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Many aspects of high-energy atomic processes can be described in terms of singularities of a many-body Hamil-
tonian using the generalized asymptotic Fourier transform (AFT) theory. The study of matrix elements in
different kinematic regimes is related to the study of singularities (points of nondifferentiability) of the wave
functions and the e—y interaction. These singularities reflect the singularities of the many-body Hamiltonian.
We illustrate the principles of the AFT approach in the simple example of photoabsorption by the electron
bound in a potential with a Coulomb singularity. We exhibit two general results that are important for any
many-body system: 1) the quality of approximate results in different forms («gauges») depends on the quality
of the description of the wave functions in the vicinity of singularities and 2) due to the character of the Coulomb
singularity, photoabsorption cross sections converge slowly to their asymptotic form as the energy increases. But
the slowly converging behavior of these cross sections is due to one common factor (the Stobbe factor), which
can be obtained analytically in terms of the characterization of the vicinity of the singularity. The common
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Stobbe factor explains why ratios of cross sections converge more rapidly than the cross sections themselves.

PACS: 32.80.Fb

1. INTRODUCTION

High-energy atomic processes can be described in
terms of singularities of the many-body Hamiltonian.
The asymptotic Fourier transform (AFT) theory [1, 2]
can provide such a description. In this paper, we ap-
ply the AFT approach to photoabsorption (at high but
nonrelativistic energies) in a simple atomic system, the
electron in a potential with a Coulomb singularity. This
serves to illustrate general points that are important in
a variety of more complex systems. In particular, we
illustrate: 1) dependence of the required wave function
quality on the interaction form («gauge») utilized and
2) extraction of a common factor (the Stobbe factor)
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that contains all slow convergence of the matrix ele-
ments to their high-energy limit.

The study of single-photon ionization processes re-
sulting in single [3, 4] or multiple [5, 6] ionization of an
atom is of fundamental and practical importance. New
experimental possibilities, modern synchrotron sources
and experimental methods [7] result in better under-
standing of the electron correlation effects in complex
systems and in processes involving these systems [8—12].
Recently, we have proposed a unified description [1, 2]
of the processes of high-energy") ionization by photoab-
sorption, based on the mathematically well founded
AFT theory. The idea is based on the close relation

1) By high energy, we mean that the photon energy w > Ep
(where Ep is the binding energy of the state that is ionized), but
still w < m (for a nonrelativistic description of electrons).
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between high-energy photoabsorption matrix elements
and the AFT of functions with singularities (by a sin-
gularity, we mean a point where a function is not dif-
ferentiable).

According to the AFT theory, the asymptotic
Fourier transform of a function with singularities is de-
termined by the behavior of the function in the vicinity
of these singularities [13, 14]. Because photoabsorption
at high photon energies requires at least one large out-
going electron momentum p, we can generally argue
that the analysis is equivalent to the analysis of the
asymptotic forms of Fourier transforms (FT). A slow
asymptotic decrease for large p, such as 1/p™ for ex-
ample, of the FT of a well-localized function, results
only from singularities of that function. By studying
singularity structures of the wave functions, which fol-
low from the Schrodinger equation, one is then able
to address various, quite general, issues of the matrix
element (such as the interaction-form dependence of
approximate matrix elements and the nature of conver-
gence with energy to high-energy forms) without need-
ing the full knowledge of the many-body wave func-
tions. The AFT approach has been applied to double
ionization [1] of He-like systems and single ionization
of more complex atoms [2].

In this paper, we describe this approach to photoab-
sorption (and perhaps other related) processes at high
but nonrelativistic energies. We use the example of sin-
gle ionization within a central field independent particle
approximation (IPA) model and assume that the IPA
potential near the nucleus is point Coulomb. We use
this simple and familiar model in order to illustrate the
main points of our general approach in the context of
a relatively simple and familiar situation where most
features can clearly be seen. We view the idea of the
AFT approach very general, and by presenting it in a
relatively simple situation we want to motivate its ap-
plication to other processes. The kinematic situations
that occur in high-energy photoabsorption can also oc-
cur in other processes, e.g., in charged particle scat-
tering. In such situations, the AFT approach connects
matrix element of the process with the singularities of
the system involved in the process.

Another important motivation in considering the
simple system is to illustrate and emphasize two often
neglected points, which are general for any photoab-
sorption process, and for which purpose an IPA model
is sufficient. The first point is concerned with how the
quality of approximate results depends on both the
quality of approximate wave functions used and the
interaction form chosen. For example, a plane-wave
description of fast electrons is generally inadequate, as

244

discussed in [15-18]. The second point is that due to
the Coulomb singularity, any high-energy photoabsorp-
tion cross section (for ionization of a system with an in-
teraction having a Coulomb singularity) has the Stobbe
factor, which must be extracted in order to obtain a fast
convergence of the results. This is very important for
high-energy studies of photoabsorption. For example,
because absolute measurements at higher energies are
less accurate than at lower energies, the high-energy
results are often obtained from lower energy results
assuming some asymptotic behavior. It is sometimes
assumed [5,19] that at some finite energy (not taken
sufficiently high), the cross sections for photoabsorp-
tion follow the leading-order Born result. This causes
errors in reported cross sections.

We consider the adequacy of various forms of ma-
trix elements (length (L), velocity (V) or acceler-
ation (A) forms) in using approximate wave func-
tions of various qualities in the vicinity of a singu-
larity. We demonstrate that nonrelativistic IPA high-
energy photoabsorption is determined (up to correc-
tions O(1/p?) = O(1/w), where p is the outgoing elec-
tron momentum) by the initial state normalization and
the point Coulomb singularity. This result is form-
independent, but whether the information about the
singularity comes from the interaction (as in the A-
form) or from the initial and final state (as in the L-
and V-forms), is form-dependent. In such a way, we are
able to identify necessary conditions for all the three
forms to give the correct high-energy result in the IPA
case. We also explicitly obtain the order of magnitude
of the error resulting from the error in the description
of the wave functions in the vicinity of the singularity.
We consider this at two levels of accuracy (depending
on the accuracy of the description of the wave functions
in the vicinity of the singularity). We first consider the
leading-order results in 1/p that can be obtained by
taking a simple description of the wave functions in
the vicinity of the singularity. To illustrate the source
of the general Stobbe factor, we then use a descrip-
tion that completely includes the strong e-N Coulomb
interaction.

We begin in Sec. 2 with a general discussion of the
AFT of singular functions. We discuss the connection
with the photoabsorption matrix element and differ-
ences (modifications of the asymptotic AFT) required
due to the presence of Coulomb functions. In Sec. 3,
we begin the discussion of the behavior of the photoef-
fect matrix element in an IPA potential. Here, we take
the simplest description of the wave functions, which
provides an illustration of the main ideas. In Sec. 4, we
consider the simplest case, photoabsorption by an s-
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state in a purely Coulomb potential, neglecting retarda-
tion in order to make comparison with the well-known
results obtained in the Born expansion approach. We
there illustrate our AFT approach in more detail. In
Sec. 5-7, we remove the constraints of the simplest case,
identifying the resulting additional features. We show
how the approach works for non-s-states (Sec. 5) and
for a general IPA potential with a point Coulomb singu-
larity (Sec. 6). We discuss relativistic and retardation
contributions in Sec. 7. Finally, in Sec. 8, we show how
more accurate results (together with a measure of their
error) can be obtained by fully including in the wave
functions the interactions that are strong in the vicinity
of the singularity (e-N'). We also assess the importance
of the contributions arising from interactions that are
weak in the vicinity of the singularity (screening, or cor-
relations more generally). We discuss the convergence
of the results to asymptotic forms with increasing en-
ergy. We explicitly obtain a common factor (the Stobbe
factor) arising from the e—N interaction that contains
all the slowly converging behavior. This explains why
ratios of cross sections converge to asymptotic forms
much more rapidly than the cross sections themselves.
In Sec. 9, we summarize our conclusions.

