КВАНТОВАЯ ДИНАМИКА И СТАТИСТИКА БОЗЕ-КОНДЕНСАТА, ГЕНЕРИРУЕМОГО АТОМНЫМ ЛАЗЕРОМ

А. В. Козловский*

Физический институт им. П. Н. Лебедева Российской академии наук 119991, Москва, Россия

Поступила в редакцию 20 марта 2002 г.

Развита самосогласованная квантовая теория атомного лазера с охлаждением атомов в ловушке методом стимулированного испарения. Модель включает в себя процессы накачки и вывода атомного поля, заключенного в ловушке, вследствие взаимодействия его с независимыми атомными резервуарами. Рассмотрены вынужденные процессы столкновений между атомами в ловушке, формирующие бозе-конденсат в нижнем ее состоянии. Взаимодействие атомов с фононным полем обусловливает спонтанные переходы между дискретными состояниями ловушки. Расчеты, проведенные для трех- и четырехуровневых моделей ловушки, показали возможность генерации сильносжатого субпуассоновского бозе-конденсата.

PACS: 03.75.Fi, 32.80.Pj, 42.50.Ct

1. ВВЕДЕНИЕ

Проведенные за последние годы успешные эксперименты по созданию атомного бозе-конденсата в ловушках указывают на возможность создания когерентных источников волн материи (атомных лазеров) [1,2]. В качестве резонатора для атомного лазера используется магнитная ловушка параболической формы, при этом в качестве мод резонатора выступают дискретные энергетические уровни ловушки, накачиваемые внешним источником охлажденных атомов. Условия создания бозе-конденсата реализуются, по крайней мере, для нижнего состояния ловушки (конденсатная мода). Процессы перевода внутренних состояний атомов в электронные состояния, при которых возможен захват атомов ловушкой или их вывода из нее, осуществляются с помощью радио- или микроволнового электромагнитного поля. Непрерывный и импульсный режимы генерации атомного лазера реализуются одними и теми же средствами, но при различных величинах значений параметров электромагнитного поля, которое служит для накачки и вывода атомного поля из ловушки. Динамика генерации лазера формируется в результате баланса процессов поступления атомов в ловушку и вывода бозе-конденсата из ловушки с учетом скорости процесса охлаждения (заполнения нижних состояний ловушки), стимулируемого также внешним электромагнитным полем. Фундаментальным свойством лазера является когерентность создаваемого им поля. Когерентность и квантовостатистические свойства поля являются предметом исследований квантовой оптики атомных полей [3-11]. Существующие в настоящее время феноменологические полуклассические теории [12–18], а также квантовомеханические теории [3–11, 19–29], рассматривающие модели атомного лазера с различными схемами накачки, охлаждения и вывода поля из ловушки, предсказывают наличие порога генерации, насыщение, а также высокую степень когерентности бозе-конденсата, генерируемого атомным лазером [3,9,10,23]. Отметим, что полуклассическая теория атомного лазера, использующая приближение среднего поля [16–18], не позволяет исследовать квантовую статистику поля, поскольку статистика атомного газа в этом случае предполагается заданной заранее и вводится феноменологически. Только полностью квантовомеханическая теория дает возможность исследовать квантовостатистические эффекты и определять свойства когерентности поля атомного лазера. Развиваемые в настоящее время квантовомеханические теории атомного лазера используют модель с конечным числом мод атомного поля в ловушке. Такой подход позволяет исследо-

© 2003

^{*}E-mail: kozlovsk@sci.lebedev.ru

вать влияние столкновений между атомами внутри ловушки на динамику и статистику генерируемого атомным лазером бозе-конденсата. Такая модель лазера соответствует экспериментальным условиям, при которых процессы стимулированного охлаждения (испарения) быстро опустошают верхние энергетические состояния ловушки.

В настоящей работе развита самосогласованная теория бозе-конденсации атомного газа в ловушке с учетом столкновений между атомами при термодинамически неравновесных условиях. Теория предполагает решение управляющего уравнения для матрицы плотности системы совместно с системой обобщенных уравнений Хартри-Фока для волновых функций атомного поля в состояниях ловушки.

Численный расчет динамики и статистики атомного поля проведен в приближении собственных функций ловушки для трех и четырехуровневых моделей лазера. Модель включает в себя процессы накачки, вывод поля из основного состояния ловушки, потери ловушки, спонтанные переходы, а также процессы столкновительного перераспределения атомов по состояниям ловушки. Проанализирована динамика генерации атомного лазера для различных значений скорости накачки и частот столкновений между атомами, а также скорости спонтанных переходов атомов между уровнями ловушки. Показано, что бозе-конденсат, генерируемый атомным лазером, находится в сжатом квантовом состоянии с субпуассоновскими флуктуациями числа атомов. Для больших бозе-конденсатов со средним числом атомов порядка 10⁶ отношение дисперсии числа атомов к их среднему числу (фактор Фано атомного поля) может достигать величины 0.5.

