
tions (in the keV range, as in ourexamples) is determined by the properties of fun
tionsnear the singularity, whi
h is of the Coulomb type.The s
reening e�e
ts enter through normalizationfa
tors in the IPA 
ases. We have also demonstratedthat the only slowly 
onverging fa
tor (the Stobbefa
tor exp(��a=p), whi
h 
onverges as 1=p, while allother terms 
onverge faster) is 
ommon for ionizationfrom all states. The existen
e of a 
ommon slowly
onverging fa
tor provides fast 
onverging ratios of the
ross se
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