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THE SYMMETRY, INFERABLE FROM BOGOLIUBOVTRANSFORMATION, BETWEEN PROCESSES INDUCEDBY A MIRROR IN 2-DIMENSIONAL AND A CHARGEIN 4-DIMENSIONAL SPACE�TIMEV. I. Ritus *Tamm Department of Theoreti
al Physi
s, Lebedev Physi
al Institute, Russian A
ademy of S
ien
es119991, Mos
ow, RussiaSubmitted 30 De
ember 2002We 
onsider the symmetry between 
reation of pairs of massless bosons or fermions by an a

elerated mirrorin 1 + 1-dimensional spa
e and emission of single photons or s
alar quanta by an ele
tri
 or s
alar 
harge in3 + 1-dimensional spa
e. The relation of Bogoliubov 
oe�
ients des
ribing the pro
esses generated by themirror to Fourier 
omponents of the 
urrent or 
harge density implies that the spin of any disturban
es bilinearin the s
alar or spinor �eld 
oin
ides with the spin of quanta emitted by the ele
tri
 or s
alar 
harge. The massand invariant momentum transfer of these disturban
es are essential for the relation of Bogoliubov 
oe�
ientsto invariant singular solutions and the Green's fun
tions of wave equations for both 1+1- and 3+1-dimensionalspa
es and espe
ially for the integral relations between these solutions. One of these relations leads to the 
o-in
iden
e of the self-a
tion 
hanges and va
uum�va
uum amplitudes for an a

elerated mirror in 2-dimensionalspa
e-time and a 
harge in 4-dimensional spa
e-time. Both invariants of the Lorentz group, spin and mass, playan essential role in the established symmetry. The symmetry embra
es not only the pro
esses of real quantaradiation, but also the pro
esses of the mirror and 
harge intera
tions with �elds 
arring spa
elike momenta.These �elds a

ompany their sour
es and determine the Bogoliubov matrix 
oe�
ients �B;F!0! . It is shown thatthe Lorentz-invariant tra
es �tr�B;F des
ribe the ve
tor and s
alar intera
tions of the a

elerated mirror witha uniformly moving dete
tor. This interpretation rests essentially on the relation between propagators of thewaves with spa
elike momenta in 2- and 4-dimensional spa
es. The tra
es �tr�B;F 
oin
ide with the produ
tsof the mass shift �m1;0 of the a

elerated ele
tri
 or s
alar 
harge and the proper time of the shift formation.The symmetry �xes the value of the bare �ne stru
ture 
onstant �0 = 1=4�.PACS: 11.10.Kk, 11.30.-j, 11.55.Fv, 03.65.Pm1. INTRODUCTIONThe Hawking parti
le produ
tion me
hanism at thebla
k hole formation is analogous to the emission froman ideal mirror a

elerated in va
uum [1℄. In its turn,there is a 
lose analogy between the radiation of pairsof s
alar (spinor) quanta from an a

elerated mirrorin 1 + 1-dimensional spa
e and the radiation of pho-tons (s
alar quanta) by an a

elerated ele
tri
 (s
alar)
harge in 3 + 1-dimensional spa
e [2; 3℄. All these pro-
esses are therefore interrelated. The in- and out-setsof the wave equation solutions that are typi
ally used*E-mail: ritus�lpi.ru

for a massless s
alar �eld in problems with moving mir-rors are given by�in !0 / e�i!0v � e�i!0f(u);��in !0 / ei!0v � ei!0f(u); (1a)�out ! / e�i!g(v) � e�i!u;��out ! / ei!g(v) � ei!u; (1b)with zero boundary 
ondition�jtraj = 0on the mirror traje
tory. Here, the variables u = t� xand v = t+ x are used and the mirror (or 
harge) tra-14
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tory in the u; v plane is given by any of the twomutually inverse fun
tionsvmir = f(u); umir = g(v):We refer to [3℄ for the in- and out-sets of solutions ofthe massless Dira
 equation. Dira
 solutions di�er from(1) by the presen
e of bispinor 
oe�
ients at the u- andv-plane waves. The 
urrent densities 
orresponding tothese solutions have only tangential 
omponents at theboundary. The boundary 
ondition for both s
alar andspinor �elds is therefore purely geometri
al, it does not
ontain any dimensional parameters.The Bogoliubov 
oe�
ients �!0! and �!0 ! arise asthe 
oe�
ients of the expansion of the solutions of theout-set in the solutions of the in-set; the 
oe�
ients��!0! and��!0! arise similarly in the inverse expansion.The upper and lower signs 
orrespond to the s
alar(Bose) and spinor (Fermi) �elds. The mean number ofquanta with the frequen
y ! and wave ve
tor ! > 0 ra-diated by the a

elerated mirror to the right semispa
eis then given by the integrald�n! = d!2� 1Z0 d!02� j�!0!j2: (2)At the same time, the spe
tra of photons and s
alarquanta emitted by ele
tri
 and s
alar 
harges movingalong the traje
tory x�(�) in 3 + 1-dimensional spa
eare determined by the Fourier transforms of the ele
-tri
 
urrent density 4-ve
tor j�(k) and the s
alar 
hargedensity �(k),s = 1; j�(k) = e Z d� _x�(�) exp (�ik�x�(�)) ; (3)d�n(1)k = jj�(k+; k�)j2 dk+dk�(4�)2 ; (4)s = 0; �(k) = e Z d� exp (�ik�x�(�)) ; (5)d�n(0)k = j�(k+; k�)j2 dk+dk�(4�)2 ; (6)where s and k� are the spin and 4-momentum of thequanta,k2 = k21 + k2? � k20 = 0; k2? = k20 � k21 = k+k�;k� = k0 � k1;and it is assumed in (4) and (6) that the traje
toryx�(�) has only x0 and x1 nontrivial 
omponents.

