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THE SYMMETRY, INFERABLE FROM BOGOLIUBOVTRANSFORMATION, BETWEEN PROCESSES INDUCEDBY A MIRROR IN 2-DIMENSIONAL AND A CHARGEIN 4-DIMENSIONAL SPACE�TIMEV. I. Ritus *Tamm Department of Theoretial Physis, Lebedev Physial Institute, Russian Aademy of Sienes119991, Mosow, RussiaSubmitted 30 Deember 2002We onsider the symmetry between reation of pairs of massless bosons or fermions by an aelerated mirrorin 1 + 1-dimensional spae and emission of single photons or salar quanta by an eletri or salar harge in3 + 1-dimensional spae. The relation of Bogoliubov oe�ients desribing the proesses generated by themirror to Fourier omponents of the urrent or harge density implies that the spin of any disturbanes bilinearin the salar or spinor �eld oinides with the spin of quanta emitted by the eletri or salar harge. The massand invariant momentum transfer of these disturbanes are essential for the relation of Bogoliubov oe�ientsto invariant singular solutions and the Green's funtions of wave equations for both 1+1- and 3+1-dimensionalspaes and espeially for the integral relations between these solutions. One of these relations leads to the o-inidene of the self-ation hanges and vauum�vauum amplitudes for an aelerated mirror in 2-dimensionalspae-time and a harge in 4-dimensional spae-time. Both invariants of the Lorentz group, spin and mass, playan essential role in the established symmetry. The symmetry embraes not only the proesses of real quantaradiation, but also the proesses of the mirror and harge interations with �elds arring spaelike momenta.These �elds aompany their soures and determine the Bogoliubov matrix oe�ients �B;F!0! . It is shown thatthe Lorentz-invariant traes �tr�B;F desribe the vetor and salar interations of the aelerated mirror witha uniformly moving detetor. This interpretation rests essentially on the relation between propagators of thewaves with spaelike momenta in 2- and 4-dimensional spaes. The traes �tr�B;F oinide with the produtsof the mass shift �m1;0 of the aelerated eletri or salar harge and the proper time of the shift formation.The symmetry �xes the value of the bare �ne struture onstant �0 = 1=4�.PACS: 11.10.Kk, 11.30.-j, 11.55.Fv, 03.65.Pm1. INTRODUCTIONThe Hawking partile prodution mehanism at theblak hole formation is analogous to the emission froman ideal mirror aelerated in vauum [1℄. In its turn,there is a lose analogy between the radiation of pairsof salar (spinor) quanta from an aelerated mirrorin 1 + 1-dimensional spae and the radiation of pho-tons (salar quanta) by an aelerated eletri (salar)harge in 3 + 1-dimensional spae [2; 3℄. All these pro-esses are therefore interrelated. The in- and out-setsof the wave equation solutions that are typially used*E-mail: ritus�lpi.ru

for a massless salar �eld in problems with moving mir-rors are given by�in !0 / e�i!0v � e�i!0f(u);��in !0 / ei!0v � ei!0f(u); (1a)�out ! / e�i!g(v) � e�i!u;��out ! / ei!g(v) � ei!u; (1b)with zero boundary ondition�jtraj = 0on the mirror trajetory. Here, the variables u = t� xand v = t+ x are used and the mirror (or harge) tra-14



ÆÝÒÔ, òîì 124, âûï. 1 (7), 2003 The symmetry, inferable from Bogoliubov transformation : : :jetory in the u; v plane is given by any of the twomutually inverse funtionsvmir = f(u); umir = g(v):We refer to [3℄ for the in- and out-sets of solutions ofthe massless Dira equation. Dira solutions di�er from(1) by the presene of bispinor oe�ients at the u- andv-plane waves. The urrent densities orresponding tothese solutions have only tangential omponents at theboundary. The boundary ondition for both salar andspinor �elds is therefore purely geometrial, it does notontain any dimensional parameters.The Bogoliubov oe�ients �!0! and �!0 ! arise asthe oe�ients of the expansion of the solutions of theout-set in the solutions of the in-set; the oe�ients��!0! and��!0! arise similarly in the inverse expansion.The upper and lower signs orrespond to the salar(Bose) and spinor (Fermi) �elds. The mean number ofquanta with the frequeny ! and wave vetor ! > 0 ra-diated by the aelerated mirror to the right semispaeis then given by the integrald�n! = d!2� 1Z0 d!02� j�!0!j2: (2)At the same time, the spetra of photons and salarquanta emitted by eletri and salar harges movingalong the trajetory x�(�) in 3 + 1-dimensional spaeare determined by the Fourier transforms of the ele-tri urrent density 4-vetor j�(k) and the salar hargedensity �(k),s = 1; j�(k) = e Z d� _x�(�) exp (�ik�x�(�)) ; (3)d�n(1)k = jj�(k+; k�)j2 dk+dk�(4�)2 ; (4)s = 0; �(k) = e Z d� exp (�ik�x�(�)) ; (5)d�n(0)k = j�(k+; k�)j2 dk+dk�(4�)2 ; (6)where s and k� are the spin and 4-momentum of thequanta,k2 = k21 + k2? � k20 = 0; k2? = k20 � k21 = k+k�;k� = k0 � k1;and it is assumed in (4) and (6) that the trajetoryx�(�) has only x0 and x1 nontrivial omponents.

