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The results of calculations of the elastic scattering cross section of positrons on noble gas and alkali atoms
are presented. The calculations are performed within the one-electron Hartree—Fock approximation with multi-
electron correlations in the so-called random phase approximation with exchange taken into account. Virtual
positronium formation is taken into account and proved to be very important. Arguments are presented that the
positron polarization potential is repulsive for alkali atoms. The results obtained are in a reasonable agreement
with experiment and with some previously reported calculations.
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1. INTRODUCTION

The studies of positron-atom and positron—
molecule scattering, in spite of their development
during already several decades, is still quite an active
area of research (see [1-3] and references therein).
The interest in positron slowing and annihilation in
gases and other media motivates the investigation of
these processes. The photons emitted in the course
of annihilation carry extremely valuable information
on the electron structure of different objects, from
isolated atoms in gases to solid bodies. But the process
of positron collisions on atoms and molecules is also
of interest by itself and in comparison to electron
collisions on the same objects. The projectile-target
interaction mechanisms are most transparent in the
collision process at low energies, and we therefore
concentrate on this energy region in what follows.

For both the electron and positron scattering, the
cross section is determined by the electrostatic and po-
larization potentials by which the target acts on the
projectile. For incoming electrons, however, the ex-
change with the target electrons is important. It does
not exist for positrons at all. At a first glance, the
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positron scattering process therefore appears to be sim-
pler than that for electrons. Moreover, the positron—
atom static potential, being repulsive in general, forces
the positron to move into the areas of the target where
the potential is the smallest, thus diminishing its over-
all action. This is opposite to the case of electron—atom
(molecule) collision. The contrast looks even stronger
if we take into account that as it seems, the polar-
ization potential is attractive for both electrons and
positrons. The total potential for electrons must there-
fore be stronger than for positrons. It thus seems at the
first glance that any simple approach that is good for
electrons should work at least not worse for positrons.
For instance, the second-order approximation to the
polarization potential is good for electron-atom scat-
tering [4] and can be expected to be at least equally
good in describing positron—atom scattering. But this
view has proved to be incorrect.

Indeed, the positron that is «pushed» out of the
target can interact strongly with a temporarily, or vir-
tually, excited electron that is outside the target. They
form a kind of a bound state that can be called the
«virtual positronium». We show that this is a very im-
portant mechanism that dramatically affects the scat-
tering cross section.
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Our aim in this paper is to calculate the slow HF positron phase shifts 6//f'(E), we therefore solve
positron—atom elastic scattering cross sections and to the equation
demonstrate the efficiency of a very simple method first { A7 drp(r')

proposed in [5] and then developed in [6, 7] that allows
taking the virtual positronium formation into account
in this process. The latter effect has proved to be ex- for the positron wave function @+ (r); here, Z is the
tremely important. The suggested method allows us to nuclear charge and p(r) is the atomic electron den-
considerably improve the agreement with experiment sity. The asymptotic form of the radial part Pg; (r)
and to give a simple qualitative explanation of a large of .+ (r) for large r determines the phase shift,
difference between cross sections for noble gases and . 1 . ™ "
their neighbors, alkali atoms. Since the introduction of P (r) = N st {pr—?-l-él (E)} oo (3)
this approach in [5], a number of other calculations were
performed (e.g., [6-10]) based on the idea of the virtual ~ Here, p = v/2E. The density is obtained by solving the
positronium formation but using much more compli- HF equations for the target atom.
cated methods (see [8-10]). A prominent difference between the HF and exper-
imental results at low positron energies in positron—
atom elastic scattering exists for almost all atoms con-
2. DETAILS OF CALCULATIONS sidered, for example, He. The next step must therefore
The elastic scattering cross section o(E) of a  be made by taking the polarization interaction into ac-
positron with the energy E is determined by the partial =~ count. This interaction appears in the second order in
scattering phases §;(E), where ¢ is the positron angular the positron—electron interaction, in the same way as

} ot (1) = Bpur (1) (2)

2 ) r—r|

momentum, as [11]") for the electron—atom scattering (see [4, 12] for details).

o = Assuming that the polarization interaction X is weak,

o(E) = B Z (20 + 1) sin” 6, (E). (1) wecan express the correction Ady(E) to the HF partial

positron scattering phase due to the action of ¥ as

In the calculations, we limit ourselves by the first four A6(E) = —m (EL||S¢(E)|| El) (4)
phase shifts ¢ = 0,1,2,3, which is sufficient for rela-

tively low positron energies up to 30—40 eV. where ¥,(FE) is the (th component of ¥ and E/ denotes

