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We consider the symmetry between creation of pairs of massless bosons or fermions by an accelerated mirror
in 1 4+ 1-dimensional space and emission of single photons or scalar quanta by an electric or scalar charge in
3 + 1-dimensional space. The relation of Bogoliubov coefficients describing the processes generated by the
mirror to Fourier components of the current or charge density implies that the spin of any disturbances bilinear
in the scalar or spinor field coincides with the spin of quanta emitted by the electric or scalar charge. The mass
and invariant momentum transfer of these disturbances are essential for the relation of Bogoliubov coefficients
to invariant singular solutions and the Green's functions of wave equations for both 1+ 1- and 3+ 1-dimensional
spaces and especially for the integral relations between these solutions. One of these relations leads to the co-
incidence of the self-action changes and vacuum—vacuum amplitudes for an accelerated mirror in 2-dimensional
space-time and a charge in 4-dimensional space-time. Both invariants of the Lorentz group, spin and mass, play
an essential role in the established symmetry. The symmetry embraces not only the processes of real quanta
radiation, but also the processes of the mirror and charge interactions with fields carring spacelike momenta.
These fields accompany their sources and determine the Bogoliubov matrix coefficients af,’f. It is shown that
the Lorentz-invariant traces +tr o' ¥ describe the vector and scalar interactions of the accelerated mirror with
a uniformly moving detector. This interpretation rests essentially on the relation between propagators of the
waves with spacelike momenta in 2- and 4-dimensional spaces. The traces +tr a®'F coincide with the products
of the mass shift Am; o of the accelerated electric or scalar charge and the proper time of the shift formation.
The symmetry fixes the value of the bare fine structure constant ag = 1/47.
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1. INTRODUCTION
rors are given by
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for a massless scalar field in problems with moving mir-

black hole formation is analogous to the emission from Binwr oc €7HY — T, (1a)
an ideal mirror accelerated in vacuum [1]. In its turn, ot o e — e flu),

there is a close analogy between the radiation of pairs

of scalar (spinor) quanta from an accelerated mirror Ciwg(v)  —iwu

in 1 4+ 1-dimensional space and the radiation of pho- outw X € € ’ (1b)

tons (scalar quanta) by an accelerated electric (scalar)
charge in 3 4+ 1-dimensional space [2,3]. All these pro-
cesses are therefore interrelated. The in- and out-sets
of the wave equation solutions that are typically used
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* iwg(v) _ jiwu
¢outw xe € ’
with zero boundary condition
¢‘traj =0

on the mirror trajectory. Here, the variables u =t — =z
and v =t + 2 are used and the mirror (or charge) tra-
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jectory in the u, v plane is given by any of the two
mutually inverse functions

mir
u

g(v).

We refer to [3] for the in- and out-sets of solutions of
the massless Dirac equation. Dirac solutions differ from
(1) by the presence of bispinor coefficients at the u- and
v-plane waves. The current densities corresponding to
these solutions have only tangential components at the
boundary. The boundary condition for both scalar and
spinor fields is therefore purely geometrical, it does not
contain any dimensional parameters.

The Bogoliubov coefficients oy, and ., arise as
the coefficients of the expansion of the solutions of the
out-set in the solutions of the in-set; the coefficients
al,, and Ff,, arise similarly in the inverse expansion.
The upper and lower signs correspond to the scalar
(Bose) and spinor (Fermi) fields. The mean number of
quanta with the frequency w and wave vector w > 0 ra-
diated by the accelerated mirror to the right semispace
is then given by the integral

OOd ,
W
3 [ Gt

0

dii, (2)

At the same time, the spectra of photons and scalar
quanta emitted by electric and scalar charges moving
along the trajectory z,(7) in 3 + 1-dimensional space
are determined by the Fourier transforms of the elec-
tric current density 4-vector j, (k) and the scalar charge
density p(k),

S =

1 jak)=e / d7 0 (7) exp (—ik®za (7)), (3)

i . dk dk_
dng) = |ya(k+,k_)|2(4+7

7_‘_)2 ’ (4)

s=0, plk)= e/dT exp (—ik%xq (7)), (5)

dkydk_

i sl
(4m)?
where s and k% are the spin and 4-momentum of the

quanta,

ding = |p(ky k)| (6)

=k +k —k2=0, K =k -k =k k_,

ky = E° + &Y

and it is assumed in (4) and (6) that the trajectory
2%(7) has only 2° and z' nontrivial components.
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The symmetry between creation of Bose or Fermi
pairs by the accelerated mirror in 1 4+ 1-dimensional
space and emission of single photons or scalar quanta by
the electric or scalar charge in 3 + 1-dimensional space
consists, first of all, in the coincidence of the spectra.
If we set

2w = ky,

we have
1.
e_2|.70¢(k+a k—)‘Qv

1
§|P(k+ak—)|2~

185

1B

A more refined assertion in the Bose case is

e _ [he o) _ [k k) _
ww k. e ki e

_ capk®jP (k)

ey/kik_ ®)

Jj-(k) = e/duexp

ket k()]
: (9)
Je(k) = e/dv exp [%(k_v + k+g(v))} .