The symmetry between reation of Bose or Fermipairs by the aelerated mirror in 1 + 1-dimensionalspae and emission of single photons or salar quanta bythe eletri or salar harge in 3+ 1-dimensional spaeonsists, �rst of all, in the oinidene of the spetra.If we set 2! = k+; 2!0 = k�;we have j�B!0!j2 = 1e2 jj�(k+; k�)j2;j�F!0!j2 = 1e2 j�(k+; k�)j2: (7)A more re�ned assertion in the Bose ase is�B�!0! = �sk+k� j�(k)e =sk�k+ j+(k)e == "��k�j�(k)epk+k� ; (8)j�(k) = e Z du exp� i2(k+u+ k�f(u))� ;j+(k) = e Z dv exp � i2(k�v + k+g(v))� : (9)The 2-vetors j�(k) and a�(k) = "��k�=pk+k� arespaelike for timelike k�; in a system where k+ = k�or ! = !0, they have only spatial omponents that arepreisely equal to e�B�!0! and 1 orrespondingly.In the Fermi ase, we have�F�!0! = 1e�(k): (10)In Se. 2, we underline the symmetry between ana-lyti expressions for the Bogoliubov oe�ients � and�� and at the same time, the physial distintion be-tween them: �B;F� is the amplitude of the soure ofwaves that are bilinear in massless Bose or Fermi �eldsand arry timelike momenta, whereas �B;F is the am-plitude of the soure of similar waves that arry spae-like momenta, see (14) and (15). In Ses. 3 and 4, weshow that the waves with timelike momenta emittedand absorbed by the soure are involved in forming theimaginary part of the soure self-ation. This phys-ial piture is naturally embodied in integral relation(20) between propagators�2(z;m) of virtual pairs withmasses m; � 6 m <1 in 2-dimensional spaetime andthe propagator�4(z; �) of the partile in 4-dimensionalspaetime. Analyti properties of the expressions ob-tained also allow us to de�ne the real part of self-ation.This leads to the oinidene of the self-ations and15



V. I. Ritus ÆÝÒÔ, òîì 124, âûï. 1 (7), 2003hene, of the vauum�vauum amplitudes of the mir-ror and the harge if we set e2 = 1. In Se. 5, the �eldsof perturbations arrying spaelike momenta are on-sidered. These �elds are de�ned by the matries �B;F .Their Lorentz-invariant traes �tr�B;F are onsideredin Se. 6. They desribe orrespondingly the vetorand salar interations of the aelerated mirror with auniformly moving detetor in the neighborhood of thepoint of ontat of their trajetories. In Ses. 7 and8, the traes �tr�B;F are found for the three spei�trajetories permitting analyti solutions. The generalexpressions for the traes are given and their ultravioletand infrared singularities are also onsidered there. Inthese setions, we ompare the found traes �tr�B;Fwith the mass shifts �m1;0 of the eletri and salarharges moving along the same trajetory as the mirror,but in 3+1-dimensional spae. The mass shifts �m1;0of the harges moving along the exponential trajetoryare found in Se. 9. In Conlusions, we disuss the rela-tion of the traes �tr�B;F to the general de�nition ofthe self-ation aounting for interferene e�ets, anddraw attention to the fat that the symmetry �xes thevalue of the bare harge squared, e20 = 1, whih orre-spons to the bare �ne struture onstant �0 = 1=4�.The smallness and geometrial origin of this value maybe interesting in quantum eletrodynamis. In the Ap-pendix, the even singular solutions of inhomogeneouswave equations with mass and momentum transfer pa-rameters are onsidered. Integral relations (20) and(100) between these solutions for 1 + 1- and 3 + 1-dimensional spaes are very important for the symme-try onsidered.2. THE PHYSICAL INTERPRETATION OF ��!0!The absolute pair prodution amplitude and thesingle-partile sattering amplitude are related by [4℄hout!00!jini = �X!0 hout!00j!0ini��!0!: (11)The oe�ient ��!0! was interpreted as the amplitudeof a soure of a pair of massless partiles potentiallyemitted to the right and to the left with the respe-tive frequenes ! and !0. While the partile with thefrequeny ! atually esapes to the right, the partilewith the frequeny !0 propagates for some period oftime and is then re�eted by the mirror and is atuallyemitted to the right with an altered frequeny !00, seeFig. 1.In the time interval between pair reation and re-

u
!0
!00t

!x
v

Fig. 1.�etion of the left partile, we have the virtual pairwith the energy k0, momentum k1, and mass m,k0 = ! + !0; k1 = ! � !0;m =p�k2 = 2p!!0: (12)In addition to the polar timelike 2-vetor k�, very im-portant is the axial spaelike 2-vetor q�,q� = "��k� ; q0 = �k1 = �! + !0;q1 = �k0 = �! � !0 < 0: (13)In terms of k� and q�, the symmetry between the �and � oe�ients beomes learly expressed,s = 1; e�B�!0! = �q�j�(k)pk+k� ;e�B!0! = �k�j�(q)pk+k� ; (14)s = 0; e�F�!0! = �(k); e�F!0! = �(q): (15)We note that Eqs. (3) and (5) de�ne the urrentdensity j�(k) and the harge density �(k) as funtion-als of the trajetory x�(�) and funtions of any 2- or4-vetor k�. It an be shown that in 1+1-dimensionalspae, j�(k) and j�(q) are spaelike and timelike po-lar vetors respetively if k� and q� are timelike andspaelike vetors.The boundary ondition on the mirror leads to theappearane of vetor or salar disturbane waves bi-linear in massless �elds in the vauum of the massless16