The first step of our approach is the Hartree—Fock the radial part of the positron wave function Pf;,; (r).
(HF) calculations, which means the HF approximation In the second order in the Coulomb interaction
for the target atom and the frozen core approximation V' = 1/|r — r'| between the incoming positron and

for the incoming positron, naturally without exchange atomic electrons, the reduced matrix element in the
of the positron and the core electrons. To calculate the  right hand side of (4) is given by

(BB B = 3 5 x

£>0
(Bl 23t Vi Erly e26s) (By 3 exts VL || EC, 24t
« Z / € ||2€L|| 11 1E€2 2E>< 11,202 | %H V& Z>dE1 dey. (5)
i<Fieala>F +1)( 1 — &2 +&; +1i0)
\
where E;(; denotes the intermediate positron state,  to the lowest order correlation correction in the frame

which is determined by solving Eq. (3), and e2f> and  of the Random Phase Approximation with Exchange
E;l; stand for the energies and angular momenta of  (RPAE). It differs from the expression for the second-
atomic electrons in the virtually excited and ground order polarization interaction for electron—atom scat-
states, respectively (with their wave functions found  tering described in [4,12] because it does not include
in the HF approximation [12]). The reduced Coulomb the exchange between the incoming particle and target
matrix elements Vi are defined in [12]. The condi-  electrons. The scattering cross section with the polar-
tions ¢ < F and ¢ > F indicate occupied and vacant ization interaction taken into account is determined by
electron states, respectively. Equation (5) corresponds — Eq. (1) where §/'F(E) is replaced by the phases

1) Atomic units are used in this paper, with m and e being the electron mass and charge.
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S¢(E) = P (F) 4+ Ady(E) (5a)

for E < I with I being the target atom ionization
potential. For higher positron energies, the scatter-
ing phases given by (4) and (5a) are complex, and the
imaginary part Im Ad,(E) = Ady(E) determines the
inelastic scattering cross section of the positron by an
atom.

The elastic scattering cross section for £ > [ is
given by [4,12]

™

o(E) 7

3 (2041) [ch(2A8, (E)) — cos(26¢(E))] X
l

x exp [-2A6;(E)],  (6)

where §;(FE) is the real part of the positron (-wave scat-
tering phase shift.

Similarly to Eq. (5), the method described in [4, 12]
in some aspects apply well beyond the simple second-
order perturbation theory in the inter-electron inter-
action. Important higher-order corrections are taken
into account by calculating the HF wave function of
the electron e2(5 in the atomic field with the vacancy
1. With this improvement, even the lowest order in the
polarization interaction gives good results for the elas-
tic scattering of electrons on noble gases. This interac-
tion depends on the projectile energy, is nonlocal, and
does not contain free adjustable parameters. Far from
the atom, it can be approximated as the polarization

potential @

ale
—ga (7)
where «a(e) is the atom dipole polarizability, ¢ is the
mean excitation energy of the incoming electron in
the intermediate state, and r is the distance between
the projectile and the center of the target. In phe-
nomenological calculations or estimations for low in-
coming positron energy FE. it is usually assumed that
¢ = 0. For 0 < e < I, where I; is the energy of the
first atom excitation level, the dipole polarizability is
positive and the polarization potential is therefore at-
tractive. It should be kept in mind, however, that a(e)
as a function of € can become negative, at least for al-
kali and alkali earthes, at ¢ > I, where I is the atomic

Vpol -

ionization potential. As a result, the polarization po-
tential in (7) can become repulsive. Tt is essential to
note that a(e) is complex at ¢ > I, its imaginary part
being proportional to the atom photoionization cross
section. The polarization potential can therefore also
be complex in principle.

The next step beyond the HF approximation in our
analysis of positron—atom scattering consists in taking
the polarization interaction into account in the first or-
der, in the same manner as this is done for the electron—
atom scattering in [4]. The results obtained improve
the correspondence with experimental data, but they
are still far from being satisfactory. As an illustration,
we can use the respective results for any atom, for in-
stance He (see below).

3. METHOD OF CALCULATIONS

The lack of a decisive success after the second-order
polarization correction (5) has been taken into account
means that something qualitatively important is miss-
ing. We believe that as suggested in [5], this is the
positronium formation in the intermediate state, that
is, the possibility of a temporary binding of the incom-
ing positron and the excited electron (the one located
far from the atomic core). We assume that being al-
most unaffected by the core action, these electron and
positron can form a bound state that is almost identi-
cal to the free positronium Ps. This alters the energy
of the intermediate state, shifting it by the positron-
ium binding energy Ips and modifies the wave function
of the intermediate state, which is no longer the prod-
uct of HF-wave functions of the positron, the excited
electron, and the vacancy created after the virtual ex-
citation of the atomic electron. Instead, the motion of
the positron relative to the electron is strongly modified
by the binding.