2. GENERAL CONSIDERATIONS

In general, the final-state wave function in
high-energy photoionization of a many-electron atom
is of the form exp(ip - r1)®Pp,x, where p denotes the
large momentum of one ejected electron (there must be
at least one), ry is its space coordinate, and A denotes
quantum numbers of other electrons in the final
state. Because the outgoing electron wave function
is described by a plane wave and incoming spherical
waves at large distances (with appropriate long-range
Coulomb logarithmic factors), these oscillations limit
the range in ry that contributes to the matrix element
integral, which can be viewed as a FT in the electron
momentum p of slowly varying functions. (Because
we have assumed nonrelativistic energies, there are no
oscillations of any retardation factor in the interaction
in this range.) We discuss the remaining p-dependence
in the Coulomb wave function in this range below. Be-
cause large w necessarily implies large p, the study of
the photoabsorption matrix element at large energies
is equivalent to the study of the asymptotic form of
the FT.

The study of the asymptotic form of the FT arising
in our problems is based on the theory of generalized
functions [13]. By definition [14], a good function f is

p
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an infinitely differentiable function of n variables such
that

of
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(1)

for any [ and m and any choice of the indices aq,
s, ..., qn (With ay + a2 + ... + ap = m), where
R = (2} + 23 + ...+ 22)'/2. (In the terminology
of [14], these are called y functions.) The theorem [13,
Theorem 2, p. 15] says that the FT of a good func-
tion is a good function [13,14]. This implies that
asymptotically, the Fourier transform ¢(py,...,pn) of
a good function decreases faster than any power of
(p? +p3 + ...+ p2)'/% We call this the AFT
theorem. An example of such a function in three di-
mensions is given by f(r) = exp(—r?). For large p,
the FT F;(p) o exp(—p?/2) of this function decreases
exponentially, i.e., faster than any power of 1/p, in ac-
cordance with the AFT theorem.

The functions that appear in our photoionization
matrix elements, even for the photoionization of a par-
ticle in a potential, are well localized (because the
bound state is localized), but are singular [20], i.e., non-
differentiable, at coalescence points. The wave func-
tions, which are eigenstates of a many-body Hamil-
tonian with Coulomb interactions, have singularities
at the singularities of the Hamiltonian, which are lo-
cated at points where the particles coalesce. We use
the term coalescence points for the locations of these
singularities. In general, there are double coalescence
points where two particles meet? and multiple coales-
cence points where more than two particles coincide.
The properties of wave functions in the near vicinity of
these singularities, which are well understood for bound
states [20,21], can be extracted from the Schrédinger
equation. They are known as coalescence properties,
and for s-states, they are often called Kato cusp con-
ditions. We use the term Kato cusp conditions more
generally, to denote exact behavior of the wave func-
tions at a two-particle singularity. (There must also be
singularities in the e—y interaction operator, depending
on the form that we take.)

In the vicinity of a singularity, the functions whose
FT is calculated can be written in terms of simpler
functions fs (with s standing for «simpley» ) whose FT is
known and a remainder O whose FT is asymptotically

2) Finite nuclear size does not affect our conclusions in any
way because the distances probed at nonrelativistic energies are
much larger than the size of the nucleus. A finite nuclear size
cannot be relevant for photoabsorption (when the total cross sec-
tion is considered, for example) even at ultrarelativistic energies,
see Sec. 7.
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negligible. We call this the partitioning (fs+0O) of func-
tions. According to the theory of generalized functions,
the FT of a generalized function with singularities is
approximated by the FT of these simpler functions f,,
while the size of the FT of the remainder O gives a mea-
sure of the accuracy of the approximation. The point
is that by taking fs more accurately in the vicinity of
the singularity, we can in principle achieve arbitrary
accuracy [14, Theorem 19, p. 52]. A simple example of
such a singular function is given by fa(r) = exp(—r).
The FT of this function is Fy(p) o (1 + p?) 2, which
indeed decreases as a power of p. By partitioning f in
terms of polynomials®) in r and using

lim /exp [—(er +ip )] r"d®r =
e—0

_dr(n+1)1 ) 0,
T Gp)"3 1 1, oddn>0

even n > 0,

(2)

(where we assume that p # 0, and therefore do not in-
clude §-function terms), we reproduce the expansion of
F5(p) in powers of 1/p. If we used some other parti-
tionings, we would not obtain powers in 1/p, but rather
some other function of p, depending on the nature of
fs used. The point is that the asymptotic FTs of such
simpler functions approach the exact FT for large p and
the FT of the remainder vanishes faster, in accordance
with the theory of the FT of generalized functions.
This is an illustration of the general idea. The func-
tions that appear in our matrix element can be written
in terms of simpler functions, which are required by
the Kato conditions to have the Coulomb behavior in
the vicinity of a two-particle singularity, as explained
below. In obtaining leading-order results, or in simple
cases that we consider for illustration, we use polyno-
mials in r (the interparticle distance) as our simpler
functions. These polynomials can be viewed as expan-
sions in r (which can exist in IPA potentials). But in
more general situations (with more electrons involved,
e.g., as considered in [1]) we cannot assume that sin-
gular functions are expandable in infinite series in r in
the vicinity of any singularity. In such cases, we can
still partition a singular function in the vicinity of a
singularity into a simple function (perhaps a polyno-
mial or the Coulomb function) and a remainder, which
may not necessarily be expandable but which vanishes
faster than the simple function as r approaches the sin-
gularity. In obtaining our full IPA results in Sec. 8,

3) Polynomial partitioning requires a convergence procedure;
we multiply each term in fs with exp(—er) and let £ — 0 after the
integration is performed. This is consistent with the definition
of the FT of generalized functions [14, p. 33].

partitioning in terms of Coulomb functions is required
(because all orders in the e~ N interaction are required).
Such a choice is sufficient for our purposes; it gives ac-
curate results neglecting the order ma?/p? (we use the
system of units A = ¢ = 1) and allows us to collect all
Coulomb slowly converging terms in (powers of) wa/p
(when full Coulomb functions are used), a = mZa,
where Z is the nuclear charge and m is the electron
mass. If better accuracy is required, one must go be-
yond functions with the Coulomb shape in the vicinity
of a singularity.