ÆÝÒÔ, òîì 124, âûï. 1 (7), 2003 The symmetry, inferable from Bogoliubov transformation : : :salar or spinor �eld. There are two types of thesewaves:1) waves with the amplitude �!0! (��!0!) that arrya spaelike momentum direted to the left (right);2) waves with the amplitude ��!0! (�!0!) that arrya timelike momentum with a positive (negative) fre-queny.The waves with spaelike momenta appear even ifthe mirror is at rest or moves uniformly (the Casimire�et), while the waves with timelike momenta appearonly for the aelerated mirror.The pair of Bose (Fermi) partiles has spin 1 (0)beause its soure is a urrent density vetor (hargedensity salar), see [5℄ or problem 12.15 in [6℄.3. THE APPEARANCE OF MASS IN THEMASSLESS THEORY AND OF INVARIANTSINGULAR SOLUTIONS OF THE WAVEEQUATION WITH MASSIt follows from (8) that the bilinear in massless bose-�eld disturbanes de�ned by the amplitudes �B�!0! formsa positive-frequeny urrent density vetor. Its minus-omponent at the point U; V an be represented as1ZZ0 d! d!0(2�)2 1e j�(k) exp(�i!U � i!0V ) = 18�2 ��Z du 1Z0 d� � 1Z�1 d� exp ��i�(z0 h ��z1 sh �)� ; (16)if the hyperboli variables � and � are used instead of! and !0,d!d!0 = 12�d�d�; ! = 12�e�; !0 = 12�e��;� = 2p!!0; � = lnr !!0 ; (17)and z� = x� � x�(�), see Fig. 2. As an be seen from(12), � = m is the mass of the pair and � is the rapidity.The integral over rapidity in (16) is the well-known in-variant positive-frequeny singular funtion of the waveequation for 2-dimensional spaetime,1Z�1 d� exp ��im(z0 h � � z1 sh �)� == �4�i�+2 (z;m) = 2�(�z2)K0 �i"(z0)mp�z2 �++ 2�(z2)K0 �mpz2 � ; (18)
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Fig. 2.(�2t � �2x +m2)�+2 (z;m) = 0: (19)This funtion desribes the wave �eld of pairs with massm and any possible positive-frequeny momenta. Itfollows that the pairs are reated, propagated and ab-sorbed near the mirror within a spaelike interval of theorder of m�1.Using the very important integral relation betweenthe singular funtions of wave equations for d- and d+2-dimensional spaetimes,�fd+2(z; �) = 14� 1Z�2 dm2�fd(z;m); (20)we an represent the right-hand side of (16) as� i4� Z du 1Z�2!0 dm2�+2 (z;m) == �i 1Z�1 du�+4 (z; �): (21)The small mass � is retained to eliminate the infrareddivergene in what follows.Similarly, the positive-frequeny plus-omponent ofthe urrent density at the point U; V an be represented2 ÆÝÒÔ, âûï. 1 (7) 17



V. I. Ritus ÆÝÒÔ, òîì 124, âûï. 1 (7), 2003as 1ZZ0 d!d!0(2�)2 1e j+(k) exp(�i!U � i!0V ) == �i 1Z�1 dv�+4 (z; �): (22)The di�erentials du and dv in (21) and (22) an bereplaed by d� _x�(�) and d� _x+(�).The bilinear in massless Fermi-�eld disturbanes de-�ned by the amplitudes �F�!0! forms a positive-frequenyharge density salar. At the point U; V , it an be rep-resented by1ZZ0 d!d!0(2�)2 1e�(k) exp(�i!U � i!0V ) == �i 1Z�1 d� �+4 (z; �): (23)If we set the point U; V on the trajetory suh thatU = x�(� 0); V = x+(� 0); z� = x�(� 0)� x�(�);and integrate (21) over V and (22) over U , then theirhalf sum di�ers from tr�+� only by the fator i,tr�B+�B � 1ZZ0 d!d!0(2�)2 j�B!0!j2 == i2 ZZ (du dV + dv dU)�+4 (z; �) == �i ZZ d�d� 0 _x�(�) _x�(� 0)�+4 (z; �): (24)The real part of the funtion �+, whih is odd in z,and its imaginary part, whih is even in z, are relatedto the ausal (Feynman) funtion �f that is even in z,�+(z; �) = 12�(z; �) + i2�1(z; �);Re�+ = "(z0)Re�f ; Im�+ = Im�f ; (25)and tr�B+�B an therefore be written astr (�+�)B = Im ZZ d�d� 0 _x�(�) _x�(� 0)�f4 (z; �): (26)tr�F+�F an be obtained from the right-hand side of(26) by the substitution_x�(�) _x�(� 0)! 1:

4. VACUUM�VACUUM AMPLITUDEhoutjini = eiWAording to DeWitt [7℄, Wald [8℄, and others (in-luding the present author [4℄),2 ImWB;F = �12tr ln(1� �+�) or� tr ln(1� �+�) (27)in the respetive ases where the partile is idential ornonidential to the antipartile. We on�ne ourselvesto the last ase and assume that tr�+� � 1. Then2 ImWB;F == Im ZZ d�d� 0( _x�(�) _x�(� 0)1 )�f4 (z; �): (28)We an omit the Im symbols from both sides of thisequation and de�ne the ations for Bose- and Fermi-mirrors in 1 + 1-dimensional spae asWB;F == 12 ZZ d� d� 0( _x�(�) _x�(� 0)1 )�f4 (z; �): (29)We ompare this with the well-known ations for ele-tri and salar harges in 3 + 1-dimensional spae,W 1;0 == 12 e2 ZZ d�d� 0( _x�(�) _x�(� 0)1 )�f4 (z; �): (30)The symmetry would be omplete if e2 = 1, i.e., if the�ne struture onstant were � = 1=4�. This �ideal�value of the �ne struture onstant for the hargeswould orrespond to the ideal, geometri boundary on-dition on the mirror.For the mirror trajetory with a nonzero rela-tive veloity �21 of its ends (nonzero relative rapidity� = Arth�21), the hanges of the ations due to ael-eration are given byRe�WB = 18� � �th � � 1� ;Re�WF = 18� �1� �sh �� : (31)For a uniformly aelerated mirror with the proper a-eleration a, its veloity is�(�) = th a�;18



