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We consider a spherically symmetric global monopole in general relativity in (D = d + 2)-dimensional space—
time. For v < d — 1, where v is a parameter characterizing the gravitational field strength, the monopole is
shown to be asymptotically flat up to a solid angle defect. In the range d —1 < v < 2d(d + 1)/(d + 2), the
monopole space—time contains a cosmological horizon. Outside the horizon, the metric corresponds to a cosmo-
logical model of the Kantowski-Sachs type, where spatial sections have the topology R x S%. In the important
case where the horizon is far from the monopole core, the temporal evolution of the Kantowski—Sachs metric
is described analytically. The Kantowski-Sachs space-time contains a subspace with a (d + 1)-dimensional
Friedmann—Robertson—-Walker metric, whose possible cosmological application is discussed. Some estimates in
the d = 3 case show that this class of nonsingular cosmologies can be viable. In particular, the symmetry-
breaking potential at late times can give rise to both dark matter and dark energy. Other results, generalizing
those known in the 4-dimensional space—time, are derived, in particular, the existence of a large class of singular
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solutions with multiple zeros of the Higgs field magnitude.

PACS: 04.90.+e
1. INTRODUCTION

In our recent paper with Podolyak [1], we consid-
ered the general properties of global monopole solu-
tions in general relativity and developed some earlier
results (see [2, 3] and references therein). It was con-
firmed, in particular, that the properties of these ob-
jects are governed by a single parameter -, squared
energy of spontaneous symmetry breaking in Planck
units. For 0 < 7 < 1, solutions with the entirely posi-
tive (or entirely negative) Higgs field are globally reg-
ular and asymptotically flat up to a solid angle deficit.
In the range 1 < 4 < 3, the space-time of the so-
lutions remains globally regular but contains a cos-
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mological horizon at a finite distance from the cen-
ter. Qutside the horizon, the geometry corresponds
to homogeneous anisotropic cosmological models of the
Kantowski—Sachs type, whose spatial sections have the
topology R x S?. The nonzero symmetry-breaking po-
tential can be interpreted as a time-dependent cosmo-
logical constant, a kind of hidden vacuum matter. The
potential tends to zero at late times, and the <«hid-
den vacuum matter» disappears. This solution with a
nonsingular static core and a cosmological metric out-
side the horizon drastically differs from the standard
Big Bang models and conforms to the ideas advocated
by Gliner and Dymnikova [4] that the standard Big
Bang singularity could be replaced by a regular vac-
uum bounce.

The lack of isotropization at late times did not allow
us to directly apply the toy model of a global monopole
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to the early phase of our Universe. But this circum-
stance does not seem to be a fatal shortcoming of the
model because the anisotropy of the very early Universe
could be damped by particle creation later, and the fur-
ther stages with low energy densities might conform to
the standard isotropic Friedmann cosmology. Another
idea is to add a comparatively small positive quantity A
to the symmetry-breaking potential (to «slightly raise
the Mexican haty). It can change nothing but the la-
te-time asymptotic regime, which then becomes de Sit-
ter, corresponding to the added cosmological constant
A. These ideas deserve a further study.

In this paper, we study the gravitational proper-
ties of global monopoles in multidimensional general
relativity. This analysis can be of interest in view of
numerous attempts to construct a unified theory us-
ing the ideas of supersymmetry in higher dimensions.
Objects like multidimensional monopoles, strings, and
other topological defects might form due to phase tran-
sitions in the early Universe at possible stages when the
present three spatial dimensions were not yet separated
from others, and a greater number of dimensions were
equally important.

More specifically, we consider a self-gravitating
hedgehog-type configuration of a multiplet of scalar
fields with the Mexican-hat potential

V=(0/4)(¢" - n*)’

in a D-dimensional space—time with the structure
R; x R, x S¢ (d = D —2), where R, is the range of the
radial coordinate p and R; is the time axis. The prop-
erties of such objects generalize the results obtained
in Ref. [1] and earlier papers (e.g., [2, 3]) in a natural
way. Thus, for small values of the parameter v = k21>
characterizing the gravitational field strength, the solu-
tions are asymptotically flat up to a solid angle deficit.
Within a certain range d — 1 < v < %(d), the solutions
are nonsingular but contain a Killing horizon and a
cosmological metric of the Kantowski—Sachs type out-
side it. In the important case where the horizon is far
from the monopole core, the temporal evolution of the
Kantowski—Sachs metric is described analytically. The
upper bound ¥(d), beyond which there are no static so-
lutions with a regular center, is also found analytically.