Expansion of wave functions around the origin
(which is the position of the e-N singularity) in
terms of polynomials has been used previously in
both single and double ionization by photoabsorp-
tion [16,17,22,23] and in collisions [23]. Here, we il-
lustrate generalizations of these approaches using the
AFT theory [1, 2]. We can partition (e.g., use Coulomb
functions, which are much better functions than poly-
nomials near the singular point) around singular points
that do not have to be at the origin in general and
consider all singularities on the same footing. An im-
portant point of this approach is that it clarifies which
singularities must be considered for these partitionings
(there are more than one singularity in many-body
wave functions and interactions in general [1]). As
shown in [1], the singularities that must be considered
are determined by the kinematics of outgoing electron
momenta, identifying situations in which the number
of the asymptotic FTs is minimized. Another impor-
tant point of our approach is that we start from exact
matrix elements (with exact wave functions) and ex-
tract and collect all contributions in the leading power
of 1/p, which determine the high-energy behavior (and
the leading corrections in some cases). With our ap-
proach, we identify the dominant terms and avoid los-
ing any of them; we also avoid uncontrolled introduc-
tion of spurious contributions. It is illustrated in [1]
how both these problems have arisen in the use of ap-
proximate wave functions.

There is however a point of difference between our
asymptotic matrix element and the asymptotic FT.
Namely, after isolating the fast oscillating terms of
the plane wave, the function left in the integrand still
depends on the large momentum variable p (coming
from the final-state wave function) through the pr-
dependence (as for example in confluent hypergeomet-
ric functions in the Coulomb case). It might therefore
be more appropriate to talk about a generalization of
the FT. We see in what follows that this additional
p-dependence is not a problem. The Coulomb modifi-
cation of the FT results, as we demonstrate in Sec. 8,
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in a slowly converging factor, the Stobbe factor.

Accurate evaluation of the matrix element at high
energies requires knowledge of both initial and final
state electron wave functions at the singular point or
at all singular points in general, if one goes beyond the
TPA. However, how much of this knowledge is actu-
ally needed in a given calculation depends on the form
of the matrix element used for that calculation. As
we demonstrate in considering the leading-order result,
only the normalization of the initial wave function at
the e—NN coalescence is required if the A-form is used.
With other forms (V and L), we generally need further
information about both the initial and final states. The
exception is for the s-state ionization in the V-form, for
which we need only the normalization and slope of the
initial state at the coalescence. In any case, this knowl-
edge gives us the leading contribution of the high-ener-
gy matrix element, which is generally accurate to the
relative order O(mmZa/p).

3. SINGULARITIES OF THE IPA MATRIX
ELEMENT INTEGRAND

For a single electron in a potential, in the lowest
order of the electron—photon interaction, the matrix el-
ement for photoionization by photoabsorption is given
by (in units i=c=1)

M = /\I/;—>*(r)1(r)\11i(r)d3r, (3)

where W;(r) = Ry (r)Y,"(r) is the initial bound
state normalized to unit integrated probability den-
sity (the hat denotes the unit vector), Up(r) =
= exp(ip-r)q)g,_)(r) is the final electron continuum
state normalized on the momentum scale (to asymp-
totically approach a distorted plane wave of the mo-
mentum p with the amplitude (27)~%/2), and I(r) is
the interaction operator, given in the three commonly
used forms (keeping retardation to all orders) as

Iy = —ie™®%e -V, (4)

Here, € is the photon polarization and V(r) is an IPA
potential energy of the type V(r) = —(Za/r)S(r),
where S(r) is a screening function, which we assume*)
can be described as a polynomial in r for small r,
S(r) = (14s1r+sr2+...); the potential therefore has
only a Coulomb divergence and is differentiable except
at r = 0. The singularity of the potential energy results
in singularities in the wave functions ¥, and ¥;. These
functions are not differentiable at the origin. The e—y
interaction operator in the L- and V-forms is regular in
this sense, while in the A-form it is singular because it
involves the singular potential V(r), Eqs. (4)—(6). The
large-p behavior of the Fourier transform of a slowly
varying function of r is determined by its behavior near
the coalescence point (because pr ~ 1, large p corre-
sponds to small r) and only depends on the singular
parts of the function. We thus partition the functions
U, (r) and @53_)(1‘) around the coalescence point r = 0
(the only singular point here). The small-r behavior
of these slowly varying portions of the integrand deter-
mine the AFT.

The partitioning fs + O in terms of polynomials
of the initial (bound) state with quantum numbers
(n,I,m) in an TPA potential with the Coulomb singu-
larity is

U,(r) = NIPA L x

x [1- l_l_Llr+/\2r2+/\3r3+O(r4) Y (#). (7)

In the simple function fs (in which the terms are al-
ternately regular and singular, with the regular first
term, r'Y;™(¢)), the first two terms are determined
solely by the Coulomb singularity of the potential and
are therefore known independently of the screening, ex-
cept for the overall normalization factor N/P4 (which
depends on the choice of the TPA potential). Higher-or-
der terms in f; in Eq. (7) depend on the screening of
the IPA potential, which determines the \; coefficients.
The fact that the first two terms in the parenthesis in
Eq. (7) are determined by the Coulomb singularity is
well known; it is a special case of the general behavior of
wave functions at coalescence points of many-electron
atoms [20,21]. Namely, in the description of a bound-
state many-electron atom wave function around any
coalescence (which includes any electron—electron co-
alescence) in terms of the relative coordinate of the

4) Here, we assume a potential that can be expanded in integral
powers of r in the vicinity of a singularity. Using a potential that
is expandable in nonintegral powers of r (e.g., the Thomas—Fer-
mi potential Vpp = —Za/r + Crp + O(\/r), where Crp is a
constant) would lead to nonintegral powers of 1/p.
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two coalescing particles, the first two terms are deter-
mined by the singularity of the corresponding part of
the Coulomb potential, up to an overall factor, and
there is a remainder that vanishes more rapidly than
linearly in the coordinate. These two terms and the
normalization constant are all that we need from the
initial-state wave function (we also need information
from the final state) in order to determine the leading
contribution in 1/p to high-energy photoabsorption in
any form.

In the final-state electron wave function, the sit-
uation is very similar, except that the normalization
is not affected by screening in the limit of high mo-
menta. According to [24-27], the wave function of a
high-energy continuum electron state of momentum p
in the vicinity of the Coulomb singularity of the TPA
potential is essentially of a Coulomb form. As shown
in [27] using the analytic perturbation theory, the cor-
rections to the Coulomb wave function due to screening
in the vicinity of the nucleus (r <« 1/a, where a = mZa
characterizes the unscreened nuclear charge) decrease
with the electron momentum as O(1/p?) relative to the
Coulomb functions. This means that in the vicinity of
the Coulomb singularity (r < 1/a), the wave function
representing the outgoing electron of momentum p > a
can be written, following [25,27], as

p=)

p (r) = Npceip'r {1F1 <—i9., 1, —ipr(1+ cosﬁ)) +
p

1
+ O <F;pr, cosﬁ,siﬂ , (8)

where cos? = p - r, the first term in the right-hand
side is the Coulomb term while the second term is the
remainder, which vanishes faster than 1/p (denoted
by 1/p? in O). The functional dependence of O is
also shown; the remainder contains all information on
screening, symbolized by the coefficients s; character-
izing the small-distance behavior of the screened po-
tential. According to the analytic perturbation the-
ory [25,27], an even more accurate continuum wave
function of the Coulomb shape is obtained in the re-
gion r < 1/a by shifting the electron momentum in
Eq. (8) from p to pc, by an amount determined by the
parameters of the screened potential, and by replacing
the normalization Npc (if the momentum scale normal-
ization is used) by \/pc/p NSS. However, although such
a Coulomb function is more accurate, its error still de-
creases as 1/p? with large momentum p. We therefore
do not need it here, but we use it in Sec. 8.