The 2-vectors jo (k) and ag(k) = eqapk®/\/kik— are
spacelike for timelike £%; in a system where ky = k_
or w = w', they have only spatial components that are
precisely equal to e5* and 1 correspondingly.
In the Fermi case, we have
Fx 1

we = gp(k) (10)

In Sec. 2, we underline the symmetry between ana-
lytic expressions for the Bogoliubov coefficients a and
£* and at the same time, the physical distinction be-
tween them: APF* is the amplitude of the source of
waves that are bilinear in massless Bose or Fermi fields
and carry timelike momenta, whereas a®'F is the am-
plitude of the source of similar waves that carry space-
like momenta, see (14) and (15). In Secs. 3 and 4, we
show that the waves with timelike momenta emitted
and absorbed by the source are involved in forming the
imaginary part of the source self-action. This phys-
ical picture is naturally embodied in integral relation
(20) between propagators As(z, m) of virtual pairs with
masses m, u < m < oo in 2-dimensional spacetime and
the propagator Ay(z, u) of the particle in 4-dimensional
spacetime. Analytic properties of the expressions ob-
tained also allow us to define the real part of self-action.
This leads to the coincidence of the self-actions and
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hence, of the vacuum—vacuum amplitudes of the mir-
ror and the charge if we set €2 = 1. In Sec. 5, the fields
of perturbations carrying spacelike momenta are con-
sidered. These fields are defined by the matrices a®+.
Their Lorentz-invariant traces +tr a®¥" are considered
in Sec. 6. They describe correspondingly the vector
and scalar interactions of the accelerated mirror with a
uniformly moving detector in the neighborhood of the
point of contact of their trajectories. In Secs. 7 and
8, the traces +tra® ¥ are found for the three specific
trajectories permitting analytic solutions. The general
expressions for the traces are given and their ultraviolet
and infrared singularities are also considered there. In
these sections, we compare the found traces %tr a®:F
with the mass shifts Am, o of the electric and scalar
charges moving along the same trajectory as the mirror,
but in 3 + 1-dimensional space. The mass shifts Am; o
of the charges moving along the exponential trajectory
are found in Sec. 9. In Conclusions, we discuss the rela-
tion of the traces +tr a®¥ to the general definition of
the self-action accounting for interference effects, and
draw attention to the fact that the symmetry fixes the
value of the bare charge squared, e = 1, which corre-
spons to the bare fine structure constant ag = 1/4n.
The smallness and geometrical origin of this value may
be interesting in quantum electrodynamics. In the Ap-
pendix, the even singular solutions of inhomogeneous
wave equations with mass and momentum transfer pa-
rameters are considered. Integral relations (20) and
(100) between these solutions for 1 + 1- and 3 + 1-
dimensional spaces are very important for the symme-
try considered.

2. THE PHYSICAL INTERPRETATION OF 3],

The absolute pair production amplitude and the
single-particle scattering amplitude are related by [4]

(out w"wlin) = — Z(out w"w'in) B

w'w*

(11)

w'

The coefficient 3 was interpreted as the amplitude
of a source of a pair of massless particles potentially
emitted to the right and to the left with the respec-
tive frequences w and w’. While the particle with the
frequency w actually escapes to the right, the particle
with the frequency w’ propagates for some period of
time and is then reflected by the mirror and is actually
emitted to the right with an altered frequency w”, see
Fig. 1.

In the time interval between pair creation and re-

*
w'w
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flection of the left particle, we have the virtual pair
with the energy k°, momentum k', and mass m,
E=w+uw, kH=w-uw,

m =+ —-k%=2vVww'.

In addition to the polar timelike 2-vector k%, very im-
portant is the axial spacelike 2-vector ¢*,

(12)

q[):_k,l
t=-k"=-w-uw<0.

o :Saﬁkﬁa _w+wlv

(13)

In terms of £* and ¢%, the symmetry between the «
and [ coefficients becomes clearly expressed,

Qaja(k)

s=1, epBr =— ,
’ V- (14)
eaB, = _kai®lg) (q)’
Vs
s=0, eBli, =pk), eal,=ple). (15)

We note that Egs. (3) and (5) define the current
density 7 (k) and the charge density p(k) as function-
als of the trajectory z®(7) and functions of any 2- or
4-vector k. It can be shown that in 1+ 1-dimensional
space, j¢(k) and j%*(q) are spacelike and timelike po-
lar vectors respectively if k¢ and ¢% are timelike and
spacelike vectors.

The boundary condition on the mirror leads to the
appearance of vector or scalar disturbance waves bi-
linear in massless fields in the vacuum of the massless
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scalar or spinor field. There are two types of these
waves:

1) waves with the amplitude o, (a, ) that carry
a spacelike momentum directed to the left (right);

2) waves with the amplitude 57, (Suw) that carry
a timelike momentum with a positive (negative) fre-
quency.

The waves with spacelike momenta appear even if
the mirror is at rest or moves uniformly (the Casimir
effect), while the waves with timelike momenta appear
only for the accelerated mirror.

The pair of Bose (Fermi) particles has spin 1 (0)
because its source is a current density vector (charge
density scalar), see [5] or problem 12.15 in [6].