ÆÝÒÔ, òîì 124, âûï. 1 (7), 2003 The symmetry, inferable from Bogoliubov transformation : : :where � is the proper time. Then� = a(�2 � �1)and as �2 � �1 ! 1,Re�WB = jaj8� (�2 � �1): (32)By de�nition,Re�mB = ��Re�WB��2 = �jaj8� (33)is the self-energy shift of an aelerating Bose mirror.It di�ers from the mass shift of a uniformly aeleratedeletron only by the absene of the fator e2 = 4��.The self-energy shift of a uniformly aelerated Fermimirror is Re�mF = 0:There are two arguments in favor of de�ning theation by means of the ausal funtion �f4 (z; �).1. The ation must represent not only the radiationof real quanta but also the self-energy and polariza-tion e�ets. While the radiation e�ets are desribedby solutions of the homogeneous wave equation, theself-energy and polarization e�ets require solutions ofthe inhomogeneous wave equation, whih ontain in-formation about the proper �eld of a soure. Suh so-lutions of the homogeneous and inhomogeneous waveequations are the funtions(1=2)�1 = Im�fand �� = Re�f :2. While the appearane of(1=2)�1 � Im�fin the imaginary part of the ation is a onsequene ofmathematial transformations of the integral1ZZ0 d!d!0(2�)2 j�!0!j2(transformations similar to the Planherel theorem),the funtion �� � Re�f in the real part of the ation isunique if it appears as the real part of the analyti on-tinuation of (i=2)�1(z; �) to negative z2 that is even inz (as �1 itself).To onlude Ses. 3 and 4, we note that both thefuntion �2(z;m) desribing the propagation of a vir-tual pair with the mass m = � = 2p!!0 in 2-dimen-sional spae�time and the mass spetrum of these pairs

arise owing to the transition from the variables ! and!0 to the hyperboli variables � and �, whih re�et theLorentzian symmetry of the problem. Further integra-tion over the mass leads to the funtion �4(z; �) thatoinides with the propagator of a partile moving in4-dimensional spae�time with the mass � equal to theleast mass of virtual pairs. Thus, relation (20) appearsin the framework of the present method and is imma-nent to the symmetry, relating the proesses in two-and four-dimensional spae�times.In [9℄, relation (20) was obtained by the author inde-pendently of the proesses onsidered and was requiredin proving that the integration variable involved in itoinides with the pair mass m = 2p!!0.5. FORMATION OF TACHYONDISTURBANCES WITH THE INVARIANTMOMENTUM TRANSFERThe bilinear in massless Bose �eld perturbationsthat are de�ned by the amplitudes �B!0! and arryspaelike momenta to the left an be represented atthe point U; V by the two urrent density omponents1ZZ0 d!d!0(2�)2 1e j�(q) exp(i!U � i!0V ) = 18�2 ��Z d� _x�(�) 1Z0 d� ��� 1Z�1 d� exp �i�(z0 sh ��z1 h �)� (34)if we again use the hange of variables in (17) and thenotation z� = x� � x�(�):The integral over � is now given by1Z�1 d� exp �i�(z0 sh � � z1 h �)� = 4�i�L2 (z; �) == 2�(�z2)K0 ��p�z2 �+ 2�(z2)��K0 �i"(z1)�pz2 � : (35)The integrand in the left-hand side of (35) is a wavewith a spaelike 2-momentum q�,q1 = �! � !0 = �� h �; q0 = �! + !0 = �� sh �;� =pq2:19 2*



V. I. Ritus ÆÝÒÔ, òîì 124, âûï. 1 (7), 2003The funtion �L2 (z; �) is a superposition of plane waveswith spaelike momenta direted to the left and with a�xed invariant momentum transfer � = 2p!!0. It sat-is�es the wave equation with a negative mass squared,(�2t � �2x � �2)�L2 (z; �) = 0: (36)Using the integral relation similar to (20) (see the Ap-pendix), we an represent the right-hand side of (34)as i4� Z d� _x�(�) 1Z�2!0 d�2�L2 (z; �) == �i Z d� _x�(�)�L4 (z; �): (37)The small momentum transfer � is retained to elimi-nate the infrared divergene in what follows.Similarly, the bilinear in the Fermi �eld distur-banes that are de�ned by the amplitudes �F!0! andarry left-direted spaelike momenta forms the hargedensity salar. It an be represented at the point U; Vby the integral1ZZ0 d!d!0(2�)2 1e�(q) exp(i!U � i!0V ) == �i Z d� �L4 (z; �): (38)These representations an be useful in problemslose to stati ones involving another harateristilength in addition to or instead of aeleration.6. INTERPRETATION OF THE TRACES�tr�B;F OF BOGOLIUBOV COEFFICIENTSThe invariant desription of the mirror trajetoryin the u; v plane requires that the funtionumir = g(v)ontains two positive parameters { and {0 transform-ing as x+ = v; x� = uand atually onnets the invariant variables {u and{0v between themselves,umir = g(v) = 1{ G({0v): (39)Its expansion near the origin u = v = 0 on the traje-tory is given byg(v) = 1{ �{0v + b{02v2 + 13 {03v3 + : : :� ; (40)

where b; ; : : : are some numbers. Beause the mirrorveloity �(v) and the proper aeleration a(v) are de-�ned by�(v) = 1� g0(v)1 + g0(v) ; a(v) = � g00(v)2g03=2(v) ; (41)the �rst two oe�ients of expansion (40) de�ne themirror veloity �0 and aeleration a0 at zero point,�0 = 1� {0={1 + {0={ ; a0 = �bp{ {0: (42)The absolute value of the aeleration at zero point isdenoted by w0 = jbjp{ {0:We de�ne a Lorentz-invariant trae by the formulatr� == 1ZZ0 d!d!0(2�)2 �!0! 2� Æ r{0{ ! �r {{0!0! ; (43)where the Lorentz-invariant argument of the Æ-funtionis the di�erene of the frequenes
 =r{0{ !; 
0 =r {{0!0 (44)of the re�eted and inident waves in the proper systemof the mirror at the moment u = v = 0. In aordanewith (42), the multipliers p{0={ and p{={0 enter-ing (44) are the Doppler fators relating the frequenesin the laboratory and proper systems. In the propersystem of the mirror,
 = 
0 = p! !0:In aordane with (43), tr� is a Lorentz-invariantdimensionless quantity or, perhaps, has dimensional-ity of the ation beause ~ = 1. We now onsider itsphysial meaning. For this, we turn to the equality ofexpressions (34) and (37),1ZZ0 d!d!0(2�)2 1e j�(q) exp(i!U � i!0V ) == �i Z d� _x�(�)�L4 (z; �); (45)where z� = x� � x�(�); x� = U; x+ = V:20