The result in Eq. (8) is important for our approach
because as we show below, it implies that the terms
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in the partitioning of the final state around the coa-
lescence that contribute to the high-energy matrix el-
ement are not affected by screening. We show this to
the leading order in 1/p, further simplifying fs in the
partitioning of Eq. (8). Because distances involved in
the process are r ~ 1/p and because we consider high
energies for which p > mZa, while the wave functions
are considered at fixed pr, the terms that are important
for our discussion here involve terms up to linear in the
parameter mZ«/p, with further terms contributing to
higher orders in 1/p. We write

vl

1) = e (1= iy G+ pr) +
1
+ O F;pr,cosﬁ,si , (9)
where O includes all contributions of the order a”/p?

and higher-order contributions from the full Coulomb
function in Eq. (8), and

e %t n <
T

:/(e"ft—l)% (10)
0

1
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t—1
t

at _

g\ (i6) = - p

determines all contributions of the order a/p to the
full Coulomb wave function for pr ~ 1. Here, T is a
counterclockwise oriented closed contour encircling the
cut [0,1]. By inserting Eqgs. (9) and (7) in Eq. (3),
we obtain a series of integrals of functions that contain
powers of r, the ¢~ function, and angular functions.
The function ¢(=)(i¢) is needed in calculating the lead-
ing contribution to the high-energy matrix element in
general. It contains p-dependence through pr, which
may appear undesirable; at first sight, if we want to
view this high-energy matrix element as a FT. It fol-
lows from explicit calculations, however, that there is
no additional p-dependence in a FT integral also in-
volving ¢(=) function despite the p-dependence of the
¢(7) function.

The factor exp(—er) is introduced in order to
achieve a convergent integration of each term in the se-
ries; after the integration is performed, the limit ¢ — 0
is taken. As noted in Sec. 2, this procedure is consis-
tent with the definition of the FT of generalized func-
tions [13]. For the AFT theorem (and we also assume
for the AFT involving the ¢(~) function), we must un-
derstand the singularities of the integrand. The singu-
larity properties of the wave functions are immediately
identifiable in these series, which involve powers of r
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and angular functions such as powers of p - + = cos
and spherical harmonics. For example, r and cos ¢ are
singular at the origin (as functions of x, y, and z), but
their product is not (r cosd = z), nor are their squares
(we also note that r'Y;™ is regular).

We see in what follows that the leading contribution
to the high-energy matrix element can be obtained in
any form using only the first two terms in fs of the
respective partitioning of the initial and final state in
Eqgs. (7) and (9), while neglecting some of these first
two terms may lead to erroneous results in some forms.
Higher-order terms in the expansion give higher-or-
der contributions in 1/p, as is explained below and is
demonstrated using simple examples in Secs. 4 and 5.
To the leading order in 1/p, the form-independent high-
energy matrix element for photoabsorption in an TPA
model is obtained from

M = N/PANC~ gi_rg/exp(—ip T —er) X

14200 G 4 x| 100

X {1 —
where I(r) can take forms like Eqs. (4)-(6), which also
contain different powers of r» and angular functions.

Expression (11) is a form-independent term that
gives the leading order in 1/p for large p. We see
from Eq. (11) that the only difference from the purely
Coulomb case is in the initial-state normalization,
which depends on the TPA potential. All other terms
are determined by the Coulomb singularity. There-
fore, in an TPA model with a Coulomb singularity,
information about screening persists at high energies
only in the initial-state normalization. This behavior
for high-energy photoabsorption in an IPA potential is
known [26], but it is just one aspect of the persistence
of the electron—electron interaction in high-energy pho-
toabsorption, discussed within the AFT approach for
two-electron atoms in [2].

In a matrix-element form, in which the interaction
operator is regular (such as the V-form and L-form, to
be denoted by IF and IF) rather than singular (as in
the A-form, I5), the contribution from the term in the
integrand involving the first terms of the simple func-
tions f, of both the partitionings of ¥; and of ®(~)
vanishes for any [ (while in the A-form, this term gives
the leading nonvanishing contribution). The leading
nonvanishing contributions in such forms (L or V) in-
volve the product of the first term from ®(=) (which is
regular, to be denoted as Ry) with the second term in

a
Y, d? 11
Fir| v
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U, (singular, S;) and the product of the second term
from ®(~) (singular, S;) with the first term in ¥; (regu-
lar, R;). These two contributions are of the same order
in 1/p. In summary, in the leading order in 1/p, we
obtain the nonvanishing contribution from

M = /exp(—ip-r—ar) [Ry + Sy]

If
X ]‘I} [R; + Si] —
I3
RyIRS;+SsIRR;
— /exp(—ip -T—er) RfI‘I/%Si-I-SfI‘I/%Ri (12)
RfIﬁRi

We explicitly evaluate Eq. (11) for an H-like po-
tential in the next two sections, and we discuss the
obtained leading-order results further, comparing them
with the Born-approximation results in different forms.
The two approaches must of course agree. We note
that the results in Eqgs. (11) and (12) reflect the im-
portance of the singularity region. This means that if
one wants to improve results, one needs to partition
functions in terms of functions that better describe the
behavior in the vicinity of the singularity. (This is only
one of the points of distinction from a perturbative ap-
proach, e.g., the Born expansion. The Born expansion
gives the same weight to all regions, while the AFT ap-
proach tells us that the singularity region is important
for high-energy photoabsorption.) Partitioning of the
wave functions in terms of functions that are more ac-
curate in the vicinity of the singularity provides more
accurate results. The results in Sec. 8, for example, are
obtained using partitioning in terms of Coulomb func-
tions (which include the e~ interaction to all orders).

The integrals involved in evaluating Eq. (11) are
elementary and are of two types. The integrals that in-
volve the first term in the square brackets from the final
state and powers of r and products of spherical harmon-
ics from the e~ interaction and the initial state®) are
given by

Jp = lim /exp(—ip v —er)r"YM(2)d®r
e—0

_ 2n(n +2)!

(ip)n+3 L (f))f75+37 (13)

where

5) These products of spherical harmonics can be combined into
one YM
fa
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1

=

-1

Py (z)dx
(x —ie)k (14)
and Py (x) is the Legendre polynomial. The integrals
of the second type, involving ¢~ (i(pr + p - r)) from
the final state and powers of r and products of spher-
ical harmonics from the e—y interaction and the initial
state, are given by

Ty =
= lir% exp(—ip - r—er)g T (i(pr+pr))r"YM d*r =
e—
27(n 4+ 2)! ar ot
= ———=Y] h 15
Y @k (19
where
1
%:/m&wx
~1
y ’il ()" — e 1
= (n+2—j)(x—ig)nt3
im+ In(z —ic) (16)

(SU _ iE)n+3

In performing the radial integration in Eq. (15), we
used the integral form (the second form in Eq. (10)) of
the function ¢(=)(i(pr + p -r). The integrations over =
in Egs. (14) and (16) are elementary, and we evaluate
them for specific L in Secs. 4 and 5.

