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ademy of S
ien
es117334, Mos
ow, RussiaSubmitted 29 January 2003We 
onsider a spheri
ally symmetri
 global monopole in general relativity in (D = d + 2)-dimensional spa
e�time. For 
 < d � 1, where 
 is a parameter 
hara
terizing the gravitational �eld strength, the monopole isshown to be asymptoti
ally �at up to a solid angle defe
t. In the range d � 1 < 
 < 2d(d+ 1)=(d + 2), themonopole spa
e�time 
ontains a 
osmologi
al horizon. Outside the horizon, the metri
 
orresponds to a 
osmo-logi
al model of the Kantowski�Sa
hs type, where spatial se
tions have the topology R � Sd. In the important
ase where the horizon is far from the monopole 
ore, the temporal evolution of the Kantowski�Sa
hs metri
is des
ribed analyti
ally. The Kantowski�Sa
hs spa
e�time 
ontains a subspa
e with a (d + 1)-dimensionalFriedmann�Robertson�Walker metri
, whose possible 
osmologi
al appli
ation is dis
ussed. Some estimates inthe d = 3 
ase show that this 
lass of nonsingular 
osmologies 
an be viable. In parti
ular, the symmetry-breaking potential at late times 
an give rise to both dark matter and dark energy. Other results, generalizingthose known in the 4-dimensional spa
e�time, are derived, in parti
ular, the existen
e of a large 
lass of singularsolutions with multiple zeros of the Higgs �eld magnitude.PACS: 04.90.+e 1. INTRODUCTIONIn our re
ent paper with Podolyak [1℄, we 
onsid-ered the general properties of global monopole solu-tions in general relativity and developed some earlierresults (see [2, 3℄ and referen
es therein). It was 
on-�rmed, in parti
ular, that the properties of these ob-je
ts are governed by a single parameter 
, squaredenergy of spontaneous symmetry breaking in Plan
kunits. For 0 < 
 < 1, solutions with the entirely posi-tive (or entirely negative) Higgs �eld are globally reg-ular and asymptoti
ally �at up to a solid angle de�
it.In the range 1 < 
 < 3, the spa
e�time of the so-lutions remains globally regular but 
ontains a 
os-*E-mail: kb�rgs.m

me.ru**E-mail: meierovi
h�yahoo.
om

mologi
al horizon at a �nite distan
e from the 
en-ter. Outside the horizon, the geometry 
orrespondsto homogeneous anisotropi
 
osmologi
al models of theKantowski�Sa
hs type, whose spatial se
tions have thetopology R � S2. The nonzero symmetry-breaking po-tential 
an be interpreted as a time-dependent 
osmo-logi
al 
onstant, a kind of hidden va
uum matter. Thepotential tends to zero at late times, and the �hid-den va
uum matter� disappears. This solution with anonsingular stati
 