The above description applies to solutions with an
entirely positive (or entirely negative) scalar field mag-
nitude ¢. As in [1], we here also find a class of solu-
tions with any number n of zeros of ¢(r), existing for
v < ¥n(d), where the upper bounds ~, are found ana-
lytically. All solutions with n > 0 describe space—times
with a regular center, a horizon, and a singularity be-
yond this horizon.

We also discuss a possible cosmological application
of multidimensional global monopoles, which can be of
particular interest for a 5-dimensional space—time with
3-dimensional spheres S%. In this case, the Kantowski—
Sachs type model has the spatial topology R x S? out-
side the horizon. It is anisotropic in 4-dimensions,
but the 3-dimensional spheres S? are isotropic. The
anisotropy is thus related only to the fourth coordinate
t, which is spatial outside the horizon and is a cyclic
variable from the dynamical viewpoint. If we identify
S? with the observed space, ignoring the extra coordi-
nate, we obtain a closed cosmological model, with the
Friedmann—Robertson—Walker line element in the ordi-
nary 3 + 1-dimensional space-time.

A natural question arises: why is the fourth spa-
tial dimension unobservable today? The answer cannot
be found within our macroscopic theory without spec-
ifying the physical nature of the vacuum. The con-
ventional Kaluza—Klein compactification of the extra
dimension on a small circle is not satisfactory in our
case because it leads to a singularity at the horizon (as
demonstrated in Sec. 3). We therefore leave this ques-
tion open and note that the global monopole model
has a chance to describe only the earliest phase of the
cosmological evolution. Its later stages should involve
creation of matter and a sequence of phase transitions
possibly resulting in localization of particles across the
t direction. We then obtain a model with a large but
unobservable extra dimension, similar in spirit to the
widely discussed brane world models, see reviews [5-7]
and references therein.

The solutions of interest appear when the symme-
try breaking scale 7 is sufficiently large, and one can
suspect that quantum gravity effects are already im-
portant at this energy scale. We show in Sec. 2.3 that
this is not the case if the monopole core radius is much
greater than the Planck length: the curvature and en-
ergy scales in the whole space are then much smaller
than their Planckian values.

The existence of nonsingular models of the early
Universe on the basis of classical gravity supports the
opinion that our Universe had never undergone a stage
described by full quantum gravity. In addition to those
discussed here, such models are rather numerous now
([1,4,8-10], see also references therein). All of them
are evidently free of the long-standing problems of the
standard Big Bang cosmology related to the existence
of multiple causally disconnected regions [11, 12].

This paper is organized as follows. In Sec. 2, we an-
alyze the properties of a global monopole in D = d + 2
dimensions (one time coordinate and d + 1 spatial co-
ordinates). It is a generalization of our previous re-
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sults [1]. In Sec. 3, the particular case where d = 3 is
studied in more detail along with its possible cosmo-
logical application. Unless otherwise indicated, we use
the natural units 7 = c = 1.

2. MULTIDIMENSIONAL GLOBAL
MONOPOLE

2.1. General characteristics

The most general form of a static, spherically sym-
metric metric in D = d + 2 dimensions is

ds? = e2Foqp? — 21 p? — 2o gn?, (1)

where dQ? = dQ? is a linear element on a d-dimensional
unit sphere parameterized by the angles ¢1, ..., ¢4,

dQ} = dpj + sin® g (dcpﬁ_l +sin? pg_1 X
X (dgi_s + ... +sin’p3 (de3 + sin®pade?) ...)) |

and Fy, F, and Fq are functions of the radial coordi-
nate p that are not yet specified. The nonzero compo-
nents of the Ricci tensor are (the prime denotes d/dp)

Ry = e 71 [Fy + Fy (Fg + dFg — FY)]
R0 = e ?P [dFy + Fy + dFG + Fy -

— F (Fy + dFy)], (2)
Ri=..=Rifl=-(d-1)e™ +
+ e 2 [Fh 4+ FL (Fy + dFy, — FY)).