The symmetry between 
reation of Bose or Fermipairs by the a

elerated mirror in 1 + 1-dimensionalspa
e and emission of single photons or s
alar quanta bythe ele
tri
 or s
alar 
harge in 3+ 1-dimensional spa
e
onsists, �rst of all, in the 
oin
iden
e of the spe
tra.If we set 2! = k+; 2!0 = k�;we have j�B!0!j2 = 1e2 jj�(k+; k�)j2;j�F!0!j2 = 1e2 j�(k+; k�)j2: (7)A more re�ned assertion in the Bose 
ase is�B�!0! = �sk+k� j�(k)e =sk�k+ j+(k)e == "��k�j�(k)epk+k� ; (8)j�(k) = e Z du exp� i2(k+u+ k�f(u))� ;j+(k) = e Z dv exp � i2(k�v + k+g(v))� : (9)The 2-ve
tors j�(k) and a�(k) = "��k�=pk+k� arespa
elike for timelike k�; in a system where k+ = k�or ! = !0, they have only spatial 
omponents that arepre
isely equal to e�B�!0! and 1 
orrespondingly.In the Fermi 
ase, we have�F�!0! = 1e�(k): (10)In Se
. 2, we underline the symmetry between ana-lyti
 expressions for the Bogoliubov 
oe�
ients � and�� and at the same time, the physi
al distin
tion be-tween them: �B;F� is the amplitude of the sour
e ofwaves that are bilinear in massless Bose or Fermi �eldsand 
arry timelike momenta, whereas �B;F is the am-plitude of the sour
e of similar waves that 
arry spa
e-like momenta, see (14) and (15). In Se
s. 3 and 4, weshow that the waves with timelike momenta emittedand absorbed by the sour
e are involved in forming theimaginary part of the sour
e self-a
tion. This phys-i
al pi
ture is naturally embodied in integral relation(20) between propagators�2(z;m) of virtual pairs withmasses m; � 6 m <1 in 2-dimensional spa
etime andthe propagator�4(z; �) of the parti
le in 4-dimensionalspa
etime. Analyti
 properties of the expressions ob-tained also allow us to de�ne the real part of self-a
tion.This leads to the 
oin
iden
e of the self-a
tions and15
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e, of the va
uum�va
uum amplitudes of the mir-ror and the 
harge if we set e2 = 1. In Se
. 5, the �eldsof perturbations 
arrying spa
elike momenta are 
on-sidered. These �elds are de�ned by the matri
es �B;F .Their Lorentz-invariant tra
es �tr�B;F are 
onsideredin Se
. 6. They des
ribe 
orrespondingly the ve
torand s
alar intera
tions of the a

elerated mirror with auniformly moving dete
tor in the neighborhood of thepoint of 
onta
t of their traje
tories. In Se
s. 7 and8, the tra
es �tr�B;F are found for the three spe
i�
traje
tories permitting analyti
 solutions. The generalexpressions for the tra
es are given and their ultravioletand infrared singularities are also 
onsidered there. Inthese se
tions, we 
ompare the found tra
es �tr�B;Fwith the mass shifts �m1;0 of the ele
tri
 and s
alar
harges moving along the same traje
tory as the mirror,but in 3+1-dimensional spa
e. The mass shifts �m1;0of the 
harges moving along the exponential traje
toryare found in Se
. 9. In Con
lusions, we dis
uss the rela-tion of the tra
es �tr�B;F to the general de�nition ofthe self-a
tion a

ounting for interferen
e e�e
ts, anddraw attention to the fa
t that the symmetry �xes thevalue of the bare 
harge squared, e20 = 1, whi
h 
orre-spons to the bare �ne stru
ture 
onstant �0 = 1=4�.The smallness and geometri
al origin of this value maybe interesting in quantum ele
trodynami
s. In the Ap-pendix, the even singular solutions of inhomogeneouswave equations with mass and momentum transfer pa-rameters are 
onsidered. Integral relations (20) and(100) between these solutions for 1 + 1- and 3 + 1-dimensional spa
es are very important for the symme-try 
onsidered.2. THE PHYSICAL INTERPRETATION OF ��!0!The absolute pair produ
tion amplitude and thesingle-parti
le s
attering amplitude are related by [4℄hout!00!jini = �X!0 hout!00j!0ini��!0!: (11)The 
oe�
ient ��!0! was interpreted as the amplitudeof a sour
e of a pair of massless parti
les potentiallyemitted to the right and to the left with the respe
-tive frequen
es ! and !0. While the parti
le with thefrequen
y ! a
tually es
apes to the right, the parti
lewith the frequen
y !0 propagates for some period oftime and is then re�e
ted by the mirror and is a
tuallyemitted to the right with an altered frequen
y !00, seeFig. 1.In the time interval between pair 
reation and re-

u
!0
!00t

!x
v

Fig. 1.�e
tion of the left parti
le, we have the virtual pairwith the energy k0, momentum k1, and mass m,k0 = ! + !0; k1 = ! � !0;m =p�k2 = 2p!!0: (12)In addition to the polar timelike 2-ve
tor k�, very im-portant is the axial spa
elike 2-ve
tor q�,q� = "��k� ; q0 = �k1 = �! + !0;q1 = �k0 = �! � !0 < 0: (13)In terms of k� and q�, the symmetry between the �and � 
oe�
ients be
omes 
learly expressed,s = 1; e�B�!0! = �q�j�(k)pk+k� ;e�B!0! = �k�j�(q)pk+k� ; (14)s = 0; e�F�!0! = �(k); e�F!0! = �(q): (15)We note that Eqs. (3) and (5) de�ne the 
urrentdensity j�(k) and the 
harge density �(k) as fun
tion-als of the traje
tory x�(�) and fun
tions of any 2- or4-ve
tor k�. It 
an be shown that in 1+1-dimensionalspa
e, j�(k) and j�(q) are spa
elike and timelike po-lar ve
tors respe
tively if k� and q� are timelike andspa
elike ve
tors.The boundary 
ondition on the mirror leads to theappearan
e of ve
tor or s
alar disturban
e waves bi-linear in massless �elds in the va
uum of the massless16
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alar or spinor �eld. There are two types of thesewaves:1) waves with the amplitude �!0! (��!0!) that 
arrya spa
elike momentum dire
ted to the left (right);2) waves with the amplitude ��!0! (�!0!) that 
arrya timelike momentum with a positive (negative) fre-quen
y.The waves with spa
elike momenta appear even ifthe mirror is at rest or moves uniformly (the Casimire�e
t), while the waves with timelike momenta appearonly for the a

elerated mirror.The pair of Bose (Fermi) parti
les has spin 1 (0)be
ause its sour
e is a 
urrent density ve
tor (
hargedensity s
alar), see [5℄ or problem 12.15 in [6℄.3. THE APPEARANCE OF MASS IN THEMASSLESS THEORY AND OF INVARIANTSINGULAR SOLUTIONS OF THE WAVEEQUATION WITH MASSIt follows from (8) that the bilinear in massless bose-�eld disturban
es de�ned by the amplitudes �B�!0! formsa positive-frequen
y 
urrent density ve
tor. Its minus-
omponent at the point U; V 
an be represented as1ZZ0 d! d!0(2�)2 1e j�(k) exp(�i!U � i!0V ) = 18�2 ��Z du 1Z0 d� � 1Z�1 d� exp ��i�(z0 
h ��z1 sh �)� ; (16)if the hyperboli
 variables � and � are used instead of! and !0,d!d!0 = 12�d�d�; ! = 12�e�; !0 = 12�e��;� = 2p!!0; � = lnr !!0 ; (17)and z� = x� � x�(�), see Fig. 2. As 
an be seen from(12), � = m is the mass of the pair and � is the rapidity.The integral over rapidity in (16) is the well-known in-variant positive-frequen
y singular fun
tion of the waveequation for 2-dimensional spa
etime,1Z�1 d� exp ��im(z0 
h � � z1 sh �)� == �4�i�+2 (z;m) = 2�(�z2)K0 �i"(z0)mp�z2 �++ 2�(z2)K0 �mpz2 � ; (18)

u t
U z�u f(u)