Expressions (13) and (15) show how higher powers
in r lead to higher powers in 1/p. We note that while
Jo gives a nonzero result for any n and L (because g
contains both regular and irregular terms), J; is zero
for n and L for which r"YM is regular, in accordance
with the AFT theorem. Therefore, depending on the
form used, at least one of the two first terms in the f;
functions of electron states gives a contribution to the
leading order of the matrix element, while all further
terms beyond the first two give higher-order contribu-
tions.

4. THE SIMPLEST CASE: GROUND STATE
IONIZATION OF AN H-LIKE ATOM

We now discuss how the leading contribution to
the matrix element is obtained in the three forms in
Eqs. (4)—(6), in the simple and familiar case of pho-
toionization of the ground state of an H-like atom with
retardation neglected.
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When we neglect retardation and use the nuclear
Coulomb potential, the A-, V-, and L-forms of the ma-
trix element are obtained using

1Zo €T

T 20

w r

I Iy =—ie-V, I =imwe-r (17)
for the interaction operators, where w is the photon
energy and € is the photon polarization. The V- and
L-forms of the interaction operator are regular, but the
A-form is not, because it was obtained by taking the
gradient of the potential. We note that the A-form
is irregular at the origin both because it is divergent
and because its value near the origin depends on the
direction of approach.

As we have seen, the large-p asymptotic behavior
of the FT of a slowly varying function of r is deter-
mined by its behavior near the coalescence point; it
only depends on the singular parts of the function in
the small-r limit. We therefore begin by partitioning
the functions ¥;(r) and ‘I>§;) (r) around the coalescence
point r = 0 (the only singular point here). We write

\I’Z(l‘) = Nl(l —ar + )7

<1—i%g()(ﬂpr+p-r»-ku.>. (18)

If we proceed as described in the previous section,
we obtain the familiar high-energy expression, which is
usually obtained in the V-form by assuming that the
energetic outgoing electron can be regarded free and
can be represented by a plane wave [28-30]. But in our
procedure, we must be more careful and must not make
such an assumption, which is incorrect in general (e.g.,
for non-s-states or even for s-states in the L-form).

Substituting Eqs. (18) and (17) in the matrix el-
ement in Eq. (3), we obtain a series of integrals in-
volving powers of r and powers of cosd). (We choose
the p direction as the z axis in this integration, and
only functions of cosd therefore appear). Applying
€ VU, = ¢ -t (—a+a’r +...), we obtain integrals
of the two types in Eqs. (14) and (16). The integral
involving the first term from f; of the partitioning of
<I>§,_) and terms from the partitioning of ¥; is [1]

/exp [—(c +ip-r)]r"e-td®r =

2r(n+2) e -p

(ip)+3 G (19)
-2/(n+1), evenn > -2,
Cph =1 0, odd n > —1,
i, n=—1.
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We note that the zero result for odd n > —1 follows
from the AFT theorem because the integrand function
is not singular; for even n and for n = —1, the inte-
grand function is singular. Integrals involving the term
g7 (pr, cos V) in the partitioning of <I>§,_) are easily per-
formed using the integral representation in Eq. (10).
We obtain [1]

/exp [~(e+ip 1) g7 (i(pr+p 1)) "€ T d°r =

2me - p
=———D 20
TeBDn (20)
where
D,=2n+2)! (1 —im)/(n+1)
for even n > 0 and
(n—1)/2
2k + 2
p,= Y =2
n — 2k
k=0
foroddn >0, D_y =in—2,and D_; = -7 /2—im—2.

In both Egs. (19) and (20), the p-dependence of the
results is seen by inspection, resulting from the nature
of the scaling in pr. Equation (19) shows that higher
powers in r lead to higher powers in 1/p, but nonva-
nishing contributions come only from singular terms.
We use this behavior in identifying the leading contri-
butions in 1/p in our calculations. In the partitioning of
the final-state wave function in Eq. (18), the first term
is of course regular, while the second term (g(~)) is sin-
gular. The same is true for the initial state, not only
for this s-state, but for any state with angular momen-
tum [ for which the first terms of f5 in the partitioning
around r = 0 are

U~y (1—ar/(l4+1)+...).

We further note that in the case of an s-state, the
contributions from the first term of ¥ (which is then a
constant) vanish in the V-form because of the deriva-
tive in the interaction operator € - V. For non-s-states,
there are nonvanishing contributions from this first
term (when multiplied with g from ®(~)), which must
be taken into account in order to obtain the correct
high-energy matrix element, which would be missing if
a continuum plane wave had been assumed (neglecting
the terms in g).

Therefore, in the V-form for the s-state case, the
leading contribution involves only the first term in &
and the second term in the partitioning of the initial
state ¥, justifying the usual calculation involving the
plane-wave approximation for the final state. Using
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Eq. (19), we obtain the familiar result for s-state ion-
ization neglecting retardation (dipole approximation),

M= —Aep—spCO = 2A€p—3p, (21)
where A = 4raN;NE .

We now show that we obtain the same result using
the same procedure in the L-form. Here, the singularity
of the final state also contributes, however, and an in-
correct result is obtained if a plane wave is assumed to
provide an adequate description of the energetic elec-
tron. In terms of our approach, such an assumption
would imply taking the term in the integrand involving
the first term from the partitioning of ® and the second
term from the partitioning of ¥. This contribution is

6:461;—31302 - 4Ael;—3p

(we have put w = p*/2m), which is twice the correct re-
sult in Eq. (21). But as we have already explained, we
must include all terms contributing to the same power
in 1/p. We must therefore include the term in the inte-
grand that involves the second term ¢(=) from ®~ and
the first term from ¥;. This gives the contribution

_Aeby _ guP

4 p? p?

The sum of the two terms gives the correct high-energy
limit, Eq. (21), showing that the L-form and the V-form
indeed agree.

Finally, we can calculate the photoeffect matrix el-
ement in the A-form using the same procedures. As we
have already remarked, the electron—photon interaction
operator I4, Eq. (17), is singular at the origin in this
form, with a singularity arising from the singularity of
the potential. The leading contribution to the matrix
element in Eq. (3) in the A-form comes from the first
terms in the partitioning of ®(~) and ¥; only (a term
in the integrand that did not contribute in the L- and
V-form due to its regularity, not only for the s-state
case, but for any /). All other terms contribute with
higher powers in 1/p. For the s-state, the result in the
A-form is easily evaluated with the help of Eq. (19) for
n 2, again giving the same result, i.e., Eq. (21).
(We note that in the A-form, the next-to-leading term
in 1/p can also be obtained without referring to screen-
ing: it involves ¢(~) or ar. We use this fact in Sec. 8 in
discussing convergence toward the high-energy limit.)