ore and a 
osmologi
al metri
 out-side the horizon drasti
ally di�ers from the standardBig Bang models and 
onforms to the ideas advo
atedby Gliner and Dymnikova [4℄ that the standard BigBang singularity 
ould be repla
ed by a regular va
-uum boun
e.The la
k of isotropization at late times did not allowus to dire
tly apply the toy model of a global monopole5
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ir
um-stan
e does not seem to be a fatal short
oming of themodel be
ause the anisotropy of the very early Universe
ould be damped by parti
le 
reation later, and the fur-ther stages with low energy densities might 
onform tothe standard isotropi
 Friedmann 
osmology. Anotheridea is to add a 
omparatively small positive quantity �to the symmetry-breaking potential (to �slightly raisethe Mexi
an hat�). It 
an 
hange nothing but the la-te-time asymptoti
 regime, whi
h then be
omes de Sit-ter, 
orresponding to the added 
osmologi
al 
onstant�. These ideas deserve a further study.In this paper, we study the gravitational proper-ties of global monopoles in multidimensional generalrelativity. This analysis 
an be of interest in view ofnumerous attempts to 
onstru
t a uni�ed theory us-ing the ideas of supersymmetry in higher dimensions.Obje
ts like multidimensional monopoles, strings, andother topologi
al defe
ts might form due to phase tran-sitions in the early Universe at possible stages when thepresent three spatial dimensions were not yet separatedfrom others, and a greater number of dimensions wereequally important.More spe
i�
ally, we 
onsider a self-gravitatinghedgehog-type 
on�guration of a multiplet of s
alar�elds with the Mexi
an-hat potentialV = (�=4)(�2 � �2)2in a D-dimensional spa
e�time with the stru
tureRt �R� �Sd (d = D� 2), where R� is the range of theradial 
oordinate � and Rt is the time axis. The prop-erties of su
h obje
ts generalize the results obtainedin Ref. [1℄ and earlier papers (e.g., [2, 3℄) in a naturalway. Thus, for small values of the parameter 
 = �2�2
hara
terizing the gravitational �eld strength, the solu-tions are asymptoti
ally �at up to a solid angle de�
it.Within a 
ertain range d� 1 < 
 < 
(d), the solutionsare nonsingular but 
ontain a Killing horizon and a
osmologi
al metri
 of the Kantowski�Sa
hs type out-side it. In the important 
ase where the horizon is farfrom the monopole 
ore, the temporal evolution of theKantowski�Sa
hs metri
 is des
ribed analyti
ally. Theupper bound 
(d), beyond whi
h there are no stati
 so-lutions with a regular 
enter, is also found analyti
ally.The above des
ription applies to solutions with anentirely positive (or entirely negative) s
alar �eld mag-nitude �. As in [1℄, we here also �nd a 
lass of solu-tions with any number n of zeros of �(r), existing for
 < 
n(d), where the upper bounds 
n are found ana-lyti
ally. All solutions with n > 0 des
ribe spa
e�timeswith a regular 
enter, a horizon, and a singularity be-yond this horizon.

We also dis
uss a possible 
osmologi
al appli
ationof multidimensional global monopoles, whi
h 
an be ofparti
ular interest for a 5-dimensional spa
e�time with3-dimensional spheres Sd. In this 
ase, the Kantowski�Sa
hs type model has the spatial topology R � S3 out-side the horizon. It is anisotropi
 in 4-dimensions,but the 3-dimensional spheres S3 are isotropi
. Theanisotropy is thus related only to the fourth 
oordinatet, whi
h is spatial outside the horizon and is a 
y
li
variable from the dynami
al viewpoint. If we identifyS3 with the observed spa
e, ignoring the extra 
oordi-nate, we obtain a 
losed 
osmologi
al model, with theFriedmann�Robertson�Walker line element in the ordi-nary 3 + 1-dimensional spa
e�time.A natural question arises: why is the fourth spa-tial dimension unobservable today? The answer 
annotbe found within our ma
ros
opi
 theory without spe
-ifying the physi
al nature of the va
uum. The 
on-ventional Kaluza�Klein 
ompa
ti�
ation of the extradimension on a small 
ir
le is not satisfa
tory in our
ase be
ause it leads to a singularity at the horizon (asdemonstrated in Se
. 3). We therefore leave this ques-tion open and note that the global monopole modelhas a 
han
e to des
ribe only the earliest phase of the
osmologi
al evolution. Its later stages should involve
reation of matter and a sequen
e of phase transitionspossibly resulting in lo
alization of parti
les a
ross thet dire
tion. We then obtain a model with a large butunobservable extra dimension, similar in spirit to thewidely dis
ussed brane world models, see reviews [5�7℄and referen
es therein.The solutions of interest appear when the symme-try breaking s
ale � is su�
iently large, and one 
ansuspe
t that quantum gravity e�e
ts are already im-portant at this energy s
ale. We show in Se
. 2.3 thatthis is not the 
ase if the monopole 
ore radius is mu
hgreater than the Plan
k length: the 
urvature and en-ergy s
ales in the whole spa
e are then mu
h smallerthan their Plan
kian values.The existen
e of nonsingular models of the earlyUniverse on the basis of 
lassi
al gravity supports theopinion that our Universe had never undergone a stagedes
ribed by full quantum gravity. In addition to thosedis
ussed here, su
h models are rather numerous now([1; 4; 8�10℄, see also referen
es therein). All of themare evidently free of the long-standing problems of thestandard Big Bang 
osmology related to the existen
eof multiple 
ausally dis
onne
ted regions [11, 12℄.This paper is organized as follows. In Se
. 2, we an-alyze the properties of a global monopole in D = d+2dimensions (one time 
oordinate and d + 1 spatial 
o-ordinates). It is a generalization of our previous re-6
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. 3, the parti
ular 
ase where d = 3 isstudied in more detail along with its possible 
osmo-logi
al appli
ation. Unless otherwise indi
ated, we usethe natural units ~ = 
 = 1.2. MULTIDIMENSIONAL GLOBALMONOPOLE2.1. General 
hara
teristi
sThe most general form of a stati
, spheri
ally sym-metri
 metri
 in D = d+ 2 dimensions isds2 = e2F0dt2 � e2F1d�2 � e2F
d
2; (1)where d
2 = d
2d is a linear element on a d-dimensionalunit sphere parameterized by the angles '1; : : : ; 'd,d
2d = d'2d + sin2 'd �d'2d�1 + sin2 'd�1 �� �d'2d�2 + : : :+ sin2'3 �d'22 + sin2'2d'21� : : : �� ;and F0, F1, and F
 are fun
tions of the radial 
oordi-nate � that are not yet spe
i�ed. The nonzero 
ompo-nents of the Ri