3. THE APPEARANCE OF MASS IN THE
MASSLESS THEORY AND OF INVARIANT
SINGULAR SOLUTIONS OF THE WAVE
EQUATION WITH MASS

It follows from (8) that the bilinear in massless bose-
field disturbances defined by the amplitudes 35 forms
a positive-frequency current density vector. Its minus-
component at the point U, V' can be represented as

k=

x/du/dpp/dt‘) exp (—ip(z" ch6—=z"shh)), (16)
0 —00

dwdw' 1, 1
o) J- (k) exp(—iwlU —iw'V) = o

if the hyperbolic variables p and 6 are used instead of
w and w',

1 1
dwdw' = Epdpde., w= Epee., w' = =pe?,

p=2Vww', 9=ln,/%7

and 2% = 2% — (1), see Fig. 2. As can be seen from
(12), p = m is the mass of the pair and 6 is the rapidity.
The integral over rapidity in (16) is the well-known in-
variant positive-frequency singular function of the wave
equation for 2-dimensional spacetime,

/ df exp (—im(z° ch# — 2" sh6)) =

= —4miAf (z,m) = 26(~2%) Ko (ie(:")my/=22 ) +

2K (m 2) (18)

2 ZKSOT®, Bem. 1 (7)
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(0} — 02 + m?)AT (2,m) = 0. (19)

This function describes the wave field of pairs with mass
m and any possible positive-frequency momenta. It
follows that the pairs are created, propagated and ab-
sorbed near the mirror within a spacelike interval of the
order of m™!

Using the very important integral relation between
the singular functions of wave equations for d- and d+2-
dimensional spacetimes,

A£+2(2 ) /dm Af(z m), (20)
2
we can represent the right-hand side of (16) as
i oo
—E/du / dm? Af (z,m) =
12 —0
=— / du Af (z,p). (21)

The small mass p is retained to eliminate the infrared
divergence in what follows.

Similarly, the positive-frequency plus-component of
the current density at the point U, V' can be represented
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as

o

1
/ dwdw 1 (k) exp(—iwlU — iw'V) =
27)
0
:—i/dvAj‘(z.,u). (22)
— 00
The differentials du and dv in (21) and (22) can be

replaced by dr #_(7) and dr &4 (7).

The bilinear in massless Fermi-field disturbances de-
fined by the amplitudes 4%* forms a positive-frequency
charge density scalar. At the point U,V it can be rep-
resented by

dwdw’ 1

s

k) exp(—iwU —iw'V) =

:_i/dTA;;(z,u). (23)

If we set the point U,V on the trajectory such that

U=z_(r"), V=a.(), 2*=a2%"")-2%(),

and integrate (21) over V and (22) over U, then their
half sum differs from tr 57/ only by the factor i,

Oo dwdw’
B4 3B — B 2 _
s [,
0
= %/ (dudV + dvdU) Af (z,p) =
= —z// drdr’ 2o (T)2*(T") Af (2, ). (24)
The real part of the function AT, which is odd in z,

and its imaginary part, which is even in z, are related
to the causal (Feynman) function A7 that is even in z,

1 ‘
A*(z, 1) = 5AG, 1) + 5AM Gz p),
ReAt = (2% ReAf, ImAT =Im A7,

(25)

and tr3B* 3P can therefore be written as

=Im // drdr' i (7

tr 7+ 37 can be obtained from the right-hand side of
(26) by the substitution

r(5°8)” #(r') A (z, ). (26)

do ()2 (7)) = 1.
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4. VACUUM-VACUUM AMPLITUDE
(out|in) = eV

According to DeWitt [7], Wald [8], and others (in-
cluding the present author [4]),

1
2 ImWhF = :I:itr In(1+£B%3) or

+trin(l1+576) (27)
in the respective cases where the particle is identical or
nonidentical to the antiparticle. We confine ourselves
to the last case and assume that tr 373 < 1. Then

2ImWH =

=1Im // drdr’ { a'ca(r)ica () }AI(Z-,M). (28)

We can omit the Im symbols from both sides of this
equation and define the actions for Bose- and Fermi-
mirrors in 1 + 1-dimensional space as

WHE =

- %/ deT'{ i“(T)fa(Tl) }Af(z,u). (29)

We compare this with the well-known actions for elec-
tric and scalar charges in 3 + 1-dimensional space,

Wwho —
- %62 / drdr'{ “3“(7);'”&(7') }AI (z,). (30)

The symmetry would be complete if e = 1, i.e., if the
fine structure constant were a = 1/4m. This «ideal»
value of the fine structure constant for the charges
would correspond to the ideal, geometric boundary con-
dition on the mirror.

For the mirror trajectory with a nonzero rela-
tive velocity 91 of its ends (nonzero relative rapidity
f = Arth 521), the changes of the actions due to accel-
eration are given by

ReAWPE =

ReAWTF =

1 0

For a uniformly accelerated mirror with the proper ac-
celeration a, its velocity is

B(7) = thar,



MKIT®, Tom 124, Boin. 1(7), 2003

The symmetry, inferable from Bogoliubov transformation ...

where 7 is the proper time. Then
0=a(r— 1)

and as s — T — 00,

Re AW?E = ]
&

(32)

(T2 — Tl).

By definition,

_OReAW? |

AmPB =
Re Am 079 &

(33)
is the self-energy shift of an accelerating Bose mirror.
It differs from the mass shift of a uniformly accelerated
electron only by the absence of the factor e? = 4ra.
The self-energy shift of a uniformly accelerated Fermi
mirror is

Re Am! = 0.

There are two arguments in favor of defining the
action by means of the causal function Af: (z, ).

1. The action must represent not only the radiation
of real quanta but also the self-energy and polariza-
tion effects. While the radiation effects are described
by solutions of the homogeneous wave equation, the
self-energy and polarization effects require solutions of
the inhomogeneous wave equation, which contain in-
formation about the proper field of a source. Such so-
lutions of the homogeneous and inhomogeneous wave
equations are the functions

(1/2)A' =Im A7

and
A =ReA7.