ÆÝÒÔ, òîì 124, âûï. 1 (7), 2003 The symmetry, inferable from Bogoliubov transformation : : :We put the point U; V on the tangent line to the mirrortrajetory at zero point, suh thatU = X�(� 0) =r{0{ � 0;V = X+(� 0) =r {{0 � 0; (46)where � 0 is the proper time of the point on the tangentline, and integrate both sides of (45) overdU = _X� d� 0 or dV = _X+ d� 0for the upper or lower sign in (45) respetively. TakingEq. (14) and urrent onservation into aount we thenobtain tr� in the left-hand side for both the upper andlower signs in (45). In the right-hand side, we obtainthe integral� i ZZ d� d� 0 _x�(�) _X�(� 0)�L4 (z; �);z� = X�(� 0)� x�(�); (47)where aording to the result for the left-hand side, wean replae_x�(�) _X�(� 0) == � _x�(�) _X�(� 0)� "�� _x�(�) _X�(� 0) (48)with only the �rst term that is symmetri with respetto the permutation_x�(�)� _X�(� 0):We thus obtaintr�B = i ZZ d� d� 0 _x�(�) _X�(� 0)�L4 (z; �);z� = X�(� 0)� x�(�): (49)Integrating both parts of Eq. (38) along tangentline (46) similarly and taking Eqs. (15) and (43) intoaount, we obtaintr�F = �i ZZ d� d� 0�L4 (z; �);z� = X�(� 0)� x�(�): (50)For trajetories in the Minkowsky plane on theleft of their tangent line at zero point, the oordinatez1 > 0. In this ase, �L4 (z; �) an be replaed by thefuntion�LR4 (z; �) = 14� Æ(z2)� �8�pz2 �(z2)�� hJ1 ��pz2 �� iN1 ��pz2 �i++ i �4�2p�z2 �(�z2)K1 ��p�z2 � ; (51)

whih di�ers from the ausal funtion �f4 (z; �) by om-plex onjugation and the replaement �! i� (or by thereplaement z2 ! �z2, � ! �). Further details aboutthis funtion are given in the Appendix.For the above trajetories, we therefore have that� tr�B;F == i ZZ d�d� 0( _x�(�) _X�(� 0)1 )�LR4 (z; �);z� = X�(� 0)� x�(�): (52)The expression obtained allows us to interpret �tr�B;Fas a funtional desribing the interation of two vetoror salar soures by the exhange of vetor or salarquanta with spaelike momenta. One of the souresmoves along the mirror trajetory while the other si-multaneously moves along the tangent line to the tra-jetory at zero point. The seond soure an be on-sidered as a probe or detetor of the exitation reatedby the aelerated mirror in the vauum.7. TRACES OF THE BOGOLIUBOVCOEFFICIENTS FOR HYPERBOLIC ANDEXPONENTIAL TRAJECTORIESWe onsider tr�B;F for the hyperboli mirror tra-jetory umir = g(v) = {0v{(1� {0v) : (53)Using Eqs. (14) and (4) in [3℄, it is not di�ult to rep-resent �B;F!0! via the Madonald funtions K1;0,�B;F!0! = 2p{{0 �� exp �i�!{ + !0{0��K1;0 2ir!!0{{0 ! : (54)In aordane with (43), we then havetr�B;F = 1� 1Z0 d�!{� exp�2i!{�K1;0 �2i!{� == 12� 1Z0 dz exp(iz)K1;0(iz): (55)The variable z in this integral has a simple physialmeaning: it is equal to the ratio of the invariant mo-mentum transfer to the invariant proper aeleration at21



V. I. Ritus ÆÝÒÔ, òîì 124, âûï. 1 (7), 2003zero point (but for hyperboli motion, the aelerationis the same on the entire trajetory),z = �w0 ; � = 2p!!0; w0 = p{{0: (56)The ultraviolet divergene of integral (55) is re-moved by subtrating the leading term of the z ! 1expansion from the integrand. The infrared divergene(in the Bose ase) is removed by introduing a nonzerolower limit " = �=w0 � 1 de�ned by the minimal mo-mentum transfer �. As a result, we obtain the integraltr�B;F = 12� 1Zs" dz �eiz Ks(iz)�r �2iz � ;s = 1; 0; "� 1: (57)The integration ontour an now be rotated to the neg-ative imaginary semiaxis suh that in the Bose ase, itbypasses the singularity at zero along the ar of a irlewith a small radius ". Further alulation leads to thesimple expressionstr�B = 12� ���2 � i�ln 2w0� � 1�� ;� � w0;  = 1; 781 : : : ; (58)tr�F = 12� i: (59)For the exponentional motion of the mirror withumir = � 1{ ln(1� {0v);vmir = 1{0 � 1{0 exp(�{u); (60)the same Eqs. (14) and (4) in [3℄ lead to the Bogoliubovoe�ients�B!0! = 1{r !!0�� i!{ � exp�i!0{0 � i!{ ln i!0{0 � ; (61)�F!0! = 1pi{!0��12 + i!{ ��� exp� i!0{0 � i!{ ln i!0{0 � : (62)The traes tr�B;F whose divergenes were removed bythe above presription are given bytr�B = 12� 1Z" dx�� "�(ix) exp(ix� ix ln ix)�r2�ix # ; (63)