U; V $ x�Vu; f(u)$ x�(�) x
v

Fig. 2.(�2t � �2x +m2)�+2 (z;m) = 0: (19)This fun
tion des
ribes the wave �eld of pairs with massm and any possible positive-frequen
y momenta. Itfollows that the pairs are 
reated, propagated and ab-sorbed near the mirror within a spa
elike interval of theorder of m�1.Using the very important integral relation betweenthe singular fun
tions of wave equations for d- and d+2-dimensional spa
etimes,�fd+2(z; �) = 14� 1Z�2 dm2�fd(z;m); (20)we 
an represent the right-hand side of (16) as� i4� Z du 1Z�2!0 dm2�+2 (z;m) == �i 1Z�1 du�+4 (z; �): (21)The small mass � is retained to eliminate the infrareddivergen
e in what follows.Similarly, the positive-frequen
y plus-
omponent ofthe 
urrent density at the point U; V 
an be represented2 ÆÝÒÔ, âûï. 1 (7) 17



V. I. Ritus ÆÝÒÔ, òîì 124, âûï. 1 (7), 2003as 1ZZ0 d!d!0(2�)2 1e j+(k) exp(�i!U � i!0V ) == �i 1Z�1 dv�+4 (z; �): (22)The di�erentials du and dv in (21) and (22) 
an berepla
ed by d� _x�(�) and d� _x+(�).The bilinear in massless Fermi-�eld disturban
es de-�ned by the amplitudes �F�!0! forms a positive-frequen
y
harge density s
alar. At the point U; V , it 
an be rep-resented by1ZZ0 d!d!0(2�)2 1e�(k) exp(�i!U � i!0V ) == �i 1Z�1 d� �+4 (z; �): (23)If we set the point U; V on the traje
tory su
h thatU = x�(� 0); V = x+(� 0); z� = x�(� 0)� x�(�);and integrate (21) over V and (22) over U , then theirhalf sum di�ers from tr�+� only by the fa
tor i,tr�B+�B � 1ZZ0 d!d!0(2�)2 j�B!0!j2 == i2 ZZ (du dV + dv dU)�+4 (z; �) == �i ZZ d�d� 0 _x�(�) _x�(� 0)�+4 (z; �): (24)The real part of the fun
tion �+, whi
h is odd in z,and its imaginary part, whi
h is even in z, are relatedto the 
ausal (Feynman) fun
tion �f that is even in z,�+(z; �) = 12�(z; �) + i2�1(z; �);Re�+ = "(z0)Re�f ; Im�+ = Im�f ; (25)and tr�B+�B 
an therefore be written astr (�+�)B = Im ZZ d�d� 0 _x�(�) _x�(� 0)�f4 (z; �): (26)tr�F+�F 
an be obtained from the right-hand side of(26) by the substitution_x�(�) _x�(� 0)! 1:

4. VACUUM�VACUUM AMPLITUDEhoutjini = eiWA

ording to DeWitt [7℄, Wald [8℄, and others (in-
luding the present author [4℄),2 ImWB;F = �12tr ln(1� �+�) or� tr ln(1� �+�) (27)in the respe
tive 
ases where the parti
le is identi
al ornonidenti
al to the antiparti
le. We 
on�ne ourselvesto the last 
ase and assume that tr�+� � 1. Then2 ImWB;F == Im ZZ d�d� 0( _x�(�) _x�(� 0)1 )�f4 (z; �): (28)We 
an omit the Im symbols from both sides of thisequation and de�ne the a
tions for Bose- and Fermi-mirrors in 1 + 1-dimensional spa
e asWB;F == 12 ZZ d� d� 0( _x�(�) _x�(� 0)1 )�f4 (z; �): (29)We 
ompare this with the well-known a
tions for ele
-tri
 and s
alar 
harges in 3 + 1-dimensional spa
e,W 1;0 == 12 e2 ZZ d�d� 0( _x�(�) _x�(� 0)1 )�f4 (z; �): (30)The symmetry would be 
omplete if e2 = 1, i.e., if the�ne stru
ture 
onstant were � = 1=4�. This �ideal�value of the �ne stru
ture 
onstant for the 
hargeswould 
orrespond to the ideal, geometri
 boundary 
on-dition on the mirror.For the mirror traje
tory with a nonzero rela-tive velo
ity �21 of its ends (nonzero relative rapidity� = Arth�21), the 
hanges of the a
tions due to a

el-eration are given byRe�WB = 18� � �th � � 1� ;Re�WF = 18� �1� �sh �� : (31)For a uniformly a

elerated mirror with the proper a
-
eleration a, its velo
ity is�(�) = th a�;18



ÆÝÒÔ, òîì 124, âûï. 1 (7), 2003 The symmetry, inferable from Bogoliubov transformation : : :where � is the proper time. Then� = a(�2 � �1)and as �2 � �1 ! 1,Re�WB = jaj8� (�2 � �1): (32)By de�nition,Re�mB = ��Re�WB��2 = �jaj8� (33)is the self-energy shift of an a

elerating Bose mirror.It di�ers from the mass shift of a uniformly a

eleratedele
tron only by the absen
e of the fa
tor e2 = 4��.The self-energy shift of a uniformly a

elerated Fermimirror is Re�mF = 0:There are two arguments in favor of de�ning thea
tion by means of the 
ausal fun
tion �f4 (z; �).1. The a
tion must represent not only the radiationof real quanta but also the self-energy and polariza-tion e�e
ts. While the radiation e�e
ts are des
ribedby solutions of the homogeneous wave equation, theself-energy and polarization e�e
ts require solutions ofthe inhomogeneous wave equation, whi
h 
ontain in-formation about the proper �eld of a sour
e. Su
h so-lutions of the homogeneous and inhomogeneous waveequations are the fun
tions(1=2)�1 = Im�fand �� = Re�f :2. While the appearan
e of(1=2)�1 � Im�fin the imaginary part of the a
tion is a 
onsequen
e ofmathemati
al transformations of the integral1ZZ0 d!d!0(2�)2 j�!0!j2(transformations similar to the Plan
herel theorem),the fun
tion �� � Re�f in the real part of the a
tion isunique if it appears as the real part of the analyti
 