2. While the appearance of
(1/2)A" = Tm A7

in the imaginary part of the action is a consequence of
mathematical transformations of the integral

> !
// dwdw B ?
PIE
0
(transformations similar to the Plancherel theorem),
the function A = Re A in the real part of the action is
unique if it appears as the real part of the analytic con-
tinuation of (i/2)A'(z, u) to negative 22 that is even in
z (as Al itself).

To conclude Secs. 3 and 4, we note that both the
function As(z,m) describing the propagation of a vir-
tual pair with the mass m = p = 2Vww' in 2-dimen-
sional space—time and the mass spectrum of these pairs

19

arise owing to the transition from the variables w and
w' to the hyperbolic variables p and 6, which reflect the
Lorentzian symmetry of the problem. Further integra-
tion over the mass leads to the function Ay (z, u) that
coincides with the propagator of a particle moving in
4-dimensional space—-time with the mass u equal to the
least mass of virtual pairs. Thus, relation (20) appears
in the framework of the present method and is imma-
nent to the symmetry, relating the processes in two-
and four-dimensional space—times.

In [9], relation (20) was obtained by the author inde-
pendently of the processes considered and was required
in proving that the integration variable involved in it
coincides with the pair mass m = 2v/ww',

5. FORMATION OF TACHYON
DISTURBANCES WITH THE INVARIANT
MOMENTUM TRANSFER

The bilinear in massless Bose field perturbations
that are defined by the amplitudes o  and carry
spacelike momenta to the left can be represented at
the point U,V by the two current density components

= 82 x

// (2m)% JJx(@) exp(iwl — iw'V)
0

x/dTa'si(T)/dppx
0

X /deexp [ip(z°sh6—z"'ch6)] (34)

— 00

if we again use the change of variables in (17) and the
notation
2% =% —a%(7).

The integral over 6 is now given by

/ dfexp [ip(z°shf — z' ch )] = 4mi ALz, p)

— 00

20(—2%) K (p\/—ZQ) +20(22) x

x Ky (ia(zl)p\/z_Q) . (35)
The integrand in the left-hand side of (35) is a wave
with a spacelike 2-momentum ¢,

1

¢ =—-w—-w =-pchh, ¢

q =

p=e

—w+w' = —pshb,

2*
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The function A% (z, p) is a superposition of plane waves
with spacelike momenta directed to the left and with a
fixed invariant momentum transfer p = 2v/ww’. Tt sat-
isfies the wave equation with a negative mass squared,

(8 = 82— p)A(2,p) = 0. (36)

Using the integral relation similar to (20) (see the Ap-
pendix), we can represent the right-hand side of (34)
as

& [arictn) [ 4@ sk -
vis

v2—0

= —i/drgbi(T)

The small momentum transfer v is retained to elimi-
nate the infrared divergence in what follows.

Similarly, the bilinear in the Fermi field distur-
bances that are defined by the amplitudes af,  and
carry left-directed spacelike momenta forms the charge
density scalar. It can be represented at the point U,V
by the integral

1
// dwdw P q) exp(iwlU — iw'V) =

—i/drAf(z,u). (38)

These representations can be useful in problems
close to static ones involving another characteristic
length in addition to or instead of acceleration.

ALz, v). (37)

6. INTERPRETATION OF THE TRACES
+tr aBF OF BOGOLIUBOV COEFFICIENTS

The invariant description of the mirror trajectory
in the u, v plane requires that the function

mir __
u™" = g(v)
contains two positive parameters s and s transform-
ing as
Ty =v, T_=u
and actually connects the invariant variables »u and
»'v between themselves,

» 1
u™" = g(v) = = G(v). (39)
>
Its expansion near the origin v = v = 0 on the trajec-

tory is given by
). @

1 1
g(’l}) - <%I’U + b%l2 2 + = C%I3’U3 4.
> 3

where b, c,... are some numbers. Because the mirror
velocity 8(v) and the proper acceleration a(v) are de-
fined by

1—g'(v)

g"(v)
1+¢g'(v)’ (41)

/8(’0) = 29’3/2(1)) s

a(v) = —

the first two coefficients of expansion (40) define the
mirror velocity Sy and acceleration ag at zero point,

11—/

14 /5

Po = 0= —bvis. (42)

The absolute value of the acceleration at zero point is
denoted by

wo = |b|V .

We define a Lorentz-invariant trace by the formula

tra =
l dwde! '
— QO 28 22,
(2m)? P !
0

where the Lorentz-invariant argument, of the §-function
is the difference of the frequences

!
:\/%;w, Q':,/gw' (44)

of the reflected and incident waves in the proper system
of the mirror at the moment v = v = 0. In accordance
with (42), the multipliers \/x'/3 and \/s/3 enter-
ing (44) are the Doppler factors relating the frequences
in the laboratory and proper systems. In the proper
system of the mirror,

=0 =Vwuw.
In accordance with (43), tr a is a Lorentz-invariant
dimensionless quantity or, perhaps, has dimensional-
ity of the action because h = 1. We now consider its

physical meaning. For this, we turn to the equality of
expressions (34) and (37),

// dwdw 1 (q) exp(iwlU —iw'V) =
e’

= —i/drgbi(T)

- xa(T)a

Al(z,v), (45)

where

2% =2 r—=U xy=VWV
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We put the point U, V on the tangent line to the mirror
trajectory at zero point, such that

V=X,(r)= ”;TI"

where 7' is the proper time of the point on the tangent
line, and integrate both sides of (45) over

(46)

dU =X_dr' or dV =X_,dr'

for the upper or lower sign in (45) respectively. Taking
Eq. (14) and current conservation into account we then
obtain tr « in the left-hand side for both the upper and
lower signs in (45). In the right-hand side, we obtain
the integral

—2// drdr' iy (1) X (7") Ak (2,0),
= Xr") —a%(r),

(47)

where according to the result for the left-hand side, we
can replace

L(1)X(r') =
= —0a () X2 (7) F cap (1) X7 (7)

with only the first term that is symmetric with respect
to the permutation

(48)

We thus obtain
tra® = Z/ dr dr' glci(T)XﬂT’) Af(zw).,
o — Xa(T,) — xa(T).