3

A global monopole with a nonzero topological
charge can be constructed with a multiplet of real scalar
fields ¢* (a=1,2,...,d+ 1) comprising a hedgehog
configuration in d + 1 spatial dimensions®)

3

¢" = (p)n" (¢1,.- ,d),

where n*(¢1,... ,pq) 18 a unit vector (n*n® = 1) in
the d + 1-dimensional Euclidean target space, with the
components

1) A 7D universe with a global monopole with a hedgehog con-
figuration of scalar fields only in three extra dimensions was re-
cently considered in [13]. Our approach is different. We consider
a hedgehog configuration in all D — 1 space dimensions of the
D-dimensional space—time.

ndt! = cos g4,

n = sin g cos pg_1,

n? 1! = sin (P4 SN Y41 COS Pq_2,

n¢* = gin ©Pd SN Yg—_1 ...8N PGk COS Pa—k—1,

=sin g .. .sin @s cos g1,

=sin g .. .sin @s sin .

The Lagrangian of a multidimensional global
monopole in general relativity is given by

R

2k2’

where R is the scalar curvature, kK = kp is the D-di-
mensional gravitational constant, and V(¢) is a sym-
metry-breaking potential depending on ¢ = £/¢%¢%;
it is natural to choose V' as the Mexican-hat potential,
_ M

V=30 -0 =S - 0

We have introduced the normalized field magnitude
f = o(p)/n playing the role of the order parameter.
The model has a global SO(d + 1) symmetry, which
can be spontaneously broken to SO(d); n*/? is the en-
ergy of symmetry breaking.

The Einstein equations can be written as

L= %@ng&“@“qﬂ“ -V(g) +

v TV v 1 v
Ru = —KJQTM = —h}2 <Tu — ET6M> 5 (4)

where T/ is the energy-momentum tensor. The nonzero

components of T are

~ 2
T = -2V,

0 d 9

~ 2

_ —2F 2

TP =—e 21 f? — =V

~ - 2
T3 = =T =—e?fof - V.

We now use the quasiglobal coordinate p specified
by the condition

F()-l-Fl:O.,

which is a convenient gauge for spherically symmetric
systems with Killing horizons. Introducing the func-
tions

Alp) = ¥ = e 20 p(p) = e,
we reduce the metric to the form
2 2 dp2 2 2
ds® = A(p)dt” — =17 (p)dQ”, (5)

A(p)
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and obtain the equations

(Ard¢’)' . drd72¢ — Td%’ (6)
= =g, Q
(rdA’)/ = —4T:2rdV, (8)

A !
A (7'2)” —r2A" — (d—=2)r3 <—> =

=2(d-1-+x¢*) (9)

for the unknown functions ¢(p), A(p), and r(p). Only
three of these four equations are independent: scalar
field equation (6) follows from Einstein equations (7)-
(9) because of the Bianchi identities.

Equations (6)—(8) have the same structure as Eqgs.
(13)—(15) in [1]. General properties of Eqs. (6)—(8) with
an arbitrary value of d are the same as for d = 2, and
the classification of their solutions is also the same. In
particular, if V(¢) > 0, the system with a regular cen-
ter can have either no horizon or one simple horizon;
in the latter case, its global structure is the same as
that of the de Sitter space—time. Below, we focus our
attention on solutions belonging to class (al) accord-
ing to [1], i.e., those with 7(p) monotonically growing
from zero to infinity as p — oo and A(p) changing from
A =1 at the regular center to Ao, < 0 as p — oo, and
with a cosmological horizon (where A = 0) at some
P = Ph-

Equation (9) is a second-order linear inhomoge-
neous differential equation for A. The corresponding
homogeneous equation has the evident special solution

A(p) = const - %(p).