on-tinuation of (i=2)�1(z; �) to negative z2 that is even inz (as �1 itself).To 
on
lude Se
s. 3 and 4, we note that both thefun
tion �2(z;m) des
ribing the propagation of a vir-tual pair with the mass m = � = 2p!!0 in 2-dimen-sional spa
e�time and the mass spe
trum of these pairs

arise owing to the transition from the variables ! and!0 to the hyperboli
 variables � and �, whi
h re�e
t theLorentzian symmetry of the problem. Further integra-tion over the mass leads to the fun
tion �4(z; �) that
oin
ides with the propagator of a parti
le moving in4-dimensional spa
e�time with the mass � equal to theleast mass of virtual pairs. Thus, relation (20) appearsin the framework of the present method and is imma-nent to the symmetry, relating the pro
esses in two-and four-dimensional spa
e�times.In [9℄, relation (20) was obtained by the author inde-pendently of the pro
esses 
onsidered and was requiredin proving that the integration variable involved in it
oin
ides with the pair mass m = 2p!!0.5. FORMATION OF TACHYONDISTURBANCES WITH THE INVARIANTMOMENTUM TRANSFERThe bilinear in massless Bose �eld perturbationsthat are de�ned by the amplitudes �B!0! and 
arryspa
elike momenta to the left 
an be represented atthe point U; V by the two 
urrent density 
omponents1ZZ0 d!d!0(2�)2 1e j�(q) exp(i!U � i!0V ) = 18�2 ��Z d� _x�(�) 1Z0 d� ��� 1Z�1 d� exp �i�(z0 sh ��z1 
h �)� (34)if we again use the 
hange of variables in (17) and thenotation z� = x� � x�(�):The integral over � is now given by1Z�1 d� exp �i�(z0 sh � � z1 
h �)� = 4�i�L2 (z; �) == 2�(�z2)K0 ��p�z2 �+ 2�(z2)��K0 �i"(z1)�pz2 � : (35)The integrand in the left-hand side of (35) is a wavewith a spa
elike 2-momentum q�,q1 = �! � !0 = �� 
h �; q0 = �! + !0 = �� sh �;� =pq2:19 2*
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tion �L2 (z; �) is a superposition of plane waveswith spa
elike momenta dire
ted to the left and with a�xed invariant momentum transfer � = 2p!!0. It sat-is�es the wave equation with a negative mass squared,(�2t � �2x � �2)�L2 (z; �) = 0: (36)Using the integral relation similar to (20) (see the Ap-pendix), we 
an represent the right-hand side of (34)as i4� Z d� _x�(�) 1Z�2!0 d�2�L2 (z; �) == �i Z d� _x�(�)�L4 (z; �): (37)The small momentum transfer � is retained to elimi-nate the infrared divergen
e in what follows.Similarly, the bilinear in the Fermi �eld distur-ban
es that are de�ned by the amplitudes �F!0! and
arry left-dire
ted spa
elike momenta forms the 
hargedensity s
alar. It 
an be represented at the point U; Vby the integral1ZZ0 d!d!0(2�)2 1e�(q) exp(i!U � i!0V ) == �i Z d� �L4 (z; �): (38)These representations 
an be useful in problems
lose to stati
 ones involving another 
hara
teristi
length in addition to or instead of a

eleration.6. INTERPRETATION OF THE TRACES�tr�B;F OF BOGOLIUBOV COEFFICIENTSThe invariant des
ription of the mirror traje
toryin the u; v plane requires that the fun
tionumir = g(v)
ontains two positive parameters { and {0 transform-ing as x+ = v; x� = uand a
tually 
onne
ts the invariant variables {u and{0v between themselves,umir = g(v) = 1{ G({0v): (39)Its expansion near the origin u = v = 0 on the traje
-tory is given byg(v) = 1{ �{0v + b{02v2 + 13 
{03v3 + : : :� ; (40)

where b; 
; : : : are some numbers. Be
ause the mirrorvelo
ity �(v) and the proper a

eleration a(v) are de-�ned by�(v) = 1� g0(v)1 + g0(v) ; a(v) = � g00(v)2g03=2(v) ; (41)the �rst two 
oe�
ients of expansion (40) de�ne themirror velo
ity �0 and a

eleration a0 at zero point,�0 = 1� {0={1 + {0={ ; a0 = �bp{ {0: (42)The absolute value of the a

eleration at zero point isdenoted by w0 = jbjp{ {0:We de�ne a Lorentz-invariant tra
e by the formulatr� == 1ZZ0 d!d!0(2�)2 �!0! 2� Æ r{0{ ! �r {{0!0! ; (43)where the Lorentz-invariant argument of the Æ-fun
tionis the di�eren
e of the frequen
es
 =r{0{ !; 
0 =r {{0!0 (44)of the re�e
ted and in
ident waves in the proper systemof the mirror at the moment u = v = 0. In a

ordan
ewith (42), the multipliers p{0={ and p{={0 enter-ing (44) are the Doppler fa
tors relating the frequen
esin the laboratory and proper systems. In the propersystem of the mirror,
 = 
0 = p! !0:In a

ordan
e with (43), tr� is a Lorentz-invariantdimensionless quantity or, perhaps, has dimensional-ity of the a
tion be
ause ~ = 1. We now 
onsider itsphysi
al meaning. For this, we turn to the equality ofexpressions (34) and (37),1ZZ0 d!d!0(2�)2 1e j�(q) exp(i!U � i!0V ) == �i Z d� _x�(�)�L4 (z; �); (45)where z� = x� � x�(�); x� = U; x+ = V:20