(49)

Integrating both parts of Eq. (38) along tangent

line (46) similarly and taking Eqs. (15) and (43) into
account, we obtain
tral’ = —i //deT'Af(z.,l/),
(50)
= X*(r") — xz%(7).

For trajectories in the Minkowsky plane on the

left of their tangent line at zero point, the coordinate

1'> 0. In this case, Ak (z,v) can be replaced by the
function

ARR(z0) = 6(2%) x

1 2
=) 5E
X [Jl (u\/z_2) — Ny (V\/Z_2)] +
v —22)1(1 (1/\/——22) ,

(51)

21

which differs from the causal function Af;(z., 1) by com-
plex conjugation and the replacement u — iv (or by the
replacement 22 — —2z2, u — v). Further details about
this function are given in the Appendix.

For the above trajectories, we therefore have that

+tralf =

—z/ deT{ )Xa( ) }AfR(%V)a (52)
X(r') —2%(7).

The expression obtained allows us to interpret ttra
as a functional describing the interaction of two vector
or scalar sources by the exchange of vector or scalar
quanta with spacelike momenta. One of the sources
moves along the mirror trajectory while the other si-
multaneously moves along the tangent line to the tra-
jectory at zero point. The second source can be con-
sidered as a probe or detector of the excitation created
by the accelerated mirror in the vacuum.

B,F

7. TRACES OF THE BOGOLIUBOV
COEFFICIENTS FOR HYPERBOLIC AND
EXPONENTIAL TRAJECTORIES

We consider tra® ¥ for the hyperbolic mirror tra-
jectory

#'v
(1 — 3v)’

W™ = g(v) = (53)

Using Eqs. (14) and (4) in [3], it is not difficult to rep-

B.F _. . -
resent a,  via the Macdonald functions K o,
BF _ 2
ayl, = = X
o

) . (54)

exp 22;) Ko (22;) =

fw W B Cjww!
X exp [z <— + —,>} Ko (2@ -
x P

In accordance with (43), we then have

=2 [a(2)
0

w

Va

=a|~

tra®

1 oo
:2—/ zexp(iz) K1,0(iz). (55)
0

The variable z in this integral has a simple physical
meaning: it is equal to the ratio of the invariant mo-
mentum transfer to the invariant proper acceleration at
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zero point (but for hyperbolic motion, the acceleration
is the same on the entire trajectory),

z = i, p=2Vww,

wp = Ve (56)
Wo

The ultraviolet divergence of integral (55) is re-
moved by subtracting the leading term of the z — oo
expansion from the integrand. The infrared divergence
(in the Bose case) is removed by introducing a nonzero
lower limit ¢ = v/wg < 1 defined by the minimal mo-
mentum transfer v. As a result, we obtain the integral

I /
traBf = —/dz [e’z K(iz) — —ﬂ- ] ,
27 21z (57)
8s&

s=1,0, ekl

The integration contour can now be rotated to the neg-
ative imaginary semiaxis such that in the Bose case, it
bypasses the singularity at zero along the arc of a circle
with a small radius e. Further calculation leads to the
simple expressions

1 2
tmﬁz_{_£4<m:@_gy
27 2 yv (58)
vLwy, v=1781...,
tra” = iz (59)
Con
For the exponentional motion of the mirror with
» 1
™= —ZIn(1 — »'v),
R (60)
™ = ol exp(—seu),

the same Eqs. (14) and (4) in [3] lead to the Bogoliubov
coefficients

1 /w w wow !
af,w = — —,F <;> exp <Z; — —1In 7) s (61)

o
xm(g_ﬁmg)(@
V4 y V4

The traces tr a® " whose divergences were removed by
the above prescription are given by

o0

1
traB:—/dxx
2T

(>

X [F(zx) exp(iz —izlniz) — 2—] , (63)

1 oo
traF:—/dxx
2

0

x [r G +ix> eXp(ix\;%xlnm) - \/%] . (64)

In these integrals, the variable x is equal to one fourth
of z, which has the meaning of the momentum transfer
in units of wy (as in (56)),

4 W
0 (63)
p = 2Vww', wo = 5 n'

Similarly, ¢ = v/4wy < 1. We note that in the course
of exponential motion (60), the proper acceleration in-
creases from zero to infinity; as a function of the proper
time 7, it is given by

Wo

a(t) = (66)

T1-wor

It is now not difficult to see that the subtracted
terms in integrals (63) and (64) exactly coincide with
similar terms in integrals (57) if we express them
through the physical variable z. In other words, up
to the removal of the ultraviolet divergence from the
integrals defining tr a, the asymptotic behavior of the
integrands in the variable z = p/wy — oo is described
by the universal formula

1 m
3\ 555 (67)
We show in the next section that this assertion is cor-
rect for any timelike trajectory in expansion (40) for
which b > 0.