i tensor are (the prime denotes d=d�)R00 = e�2F1 [F 000 + F 00 (F 00 + dF 0
 � F 01)℄ ;R�� = e�2F1 �dF 00
 + F 000 + dF 02
 + F 020 �� F 01 (F 00 + dF 0
)℄ ;R22 = : : : = Rd+1d+1 = � (d� 1) e�2F
 ++ e�2F1 [F 00
 + F 0
 (F 00 + dF 0
 � F 01)℄ : (2)
A global monopole with a nonzero topologi
al
harge 
an be 
onstru
ted with a multiplet of real s
alar�elds �a (a = 1; 2; : : : ; d+ 1) 
omprising a hedgehog
on�guration in d+ 1 spatial dimensions1),�a = � (�)na ('1; : : : ; 'd) ;where na('1; : : : ; 'd) is a unit ve
tor (na na = 1) inthe d+1-dimensional Eu
lidean target spa
e, with the
omponents1) A 7D universe with a global monopole with a hedgehog 
on-�guration of s
alar �elds only in three extra dimensions was re-
ently 
onsidered in [13℄. Our approa
h is di�erent. We 
onsidera hedgehog 
on�guration in all D � 1 spa
e dimensions of theD-dimensional spa
e�time.

nd+1 = 
os'd;nd = sin'd 
os'd�1;nd�1 = sin'd sin'd�1 
os'd�2;� � �nd�k = sin'd sin'd�1 : : : sin'd�k 
os'd�k�1;� � �n2 = sin'd : : : sin'2 
os'1;n1 = sin'd : : : sin'2 sin'1:The Lagrangian of a multidimensional globalmonopole in general relativity is given byL = 12���a���a � V (�) + R2�2 ;where R is the s
alar 
urvature, � = �D is the D-di-mensional gravitational 
onstant, and V (�) is a sym-metry-breaking potential depending on � = �p�a�a;it is natural to 
hoose V as the Mexi
an-hat potential,V = �4 (�2 � �2)2 = ��44 (f2 � 1)2: (3)We have introdu
ed the normalized �eld magnitudef = �(�)=� playing the role of the order parameter.The model has a global SO(d + 1) symmetry, whi
h
an be spontaneously broken to SO(d); �2=d is the en-ergy of symmetry breaking.The Einstein equations 
an be written asR�� = ��2 eT �� = ��2�T �� � 1dTÆ��� ; (4)where T �� is the energy-momentum tensor. The nonzero
omponents of eT �� areeT 00 = �2dV;eT �� = �e�2F1f 02 � 2dV;eT 22 = : : : = eT d+1d+1 = �e�2F
f2 � 2dV:We now use the quasiglobal 
oordinate � spe
i�edby the 
ondition F0 + F1 = 0;whi
h is a 
onvenient gauge for spheri
ally symmetri
systems with Killing horizons. Introdu
ing the fun
-tions A(�) = e2F0 = e�2F1 ; r(�) = eF
 ;we redu
e the metri
 to the formds2 = A(�)dt2 � d�2A(�) � r2(�)d
2; (5)7
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tions �(�), A(�), and r(�). Onlythree of these four equations are independent: s
alar�eld equation (6) follows from Einstein equations (7)�(9) be
ause of the Bian
hi identities.Equations (6)�(8) have the same stru
ture as Eqs.(13)�(15) in [1℄. General properties of Eqs. (6)�(8) withan arbitrary value of d are the same as for d = 2, andthe 
lassi�
ation of their solutions is also the same. Inparti
ular, if V (�) > 0, the system with a regular 
en-ter 
an have either no horizon or one simple horizon;in the latter 
ase, its global stru
ture is the same asthat of the de Sitter spa
e�time. Below, we fo
us ourattention on solutions belonging to 
lass (a1) a