ÆÝÒÔ, òîì 124, âûï. 1 (7), 2003 The symmetry, inferable from Bogoliubov transformation : : :We put the point U; V on the tangent line to the mirrortraje
tory at zero point, su
h thatU = X�(� 0) =r{0{ � 0;V = X+(� 0) =r {{0 � 0; (46)where � 0 is the proper time of the point on the tangentline, and integrate both sides of (45) overdU = _X� d� 0 or dV = _X+ d� 0for the upper or lower sign in (45) respe
tively. TakingEq. (14) and 
urrent 
onservation into a

ount we thenobtain tr� in the left-hand side for both the upper andlower signs in (45). In the right-hand side, we obtainthe integral� i ZZ d� d� 0 _x�(�) _X�(� 0)�L4 (z; �);z� = X�(� 0)� x�(�); (47)where a

ording to the result for the left-hand side, we
an repla
e_x�(�) _X�(� 0) == � _x�(�) _X�(� 0)� "�� _x�(�) _X�(� 0) (48)with only the �rst term that is symmetri
 with respe
tto the permutation_x�(�)� _X�(� 0):We thus obtaintr�B = i ZZ d� d� 0 _x�(�) _X�(� 0)�L4 (z; �);z� = X�(� 0)� x�(�): (49)Integrating both parts of Eq. (38) along tangentline (46) similarly and taking Eqs. (15) and (43) intoa

ount, we obtaintr�F = �i ZZ d� d� 0�L4 (z; �);z� = X�(� 0)� x�(�): (50)For traje
tories in the Minkowsky plane on theleft of their tangent line at zero point, the 
oordinatez1 > 0. In this 
ase, �L4 (z; �) 
an be repla
ed by thefun
tion�LR4 (z; �) = 14� Æ(z2)� �8�pz2 �(z2)�� hJ1 ��pz2 �� iN1 ��pz2 �i++ i �4�2p�z2 �(�z2)K1 ��p�z2 � ; (51)

whi
h di�ers from the 
ausal fun
tion �f4 (z; �) by 
om-plex 
onjugation and the repla
ement �! i� (or by therepla
ement z2 ! �z2, � ! �). Further details aboutthis fun
tion are given in the Appendix.For the above traje
tories, we therefore have that� tr�B;F == i ZZ d�d� 0( _x�(�) _X�(� 0)1 )�LR4 (z; �);z� = X�(� 0)� x�(�): (52)The expression obtained allows us to interpret �tr�B;Fas a fun
tional des
ribing the intera
tion of two ve
toror s
alar sour
es by the ex
hange of ve
tor or s
alarquanta with spa
elike momenta. One of the sour
esmoves along the mirror traje
tory while the other si-multaneously moves along the tangent line to the tra-je
tory at zero point. The se
ond sour
e 
an be 
on-sidered as a probe or dete
tor of the ex
itation 
reatedby the a

elerated mirror in the va
uum.7. TRACES OF THE BOGOLIUBOVCOEFFICIENTS FOR HYPERBOLIC ANDEXPONENTIAL TRAJECTORIESWe 
onsider tr�B;F for the hyperboli
 mirror tra-je
tory umir = g(v) = {0v{(1� {0v) : (53)Using Eqs. (14) and (4) in [3℄, it is not di�
ult to rep-resent �B;F!0! via the Ma
donald fun
tions K1;0,�B;F!0! = 2p{{0 �� exp �i�!{ + !0{0��K1;0 2ir!!0{{0 ! : (54)In a

ordan
e with (43), we then havetr�B;F = 1� 1Z0 d�!{� exp�2i!{�K1;0 �2i!{� == 12� 1Z0 dz exp(iz)K1;0(iz): (55)The variable z in this integral has a simple physi
almeaning: it is equal to the ratio of the invariant mo-mentum transfer to the invariant proper a

eleration at21



V. I. Ritus ÆÝÒÔ, òîì 124, âûï. 1 (7), 2003zero point (but for hyperboli
 motion, the a

elerationis the same on the entire traje
tory),z = �w0 ; � = 2p!!0; w0 = p{{0: (56)The ultraviolet divergen
e of integral (55) is re-moved by subtra
ting the leading term of the z ! 1expansion from the integrand. The infrared divergen
e(in the Bose 
ase) is removed by introdu
ing a nonzerolower limit " = �=w0 � 1 de�ned by the minimal mo-mentum transfer �. As a result, we obtain the integraltr�B;F = 12� 1Zs" dz �eiz Ks(iz)�r �2iz � ;s = 1; 0; "� 1: (57)The integration 
ontour 
an now be rotated to the neg-ative imaginary semiaxis su
h that in the Bose 
ase, itbypasses the singularity at zero along the ar
 of a 
ir
lewith a small radius ". Further 
al
ulation leads to thesimple expressionstr�B = 12� ���2 � i�ln 2w0
� � 1�� ;� � w0; 
 = 1; 781 : : : ; (58)tr�F = 12� i: (59)For the exponentional motion of the mirror withumir = � 1{ ln(1� {0v);vmir = 1{0 � 1{0 exp(�{u); (60)the same Eqs. (14) and (4) in [3℄ lead to the Bogoliubov
oe�
ients�B!0! = 1{r !!0�� i!{ � exp�i!0{0 � i!{ ln i!0{0 � ; (61)�F!0! = 1pi{!0��12 + i!{ ��� exp� i!0{0 � i!{ ln i!0{0 � : (62)The tra
es tr�B;F whose divergen
es were removed bythe above pres
ription are given bytr�B = 12� 1Z" dx�� "�(ix) exp(ix� ix ln ix)�r2�ix # ; (63)

tr�F = 12� 1Z0 dx�� "��12 + ix� exp(ix� ix ln ix)pix �r2�ix # : (64)In these integrals, the variable x is equal to one fourthof z, whi
h has the meaning of the momentum transferin units of w0 (as in (56)),x = 14z; z = �w0 ;� = 2p!!0; w0 = 12p{{0: (65)Similarly, " = �=4w0 � 1. We note that in the 
ourseof exponential motion (60), the proper a

eleration in-
reases from zero to in�nity; as a fun
tion of the propertime � , it is given bya(�) = � w01� w0� : (66)It is now not di�
ult to see that the subtra
tedterms in integrals (63) and (64) exa
tly 
oin
ide withsimilar terms in integrals (57) if we express themthrough the physi
al variable z. In other words, upto the removal of the ultraviolet divergen
e from theintegrals de�ning tr�, the asymptoti
 behavior of theintegrands in the variable z = �=w0 ! 1 is des
ribedby the universal formula12�r �2iz : (67)We show in the next se
tion that this assertion is 
or-re
t for any timelike traje
tory in expansion (40) forwhi
h b > 0.The integration 
ontour in integrals (63) and (64)
an be rotated to the negative imaginary axis bypass-ing the infrared singularity at zero (in the Bose 
ase)along the ar
 with a radius ". We then obtaintr�B = 12� 24� �2�� i0�ln 4w0� � 1Z0 dt ln tB0(t)1A35 ; � � w0; (68)tr�F = � 12� 1Z0 dtpt ���12+t� �� exp(t�t ln t)�p2�� = 12� i � 0:8843 : : : (69)22
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tion B0(t) is the deriva-tive of the fun
tionB(t) = �(1 + t) exp(t� t ln t)�p2�t:The numeri
al value of this integral is 2:2194 : : : . If wetransform the imaginary part of (68) to the form of theimaginary part of (58), we obtainln 4w0� � 2:2194 : : : = ln 2w0
� � 0:9491 : : :Therefore, the values of tr�B;F for the exponential andhyperboli
 motions are rather 
lose to ea
h other.8. ULTRAVIOLET AND INFRAREDSINGULARITIES OF tr�B;FIt is not di�
ult to obtain the general expressionfor tr�B;F in the form of a double integral that is afun
tional of the mirror traje
tory and is tangent to itat the point u = v = 0. Indeed, after substitution ofthe Bogoliubov 
oe�
ients�B!0! =r!0! 1Z�1 dv exp(i!0v � i!g(v));�F!0! = 1Z�1 dvpg0(v) exp(i!0v � i!g(v)) (70)in (43) and a trivial integration over the frequen
y !0,we obtaintr�B;F = 12� 1Z0 d�!{��� 1Z�1 dx f1; pG0(x)g exp h�i!{ (G(x) � x)i ; (71)where 1 and pG0(x) in the bra
es refer to the Boseand Fermi 
ases respe
tively. The Lorentz invarian
eof these expressions is evident. But the integral over(!={) diverges at the upper limit be
ause the integrandbehaves as p{=! at !={ !1. Indeed, the 
onditionjxj � 1 is essential in the integral over x as !={ !1.The fun
tions G(x)�x and G0(x) 
an then be repla
edby the �rst terms of their expansions near zero, thatis, by bx2 and 1, see (40). Consequently, at !={ !1,the integral over x is given by1Z�1 dx exp��i!{ bx2� =r �{ib ! (72)