The integration contour in integrals (63) and (64)
can be rotated to the negative imaginary axis bypass-
ing the infrared singularity at zero (in the Bose case)
along the arc with a radius €. We then obtain

i ln——/dtlntB’(t) L v, (68)

1 7d 1
t
traf = —— [ = (1 (<+t
ra 2 t<<2+>><
0

1
x exp(t—tint)—v 27r> = 2—1 -0.8843... (69)
m
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In the integral in (68), the function B’(t) is the deriva-
tive of the function

B(t) =T(1+t)exp(t —tlnt) — V2xt.

The numerical value of this integral is 2.2194 . ... If we
transform the imaginary part of (68) to the form of the
imaginary part of (58), we obtain

4’LUO

In— —2.2194. ..
v

— 1020 o491, .

Therefore, the values of tr a®+F for the exponential and
hyperbolic motions are rather close to each other.

8. ULTRAVIOLET AND INFRARED
SINGULARITIES OF tra® ¥

It is not difficult to obtain the general expression
for tra® ¥ in the form of a double integral that is a
functional of the mirror trajectory and is tangent to it
at the point © = v = 0. Indeed, after substitution of
the Bogoliubov coefficients

; o0
ab ., =1/ 2 / dv exp(iw'v — iwg(v)),
w
o (70)
af, = / dv+/g'(v) exp(iw'v — iwg(v))

— o

in (43) and a trivial integration over the frequency w’,
we obtain

S

B,F
tra™" =
2T

fa(2)
0
y /das{l, V@@ e [ (G )], ()

where 1 and /G'(z) in the braces refer to the Bose
and Fermi cases respectively. The Lorentz invariance
of these expressions is evident. But the integral over
(w/ ) diverges at the upper limit because the integrand
behaves as \/x/w at w/» — oc. Indeed, the condition
|z| < 1 is essential in the integral over z as w/» — oco.
The functions G(z) — 2z and G'(x) can then be replaced
by the first terms of their expansions near zero, that
is, by ba? and 1, see (40). Consequently, at w/s — oo,
the integral over z is given by

/

Vv

—i%%?) = [ IE
dxexp( zsz)— o (72)
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in both the Bose and Fermi cases.

It is easy to show that the next term of the
asymptotic expansion of the integral over x behaves
as (»¢/w)®/2. Then, after subtraction from the integral
over x of the first term of its asymptotic expansion in
the parameter w/»x — oo, we make the integral over
w/» convergent at the upper limit. If we pass from the
variable w/ ¢ to the variable z,

[ ww!
!

the subtracted term in tra® ¥ acquires the universal

1 i by

— [ =

271'/2 %z
0

We recall that z = p/wg has the meaning of the invari-
ant momentum transfer in units of proper acceleration.
Although the expressions

b
2’(1)0

w 1
— = —bz,
» 22’

(73)

form

(74)

o
B,F _ —

lﬁ/ds /Oodx{l,\/W} x

0 —00

tra

™

x exp (—is(G(x) —x)) — T (75)

) s= -

do not contain ultraviolet divergences, they can con-
tain infrared divergences if the spectral function (the
function of s in the square brackets in (75)) has the
singular behavior < 1/s as s — 0. It is clear that the
behavior of the spectral function near s = w/»x = 0
and in the main forming region of the integral over s is
determined by the behavior of the trajectory G(z) far
from the point of contact, where expansion (40) cannot
be applied, i.e., at the distances |z = 1.

We now demonstrate the application of Eq. (75) in
the example of another trajectory

1 ,

mir:__l 9_ e VY.
u J{n( e” ),

G(z)=—1In(2-¢"), (76)

for which the spectral function can be expressed in
terms of the well-known transcendental functions. This
trajectory, as the hyperbolic one in (53), has two
asymptotes but approaches them following an expo-
nential, not a power-like law. Therefore, on both ends
of the trajectory, the proper acceleration
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tends to —oo and attains the minimal value in its mod-
ulus ag = —V/2¢3¢" at zero point.

The integral over x in (75), in which the upper limit
for trajectory (76) is equal to In 2, is reduced to the tab-
ular integral 2.2.5.1 in [10] after changing the variable
rtot=1-¢e* As a result, we obtain

fraP 2W/d {IZZ)— %] (78)
Oy ) L

Because the spectral function has an infrared singu-
larity in the Bose case, the corresponding divergence of
the integral over s for tr a® is removed by introducing
a small but finite lower limit ¢ = v/wg. Its physical
meaning is the minimum momentum transfer in units
of the acceleration at zero point.

After rotating the s-integration contour to the neg-
ative imaginary semiaxis with the singularity at zero
bypassed (in the Bose case) along the arc of a circle
with the radius &, we obtain

(80)

1
™

where positive constants B and F' are defined by the
integrals

B= /dt Int B'(t) = 1.887789. .. ,
0
(82)
B(t) = w —/rt,
r(5+1)
1
F==]d —avy _\/; N
= 1.869957... (83)

The imaginary part of (80) can be transformed to the
form of the imaginary part of (57),

In 20 _ 1887780 . . = In =% _ 9.003721.
v v
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The expressions for +tra?¥ obtained for the three
different trajectories of the mirror are close to each
other qualitatively and quantitatively, see (58), (59),
(68), (69), and (80), (81). All of them have a nega-
tive imaginary part with an infrared logarithmic sin-
gularity in the Bose case. This singularity is accom-
panied by the appearance of the real negative part of
tra®, namely, Retra® = —1/4, whereas Retra’” = 0.
Such expressions for £tr o® ¥ are typical of trajectories
whose G(x) function increases stronger (falls weaker)
than x as = tends to the upper (lower) limit.