ord-ing to [1℄, i.e., those with r(�) monotoni
ally growingfrom zero to in�nity as �!1 and A(�) 
hanging fromA = 1 at the regular 
enter to A1 < 0 as �!1, andwith a 
osmologi
al horizon (where A = 0) at some� = �h.Equation (9) is a se
ond-order linear inhomoge-neous di�erential equation for A. The 
orrespondinghomogeneous equation has the evident spe
ial solutionA(�) = 
onst � r2(�):This allows expressing A(�) in terms of r(�) and �(�)in an integral form,A = C1r2 � C2r2 1Z� d�1rd+2 (�1) + 2r2 1Z� d�1rd+2 (�1) �� �1Z0 d�2rd�2 (�2) �d� 1� �2�2 (�2)� : (10)We 
onsider solutions with a large-r asymptoti
 be-havior su
h that r(�) ! 1 and r0(�) ! 
onst > 0 as� ! 1. Equation (7) gives r0 as R [r�02℄d�, and its


onvergen
e as � ! 1 implies a su�
iently rapid de-
ay of �0 at large �, and therefore � ! �1 = 
onstas � ! 1. The potential V then tends to a 
onstantequal to V (�1). Furthermore, Eq. (8) shows that atlarge r, A(�) 
an grow at most as r2, and �nally, sub-stitution of the asymptoti
 form of �(�), A(�), and r(�)in Eq. (6) leads to dV=d� ! 0 as � ! 1. In appli
a-tion to �eld equations, the 
ondition that there exists alarge-r asymptoti
 regime implies that the s
alar �eldthen tends either to an extremum of the potential V (�)or to an in�e
tion point with zero derivative. For theMexi
an-hat potential, it 
an be either the maximum at� = 0 (the trivial unstable solution for � and the de Sit-ter metri
 with the 
osmologi
al 
onstant (1=4)�2��4)or a minimum of V where f = 1 and V = 0. Fora �slightly raised Mexi
an hat� (potential (3) plus asmall 
onstant V+), we have a de Sitter asymptoti
 be-havior with f = 1 and V = V+.A regular 
enter requires that A = A
 +O(r2) andAr02 ! 1 as �! �
 su
h that r(�
) = 0. Without lossof generality, we set �
 = 0 and A
 = 1.For potential (3), regularity at � = 0 and theasymptoti
 
ondition at � ! 1 lead to C1 = C2 = 0,and Eq. (10) then implies thatA(�) = 2r2(�) 1Z� d�1rd+2 (�1) �1Z0 d�2rd�2 (�2)�� �d� 1� �2�2 (�2)� : (11)Equation (8) provides another representation forA(�) satisfying the regular 
enter 
onditions,A(�) = 1� 4�2d �Z0 d�1rd (�1) �1Z0 d�2rd (�2)V (�2) : (12)From (11), we �nd the limiting value of A at �!1,A(1) = d� 1� 
�2(d� 1) ; 
 = �2�2; (13)where � = dr=d� at �!1,� = 1� �2d 1Z0 r(�)�02(�)d�:Equation (13) shows that 
 = d�1 is a 
riti
al valueof 
: the large-r asymptoti
 behavior 
an be stati
 onlyif 
 � d � 1; for 
 < d � 1, it is �at up to a solid an-gle de�
it, in full similarity to the 
onventional 
ased = 2 [1; 2℄. If 
 > d� 1, then A(1) < 0, and there isa horizon at some � = �h where A = 0. From (12),4�2d �hZ0 d�1rd (�1) �1Z0 d�2rd (�2)V (�2) = 1;8
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 dependen
e of �h, with 
 = �2�2, 
an be foundfrom the relation4�2d 1Z�h d�1rd(�1) �1Z0 d�2rd (�2)V (�2) = � d�1�
�2(d�1) : (15)2.2. Large-r asymptoti
 behaviorFrom (6), we 
an �nd the asymptoti
 behavior ofthe �eld f(�) and the potential V (�) as r ! 1. Atlarge �, we have A ! A(1), see (13), and �eld equa-tion (6) redu
es to1rd ddr �rd dfdr�� d� 1
 � d+ 1 ���2 �1� f2�� dr2 � f = 0;r !1:A regular solution of this equation must tend to unityas r !1; and for  = 1� f , we have the linear equa-tion ;rr +dr ;r +2��2(d�1)
�d+1 � � d2��2r2� = 0;r !1: (16)The general solution of the 
orresponding homogeneousequation  0;rr +dr 0;r +2��2(d� 1)
 � d+ 1  0 = 0
an be expressed in terms of Bessel fun
tions, 0(r) = r�(d�1)=2 �� �C1J�(d�1)=2� rr0�+ C2Y�(d�1)=2� rr0�� ;r20 = 
 � d+ 12��2(d� 1) :A spe
ial solution of inhomogeneous equation (16) atr !1 is  = d2��2r2 +O� 1r4� :The general solution of Eq. (16) gives the asymptoti
behavior for the Higgs �eld magnitude f as r !1,f(r) = 1� d2��2r2 � C(��2r2)d=4 �� sin� rr0 + �d4 + '� ; r !1: (17)
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2.0