in both the Bose and Fermi 
ases.It is easy to show that the next term of theasymptoti
 expansion of the integral over x behavesas ({=!)3=2. Then, after subtra
tion from the integralover x of the �rst term of its asymptoti
 expansion inthe parameter !={ ! 1, we make the integral over!={ 
onvergent at the upper limit. If we pass from thevariable !={ to the variable z,!{ =r!!0{{0 = b�2w0 = 12bz; (73)the subtra
ted term in tr�B;F a
quires the universalform 12� 1Z0 dzr �2iz : (74)We re
all that z = �=w0 has the meaning of the invari-ant momentum transfer in units of proper a

eleration.Although the expressionstr�B;F = 12� 1Z0 ds24 1Z�1 dxn1; pG0(x)o �� exp (�is(G(x) � x))�r �ibs 35 ; s = !{ ; (75)do not 
ontain ultraviolet divergen
es, they 
an 
on-tain infrared divergen
es if the spe
tral fun
tion (thefun
tion of s in the square bra
kets in (75)) has thesingular behavior / 1=s as s ! 0. It is 
lear that thebehavior of the spe
tral fun
tion near s = !={ = 0and in the main forming region of the integral over s isdetermined by the behavior of the traje
tory G(x) farfrom the point of 
onta
t, where expansion (40) 
annotbe applied, i.e., at the distan
es jxj & 1.We now demonstrate the appli
ation of Eq. (75) inthe example of another traje
toryumir = � 1{ ln(2�e{0v); G(x) = � ln(2� ex); (76)for whi
h the spe
tral fun
tion 
an be expressed interms of the well-known trans
endental fun
tions. Thistraje
tory, as the hyperboli
 one in (53), has twoasymptotes but approa
hes them following an expo-nential, not a power-like law. Therefore, on both endsof the traje
tory, the proper a

elerationa(v) = �s {{0e{0v(2� e{0v) (77)23



V. I. Ritus ÆÝÒÔ, òîì 124, âûï. 1 (7), 2003tends to �1 and attains the minimal value in its mod-ulus a0 = �p{{0 at zero point.The integral over x in (75), in whi
h the upper limitfor traje
tory (76) is equal to ln 2, is redu
ed to the tab-ular integral 2.2.5.1 in [10℄ after 
hanging the variablex to t = 1� ex. As a result, we obtaintr�B = 12� 1Z" ds � p� �(is)�( 12 + is) �r �is � ; (78)tr�F = 12� 1Z0 ds �p� �( 12 + is)�(1 + is) �r �is � : (79)Be
ause the spe
tral fun
tion has an infrared singu-larity in the Bose 
ase, the 
orresponding divergen
e ofthe integral over s for tr�B is removed by introdu
inga small but �nite lower limit " = �=w0. Its physi
almeaning is the minimum momentum transfer in unitsof the a

eleration at zero point.After rotating the s-integration 
ontour to the neg-ative imaginary semiaxis with the singularity at zerobypassed (in the Bose 
ase) along the ar
 of a 
ir
lewith the radius ", we obtaintr�B = 12� h��2 � i�ln w0� �B�i ; (80)tr�F = 12� i � F; (81)where positive 
onstants B and F are de�ned by theintegrals B = 1Z0 dt ln t B0(t) = 1:887789 : : : ;B(t) = p��(1 + t)��12 + t� �p�t; (82)
F = � 1Z0 dt2664p���12 + t��(1 + t) �r�t 3775 == 1:869957 : : : (83)The imaginary part of (80) 
an be transformed to theform of the imaginary part of (57),ln w0� � 1:887789 : : := ln 2w0
� � 2:003721 : : :

The expressions for �tr�B;F obtained for the threedi�erent traje
tories of the mirror are 
lose to ea
hother qualitatively and quantitatively, see (58), (59),(68), (69), and (80), (81). All of them have a nega-tive imaginary part with an infrared logarithmi
 sin-gularity in the Bose 
ase. This singularity is a

om-panied by the appearan
e of the real negative part oftr�B , namely, Re tr�B = �1=4, whereas Re tr�F = 0.Su
h expressions for�tr�B;F are typi
al of traje
torieswhose G(x) fun
tion in
reases stronger (falls weaker)than x as x tends to the upper (lower) limit.Be
ause the fun
tionals �tr�B;F have the meaningof the a
tion in a

ordan
e with (52), we 
ompare themwith the 
hanges �W1;0 of self-a
tions of the ele
tri
and s
alar 
harges in hyperboli
 motion [11; 12℄,�W1;0 = �(�2 � �1)�m1;0; (84)�m1 = e2w04�2 ���2 � i�ln 2w0
� � 12�� ;�m0 = �ie2w08�2 : (85)In this motion, the proper a

eleration of the 
hargeis 
onstant and the square of the interval between twopoints on the traje
tory is a fun
tion of only the lengthof the ar
 
onne
ting them,(x�(�) � x�(� 0))2 = f(� � � 0) : (86)Therefore, the 
hange of the 
harge self-intera
tion isproportional to the time interval �2��1 that the 
hargeis in hyperboli
 motion multiplied by the mass shift�m1;0 of the 
harge. The mass shift o