Because the functionals +tr a® ¥ have the meaning
of the action in accordance with (52), we compare them
with the changes AW, of self-actions of the electric
and scalar charges in hyperbolic motion [11,12],

AWy = —(m2 — 11)Amy o, (84)
2
Aml:iﬂ;{_ﬁ_i<mgﬂg_l>y
47 2 v 2 (85)
Amg = —i62w0
07 " gr2

In this motion, the proper acceleration of the charge
is constant and the square of the interval between two
points on the trajectory is a function of only the length
of the arc connecting them,

(2a(r) = za(r)’ = f(r - 7').

Therefore, the change of the charge self-interaction is
proportional to the time interval 7 — 7 that the charge
is in hyperbolic motion multiplied by the mass shift
Amy o of the charge. The mass shift occurs because of
a change of the interaction of the charge with its own
field, which is essentially modified at the distances of
the order of wy ' from the charge due to acceleration.
In other words, the shift is formed on the arc length

(86)

=7~ g

with the center 7, at any point of the trajectory inside
the acceleration interval (71, 7). The independence of
the shift from 7. means that it is a constant of motion.
This is not so for trajectories with a variable accelera-
tion, see Sec. 9.

Unlike AW, o, which describes the change of inter-
action of the charge with itself due to acceleration, the
functionals +tr a®F describe the interaction of the ac-
celerated mirror with the probe executing the uniform
motion along the tangent to the trajectory of the mir-
ror at the point where the mirror has the acceleration
wp. This interaction is transmitted by vector or scalar
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perturbations created by the mirror in the Bose- or
Fermi-field vacuum; these perturbations carry a space-
like momentum of the order of wy. According to (51),
at the distances of the order of w, ! from the mirror, the
field of these perturbations decreases exponentially in
timelike directions and oscillates with a damped ampli-
tude in spacelike directions. It can be said that such a
field moves together with the mirror and is its «proper
field». Hence, the probe interacts with the mirror for a
time of the order of wy *, while the charge interacts with
itself all the time and feels the change of the interaction
over the entire time of acceleration. It is therefore not
surprising that the expressions for +tr ¥ coincide in
essence with AW, o if we set

Ty — T = 2T /wo, € =1

in the latter and reverse the sign. In other words,
+traB ¥ are the mass shifts of the proper field of the
mirror multiplied by a characteristic proper time of
their formation.

9. MASS SHIFTS OF ELECTRIC AND SCALAR
CHARGES IN EXPONENTIAL MOTION

To calculate the self-actions of electric and scalar
charges in exponential motion, we use Eq. (30). It is
convenient to use the charge trajectory (60) in the form
of a function of the proper time,

2
=——1In

u™ (1) (1 —woT),
' 1" - (87)
o™ (1) = ;(ngr —wyT).
Then
. . 1+ 22
xa(r)xa(r’) = 12
Arth
(x—a')? = —(r — )22, (8)
z
L wo (1T — 7')
22— wo(T+ 1)

We now introduce new variables £ = (1 + 7)/2
and z instead of 7 and 7. At fixed ¢ in the interval
—00 < €< wo_l, the variable z changes in the interval

25

—1 < z < 1. Using the causal function Af: expressed
via the Macdonald function, we obtain

—1
Wo

AleeQ/d§<wi0—g> X

du
sh 2u

62 0
=‘ﬁ/df/ .

— o

h
x {ch QutTu K (i)\\/u thu) — K (i\th u)} . (89)

o0
0

In the last expression, the variable u = Arth z is used
instead of z and ) is a function of &,

A€)

Our problem is now to find the integral over w in
the region of the variable & where A\(§) < 1, supposing,
of course, that the infrared parameter p/wo < 1. This
integral coincides, in essense, with the mass shift of the
electric charge,

2u(wy = €).

o0

e? du thu
Zﬁ/ ch2uy ==
0

A
m sh 2u
x Ky (i)\\/u thu) — Ky (i\ th u)} . (90)

X

To calculate Amy with A\(¢) <« 1, we divide the in-
tegration interval into two intervals, 0 < u < w; and
u; < u < oo, by a point uy; such that uy > 1, but

Aup < 1. Using the expansion of the Macdonald func-
tion at a small argument, we then obtain

62’LU0

S0 —wef)

17 <cth2u 1
- du — b}
i ) u 2 sh”u

62’LU0

T A2 (1 —wof) |

x{—w—i(anﬁ n2%+%>} (91)

Aml

du X
Vu

X

> + 70 Ky (idu)

uy

The mass shift Amg of the scalar charge differs from
(90) by the replacement ch2u — —1 in the first term
in the braces and by the change of sign of the second
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term. Under the same condition A({) < 1, we then
obtain

—iﬂ In2— 1
472 (1 — wo€) 2)"
It follows from (91), (92), and (66) that the mass
shift depends on the absolute value

wWo

wé) = 7— —= wok

of the proper acceleration of the mirror at the instant
&, which may be considered as the center of the form-
ing region of the shift. As the acceleration essentially
changes on such an interval, the mass shifts in (91)
and (92) do not coincide with the mass shifts of uni-
formly accelerated charges in (84) and (85) if we re-
place w(&) with wy. Nevertheless, rather close coinci-
dence arises under the replacement w(§) — 0,5 wo and
w(§) = 2,6 wg for Amy and Amg correspondingly.