0

γFig. 1. The fun
tion C(
) found numeri
ally ford = 3Be
ause of the boundary 
onditions imposed, theintegration 
onstants C and ' are fun
tions of d and 
that 
an be found numeri
ally. The fun
tion C(
) ford = 3 is presented in Fig. 1. From (17), we �nd theasymptoti
 behavior of V ,V (r) = ��44 � d��2r2 + 2C(��2r2)d=4 �� sin� rr0 + �d4 + '��2 ; r !1: (18)2.3. Bounds of the 
lassi
al regime and themonopole 
oreOf 
ertain interest are solutions with the 
osmolo-gi
al large-r behavior, i.e., those with 
 > d � 1. Thelatter 
ondition means that the s
alar �eld, approa
h-ing � at large r, a
tually takes near- or trans-Plan
kianvalues. Indeed, in D dimensions, the Plan
k length lDand mass mD are expressed in terms of the gravita-tional 
onstant � = �D aslD = �2=d; mD = ��2=d; d = D � 2:9
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�2 = 
mdD;and in the 
ase of interest where 
 � d, we have� � (mD)d=2pd: (19)We 
an, however, remain at sub-Plan
kian 
urva-ture values, thus avoiding the ne
essity to invoke quan-tum gravity, if we require sub-Plan
kian values of thepotential V in the entire spa
e, i.e.,�2V = 14�2��4 � m2D :For � given by (19), this implies that�� 4d2m2�dD : (20)We 
an thus preserve the 
lassi
al regime even withlarge � by 
hoosing su�
iently small values of �. Interms of lengths, this 
ondition is equivalent to the re-quirement that the monopole 
ore radiusr
ore = 1p��is mu
h greater than the Plan
k length,1p�� � lD: (21)One may note that this 
ondition is external withrespe
t to the theory be
ause general relativity does not
ontain an internal restri
tion on the gravitational �eldstrength. Moreover, in ordinary units, our dimension-less gravitational �eld strength parameter, expressed as
 = �2
�4�2, does not 
ontain ~. We obtain restri
-tion (20) or (21) only when we 
ompare the 
hara
ter-isti
 length r
ore existing in our theory with the Plan
klength lD = (~�2=
3)1=d.We now dis
uss the solutions for 
 slightly ex-
eeding the 
riti
al value d � 1. In the 
ase where
 � (d� 1)� 1, the horizon radius rh is mu
h greaterthan r
ore; and the 
onstant C turns out to be negli-gibly small (this is 
on�rmed numeri
ally, see Fig. 1).At large �2, the integrand in the inner integrals in (12),(14), and (15) is then given byd�2rd(�2)V (�2) � d24�� drr4�d :The main 
ontribution to the above inner integrals
omes from the monopole 
ore if d < 3 and from the