urs be
ause ofa 
hange of the intera
tion of the 
harge with its own�eld, whi
h is essentially modi�ed at the distan
es ofthe order of w�10 from the 
harge due to a

eleration.In other words, the shift is formed on the ar
 lengthj� � � 0j � w�10with the 
enter �
 at any point of the traje
tory insidethe a

eleration interval (�1; �2). The independen
e ofthe shift from �
 means that it is a 
onstant of motion.This is not so for traje
tories with a variable a

elera-tion, see Se
. 9.Unlike �W1;0, whi
h des
ribes the 
hange of inter-a
tion of the 
harge with itself due to a

eleration, thefun
tionals �tr�B;F des
ribe the intera
tion of the a
-
elerated mirror with the probe exe
uting the uniformmotion along the tangent to the traje
tory of the mir-ror at the point where the mirror has the a

elerationw0. This intera
tion is transmitted by ve
tor or s
alar24



ÆÝÒÔ, òîì 124, âûï. 1 (7), 2003 The symmetry, inferable from Bogoliubov transformation : : :perturbations 
reated by the mirror in the Bose- orFermi-�eld va
uum; these perturbations 
arry a spa
e-like momentum of the order of w0. A

ording to (51),at the distan
es of the order of w�10 from the mirror, the�eld of these perturbations de
reases exponentially intimelike dire
tions and os
illates with a damped ampli-tude in spa
elike dire
tions. It 
an be said that su
h a�eld moves together with the mirror and is its �proper�eld�. Hen
e, the probe intera
ts with the mirror for atime of the order of w�10 , while the 
harge intera
ts withitself all the time and feels the 
hange of the intera
tionover the entire time of a

eleration. It is therefore notsurprising that the expressions for �tr�B;F 
oin
ide inessen
e with �W1;0 if we set�2 � �1 = 2�=w0; e2 = 1in the latter and reverse the sign. In other words,�tr�B;F are the mass shifts of the proper �eld of themirror multiplied by a 
hara
teristi
 proper time oftheir formation.9. MASS SHIFTS OF ELECTRIC AND SCALARCHARGES IN EXPONENTIAL MOTIONTo 
al
ulate the self-a
tions of ele
tri
 and s
alar
harges in exponential motion, we use Eq. (30). It is
onvenient to use the 
harge traje
tory (60) in the formof a fun
tion of the proper time,umir(�) = � 2{ ln (1� w0�);vmir(�) = 1{0 (2w0� � w20�2): (87)Then _x�(�) _x�(� 0) = �1 + z21� z2 ;(x� x0)2 = �(� � � 0)2Arth zz ;z = w0(� � � 0)2� w0(� + � 0) : (88)
We now introdu
e new variables � = (� + � 0)=2and z instead of � and � 0. At �xed � in the interval�1 < � < w�10 , the variable z 
hanges in the interval

�1 < z < 1. Using the 
ausal fun
tion �f4 expressedvia the Ma
donald fun
tion, we obtain�W1 = e2 w�10Z�1 d�� 1w0 � ���� 1Z�1 dz _x�(�) _x�(� 0)�f4 (x� x0; �)jF0 == � e22�2 w�10Z�1 d� 1Z0 du�sh 2u ���
h 2u thuu K1 �i�pu thu��K1(i� thu)� : (89)In the last expression, the variable u = Arth z is usedinstead of z and � is a fun
tion of �,�(�) = 2�(w�10 � �):Our problem is now to �nd the integral over u inthe region of the variable � where �(�)� 1, supposing,of 
ourse, that the infrared parameter �=w0 � 1. Thisintegral 
oin
ides, in essense, with the mass shift of theele
tri
 
harge,�m1 = e22�2 1Z0 du�sh 2u (
h 2urthuu �� K1 �i�pu thu��K1(i� th u)) : (90)To 
al
ulate �m1 with �(�) � 1, we divide the in-tegration interval into two intervals, 0 6 u 6 u1 andu1 6 u < 1, by a point u1 su
h that u1 � 1, but�u1 � 1. Using the expansion of the Ma
donald fun
-tion at a small argument, we then obtain�m1 � e2w04�2(1� w0�) ��8<:1i u1Z0 du�
th 2uu � 12 sh2 u�+ 1Zu1 du�pu K1(i�u)9=; == e2w04�2(1� w0�) ����� � i�2 ln w0
�(1� w0�) + ln 2
� + 12�� : (91)The mass shift�m0 of the s
alar 
harge di�ers from(90) by the repla
ement 
h 2u ! �1 in the �rst termin the bra
es and by the 
hange of sign of the se
ond25



V. I. Ritus ÆÝÒÔ, òîì 124, âûï. 1 (7), 2003term. Under the same 
ondition �(�) � 1, we thenobtain �m0 = �i e2w04�2(1� w0�) �ln 2� 12� : (92)It follows from (91), (92), and (66) that the massshift depends on the absolute valuew(�) = w01� w0�of the proper a

eleration of the mirror at the instant�, whi
h may be 
onsidered as the 
enter of the form-ing region of the shift. As the a

eleration essentially
hanges on su
h an interval, the mass shifts in (91)and (92) do not 
oin
ide with the mass shifts of uni-formly a

elerated 
harges in (84) and (85) if we re-pla
e w(�) with w0. Nevertheless, rather 
lose 
oin
i-den
e arises under the repla
ement w(�) ! 0; 5w0 andw(�) ! 2; 6w0 for �m1 and �m0 
orrespondingly.10. CONCLUSIONThe basis for the symmetry between pro
esses in-du
ed by a mirror in 2-dimensional and by a 
hargein 4-dimensional spa
e�time is relation (14), (15) be-tween the Bogoliubov 
oe�
ients �B;F!0! and the 
urrentdensity j�(k) or 
harge density �(k) depending on thetimelike momentum k�. The squares of these quan-tities represent the spe
tra of real pairs and parti
lesradiated by the a

elerated mirror and the 
harge.In the present paper, the symmetry is extendedto the self-a
tions of the mirror and the 
harge andto the 
orresponding va
uum�va
uum amplitudes, 
f.(29) and (30). In essen
e, it is embodied in the dis-
overed relation (20) between propagators of a massivepair in 2-dimensional spa
e and of a single parti
le in4-dimensional spa
e.Equation (29) for WB;F was obtained under the
ondition that the mean number tr�+� of pairs 
re-ated is small and the interferen
e of two or more pairsis negligible. In the general 
ase, WB;F is given byEq. (27), whi
h 
an also be written as2 ImWB;F = �tr ln(�+�)B;F (93)be
ause �+�� �+� = 1;see [7℄, [4℄. As follows from (27) or (93), the imaginarypart of the a
tion di�ers from zero and is then posi-tive only if � 6= 0, i.e., if the radiation of real parti
lesindeed o

urs.