This allows expressing A(p) in terms of r7(p) and ¢(p)
in an integral form,

o0 o0

_ 2 2
A=Cir° = Cor / d+2 /rd+2 ™

P P
1

< [ dpart 2 (o) [4 - 1= 267 (o). (10)
0
We consider solutions with a large-r asymptotic be-

havior such that r(p) — oo and r'(p) — const > 0 as
p — oo. Equation (7) gives r' as [[r¢'?]dp, and its

convergence as p — oo implies a sufficiently rapid de-
cay of ¢' at large p, and therefore ¢ — ¢oo = const
as p — oo. The potential V' then tends to a constant
equal to V(¢oo). Furthermore, Eq. (8) shows that at
large r, A(p) can grow at most as r2, and finally, sub-
stitution of the asymptotic form of ¢(p), A(p), and r(p)
in Eq. (6) leads to dV/d¢ — 0 as p — oo. In applica-
tion to field equations, the condition that there exists a
large-r asymptotic regime implies that the scalar field
then tends either to an extremum of the potential V' (¢)
or to an inflection point with zero derivative. For the
Mexican-hat potential, it can be either the maximum at
¢ = 0 (the trivial unstable solution for ¢ and the de Sit-
ter metric with the cosmological constant (1/4)x%An?)
or a minimum of V where f = 1 and V = 0. For
a «slightly raised Mexican haty (potential (3) plus a
small constant V), we have a de Sitter asymptotic be-
havior with f =1 and V = V.

A regular center requires that A = A, + O(r?) and
Ar'?2 — 1 as p — p. such that r(p.) = 0. Without loss
of generality, we set p. =0 and A, = 1.

For potential (3), regularity at p = 0 and the
asymptotic condition at p — oo lead to C; = Cy = 0,
and Eq. (10) then implies that

dﬂl d
iz | Ao’ ()

x [d— 1= k262 ()] . (11)
Equation (8) provides another representation for
A(p) satisfying the regular center conditions,

A(p) = 2r*(p)

‘5\8

o
4;@ d
Alp) =1- pl /dpzr p2) V(p2). (12)
From (11), we ﬁnd the limiting value of A at p — oo,
d—1-—~
A = = k?2n? 1
(o00) Za—1 TTET (13)

where a = dr/dp at p = o0,

15 o

Equation (13) shows that v = d—1is a critical value
of v: the large-r asymptotic behavior can be static only
ify<d-1;for v <d-1, it is flat up to a solid an-
gle deficit, in full similarity to the conventional case
d=21]1,2]. If y > d—1, then A(o0) < 0, and there is
a horizon at some p = pp, where A = 0. From (12),

Ph
4,% d
pl /dpzT p2) V (p2) =1,
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and we therefore have

p
4k> dp;

d ()
Ph

A(p) = — / dpor (p2) V (p2).  (14)
0

The « dependence of p,, with v = k212, can be found
from the relation

o [ s [t o Vi) =~ S 09

d ] ri(p)
Ph 0

2.2. Large-r asymptotic behavior

From (6), we can find the asymptotic behavior of
the field f(p) and the potential V(p) as r — oo. At
large p, we have A — A(00), see (13), and field equa-
tion (6) reduces to

1 d [ df i-1 [, oAl
rd dr <r dr) y—d+1 [)\77 (1 f) r2 F=0
r — 00.

A regular solution of this equation must tend to unity
as r — oo, and for ¢y = 1 — f, we have the linear equa-
tion

d 2% (d—1 d
warr +;¢77‘+ d ( ) <¢

_ -0
y—d+1 2)\7727'2) " (16)
r — 0.

The general solution of the corresponding homogeneous
equation

20%(d — 1)
y—d+1

can be expressed in terms of Bessel functions,

d
QpO-,rr +F¢O-,r + ¢0 =0

Yo(r) = r=(4=D/2

r r
X |:Olf]—(d—1)/2 <E> + CoY_(4-1))2 <E>} ;

22 y—d+1
O o 2(d - 1)

A special solution of inhomogeneous equation (16) at

r— 00 18
d 1
v= 2An2r2 +0 <r_4>

The general solution of Eq. (16) gives the asymptotic
behavior for the Higgs field magnitude f as r — oo,

d c
flr)=1- NP2 (2r2)d/e x
><sin<L—}—£l+<p>7 r—oo. (17)
To 4

2.5

S I S -

1.5 —

1.0

0.5 —

0d
2.0 2.7 3.4 4.1 4.8
Y

Fig.1. The function C(v) found numerically for

d=3

Because of the boundary conditions imposed, the
integration constants C' and ¢ are functions of d and v
that can be found numerically. The function C(y) for
d = 3 is presented in Fig. 1. From (17), we find the
asymptotic behavior of V,