tr�F = 12� 1Z0 dx�� "��12 + ix� exp(ix� ix ln ix)pix �r2�ix # : (64)In these integrals, the variable x is equal to one fourthof z, whih has the meaning of the momentum transferin units of w0 (as in (56)),x = 14z; z = �w0 ;� = 2p!!0; w0 = 12p{{0: (65)Similarly, " = �=4w0 � 1. We note that in the ourseof exponential motion (60), the proper aeleration in-reases from zero to in�nity; as a funtion of the propertime � , it is given bya(�) = � w01� w0� : (66)It is now not di�ult to see that the subtratedterms in integrals (63) and (64) exatly oinide withsimilar terms in integrals (57) if we express themthrough the physial variable z. In other words, upto the removal of the ultraviolet divergene from theintegrals de�ning tr�, the asymptoti behavior of theintegrands in the variable z = �=w0 ! 1 is desribedby the universal formula12�r �2iz : (67)We show in the next setion that this assertion is or-ret for any timelike trajetory in expansion (40) forwhih b > 0.The integration ontour in integrals (63) and (64)an be rotated to the negative imaginary axis bypass-ing the infrared singularity at zero (in the Bose ase)along the ar with a radius ". We then obtaintr�B = 12� 24� �2�� i0�ln 4w0� � 1Z0 dt ln tB0(t)1A35 ; � � w0; (68)tr�F = � 12� 1Z0 dtpt ���12+t� �� exp(t�t ln t)�p2�� = 12� i � 0:8843 : : : (69)22



ÆÝÒÔ, òîì 124, âûï. 1 (7), 2003 The symmetry, inferable from Bogoliubov transformation : : :In the integral in (68), the funtion B0(t) is the deriva-tive of the funtionB(t) = �(1 + t) exp(t� t ln t)�p2�t:The numerial value of this integral is 2:2194 : : : . If wetransform the imaginary part of (68) to the form of theimaginary part of (58), we obtainln 4w0� � 2:2194 : : : = ln 2w0� � 0:9491 : : :Therefore, the values of tr�B;F for the exponential andhyperboli motions are rather lose to eah other.8. ULTRAVIOLET AND INFRAREDSINGULARITIES OF tr�B;FIt is not di�ult to obtain the general expressionfor tr�B;F in the form of a double integral that is afuntional of the mirror trajetory and is tangent to itat the point u = v = 0. Indeed, after substitution ofthe Bogoliubov oe�ients�B!0! =r!0! 1Z�1 dv exp(i!0v � i!g(v));�F!0! = 1Z�1 dvpg0(v) exp(i!0v � i!g(v)) (70)in (43) and a trivial integration over the frequeny !0,we obtaintr�B;F = 12� 1Z0 d�!{��� 1Z�1 dx f1; pG0(x)g exp h�i!{ (G(x) � x)i ; (71)where 1 and pG0(x) in the braes refer to the Boseand Fermi ases respetively. The Lorentz invarianeof these expressions is evident. But the integral over(!={) diverges at the upper limit beause the integrandbehaves as p{=! at !={ !1. Indeed, the onditionjxj � 1 is essential in the integral over x as !={ !1.The funtions G(x)�x and G0(x) an then be replaedby the �rst terms of their expansions near zero, thatis, by bx2 and 1, see (40). Consequently, at !={ !1,the integral over x is given by1Z�1 dx exp��i!{ bx2� =r �{ib ! (72)

in both the Bose and Fermi ases.It is easy to show that the next term of theasymptoti expansion of the integral over x behavesas ({=!)3=2. Then, after subtration from the integralover x of the �rst term of its asymptoti expansion inthe parameter !={ ! 1, we make the integral over!={ onvergent at the upper limit. If we pass from thevariable !={ to the variable z,!{ =r!!0{{0 = b�2w0 = 12bz; (73)the subtrated term in tr�B;F aquires the universalform 12� 1Z0 dzr �2iz : (74)We reall that z = �=w0 has the meaning of the invari-ant momentum transfer in units of proper aeleration.Although the expressionstr�B;F = 12� 1Z0 ds24 1Z�1 dxn1; pG0(x)o �� exp (�is(G(x) � x))�r �ibs 35 ; s = !{ ; (75)do not ontain ultraviolet divergenes, they an on-tain infrared divergenes if the spetral funtion (thefuntion of s in the square brakets in (75)) has thesingular behavior / 1=s as s ! 0. It is lear that thebehavior of the spetral funtion near s = !={ = 0and in the main forming region of the integral over s isdetermined by the behavior of the trajetory G(x) farfrom the point of ontat, where expansion (40) annotbe applied, i.e., at the distanes jxj & 1.We now demonstrate the appliation of Eq. (75) inthe example of another trajetoryumir = � 1{ ln(2�e{0v); G(x) = � ln(2� ex); (76)for whih the spetral funtion an be expressed interms of the well-known transendental funtions. Thistrajetory, as the hyperboli one in (53), has twoasymptotes but approahes them following an expo-nential, not a power-like law. Therefore, on both endsof the trajetory, the proper aelerationa(v) = �s {{0e{0v(2� e{0v) (77)23



V. I. Ritus ÆÝÒÔ, òîì 124, âûï. 1 (7), 2003tends to �1 and attains the minimal value in its mod-ulus a0 = �p{{0 at zero point.The integral over x in (75), in whih the upper limitfor trajetory (76) is equal to ln 2, is redued to the tab-ular integral 2.2.5.1 in [10℄ after hanging the variablex to t = 1� ex. As a result, we obtaintr�B = 12� 1Z" ds � p� �(is)�( 12 + is) �r �is � ; (78)tr�F = 12� 1Z0 ds �p� �( 12 + is)�(1 + is) �r �is � : (79)Beause the spetral funtion has an infrared singu-larity in the Bose ase, the orresponding divergene ofthe integral over s for tr�B is removed by introduinga small but �nite lower limit " = �=w0. Its physialmeaning is the minimum momentum transfer in unitsof the aeleration at zero point.After rotating the s-integration ontour to the neg-ative imaginary semiaxis with the singularity at zerobypassed (in the Bose ase) along the ar of a irlewith the radius ", we obtaintr�B = 12� h��2 � i�ln w0� �B�i ; (80)tr�F = 12� i � F; (81)where positive onstants B and F are de�ned by theintegrals B = 1Z0 dt ln t B0(t) = 1:887789 : : : ;B(t) = p��(1 + t)��12 + t� �p�t; (82)
F = � 1Z0 dt2664p���12 + t��(1 + t) �r�t 3775 == 1:869957 : : : (83)The imaginary part of (80) an be transformed to theform of the imaginary part of (57),ln w0� � 1:887789 : : := ln 2w0� � 2:003721 : : :