upper limit if d > 3. For d = 3, it is a logarithmi
 inte-gral. As a result, we have di�erent behaviors of �h(
)at 
 � (d� 1)� 1 for d = 2 and d � 32).For d = 2 (4-dimensional general relativity),�1Z0 d�2rd(�2)V (�2) � 1Z0 d�2r2(�2)V (�2) = 
onst;and it follows from (15), in agreement with [1℄, that thehorizon radius rh is inversely proportional to 
 � 1,rh = 
onst
 � 1 ; 
 � 1� 1; d = 2:For d > 3, we �nd that at 
 � (d� 1)� 1, the horizonradius rh is inversely proportional to the square root of
 � (d� 1)� 1,rh =s 
d(d� 1)2(d� 3)(
 � d+ 1) 1��2 ;r2h � 1��2 ; d > 3: (22)It is thus 
on�rmed that for 
 � (d � 1) � 1, thehorizon is lo
ated far from the monopole 
ore,r2h � 1��2 :The fun
tion A(r) at r > rh 
an then be found analyt-i
ally. In this 
ase, r(�) is a linear fun
tion at r > rhand dr = �d�. From (14) at r > rh, we �ndA(r) = � 
 + 1� d�2(d� 1)  1� rd�1hrd�1!++ 
d2�2(d� 3)��2r2 �1� �rhr �d�3� : (23)The 
ondition of the appli
ability of (23) is lD � rh:In view of r
ore � rh, it is less restri
tive than 
ondi-tion (21).2.4. Solutions with f(�) 
hanging its signAs in Ref. [1℄, numeri
al integration of the �eldequations shows that in addition to solutions with to-tally positive (or totally negative) f(u), there also existsolutions with a regular 
enter su
h that f(u) 
hangesits sign n � 1 times. All these solutions exist for
 < 
n(d), where 
n(d) are some 
riti
al values of theparameter 
. For n > 0, all of them have a horizon,2) This is the only important qualitative di�eren
e between thegeneral 
ase d � 3 and the parti
ular 
ase d = 2 
onsidered in [1℄.10
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reasing fun
tion of 
, vanishing as 
 ! 
n � 0.Moreover, as 
 ! 
n(d), the fun
tion f(u) vanishes inthe whole range � � �h and is small inside the horizonfor 
 
lose to 
n(d). This allows us to �nd the 
riti
alvalues 
n(d) analyti
ally: Eq. (6) redu
es to a linearequation for f in a given (de Sitter) ba
kground, and
ombined with the boundary 
onditions f(0) = 0 andf(�h) < 1, leads to a linear eigenvalue problem. Itssolution (see [1℄ for the details) in the d-dimensional
ase gives the upper limits 
n(d) and the 
orrespond-ing minimal horizon radii rh = rhn for solutions withthe Higgs �eld magnitude f 
hanging its sign n times,rhn =p(2n+ 1)(2n+ d+ 2)=��2; (24)
n = 2d(d+ 1)(2n+ 1)(2n+ d+ 2) : (25)For d = 2, Eqs. (24) and (25) redu
e to Eq. (52) inRef. [1℄. Under 
ondition (21), these solutions remainin the 
lassi
al gravity regime.3. 5-DIMENSIONAL MODELS ANDNONSINGULAR COSMOLOGY3.1. The extra dimensionAt present, there is no eviden
e for the existen
e ofmore than three spatial dimensions up to the a
hievableenergies about several hundred GeV. But this energy isquite small on the Plan
k s
ale (of the order 1019 GeV).Our solutions of a possible 
osmologi
al interest 
orre-spond to 
 > d� 1, i.e., the Plan
k energy s
ale. Evenunder 
ondition (21), there remains an enormous rangeof s
ales in the early Universe in whi
h the numberof equally important spatial dimensions 
an be greaterthan 3.If we try to 
onsider our d = 3 solutions in the
osmologi
al 
ontext, the extra 
oordinate is t in (1)and (5). The 
oordinate t is time inside the horizon andbe
omes a fourth spatial 
oordinate outside it, whereA(�) < 0: Metri
 (5) takes the formds2 = d�2jA(�)j � jA(�)jdt2 � r2(�)d
23:Introdu
ing the proper time � of a 
omoving observeroutside the horizon,� = �Z�h d�pjA(�)j ; (26)
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r = 0