_)\774[ d 2C

Vi(r) = T4 e T ueyar x

d 2
><sin<1+7r—+go>} , r—oo. (18)
To 4

2.3. Bounds of the classical regime and the
monopole core

Of certain interest are solutions with the cosmolo-
gical large-r behavior, i.e., those with v > d — 1. The
latter condition means that the scalar field, approach-
ing n at large r, actually takes near- or trans-Planckian
values. Indeed, in D dimensions, the Planck length Ip
and mass mp are expressed in terms of the gravita-
tional constant Kk = kp as
2/d

Ip = Kk, mD:n*2/d, d=D —2.
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Therefore,

v
0’ = — =ymb,

K2
and in the case of interest where v ~ d, we have
N~ (mp)¥?*Vd. (19)

We can, however, remain at sub-Planckian curva-
ture values, thus avoiding the necessity to invoke quan-

tum gravity, if we require sub-Planckian values of the
potential V' in the entire space, i.e.,

1
KV = Zn2x\n4 <mb.

For 1 given by (19), this implies that

4 5
_m2 d.

A< mp

(20)

We can thus preserve the classical regime even with
large 1 by choosing sufficiently small values of A. In
terms of lengths, this condition is equivalent to the re-
quirement that the monopole core radius

1
Van

is much greater than the Planck length,

Tcore =

1
— > Ip.

Van

One may note that this condition is external with
respect to the theory because general relativity does not
contain an internal restriction on the gravitational field
strength. Moreover, in ordinary units, our dimension-
less gravitational field strength parameter, expressed as
v = k%c *n?, does not contain . We obtain restric-
tion (20) or (21) only when we compare the character-
istic length 7..ye existing in our theory with the Planck
length Ip = (hs?/c®)!/.

We now discuss the solutions for 7 slightly ex-
ceeding the critical value d — 1. In the case where
v — (d — 1) <« 1, the horizon radius rj is much greater
than r.ore, and the constant C' turns out to be negli-
gibly small (this is confirmed numerically, see Fig. 1).
At large po, the integrand in the inner integrals in (12),
(14), and (15) is then given by

(21)

2 dr

d ~
dpzT (pQ)V(pQ) ~ da)rid-

The main contribution to the above inner integrals
comes from the monopole core if d < 3 and from the

10

upper limit if d > 3. For d = 3, it is a logarithmic inte-
gral. As a result, we have different behaviors of pj(7)
aty—(d—1) < 1ford=2and d > 3%.

For d = 2 (4-dimensional general relativity)

3

P1 0
/dp2Td(P2)V(P2) ~ /dp2T2(P2)V(P2) = const,
0 0

and it follows from (15), in agreement with [1], that the
horizon radius ry, is inversely proportional to v — 1,

const

, d=2.
y—1

Th = Y- 1«1,
For d > 3, we find that at y — (d — 1) < 1, the horizon
radius ry, is inversely proportional to the square root of

. vd(d — 1) 1
4 2d—3)(y—d+1) M2’ (22)
’I‘% > /\—172 d > 3.

It is thus confirmed that for v — (d — 1) < 1, the
horizon is located far from the monopole core,

1

2
ry > .
h Ang

The function A(r) at r > rj, can then be found analyt-
ically. In this case, r(p) is a linear function at r > r,
and dr = adp. From (14) at r > r, we find

<1
~vd
+ 2a2(d — 3)An?r?

d—1
Th

- Td—l) +

p 43
[1 - (7) ] . (23)
The condition of the applicability of (23) is Ip < rp,.