To take the energy shift into account, we must sub-
tract Ips from the sum of the positron and electron en-
ergies E1 + &5 in the denominator of the second-order
polarization interaction (5). The modified matrix ele-
ment is then given by

>

i<F,e9la>F

<Eé Hi‘(E)H E€> =2 2L1+ 1
L>0

/ <E€,5,€, ||VL|| E161’6262> <E1€1,6262 ||VL|| E€,5,€,>
(20 +1)(E — Ey —ea + Ips +&; + 1)
0
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Fig.1. Cross sections of the elastic positron scattering
on He. The dotted line is the HF approximation, the
dashed line is the RPAE without positronium formation
taken into account; the solid line is the RPAE with the
positronium formation taken into account. Experimen-
tal data: triangles — [15]; open circles — [16], open
squares — [17], solid circles — [18]; ao is the Bohr
radius

The additional phase shifts Ad;(E) are determined by

Eq. (4) with $,(E) instead of 3,(E).

We note that far from the target atom, Eq. (8) leads
to a rather simple expression for the polarization po-
tential,

a(e + Ips) 9)
o7t (
According to the discussion at the end of the pre-

vious section, it is essential to have in mind that if

Ips > I, then a(lpg) is a complex quantity, usually

with a considerable imaginary part and a(Ips) can be

not only positive but also negative.

It would be much simpler to use (9) (or (7)) instead
of (8) (or (5)), but the asymptotic expressions are valid
at so large distances from the atom that their contri-
bution to the total phase shift is small. This is why
we used Eq. (8) in our calculations. The advantage of
our approach is obvious: to describe the positron—-atom
scattering, we can use almost the same system of com-
puting codes that was used in studying the electron—
atom scattering [12].

To properly include the positron—electron interac-
tion mentioned above, instead of simply adding Ipg
to the denominator in (8), we must take the modi-
fication of the corresponding wave functions into ac-
count. This means that the product of the one-positron
Hartree and one-electron Hartree—Fock functions E (1,
€9y and energies Fy and 2 must be replaced by wave
functions and total energies of the interacting or bound
positron and electron that move in the atomic field. To

Vpol = -
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Fig.2. Partial wave contributions to the cross sections
of the elastic positron scattering on He:
the inclusion of positronium formation; b — without
positronium formation. Ip, = 0.5Ry (a), 0 (b). The
dotted-and-dashed line is the s-wave cross section, the
dotted line is the p-wave cross section, the dashed line
is the d-wave cross section, and the solid line is the sum
of s-, p- and d-partial cross sections

a — with

find these functions and total energies, the three-body
problem must be solved with the interaction between
the incoming positron and atomic electron and the va-
cancy created after the electron virtual excitation taken
into account. This is very difficult, and simplifications
are inevitable. An attractive option is to describe the
relative motion of the positron and the electron by a
positronium wave function, while considering their cen-
ter of mass as moving freely, unaffected by the selfcon-
sistent atomic field and the vacancy field. This approx-
imate approach has been developed in [8-10], but the
modification of the energy denominator was entirely
neglected there. Here, we present the results of a much
simpler approach, where only the energy shift due to
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virtual positronium formation is taken into account and
the modification of the positron and electron wave func-
tions is completely neglected [5-7].

4. RESULTS OF THE CALCULATIONS

Here, we give the results of our calculations for a
number of atoms. We start with He.

The results for elastic scattering of positrons by He
obtained using Eq. (8) are demonstrated in Fig. 1. Tt
can be seen that the energy shift due to the positro-
nium formation leads to a prominent decrease of the
low-energy cross section. The difference is qualitative
at £ < 1eV. As E grows, the influence of the posit-
ronium formation becomes smaller, but the deviation
from the HF approximation results is huge in all the

500

400

Cross section, a}

Positron energy, eV

12007

1000F b
\ et +1Li(2s)
800

600

Cross section, a}

400

200

Positron energy, eV

Fig.3. Cross sections of the elastic positron scattering

on Li. The dotted line (a, b) is the HF approximation.

The solid line (a, ) is the RPAE with positronium for-

mation taken into account. The dashed line is a —

the result of [2], b — the RPAE without positroniun
formation
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region considered, up to E = 18 eV. To obtain the
cross sections, contributions of the positron s-, p-, and
d-partial waves were taken into account. We note that
the virtual positronium formation leads to prominent
variations in all the partial wave contributions. This is
illustrated in Fig. 2, where the results with (Fig. 2a)
and without (Fig. 2b) the positronium energy shift are
presented.