r = ∞

t = t1t = t2
r > rh

r < rh

t = t2

t = t1

r = 0

r = ∞ r = rhFig. 2. The Carter�Penrose diagram of a globalmonopole with a 
osmologi
al horizon. The diagonalsof the square represent the horizons. After identi�
a-tion of t1 and t2, only the dashed regions survivewe obtain a 5-dimensional Kantowski�Sa
hs 
osmologywith a 
losed Friedmann�Robertson�Walker metri
 inthe 3+1-dimensional spa
e�time se
tion of a 
onstant t,ds24 = d�2 � a2(�)d
23 � jA(�(�))jdt2 : (27)The 4-dimensional spheri
al radius r(�) now plays therole of the s
ale fa
tor, a(�) = r(�(�)).It is tempting to explain the unobservability ofthe extra dimension parameterized by the 
oordinatet by 
ompa
tifying t with a 
ertain �period� T in thespirit of Kaluza�Klein models. Su
h a 
ompa
ti�
a-tion would lead to a singularity at r = rh, however, asis 
lear from Fig. 2. If t 2 R, the stati
 region (the leftquadrant in the diagram) is 
onne
ted with the future
osmologi
al region (the upper quadrant) by the hori-zon, 
rossed by photons and massive parti
les withoutproblems. But if the t axis is made 
ompa
t by iden-tifying, e.g., the points t1 and t2 on the t axis, thestati
 and 
osmologi
al regions in the diagram take theform of the dashed se
tors, a
tually tubes of a vari-able thi
kness, 
onne
ted at one point only, the ends(tips) of the tubes. The 
urvature invariants do not
hange due to this identi�
ation and remain �nite, andthe emerging singularity in the �t plane resembles the
oni
al singularity.Compa
ti�
ation is not the only possibility of ex-plaining why the t 
oordinate is invisible. It 
an alsobe assumed that at some instant of the proper 
os-11
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h ÆÝÒÔ, òîì 124, âûï. 1 (7), 2003mologi
al time � of 5-dimensional model (27), a phasetransition o

urs at a 
ertain energy s
ale 1=T , leadingto lo
alization of matter on the 3-spheres in the spirit ofbrane world models. Anyway, within our ma
ros
opi
theory without spe
ifying the stru
ture of the physi-
al va
uum, it is impossible to explain why the extradimension is not seen now. It is nevertheless interest-ing to des
ribe some 
osmologi
al 
hara
teristi
s of thed = 3 global monopole.3.2. Some 
osmologi
al estimatesFor d = 3, the inner integrals in (14) and (15) havea logarithmi
 
hara
ter, and instead of (22) and (23),we obtain 
 � 2 = 3��2r2h �B + ln ���2r2h�� ;r2h � 1��2 ; d = 3 (28)andA(a) = �
 � 22�2 �1� r2ha2�+ 3
2�2��2 ln(a=rh)a2 ;a > rh; d = 3: (29)The dependen
e a(�) 
an be found from Eq. (26).In (28), B is a 
onstant 
lose to unity; our numeri
alestimate gives B � 0:75. The dimensionless radius ofthe horizon p��rh is presented in Fig. 3 as a fun
tionof 
 for d = 3 (solid line). The dashed line is asymp-toti
 dependen
e (28) valid for 
 � 2 � 1: The fun
-tion A(�) � A(a(�)) is shown in Fig. 4 for d = 3 and
 = 3; 3:5, and 4. The numeri
al and analyti
 resultsare shown by solid and dashed lines, respe
tively. It isremarkable that only for 
 = 4, the approximate ana-lyti
 dependen
e (29), whi
h is stri
tly speaking validfor 
�2� 1, is slightly di�erent from the more pre
isedependen
e found numeri
ally.Far outside the horizon, A(a) tends to a 
onstantvalue, A(a)! �
 � 22�2 ; a� rh;and metri
 (27) des
ribes a uniformly expanding worldwith a linear dependen
e a(�) at late times,a(�) = �pjA (1)j� =r
 � 22 �; � !1: (30)The Hubble parameter H = _a=a, where the dot de-notes d=d� , is found analyti
ally from expression (29)for A(a) (d = 3, a > rh � 1=p��):H(a) = 1as
 � 22 �1� r2ha2�� 3
2 ln(a=rh)��2a2 : (31)
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Fig. 3. The dimensionless horizon radius p��rh vs. 
for d = 3 (solid line). The dashed line is asymptoti
dependen
e (28) valid for 
 � 2� 1
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τFig. 4. The fun
tion A(�) � A(a(�)) for d = 3 and
 = 3, 3:5, and 4 (from top down). Solid lines shownumeri
al results and dashed lines show analyti
 depen-den
e (29)12
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30Fig. 5. The Hubble parameter H(�) for 
 = 3, 3:5,and 4 (from bottom up). At late times, H(�) = 1=�(dashed 
urve)The temporal evolution of the Hubble parameterH(�) is shown in Fig. 5 for 
 = 3, 3.5, and 4. Theexpansion starts from the horizon at � = 0 and ratherqui
kly approa
hes the late-time behavior H(�) = ��1.We a
tually have the asymptoti
 regime almost imme-diately after the beginning.If we try to extrapolate this late-time regime to thepresent epo
h, we 
an use the estimate given in Ref. [11℄(Box 27.4), _a � 0:66; Eqs. (30) and (28) then lead to
 = 2 + 2_a2 = 2:87; p��rh � 3:65: (32)These estimates 
onform to the monopole parametervalues leading to a nonsingular 
osmology.The symmetry-breaking potential (18), averagedover the os
illations, V (�) � V (a(�)), is a de
reasingfun
tion of � ,V (�) = 9(
 � 2)2��4 ++ ��4C22[(
=2� 1)��2�2℄3=2 ; � !1: (33)In 
osmology, s
alar �eld potentials are often in-terpreted as a time-dependent e�e
tive 
osmologi
al
onstant. The reason is that V enters the energy-momentum tensor as a �-term. In our 
ase, as 
an beseen from (33), this term behaves as a mixture of two
omponents, one de
aying with the 
osmologi
al expan-sion as radiation (/ ��4 / a�4) and the other as mat-ter without pressure (/ ��3 / a�3) in 4 dimensions.The four-dimensional energy density 
orresponding toV is proportional to VpjAj. But at late times, the