The expressions for �tr�B;F obtained for the threedi�erent trajetories of the mirror are lose to eahother qualitatively and quantitatively, see (58), (59),(68), (69), and (80), (81). All of them have a nega-tive imaginary part with an infrared logarithmi sin-gularity in the Bose ase. This singularity is aom-panied by the appearane of the real negative part oftr�B , namely, Re tr�B = �1=4, whereas Re tr�F = 0.Suh expressions for�tr�B;F are typial of trajetorieswhose G(x) funtion inreases stronger (falls weaker)than x as x tends to the upper (lower) limit.Beause the funtionals �tr�B;F have the meaningof the ation in aordane with (52), we ompare themwith the hanges �W1;0 of self-ations of the eletriand salar harges in hyperboli motion [11; 12℄,�W1;0 = �(�2 � �1)�m1;0; (84)�m1 = e2w04�2 ���2 � i�ln 2w0� � 12�� ;�m0 = �ie2w08�2 : (85)In this motion, the proper aeleration of the hargeis onstant and the square of the interval between twopoints on the trajetory is a funtion of only the lengthof the ar onneting them,(x�(�) � x�(� 0))2 = f(� � � 0) : (86)Therefore, the hange of the harge self-interation isproportional to the time interval �2��1 that the hargeis in hyperboli motion multiplied by the mass shift�m1;0 of the harge. The mass shift ours beause ofa hange of the interation of the harge with its own�eld, whih is essentially modi�ed at the distanes ofthe order of w�10 from the harge due to aeleration.In other words, the shift is formed on the ar lengthj� � � 0j � w�10with the enter � at any point of the trajetory insidethe aeleration interval (�1; �2). The independene ofthe shift from � means that it is a onstant of motion.This is not so for trajetories with a variable aelera-tion, see Se. 9.Unlike �W1;0, whih desribes the hange of inter-ation of the harge with itself due to aeleration, thefuntionals �tr�B;F desribe the interation of the a-elerated mirror with the probe exeuting the uniformmotion along the tangent to the trajetory of the mir-ror at the point where the mirror has the aelerationw0. This interation is transmitted by vetor or salar24



ÆÝÒÔ, òîì 124, âûï. 1 (7), 2003 The symmetry, inferable from Bogoliubov transformation : : :perturbations reated by the mirror in the Bose- orFermi-�eld vauum; these perturbations arry a spae-like momentum of the order of w0. Aording to (51),at the distanes of the order of w�10 from the mirror, the�eld of these perturbations dereases exponentially intimelike diretions and osillates with a damped ampli-tude in spaelike diretions. It an be said that suh a�eld moves together with the mirror and is its �proper�eld�. Hene, the probe interats with the mirror for atime of the order of w�10 , while the harge interats withitself all the time and feels the hange of the interationover the entire time of aeleration. It is therefore notsurprising that the expressions for �tr�B;F oinide inessene with �W1;0 if we set�2 � �1 = 2�=w0; e2 = 1in the latter and reverse the sign. In other words,�tr�B;F are the mass shifts of the proper �eld of themirror multiplied by a harateristi proper time oftheir formation.9. MASS SHIFTS OF ELECTRIC AND SCALARCHARGES IN EXPONENTIAL MOTIONTo alulate the self-ations of eletri and salarharges in exponential motion, we use Eq. (30). It isonvenient to use the harge trajetory (60) in the formof a funtion of the proper time,umir(�) = � 2{ ln (1� w0�);vmir(�) = 1{0 (2w0� � w20�2): (87)Then _x�(�) _x�(� 0) = �1 + z21� z2 ;(x� x0)2 = �(� � � 0)2Arth zz ;z = w0(� � � 0)2� w0(� + � 0) : (88)
We now introdue new variables � = (� + � 0)=2and z instead of � and � 0. At �xed � in the interval�1 < � < w�10 , the variable z hanges in the interval

�1 < z < 1. Using the ausal funtion �f4 expressedvia the Madonald funtion, we obtain�W1 = e2 w�10Z�1 d�� 1w0 � ���� 1Z�1 dz _x�(�) _x�(� 0)�f4 (x� x0; �)jF0 == � e22�2 w�10Z�1 d� 1Z0 du�sh 2u ���h 2u thuu K1 �i�pu thu��K1(i� thu)� : (89)In the last expression, the variable u = Arth z is usedinstead of z and � is a funtion of �,�(�) = 2�(w�10 � �):Our problem is now to �nd the integral over u inthe region of the variable � where �(�)� 1, supposing,of ourse, that the infrared parameter �=w0 � 1. Thisintegral oinides, in essense, with the mass shift of theeletri harge,�m1 = e22�2 1Z0 du�sh 2u (h 2urthuu �� K1 �i�pu thu��K1(i� th u)) : (90)To alulate �m1 with �(�) � 1, we divide the in-tegration interval into two intervals, 0 6 u 6 u1 andu1 6 u < 1, by a point u1 suh that u1 � 1, but�u1 � 1. Using the expansion of the Madonald fun-tion at a small argument, we then obtain�m1 � e2w04�2(1� w0�) ��8<:1i u1Z0 du�th 2uu � 12 sh2 u�+ 1Zu1 du�pu K1(i�u)9=; == e2w04�2(1� w0�) ����� � i�2 ln w0�(1� w0�) + ln 2� + 12�� : (91)The mass shift�m0 of the salar harge di�ers from(90) by the replaement h 2u ! �1 in the �rst termin the braes and by the hange of sign of the seond25