The cross section of the low energy (et +He)-elastic
scattering is much smaller than that of (e~ + He). This
can be explained qualitatively as follows: while the
selfconsistent field Vi, acting on the incoming positron
is repulsive, the polarization potential Vo, which be-
haves as —age(Ips)/2r* far from the atom, is attrac-
tive, because a(Ips) and a(0) for He are positive and
of the same order of magnitude as V.. The contribu-
tions of Vi, and V) therefore compensate each other,
suppressing the elastic scattering cross section. For the
electron scattering, both V,. and V), are attractive,
and instead of compensating, the respective quite big
contributions enhance each other.

It is of special interest to compare the (e™ + He)
and (e™ + Li) scattering because ar,;(Ips) is negative,
complex, and much larger than ap.(Ips) by the abso-
lute value. In accordance with (9), the negative sign
of ari(Ips) implies that in this case, the polarization
potential is repulsive instead of being always attrac-
tive [13] (also see the discussion above). This obser-
vation is important for different scattering processes
in general. Indeed, if the projectile and the target con-
stituent can form a composite particle in the intermedi-
ate state, the polarization interaction can easily change
its sign, becoming attractive. This was found to occur,
for example, in nuclear physics, namely in 7-meson—
nuclear scattering, where the (7-meson + nucleon) sys-
tem forms the so-called Ags-resonance, leading to a
change of the sign in the polarization interaction [14].
The imaginary part, depending on its magnitude, can
effectively be of either the repulsive or the attractive
nature from the point of view of the elastic scattering.
We should therefore expect that because V. and Vg
have the same sign, they contribute constructively and
hence lead to an extremely large cross section of the
size of, or even bigger than the (¢~ + Li) cross section.
The results for (e™ +Li) cross sections are presented in
Fig. 3. It follows that the energy shift accounting for
the positronium formation in the virtual state affects
the low-energy cross section considerably. In Fig. 3a,
we show the results obtained in the Hartree-Fock and
random phase approximation with exchange with the
positronium formation taken into account and the re-
sults derived in [2] using a substantially more compli-
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Fig.4. Calculated cross sections of the elastic positron scattering on noble gases. The dotted line is the HF approximation,

the dashed line is the RPAE without taking the positronium formation into account, the solid line is the RPAE with the

positronium formation taken into account. a — Ne, experimental points from [19], b — Ar, experimental points from [19],

¢ — Kr, experimental points: solid circles — [19], open squares — [20], solid triangles — [21], d — Xe, experimental points:
solid circles — [19], open squares — [17]

cated method. Although the difference between RPAE
and [2] is prominent, the deviation of both of them
from the HF approximation is qualitative. Figure 3b
clearly demonstrates the magnitude of the effect of tak-
ing positronium formation into account in the virtual
state for £ < 4 eV.

Figures 4a, b, ¢, and d present our results for noble
gas atoms Ne, Ar, Kr, and Xe, respectively. In the case
of Ne for E < 2 eV, the role of positronium formation
is significant, while the deviation from the HF approx-
imation is quite dramatic. We can see that the first
experimental point at about 1 €V demonstrates the es-
sential role of taking the positronium formation into
account in the virtual state. The same effect for even
higher E is seen for Ar in Fig. 4b. In Fig. 4¢ (Kr) and
Fig. 4d (Xe), the RPAE results (with the positronium
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formation) are qualitatively different from the HF re-
sults. The latest experimental points, dark triangles for
Kr and dark circles for Xe, are in a reasonable agree-
ment with the RPAE results. More accurate data are
desirable, however.

The picture of positron scattering on He and Li de-
scribed above is also qualitatively valid for the Ne-Na
pair. Indeed, the (et + Ne) cross section is small, con-
siderably smaller than the geometrical one, while the
(et + Na) elastic scattering cross section (Fig. 5a) is
very large. Even larger is the cross section for (e™+Ne),
as can be seen in Fig. 5. In Fig. 5, we compare our re-
sults with the close-coupling calculations from [22]. Be-
cause the calculational approaches are essentially dif-
ferent, the difference is not a big surprise, but experi-
mental data are needed. For noble gases heavier than
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Fig.5. Calculated cross sections of the elastic positron

scattering on Na (a) and K (b). The dotted line is

the HF approximation, the solid line is the RPAE with

positronium formation taken into account, the dashed

line with heavy dots is the result of close-coupling cal-
culations [22]

Ne, namely Ar, Kr, and Xe, the polarization interac-
tion is much larger and the cross sections increase as
the atomic number grows. As in the Li-He case, the
cross sections for the alkali neighbors are again much
larger. The results for Kr and Xe are in a qualitative
agreement with those obtained in [1] using a much more
complicated method.