5. BEYOND s-STATES

We now discuss non-s-states, staying within our
simple H-like model without retardation, and building
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on the general features already encountered in the s-
state case. We again utilize the AFT theorem, identi-
fying the singular part of the integrand function, and
evaluating the dominant contributions through the par-
titioning of the bound state in Eq. (7) and the parti-
tioning of the final state in Eq. (9) around the electron—
nucleus coalescence. The required integrals are given in
Eqs. (13) and (14). Now, however, a plane wave does
not adequately describe the fast outgoing electron, ex-
cept in the A-form, in which the electron—photon in-
teraction provides the needed singular behavior for the
integrand function.

The leading contribution in 1/p to the high-energy
photoabsorption matrix element M in Eq. (3), which
in the A-form is obtained by taking the leading, regular
terms in the partitioning of the initial and final electron
states, is

—2imZaNF1! 4r
(271')3/2 (ip)H'?’ 3
Y ®)Y™ ()

IS
% ; i (e) /dQ (cosv) —ig)ltt’

Lm _
My™ =

(22)

The remaining angular integration involves only ele-
mentary integrals (13). For | = 1, the case that we
discuss below in other forms for illustration, Eq. (22)
gives

m STia

My™ = (=1)'="——=N;NSY{(e). (23)

(For simplicity, expression (22) is obtained with the
z axes taken in the direction of p. Rotation to fixed
coordinates must be made in integrating over electron
angles.) We note that the part My of the matrix ele-
ment M is obtained in the A-form using plane waves.
In other forms, the calculation of My requires higher-
order (singular) terms, from both initial and final states
in general. We therefore do not call My the first (plane-
wave) Born approximation result, because it is the
first Born approximation only in the A-form and is a
higher-order Born result in other forms in general.

While a plane wave is sufficient for an initial s-state
in the V-form, this is not true for I > 0, as we demon-
strate. With the V-form, it is convenient to express
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PN ar V*
€ VIR/(r r]—,/ Z Y]
v=—1
[+1
X \/2[:_3(1 vil,mll+ 1,m+ )Y (1) x

d 1
x (5 ‘?) B -
- ﬁ(l,v;l,mﬂ—1,m+zx>YlT1+"(f') X

d 1+1

X <%+ ; >R[], (24)
where (1,v;l,m|L, M) are the Clebsch—Gordan coeffi-
cients. For [ > 0, the term with the lowest power in r in
the partitioning of the function in Eq. (24) around the
coalescence (r = 0) is regular, and it comes from the
second term of Eq. (24). Therefore, for the L-form, the
term ¢(~) from the final-state function &~ also con-
tributes to the lowest order. The exception, for the
V-form, is the s-state, as we saw in the previous sub-
section, because the second term in Eq. (24) is zero and
the lowest power in r is singular for [ = 0.

For illustration, we consider the initial | = 1 case.
Inserting expression Eq. (24) for [ = 1, using a linear
polynomial in the partitioning around the coalescence
Ry = Nyr[1 — (a/2)r + O(r?)], including contributions
from the ¢(=) term, and performing the integration by
choosing the direction of p as the z axis, we obtain the
matrix element in the V-form as

My = iaNinchm(e) /exp(—ip ‘T —Eer) X
[

9 .
ST 3P2(cosz9)r + gr — ]%g(*)* X

x (ipr(1 + cos 19))] d*r =

(_1)1 8maNNCYm( )

which coincides with the result obtained in the A-
form, Eq. (22). Assuming that a plane wave is an
adequate representation of the fast electron wave func-
tion and therefore neglecting the contribution from the
final-state singularity, one would obtain a nonzero re-
sult (in the chosen frame, where p is directed along
the z axes) only for the angular momentum projec-
tion m = 0, and even that result would be erroneous
by the factor 2. The contribution to the matrix ele-
ment in Eq. (25) coming from the g function part is
—87rz'aNinOY1m(e)/p4.
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In both V- and L-forms, the interaction of the out-
going electron with the potential («final-state interac-
tion») contributes for any [ > 0. In contrast, in the
A-form, the transition operator is singular and only
the leading terms (the lowest powers in r) in both ini-
tial and final states are needed for any ! to obtain the
correct leading contribution.

6. SCREENED POTENTIALS

We now demonstrate that the previous results are
sufficient to determine the asymptotic behavior of non-
retarded photoabsorption in a general central potential
to the leading order in 1/p. The entire previous dis-
cussion, although given for a nuclear point Coulomb
potential model, is in fact valid for a general TPA po-
tential that has a singularity of the Coulomb potential
at the nucleus. Our discussion relied on the behavior
of wave functions and interactions at this singularity.
For the leading terms in the partitionings that we uti-
lized, these behaviors are the same for an IPA poten-
tial as long as it is Coulomb at the singularity. To see
the effects of the difference between an IPA potential
(with the Coulomb singularity) and a pure Coulomb
potential, we consider a potential energy of the type
V(r) = —(Za/r)S(r), where S(r) is a screening func-
tion that behaves as S(r) = (1 + s;r + s2r® +...) for
small r, as assumed in Sec. 3.

The interaction operators in the L- and V-forms are
independent of the potential. In the A-form, we obtain

A = —é[V(r).,e V] = ée -VV (r). (26)

IPA

The partitioning of 7}"” around the coalescence gives

1

€

paA _ 1Zae-T
Iy ' =—— 13

- (27)

82—283T+...>.

We note that the term involving s, in Eq. (27), which
is regular, contributes three more powers relative to
the first term. In contrast, the first term from wave
functions involving screening contribute with two more
powers in 1/p.

We thus conclude that in the leading order, the
same expression for photoionization at high energies
is obtained in the IPA potential and in the Coulomb
case (in Sec. 8, we show that this is in fact true in the
first two orders). The normalization factors N/P4 are
different, however, and IPA predictions therefore dif-
fer from the purely Coulomb case prediction by these
factors.
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7. RETARDATION AND RELATIVITY

We now discuss the inclusion of retardation. This
changes the forms of the interaction operators. In the
V-form, the change is simple: the retarded interaction
is Iy = —iexp(ik - r)e - V, where k is the photon mo-
mentum. In the L- and A-forms, obtained by applying
commutator relations to the V-form, the momentum k
also appears in factors multiplying exp(ik -r), as can be
seen from Eqs. (4)—(6). In evaluating the integrals, we
need to specify how to deal with the photon retardation
oscillating term exp(ik - r) in the e—y interaction I(r).
One way, particularly if retardation to a certain order
in k is considered, is to expand exp(ik - r) in powers of
k-r. Another way of dealing with exp(ik - r) is to attach
it to the fast oscillating term exp(—ip - r) and consider
the FT in the variable A = p—k, because p—k is large
in the nonrelativistic region whenever p is large, and
our arguments using the AFT theorem in the asymp-
totic region apply. We note here that in the IPA sin-
gle ionization from the ground state, retardation effects
give a contribution of the relative order (v/c)? [31,32],
where v is the velocity of the outgoing electron, which is
of the same order as the relativistic contribution. This
fact is used in the case of a two-electron atom [1] to
argue that retardation effects have the same relative
contribution in single ionization and in double ioniza-
tion in the region, where the shake-off mechanism is
dominant, due to factorization of the matrix element
into a (retardation-independent) correlation term and
(generally, retardation-dependent) absorption term.