10. CONCLUSION

The basis for the symmetry between processes in-
duced by a mirror in 2-dimensional and by a charge
in 4-dimensional space-time is relation (14), (15) be-
tween the Bogoliubov coefficients Bf,f and the current
density 7 (k) or charge density p(k) depending on the
timelike momentum A£%. The squares of these quan-
tities represent the spectra of real pairs and particles
radiated by the accelerated mirror and the charge.

In the present paper, the symmetry is extended
to the self-actions of the mirror and the charge and
to the corresponding vacuum—vacuum amplitudes, cf.
(29) and (30). In essence, it is embodied in the dis-
covered relation (20) between propagators of a massive
pair in 2-dimensional space and of a single particle in
4-dimensional space.

Equation (29) for WB¥ was obtained under the
condition that the mean number tr 573 of pairs cre-
ated is small and the interference of two or more pairs
is negligible. In the general case, W5 is given by
Eq. (27), which can also be written as

2ImWEBF = +tr In(ata)?®F (93)

because
ataFptp=1,

see [7], [4]. As follows from (27) or (93), the imaginary
part of the action differs from zero and is then posi-
tive only if 8 # 0, i.e., if the radiation of real particles
indeed occurs.

26

For WE:F formula (93) allows us to choose the ex-
pression
WEE = +itrIn o1, (94)
which was called natural by DeWitt [7]. But this ex-
pression is by no means unique. The expressions

WBE = +itr In(ae?)BF, WBF = 4itr InaP
have the same imaginary part. Nevertheless, Eq. (94) is
interesting as the definition of both the real and imag-
inary parts of the self-actions W5 through the Bo-
goliubov coefficients af,’f only, which reduce to the
current density j*(q) or to the charge density p(¢) that
depends on the spacelike momentum ¢® in accordance
with Eqs. (14) and (15). This implies that the field of
the corresponding perturbations propagates in the vac-
uum together with the mirror, comoves it, and at the
same time contains information about the radiation of
real quanta.

Unfortunately, the author failed to find a simple in-
tegral representation for the matrix In «. Nevertheless,
if we again assume that the mean number of emitted
particles is small, we can consider a or ia close to 1.
Expanding Inia near ia = 1 and confining ourselves to
the first term, we then obtain

WBE = +itr nia® " ~ +itr (ia®F — 1) =

=Ftra?f ... (95)
These qualitative arguments allow us to state that the
functionals +tra®¥ are similar to the corresponding
self-actions with the opposite sign and must therefore
have negative imaginary parts. This is confirmed by
all examples considered in Secs. 7 and 8. Nevertheless,
the exact physical meaning of the quantities tr a®F
is clearly defined by Eq. (52).

Here, we also want to focus attention on one predic-
tion following from the symmetry between processes in-
duced by the mirror in 2-dimensional and by the charge
in 4-dimensional space—times. The symmetry predicts
the value e} = 1 for the charge squared (in Heaviside’s
units), which corresponds to the fine structure constant
ap = 1/47. Because the radiation corrections are not
taken into account in both spaces and the processes in
1+ 1-dimensional space are due to the purely geometri-
cal boundary condition, it is natural to think that the
above-mentioned values of the charge squared and of
the fine structure constant are the unrenormalized bare
values of these constants. They are therefore marked
with the index 0.
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It is quite interesting that the bare fine structure
constant has a purely geometrical origin and that its
value is small,

Qg = 1/471' < 1

The smallness of ap has the essential meaning for the
quantum elecrodynamics, where it a priori justifies the
applicability of the perturbation theory and where the
radiative corrections in accordance with the well known
formula [13]

— @o
1+ (ag/3m)N In(A2/m?2)

a (96)
diminish the renormalized value of a in comparison
with the unrenormalized one. Here, N is the number
of charged particles with masses in the interval (m, A)
and A is the upper limit of the particle energy up to
which the quantum electrodynamics is correct.

APPENDIX

It is convenient to define the singular function
AR(z v) and the causal function AJ(z, ) in a d-di-
mensional space—time by the Fourier representation

ddq eiqz
LR _
Ad(zv) = / (2m)d 2 —v2 +ic’
dd eiqz
f _ q
Aalz ) = / (2m)d g2 + p? — i

These functions are the even singular solutions of the
inhomogeneous wave equations

(97)

(=9% = V?) AR (2,0) = §(2)
(=0 + p*) A (2. ) = (=),

3

(98)

with opposite signs in front of the parameters > and
12, where v and p are the momentum transfer and the
mass. Their proper time representations (in particular,
for d = 4)

1 OOds ) iz2
AMR(z0) = @2 /3—2exp <—w23 — E) ,

0
1 [d 22
s ) iz
Az{(zaﬂ) = (47)? /S—eXp <_'L,U23 + E)
0

as well as the explicit expressions in terms of the
Macdonald function differ by complex conjugation and
by the replacement iy — iv or by the replacement
22— =22 u— .

The integral relation
1 oo
A e = -4 [t AR (100)
v2

is very important for the symmetry discussed in this
paper. It differs from similar relation (20) for the
causal functions not only by the sign. Being written
for 22 < 0, it is understood for z2 > 0 in the sense
of analytic continuation to the lower half-plane of
complex z2. On the other hand, relation (20), being
written for 22 > 0, is understood for 2?2 < 0 as
the analytic continuation to the upper half-plane of
complex z2. For the A*-functions, such a continuation
must be carried out in the upper half-plane if 2% > 0
and in the lower one if 20 < 0.
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