V. I. Ritus ÆÝÒÔ, òîì 124, âûï. 1 (7), 2003term. Under the same ondition �(�) � 1, we thenobtain �m0 = �i e2w04�2(1� w0�) �ln 2� 12� : (92)It follows from (91), (92), and (66) that the massshift depends on the absolute valuew(�) = w01� w0�of the proper aeleration of the mirror at the instant�, whih may be onsidered as the enter of the form-ing region of the shift. As the aeleration essentiallyhanges on suh an interval, the mass shifts in (91)and (92) do not oinide with the mass shifts of uni-formly aelerated harges in (84) and (85) if we re-plae w(�) with w0. Nevertheless, rather lose oini-dene arises under the replaement w(�) ! 0; 5w0 andw(�) ! 2; 6w0 for �m1 and �m0 orrespondingly.10. CONCLUSIONThe basis for the symmetry between proesses in-dued by a mirror in 2-dimensional and by a hargein 4-dimensional spae�time is relation (14), (15) be-tween the Bogoliubov oe�ients �B;F!0! and the urrentdensity j�(k) or harge density �(k) depending on thetimelike momentum k�. The squares of these quan-tities represent the spetra of real pairs and partilesradiated by the aelerated mirror and the harge.In the present paper, the symmetry is extendedto the self-ations of the mirror and the harge andto the orresponding vauum�vauum amplitudes, f.(29) and (30). In essene, it is embodied in the dis-overed relation (20) between propagators of a massivepair in 2-dimensional spae and of a single partile in4-dimensional spae.Equation (29) for WB;F was obtained under theondition that the mean number tr�+� of pairs re-ated is small and the interferene of two or more pairsis negligible. In the general ase, WB;F is given byEq. (27), whih an also be written as2 ImWB;F = �tr ln(�+�)B;F (93)beause �+�� �+� = 1;see [7℄, [4℄. As follows from (27) or (93), the imaginarypart of the ation di�ers from zero and is then posi-tive only if � 6= 0, i.e., if the radiation of real partilesindeed ours.

For WB;F , formula (93) allows us to hoose the ex-pression WB;F = �i tr ln �B;F ; (94)whih was alled natural by DeWitt [7℄. But this ex-pression is by no means unique. The expressionsWB;F = �i tr ln(�ei)B;F ; WB;F = �i tr ln�B;F+have the same imaginary part. Nevertheless, Eq. (94) isinteresting as the de�nition of both the real and imag-inary parts of the self-ations WB;F through the Bo-goliubov oe�ients �B;F!0! only, whih redue to theurrent density j�(q) or to the harge density �(q) thatdepends on the spaelike momentum q� in aordanewith Eqs. (14) and (15). This implies that the �eld ofthe orresponding perturbations propagates in the va-uum together with the mirror, omoves it, and at thesame time ontains information about the radiation ofreal quanta.Unfortunately, the author failed to �nd a simple in-tegral representation for the matrix ln�. Nevertheless,if we again assume that the mean number of emittedpartiles is small, we an onsider � or i� lose to 1.Expanding ln i� near i� = 1 and on�ning ourselves tothe �rst term, we then obtainWB;F = �i tr ln i�B;F � �itr (i�B;F � 1) == �tr�B;F + : : : (95)These qualitative arguments allow us to state that thefuntionals �tr�B;F are similar to the orrespondingself-ations with the opposite sign and must thereforehave negative imaginary parts. This is on�rmed byall examples onsidered in Ses. 7 and 8. Nevertheless,the exat physial meaning of the quantities �tr�B;Fis learly de�ned by Eq. (52).Here, we also want to fous attention on one predi-tion following from the symmetry between proesses in-dued by the mirror in 2-dimensional and by the hargein 4-dimensional spae�times. The symmetry preditsthe value e20 = 1 for the harge squared (in Heaviside'sunits), whih orresponds to the �ne struture onstant�0 = 1=4�. Beause the radiation orretions are nottaken into aount in both spaes and the proesses in1+1-dimensional spae are due to the purely geometri-al boundary ondition, it is natural to think that theabove-mentioned values of the harge squared and ofthe �ne struture onstant are the unrenormalized barevalues of these onstants. They are therefore markedwith the index 0.26



ÆÝÒÔ, òîì 124, âûï. 1 (7), 2003 The symmetry, inferable from Bogoliubov transformation : : :It is quite interesting that the bare �ne strutureonstant has a purely geometrial origin and that itsvalue is small, �0 = 1=4� � 1:The smallness of �0 has the essential meaning for thequantum elerodynamis, where it a priori justi�es theappliability of the perturbation theory and where theradiative orretions in aordane with the well knownformula [13℄� = �01 + (�0=3�)N ln(�2=m2) (96)diminish the renormalized value of � in omparisonwith the unrenormalized one. Here, N is the numberof harged partiles with masses in the interval (m;�)and � is the upper limit of the partile energy up towhih the quantum eletrodynamis is orret.APPENDIXIt is onvenient to de�ne the singular funtion�LRd (z; �) and the ausal funtion �fd(z; �) in a d-di-mensional spae�time by the Fourier representation�LRd (z; �) = Z ddq(2�)d eiqzq2 � �2 + i" ;�fd(z; �) = Z ddq(2�)d eiqzq2 + �2 � i" : (97)These funtions are the even singular solutions of theinhomogeneous wave equations(��2 � �2)�LR(z; �) = Æ(z);(��2 + �2)�f (z; �) = Æ(z); (98)with opposite signs in front of the parameters �2 and�2, where � and � are the momentum transfer and themass. Their proper time representations (in partiular,for d = 4)�LR4 (z; �) = 1(4�)2 1Z0 dss2 exp��i�2s� iz24s � ;�f4 (z; �) = 1(4�)2 1Z0 dss2 exp��i�2s+ iz24s � (99)as well as the expliit expressions in terms of theMadonald funtion di�er by omplex onjugation andby the replaement � ! i� or by the replaementz2 ! �z2; �! �.
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