extra-dimension s
ale fa
tor pjAj tends to a 
onstant,and therefore the �ve- and four-dimensional behaviorsof the energy density a
tually 
oin
ide at large � . We
an say that the potential V (�) in the global monopolemodel gives rise to both dark radiation and dark mat-ter. We re
all that in a

ordan
e with modern views,both must ne
essarily be present in the Universe fromthe observational standpoint [12℄.These estimates 
an only show that the 5-dimen-sional global monopole model is in prin
iple able togive plausible 
osmologi
al parameters. Quantitativeestimates 
ertainly require a more 
omplete model in-
luding further phase transitions, one of whi
h shouldexplain the unobservability of the �fth dimension.The authors are grateful to A. F. Andreev,A. A. Starobinsky, V. A. Mar
henko, and M. Yu. Ka-gan for useful dis
ussions.REFERENCES1. K. A. Bronnikov, B. E. Meierovi
h, and E. R. Podo-lyak, Zh. Eksp. Teor. Fiz. 122, 459 (2002).2. A. Vilenkin and E. P. S. Shellard, Cosmi
 Stringsand Other Topologi
al Defe
ts, Cambridge Univ. Press,Cambridge (1994).3. S. L. Liebling, Phys. Rev. D 61, 024030 (1999).4. E. B. Gliner, Usp. Fiz. Nauk 172, 221 (2002);E. B. Gliner and I. G. Dymnikova, Usp. Fiz. Nauk172, 227 (2002).5. V. A. Rubakov, Large and In�nite Extra Dimensions,Usp. Fiz. Nauk 171, 913 (2001); E-print ar
hives,hep-ph/0104152.6. R. Maartens, E-print ar
hives, gr-q
/0101059.7. D. Langlois, E-print ar
hives, gr-q
/0207047.8. A. A. Starobinsky, Sov. Astron. Lett. 4, 82 (1978).9. I. G. Dymnikova, A. Dobosz, M. L. Fil'
henkov, andA. A. Gromov, Phys. Lett. B 506, 351 (2001).10. K. A. Bronnikov and J. C. Fabris, JHEP 09, 062(2002); E-print ar
hives, hep-th/0207213.11. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gra-vitation, W. H. Freeman and Company, San Fran
is
o(1973).12. V. Sahni and A. Starobinsky, E-print ar
hives,astro-ph/9904398.13. K. Benson and I. Cho, E-print ar
hives,hep-th/0104067.13