In view of r.ore < T3, it is less restrictive than condi-
tion (21).

vy+1-—d

Alr) = S a2(d-1)

2.4. Solutions with f(¢) changing its sign

As in Ref. [1], numerical integration of the field
equations shows that in addition to solutions with to-
tally positive (or totally negative) f(u), there also exist
solutions with a regular center such that f(u) changes
its sign n > 1 times. All these solutions exist for
v < Yn(d), where v, (d) are some critical values of the
parameter 7. For n > 0, all of them have a horizon,

2) This is the only important qualitative difference between the

general case d > 3 and the particular case d = 2 considered in [1].
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and the absolute value of f at the horizon |fs. »(pn)| is
a decreasing function of v, vanishing as v — v, — 0.
Moreover, as v — v,(d), the function f(u) vanishes in
the whole range p < p;, and is small inside the horizon
for v close to v, (d). This allows us to find the critical
values v,(d) analytically: Eq. (6) reduces to a linear
equation for f in a given (de Sitter) background, and
combined with the boundary conditions f(0) = 0 and
f(pr) < o, leads to a linear eigenvalue problem. Its
solution (see [1] for the details) in the d-dimensional
case gives the upper limits v, (d) and the correspond-
ing minimal horizon radii r;, = rp, for solutions with
the Higgs field magnitude f changing its sign n times,

Thn = \/(Qn—l— 1)(2n+d+2)/\n?, (24)

- 2d(d + 1)
T Oy )2ntd+2)

(25)

For d = 2, Eqgs. (24) and (25) reduce to Eq. (52) in
Ref. [1]. Under condition (21), these solutions remain
in the classical gravity regime.

3. 5-DIMENSIONAL MODELS AND
NONSINGULAR COSMOLOGY

3.1. The extra dimension

At present, there is no evidence for the existence of
more than three spatial dimensions up to the achievable
energies about several hundred GeV. But this energy is
quite small on the Planck scale (of the order 10 GeV).
Our solutions of a possible cosmological interest corre-
spond to ¥ > d — 1, i.e., the Planck energy scale. Even
under condition (21), there remains an enormous range
of scales in the early Universe in which the number
of equally important spatial dimensions can be greater
than 3.

If we try to consider our d = 3 solutions in the
cosmological context, the extra coordinate is ¢ in (1)
and (5). The coordinate ¢ is time inside the horizon and
becomes a fourth spatial coordinate outside it, where
A(p) < 0. Metric (5) takes the form

2 dp’

Alp)|

Introducing the proper time 7 of a comoving observer
outside the horizon,

~ |A(p)|de — r*(p)d.

T= pi 26
/\/IA(0)|7 26)

11

&P

r<rp

Fig.2. The Carter-Penrose diagram of a global

monopole with a cosmological horizon. The diagonals

of the square represent the horizons. After identifica-
tion of ¢1 and t2, only the dashed regions survive

we obtain a 5-dimensional Kantowski—Sachs cosmology
with a closed Friedmann-Robertson-Walker metric in
the 34+ 1-dimensional space—time section of a constant #,

ds3 = dr? — a®(1)d3 — |A(p(7))|dt?. (27)
The 4-dimensional spherical radius 7(p) now plays the
role of the scale factor, a(r) = r(p(7)).

It is tempting to explain the unobservability of
the extra dimension parameterized by the coordinate
t by compactifying ¢ with a certain «period» T in the
spirit of Kaluza—Klein models. Such a compactifica-
tion would lead to a singularity at r» = rj,, however, as
is clear from Fig. 2. If t € R, the static region (the left
quadrant in the diagram) is connected with the future
cosmological region (the upper quadrant) by the hori-
zon, crossed by photons and massive particles without
problems. But if the ¢ axis is made compact by iden-
tifying, e.g., the points t; and ty on the t axis, the
static and cosmological regions in the diagram take the
form of the dashed sectors, actually tubes of a vari-
able thickness, connected at one point only, the ends
(tips) of the tubes. The curvature invariants do not
change due to this identification and remain finite, and
the emerging singularity in the pt plane resembles the
conical singularity.

Compactification is not the only possibility of ex-
plaining why the ¢ coordinate is invisible. It can also
be assumed that at some instant of the proper cos-
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mological time 7 of 5-dimensional model (27), a phase
transition occurs at a certain energy scale 1/T, leading
to localization of matter on the 3-spheres in the spirit of
brane world models. Anyway, within our macroscopic
theory without specifying the structure of the physi-
cal vacuum, it is impossible to explain why the extra
dimension is not seen now. It is nevertheless interest-
ing to describe some cosmological characteristics of the
d = 3 global monopole.