We however note that at relativistic energies, when
p ~ k, neither expanding in k nor assuming A large
(in comparison to m) is generally valid. It is still true
in certain kinematic situations, but these are not dom-
inant for the photoabsorption processes at those ener-
gies. Namely, at relativistic energies (and as w — 00), a
region around the nucleus of the Compton wavelength
distances continues to contribute to photoabsorption,
for arbitrarily high energies. This implies that although
it is a relatively small region, the final-state wave func-
tion in the whole region, not just at the point of coa-
lescence, is needed, and certain knowledge to all orders
in a is required [22]. Under the analyticity assumption,
the region is characterized by an expansion around the
origin, and expansion of the matrix element as a series
in a/A is still possible. The plane-wave approximation
is no longer valid in any form, but partitioning in terms
of Coulomb functions is fully justified.
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8. CONVERGENCE OF THE CROSS
SECTIONS TO THE HIGH-ENERGY LIMIT.
THE STOBBE FACTOR

Here, we discuss the rate of convergence toward the
exact TPA high-energy limit for the cross sections that
we have obtained using the asymptotic behavior of ma-
trix element (11). The ratio of the first correction to the
leading contribution is of the order 1/p, and it gives a
very slow convergence of the matrix elements and cross
sections. In fact, it converges as ma/p ~ 7/ Ex /w,
where Ep is the K-shell binding energy. We note that
a slowly converging factor (i.e., converging as wa/p rel-
ative to the asymptotic constant value) exists in the
final-state normalization, which is

1 .a wa/2
= 7(271-)3/21—‘ <1 —|—ZE> e CL/ p.

But there are also other Coulomb terms with this slow
convergence (e.g., the first correction, which is unaf-
fected by screening). In fact, if partitioning of the ini-
tial state was performed in terms of polynomials, a sim-
ilar slowly converging term would come from each term
of the polynomial. Because of this and also because of
the possibility of large Z, we include the e-N interac-
tion completely in both the initial and final states by
partitioning the wave functions in the vicinity of the
singularity in terms of Coulomb functions. Formally,
this means that we write the initial-state wave func-

C
p

(28)

tion as

IPA

B ) = S
where Ay (\S) is the coefficient multiplying the third
term in a polynomial partitioning of the IPA (Coulomb)
wave function (7), ¥¢ (r) is a normalized Coulomb wave
function with the same quantum numbers as W!P4(r),
and O[(AS — X2)r!*?] represents the difference between
the Coulomb and screened third term in a polynomial
partitioning of the wave functions and all higher-order
differences. The terms represented by O are small, as
we discuss below.

For the final state, we take the Coulomb part of
Eq. (8), but with a shifted energy and with the cor-
rected normalization [25,27]. According to [25,27],
as already mentioned, the exact IPA wave function
is Coulomb in the vicinity of the e-N singularity. A
sufficiently accurate function (containing the dominant
terms of the relative order 1/p?) is obtained if the
shifted momentum p¢ is used instead of the true mo-
mentum p. The momentum p characterizes the elec-
tron at large distances from the nucleus. If we want

WE(r) + 0 [(A5 = )], (29)
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to describe the screened wave function in the vicinity
of the nucleus by a Coulomb function, we must use,
according to [25,27], the shifted momentum pc.
addition, if the function is normalized on the momen-

In

tum scale, the normalization is affected and is given
by NP4 = \/pc/pNE.. The final state is therefore

given by
1
v () = [ Bel) +0< ) 30
p (r) ) (r) o (30)
where the shifted momentum p¢ is [25]
P’ IPA
I _Pc _\gg _|EL 1
VYo _|gg| B (31)

with EY (ELPA) denoting the hydrogen-like (IPA)
binding energy of the state that is ionized.

We arrive at the following approximation for the
TPA matrix element:

NIPA

1/pc/nI:C La(0) TS (r)dPr +

1 NIPA 55 1
ol=]= ZME+0(=). (32
* <p2> Ne T <p2> (32)

From Eq. (32), it immediately follows that at high en-

ergies,
IPA N/PAN? c 1
do = < ]ZV.O ) do” 4+ O <P> (33)
where do® is the differential cross section obtained

from Coulomb H-like wave functions calculated at the
shifted momentum p¢c and O indicates how rapidly the
error decreases. (The momentum p from the phase
space cancels p from the factor pc/p leaving only
the shifted momentum pc in the right-hand side of
Eq. (33).) The error in Eq. (33) is determined by the
errors in the wave functions. According to the results
in [25], the difference between screened and Coulomb
functions is very small when unnormalized functions
(with the same first coefficient in the expansion taken)
are compared; for potentials with a polynomial expan-
sion, this difference decreases as 1/p® for small r6).

6) We note that the use of a potential that cannot be expanded
in integral powers of r might not give a small correction vanishing
as 1/p?, as given in Eq. (33). For example, the Thomas-Fermi
potential (see footnote 4) leads to a correction vanishing slower,
i.e., as 1/p3/2. However, the Thomas—Fermi model fails in the
vicinity of the nucleus (which is the region determining high-
energy photoabsorption), where it predicts a too large electron
density, see, e.g., B. G. Englert and J. Schwinger, Phys. Rev.
A 29,2331 (1984).
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This implies that dominant terms of the relative order
1/p® are collected. We illustrate the fast convergence
of this procedure for the cases involving low-Z atoms
(He) and outer shells of higher-Z atoms (the L-state of
Ne).

For Coulomb states, the integrals in Eq. (32) can
be evaluated analytically. As illustrative examples, we
have the cross section per electron for the electron ion-
ization from the 1s, 2s and 2p shells [15]

32ma’ap a a )
c _
014 = mQﬂ'; |:6Xp5 (ﬂ' — 4arctg a) X
Ta ra\] "
X lexp| — | —exp | —— ,  (34)
p p
og = Amonp @) o
3mPwp® + (a/2)?]* p
2
X exp F <7r —4arctg _p)} X
P a
Ta ra\17"
X |exp| — | —exp | —— ,  (35)
p p
c _ maaplp® + (11/12)a2]27r9 y
= B+ @2 b

X exp E (71' —4arctg %pﬂ X
o) ()]

To illustrate the meaning of Eq. (33), we apply it to the
calculation of high-energy photoabsorption and com-
pare the result with those obtained within the full
Fock—Slater IPA calculations. Our comparison with rel-
ativistic calculations is fully justified for low-Z atoms
and for s-shells of higher-Z atoms, for which retarda-
tion and relativistic contributions cancel to a high de-
gree even at higher energies. However, for our illustra-
tive purposes, we also show p-state results for Ne, for
relatively small photon energies.

In Table 1, we show the total cross section for
K -shell ionization obtained from Eq. (33) for Z = 2
using (N;/NF)? = 0.7358 (which indicates large screen-
ing) [33] and compare it with the results of the full IPA
calculations from [33]. As we see from Table 1, the
agreement between the high-energy result in Eq. (33)
and the full TPA calculations is already very good at
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Table 1.
sorption from the K -shell of He (Z = 2) obtained using
Eq. (33) in comparison with the full IPA calculations

The total cross sections ok for photoab-

ok.; exp(—am/p) is the Stobbe factor

R B AL (-%)
Eq. (33) | Ref. [33]

1 396 402 0.542
1.5 107 109 0.596

> 41.7 43.2 0.633

3 10.9 11.2 0.682

4 4.20 4.23 0.715

5 1.9 2.03 0.739

6 1.08 1.10 0.757

8 0.408 0.411 0.784

1 keV, despite the large screening; in the energy range
1-2 keV, the disagreement is around 1-2 %. This is to
be compared with the lowest-order result, which gives
about 50 % disagreement in the same energy range,
as indicated in Table 1 by the value of the factor
exp(—ar/p) (see the explanation for this factor below).