It is interesting to compare the results for a group
of three neighbors, a noble gas, alkali, and alkali-earth
atom. As a good example, the groups of atoms He, Li,
Be (Fig. 6a) and Ar, K, Ca (Fig. 6b) are considered
(Figs. 1-6). We checked the role of the positronium
formation for Be and found it very important, as pre-
viously. For Be, the cross sections proved to be similar
in size and shape to those of Li, which is a consequence
of the fact that their polarizabilities o(Ips) are rela-
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Positron energy, eV

Fig.6. Calculated cross section of the elastic positron

scattering on Be (a) and Ca (b). The dotted line is

the HF approximation, the solid line is the RPAE with

positronium formation taken into account, the dashed
line is the RPAE without positronium formation

tively close. The situation is different for Ca, where
the cross section is much smaller at very low E, but
then decreases much slower than in K. For Ar, K, and
Ca, all the three curves are qualitatively similar, but
the (et + K) elastic scattering cross section is by an
order of magnitude larger than that of (et + Ar).

It is of some interest to study the imaginary parts
of the elastic scattering phases. They describe the re-
spective partial wave contributions to the cross section
of the inelastic process

e"+A = Ps+ AT (10)

The inelastic positron scattering cross section o;,(E)
is expressed through the imaginary part of the phase
shift A 6y(E) as

Gzn(E)

% 320+ D1 - exp(—4A §(E)). (1)
£=0
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Fig.7. Ps-formation cross sections for positron-Na
scattering in RPAE. The dotted-and-dashed line is the
s-wave cross section, the dotted line is the p-wave cross
section, the dashed line is the d-wave cross section, the
solid line is the sum of s-, p-, and d-partial cross sec-
tions. Experimental points are taken from [23], open
circles show the upper limit, and solid circles show the
lower limit

As in calculations of o (E), we limit ourselves to tak-
ing the first three partial waves into account (those with
(=0,1,2). InFig. 7, we show the results of our calcu-
lation of the Ps-formation cross section in positron—Na
atom scattering together with the experimental data of
[23]. At low energies, there is a strong deviation from
the experiment, as in many other calculations [24], but
at energies above 3 €V, there is a satisfactory agree-
ment. We note that it is assumed in this calculation
that any electron obtained by ionization together with
the inelastically scattered positron form a positronium
Ps. Obviously, this is an exaggeration: some of the
electrons leave the atom without forming a real positro-
nium. This is particularly essential for a small energy
E in the cases where the Ps-formation threshold is at
E =0 (as in (e™ + Na collision).

We note that using Eq. (8), we can also describe the
Wigner—Baz’ peculiarities in the elastic scattering cross
section near the threshold of inelastic channel (10) [11].

5. SUMMARY AND DISCUSSION OF THE
RESULTS

We have demonstrated that the relatively simple
method with both many-electron correlations and vir-
tual positronium formation taken into account allows
obtaining relatively good results for the elastic scatter-
ing of positrons on different atoms in the periodic table,
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in particular, noble gas and alkali atoms. It also gives
an estimate of the Ps-formation cross section. The ap-
proach developed in this paper can be applied without
any essential difficulty to the study of positron scat-
tering on more complicated targets, such as molecules,
clusters, and fullerenes.

It is interesting to know whether the bound states
in the (e + A) system can be described within the
simple approach developed here. Indeed, given the
repulsive nature of V. and possibly also repulsive
nature of V), it is far from trivial that the binding
can occur at all. We can therefore expect bound states
of positrons with those atoms A for which a4(Ips) is
big (considerably bigger than in noble gases) and pos-
itive, aa(Ips) > 0, i.e., Vo is sufficiently strong and
attractive. An interesting and intriguing possibility is
that the (e™ + A) bound state results from the action
of the imaginary part Im(V,;). On the other hand, the
binding can originate from the interaction of Ps and A
via Van der Waals forces. These are particularly big
if A* has the electronic structure similar to an atom
in the first period of the Mendeleev table, i.e., A is in
the second period. To detect the possibility of forming
a bound state, one must study the magnitude of the
scattering phase shift at zero energy: if it reaches
m, a bound state is created in the channel under
consideration. It must be checked, however, whether
this state is stable against the decay through the
(Ps + AT) channel, which requires knowing the bound
state energy. Finding it is much more complicated
than calculating the phase shifts at zero e™-energy.

M. Y. A. and L. V. C. acknowledge financial sup-
port of the International Science and Technology Cen-
ter (project 1358) and The Hebrew University Intra-
mural Research Fund.
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