3.2. Some cosmological estimates

For d = 3, the inner integrals in (14) and (15) have
a logarithmic character, and instead of (22) and (23),
we obtain
3

v—-2= W [B +1In ()\7727',22)] ,
‘ 1 (28)
’I“i > A_T}27 d=3
and
v—2 r2 3y In(a/rp)
Ala) = — 1= b nla/n)
(@) 202 < a2> * 20202 a® 7 (29)

a > rp, d=3.

The dependence a(7r) can be found from Eq. (26).
In (28), B is a constant close to unity; our numerical
estimate gives B & 0.75. The dimensionless radius of
the horizon v/ Anry, is presented in Fig. 3 as a function
of « for d = 3 (solid line). The dashed line is asymp-
totic dependence (28) valid for v — 2 < 1. The func-
tion A(7) = A(a(r)) is shown in Fig. 4 for d = 3 and
v = 3,3.5, and 4. The numerical and analytic results
are shown by solid and dashed lines, respectively. It is
remarkable that only for v = 4, the approximate ana-
lytic dependence (29), which is strictly speaking valid
for y—2 <« 1, is slightly different from the more precise
dependence found numerically.

Far outside the horizon, A(a) tends to a constant
value,

A 72
(a) — —W7 a>>rp,

and metric (27) describes a uniformly expanding world
with a linear dependence a(7) at late times,

—a\/rr—

The Hubble parameter H = a/a, where the dot de-
notes d/dr, is found analytically from expression (29)
for A(a) (d =3, a>ry, > 1/V\):

- 2

T—o00. (30)

12

horizon

10 T T

Fig.3. The dimensionless horizon radius v Anr, vs. ~
for d = 3 (solid line). The dashed line is asymptotic
dependence (28) valid for y —2 <« 1

Fig.4. The function A(7) = A(a(r)) for d = 3 and

~v =3, 3.5, and 4 (from top down). Solid lines show

numerical results and dashed lines show analytic depen-
dence (29)
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Fig. 5.

The Hubble parameter H(7) for v = 3, 3.5,
and 4 (from bottom up). At late times, H(7r) = 1/7
(dashed curve)

The temporal evolution of the Hubble parameter
H(7) is shown in Fig. 5 for v = 3, 3.5, and 4. The
expansion starts from the horizon at 7 = 0 and rather
quickly approaches the late-time behavior H(7) = 7 L.
We actually have the asymptotic regime almost imme-
diately after the beginning.

If we try to extrapolate this late-time regime to the
present epoch, we can use the estimate given in Ref. [11]

(Box 27.4), a ~ 0.66; Egs. (30) and (28) then lead to
v=2+2a> =287, Vg, =365  (32)

These estimates conform to the monopole parameter
values leading to a nonsingular cosmology.
The symmetry-breaking potential (18), averaged

over the oscillations, V(r) = V(a(r)), is a decreasing
function of 7,

9
e
At C?
(/2= DAFTEFTE

+ 5 T =00, (33)
In cosmology, scalar field potentials are often in-
terpreted as a time-dependent effective cosmological
constant. The reason is that V enters the energy-
momentum tensor as a A-term. In our case, as can be
seen from (33), this term behaves as a mixture of two
components, one decaying with the cosmological expan-
sion as radiation (o< 774 o< a=*) and the other as mat-
ter without pressure (x 773 « @=3) in 4 dimensions.
The four-dimensional energy density corresponding to
V' is proportional to V\/W. But at late times, the

extra-dimension scale factor \/W tends to a constant,
and therefore the five- and four-dimensional behaviors
of the energy density actually coincide at large 7. We
can say that the potential V' (¢) in the global monopole
model gives rise to both dark radiation and dark mat-
ter. We recall that in accordance with modern views,
both must necessarily be present in the Universe from
the observational standpoint [12].

These estimates can only show that the 5-dimen-
sional global monopole model is in principle able to
give plausible cosmological parameters. Quantitative
estimates certainly require a more complete model in-
cluding further phase transitions, one of which should
explain the unobservability of the fifth dimension.

The authors are grateful to A. F. Andreev,
A. A. Starobinsky, V. A. Marchenko, and M. Yu. Ka-
gan for useful discussions.
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