For the L-state of Ne, screening is even larger
((N:/NF)? = 0.4386 for 2s state and (N;/NE)? =
= 0.2277 for 2p). In Table 2, we show the total cross
section for the 2s and 2p states of Ne and compare them
with the full relativistic IPA calculations. For the 2s
state, Eq. (33) gives results that converge to the full
TPA result very fast; the disagreement is around 6 %
at 1 keV and is less than 1% at 4 keV. Similarly, the
results in Eq. (33) for the 2p state converge rapidly to
TPA results in the same energy range. This very good
agreement between the results in Eq. (33) and the full
TPA results already at relatively small energies, even
for Ne, can be explained by the properties of IPA wave
functions in the vicinity of the Coulomb e-N singu-
larity. Namely, at the photon energy region 1-2 keV,
the distances involved (distances around the singular-
ity at which the momentum is transfered between the
electron and the nucleus) are within the K-shell or-
bit for Ne, and well within the K-shell orbit for He,
where the screening is small. Therefore, the shapes
of the wave functions at these distances are basically
Coulomb. This is a very important point that we use
and generalize in our approach. The high-energy pho-
toabsorption is essentially of the Coulomb type. This
means that the high-energy behavior of cross sections
(we here mean the keV range, as in our examples) is de-



T. Suri¢, E. G. Drukarev, R. H. Pratt

MKIOT®, Tom 124, Bbin. 2 (8),

2003

Table 2.

(Z = 10) obtained using Eq. (33) in comparison with the full IPA calculations 0% and 02”; exp

The total cross sections o25 and o2, for photoabsorption from the respective subshells 2s and 2p of Ne

(—ma/p) is the Stobbe

factor
. keV 025, b 0%, b o2ps b oif;, b exp (_%)
Eq. (33) Ref. [33] Eq. (33) Ref. [33]

1 11276 10600 5629 5416 0.039
2 1932 1895 492 495 0.090
4 289 290 37.4 38.9 0.174
8 38.5 39.1 2.51 2.65 0.286
10 19.7 20.0 1.030 1.092 0.325
15 5.67 5.77 0.1987 0.2144 0.398
20 2.309 2.353 0.0607 0.0669 0.449
30 0.637 0.651 0.0112 0.0128 0.519
50 0.122 0.125 0.00129 0.00159 0.600

termined by the properties of functions near the singu-
larity, which is of the Coulomb type. The screening ef-
fects enter these IPA examples, of course, but in a sim-
ple way as a constant factor. By straightforward gen-
eralization of these findings in high-energy many-body
calculations, we can significantly simplify calculations
involving e—e correlation, as shown in [1].

Another important point that we want to make
in this subsection, relevant for more complex sys-
tems [1,34], is the relatively fast convergence of the
ratios of photoabsorption cross sections to the results
predicted by lowest-order results (the Born approxima-
tion results in the A-form). We first note that the slow-
est converging factor in our examples in Eqs. (34)—(36)
is exp(—ma/p). In partitioning wave functions around
the coalescence, we obtain this factor by collecting all
Coulomb interaction in the final state for each term in
the partitioning of the initial state. The factor is there-
fore present for any state. The existence of a common
slowly converging factor provides fast converging ra-
tios of the cross sections. Further, the ratios of the
cross sections for ionization from subshells of the same
shell converge particularly fast, as we illustrate using
our examples for the L-shell, Egs. (35) and (36). In our
examples, the ratio

2 2
&Nwa_w(a_)

37
o2 12m w (87)

is a nearly linear function of the photon energy w in
the keV range. If we had used the lowest-order result
in 1/p, we would obtain os5/02, ~ w, which is very
similar to the exact result (in the keV range for Ne,
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for example), although the first-order results for cross
sections differ by an order of magnitude from the exact
results in this energy range, as indicated roughly by the
factor exp(—ma/p) in Table 2.

9. CONCLUSIONS

We have illustrated the AFT nonrelativistic ap-
proach to atomic processes by studying high-energy
photoionization (with incident photon energies w < m)
of an electron bound in a central potential. We have
demonstrated that in this case, high-energy ionization
by photoabsorption can be understood in terms of the
singularities of the Hamiltonian, which also illustrates
more general situations. Our discussion did not de-
pend on the choice of the form [length (L), velocity
(V), acceleration (A), etc.] of the photoionization ma-
trix element.

Because photoabsorption at high photon energies
requires at least one large outgoing electron momen-
tum, we have argued that the analysis is equivalent to
the analysis of the asymptotic form of the FT. Based
on the Fourier transform theory, we have shown that a
slow asymptotic decrease of the photoabsorption ma-
trix element for large momentum p (such as 1/p") is
related to singularities of the e—/V potentials. We have
demonstrated how this large-momentum behavior can
be obtained from the behavior of wave functions and
interactions around singularities. With this approach,
we can identify the dominant terms and avoid omitting
any of them.

We have applied our approach to study the
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high-energy total cross section for ionization in a
central potential with the Coulomb e-N singularity.
We have demonstrated that the approach and the final
results are form («gauge») independent. However, the
dependence of the final results on the quality of the
initial and final state wave functions in the vicinity
of a singularity varies with form («gauge»). We have
found that the acceleration form, which places the
singularities of the Hamiltonian in the e—y interaction,
has the least requirement on the quality of wave
functions at the singularity, in situations considered.
We have shown that in the A-form, the leading
contribution to the photoabsorption matrix element is
the lowest-order Born result. In the L- and V-forms,
it is generally a higher-order Born result, with the
exception of the V-form in the ground state ionization,
where it is also the lowest-order Born result. This
means that in general (except in the A-form), the fast
electron cannot be represented by a plane wave, even
in the high-energy limit. For this leading contribution
to the matrix element, the A-form requires only the
proper normalization of the initial state at the e~V
singularity. In contrast, the L- and V-forms require
knowledge of both the normalization and slope of the
wave functions at the singularities.

We have discussed slow convergence of the cross
sections to the high-energy limit, considering the
ionization of an electron in a screened potential. We
have demonstrated that by collecting all Coulomb
terms in the vicinity of the e~V singularity, we also
collect the dominant terms up to the relative order
1/p? and provide fast convergence of the cross sections.
Although the neglected terms in the matrix element
are still of the relative order 1/p?, they are negligible.
Thus, we have demonstrated that the high-energy
behavior of cross sections (in the keV range, as in our
examples) is determined by the properties of functions
near the singularity, which is of the Coulomb type.
The screening effects enter through normalization
factors in the TPA cases. We have also demonstrated
that the only slowly converging factor (the Stobbe
factor exp(—ma/p), which converges as 1/p, while all
other terms converge faster) is common for ionization
from all states. The existence of a common slowly
converging factor provides fast converging ratios of the
cross sections.
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