For WB;F , formula (93) allows us to 
hoose the ex-pression WB;F = �i tr ln �B;F ; (94)whi
h was 
alled natural by DeWitt [7℄. But this ex-pression is by no means unique. The expressionsWB;F = �i tr ln(�ei
)B;F ; WB;F = �i tr ln�B;F+have the same imaginary part. Nevertheless, Eq. (94) isinteresting as the de�nition of both the real and imag-inary parts of the self-a
tions WB;F through the Bo-goliubov 
oe�
ients �B;F!0! only, whi
h redu
e to the
urrent density j�(q) or to the 
harge density �(q) thatdepends on the spa
elike momentum q� in a

ordan
ewith Eqs. (14) and (15). This implies that the �eld ofthe 
orresponding perturbations propagates in the va
-uum together with the mirror, 
omoves it, and at thesame time 
ontains information about the radiation ofreal quanta.Unfortunately, the author failed to �nd a simple in-tegral representation for the matrix ln�. Nevertheless,if we again assume that the mean number of emittedparti
les is small, we 
an 
onsider � or i� 
lose to 1.Expanding ln i� near i� = 1 and 
on�ning ourselves tothe �rst term, we then obtainWB;F = �i tr ln i�B;F � �itr (i�B;F � 1) == �tr�B;F + : : : (95)These qualitative arguments allow us to state that thefun
tionals �tr�B;F are similar to the 
orrespondingself-a
tions with the opposite sign and must thereforehave negative imaginary parts. This is 
on�rmed byall examples 
onsidered in Se
s. 7 and 8. Nevertheless,the exa
t physi
al meaning of the quantities �tr�B;Fis 
learly de�ned by Eq. (52).Here, we also want to fo
us attention on one predi
-tion following from the symmetry between pro
esses in-du
ed by the mirror in 2-dimensional and by the 
hargein 4-dimensional spa
e�times. The symmetry predi
tsthe value e20 = 1 for the 
harge squared (in Heaviside'sunits), whi
h 
orresponds to the �ne stru
ture 
onstant�0 = 1=4�. Be
ause the radiation 
orre
tions are nottaken into a

ount in both spa
es and the pro
esses in1+1-dimensional spa
e are due to the purely geometri-
al boundary 
ondition, it is natural to think that theabove-mentioned values of the 
harge squared and ofthe �ne stru
ture 
onstant are the unrenormalized barevalues of these 
onstants. They are therefore markedwith the index 0.26
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ture
onstant has a purely geometri
al origin and that itsvalue is small, �0 = 1=4� � 1:The smallness of �0 has the essential meaning for thequantum ele
rodynami
s, where it a priori justi�es theappli
ability of the perturbation theory and where theradiative 
orre
tions in a

ordan
e with the well knownformula [13℄� = �01 + (�0=3�)N ln(�2=m2) (96)diminish the renormalized value of � in 
omparisonwith the unrenormalized one. Here, N is the numberof 
harged parti
les with masses in the interval (m;�)and � is the upper limit of the parti
le energy up towhi
h the quantum ele
trodynami
s is 
orre
t.APPENDIXIt is 
onvenient to de�ne the singular fun
tion�LRd (z; �) and the 
ausal fun
tion �fd(z; �) in a d-di-mensional spa
e�time by the Fourier representation�LRd (z; �) = Z ddq(2�)d eiqzq2 � �2 + i" ;�fd(z; �) = Z ddq(2�)d eiqzq2 + �2 � i" : (97)These fun
tions are the even singular solutions of theinhomogeneous wave equations(��2 � �2)�LR(z; �) = Æ(z);(��2 + �2)�f (z; �) = Æ(z); (98)with opposite signs in front of the parameters �2 and�2, where � and � are the momentum transfer and themass. Their proper time representations (in parti
ular,for d = 4)�LR4 (z; �) = 1(4�)2 1Z0 dss2 exp��i�2s� iz24s � ;�f4 (z; �) = 1(4�)2 1Z0 dss2 exp��i�2s+ iz24s � (99)as well as the expli
it expressions in terms of theMa
donald fun
tion di�er by 
omplex 
onjugation andby the repla
ement � ! i� or by the repla
ementz2 ! �z2; �! �.

The integral relation�LRd+2(z; �) = � 14� 1Z�2 d�2�LRd (z; �) (100)is very important for the symmetry dis
ussed in thispaper. It di�ers from similar relation (20) for the
ausal fun
tions not only by the sign. Being writtenfor z2 < 0, it is understood for z2 > 0 in the senseof analyti
 
ontinuation to the lower half-plane of
omplex z2. On the other hand, relation (20), beingwritten for z2 > 0, is understood for z2 < 0 asthe analyti
 
ontinuation to the upper half-plane of
omplex z2. For the �+-fun
tions, su
h a 
ontinuationmust be 
arried out in the upper half-plane if z0 > 0and in the lower one if z0 < 0.The author is grateful to A. I. Nikishov and A. I. Ri-tus for valuable dis
ussions and help. The work wassupported by the RFBR (grants � 00-15-96566 and02-02-16944). REFERENCES1. S. W. Hawking, Commun. Math. Phys. 43, 199 (1979).2. A. I. Nikishov and V. I. Ritus, Zh. Eksp. Teor. Fiz.108, 1121 (1995).3. V. I. Ritus, Zh. Eksp. Teor. Fiz. 110, 526 (1996).4. V. I. Ritus, Zh. Eksp. Teor. Fiz. 114, 46 (1998).5. J. S
hwinger, Parti
les, Sour
es and Fields, Addison-Wesley, Reading, Mass. (1970), Vol. 1.6. A. P. Lightman, W. H. Press, R. H. Pri
e, andS. A. Teukolsky, Problem Book in Relativity and Grav-itation, Prin
eton University Press, Prin
eton, NewJersey (1975).7. B. S. DeWitt, Phys. Rep. C 19, 295 (1975).8. R. M. Wald, Commun. Math. Phys. 45, 9 (1975).9. V. I. Ritus, Zh. Eksp. Teor. Fiz. 116, 1523 (1999);E-print ar
hives, hep-th/9912004.10. A. P. Prudnikov, Yu. A. Bry
hkov, and O. I. Mari
hev,Integrals and Series, Elementary Fun
tions, Nauka,Mos
ow (1981).11. V. I. Ritus, Zh. Eksp. Teor. Fiz. 75, 1560 (1978).12. V. I. Ritus, Zh. Eksp. Teor. Fiz. 80, 1288 (1981).13. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii,Quantum Ele
trodynami
s, Nauka, Mos
ow (1989).27