В разд. 2 статьи изложена модель атомного лазера. Рассмотрен эффективный многочастичный гамильтониан открытой системы сталкивающихся между собой бозе-атомов в ловушке, включающий взаимодействие их с атомными резервуарами накачки и потерь, а также фононное поле, приводящее к спонтанным переходам между дискретными энергетическим состояниями ловушки. Раздел 3 посвящен анализу самосогласованной динамики атомных полей. Рассмотрены приближения, используемые для расчета волновых функций атомного поля в ловушке совместно с решением уравнения для приведенной матрицы плотности. В разд. 4 в рамках приближений Борна и Маркова получено управляющее уравнение для оператора плотности для модели атомного лазера с конечным числом уровней в приближении собственных состояний ловушки. Рассмотрено приближение, при котором столкновения

атомов в ловушке не влияют на пространственное распределение атомного поля. Результаты численных расчетов динамики и статистики бозе-газа приведены в разд. 5. Раздел 6 содержит выводы и заключение.

2. МОДЕЛЬ АТОМНОГО ЛАЗЕРА НА ИСПАРИТЕЛЬНОМ ПРИНЦИПЕ

Для описания открытой системы атомов в ловушке, взаимодействующих с резервуарами, в рамках метода вторичного квантования атомных полей нами будут использоваться операторы рождения-уничтожения, определенные согласно

$$\Psi_s(\mathbf{r}) = \sum_j a_j \phi_j(\mathbf{r}), \quad a_j = \int d^3 \mathbf{r} \, \phi_j^*(\mathbf{r}) \Psi_s(\mathbf{r}), \quad (1)$$

$$\Psi_{\alpha}(\mathbf{r}) = \sum_{\lambda=0}^{\infty} b_{\alpha\lambda} \psi_{\alpha\lambda}(\mathbf{r}),$$

$$b_{\alpha\lambda} = \int d^3 r \, \psi^*_{\alpha\lambda}(\mathbf{r}) \Psi_{\alpha}(\mathbf{r}), \quad \alpha = p, out,$$
(2)

где $\Psi_s(\mathbf{r}) (\Psi_s^{\dagger}(\mathbf{r}))$ — оператор уничтожения (рождения) атома в ловушке в точке \mathbf{r} , а $\Psi_{\alpha}(\mathbf{r}) (\Psi_{\alpha}^{\dagger}(\mathbf{r}))$ — операторы уничтожения (рождения) частиц в резервуарах накачки ($\alpha = p$) и в резервуарах, осуществляющих выход атомного поля из ловушки ($\alpha = out$). Присутствующие в правых частях уравнений (1) и (2) *с*-числовые функции $\phi_j(\mathbf{r}), \psi_{\alpha\lambda}(\mathbf{r})$ определяют пространственные зависимости полей.

Указанные операторы подчиняются бозонным перестановочным соотношениям вида

$$\begin{bmatrix} \Psi_{\alpha}(\mathbf{r}), \Psi_{\alpha'}^{\dagger}(\mathbf{r}') \end{bmatrix} = \delta_{\alpha, \alpha'}(\mathbf{r} - \mathbf{r}'),$$

$$\alpha, \alpha' = s, p, out, \qquad (3)$$

$$\begin{bmatrix} \Psi_{\alpha}(\mathbf{r}), \Psi_{\alpha'}(\mathbf{r}') \end{bmatrix} = \begin{bmatrix} \Psi_{\alpha}^{\dagger}(\mathbf{r}), \Psi_{\alpha'}^{\dagger}(\mathbf{r}') \end{bmatrix} = 0.$$

Квантовомеханическое среднее число атомов, захваченных в ловушку, при этом есть

$$\int d^3r \left\langle \Psi_s^{\dagger}(\mathbf{r}) \Psi_s(\mathbf{r}) \right\rangle = \sum_j \left\langle a_j^{\dagger} a_j \right\rangle = \overline{N}.$$

Наряду с атомными резервуарами, описанными выше, нами будет рассмотрен резервуар фононного поля, являющегося источником спонтанных переходов между состояниями ловушки (см. также [27,28]). Кроме того, в дальнейшем рассмотрении будет присутствовать электромагнитное поле, участвующее в процессах вывода поля из ловушки и ее накачки, а также в процессе стимулированного охлаждения атомов в ловушке [1,2].

Эффективный многочастичный гамильтониан задачи, содержащий члены свободной энергии и операторы взаимодействия системы с резервуарами, а также операторы взаимодействия атомов в ловушке между собой, рассматривается нами в виде

$$H = H_s + \sum_{\beta} H_{R\beta} + \sum_{\beta} V_{sR\beta} + V_{coll}.$$
 (4)

Гамильтониан (4), описывающий атомный бозе-конденсат в приближении Хартри, может быть записан с помощью полевых операторов (1), (2) в виде суммы следующих членов: энергии атомов в ловушке,

$$H_{s} = \int d^{3}r \times \left[-\frac{\hbar^{2}}{2m} \nabla \Psi_{s}^{\dagger}(\mathbf{r}) \nabla \Psi_{s}(\mathbf{r}) + \Psi_{s}^{\dagger}(\mathbf{r}) V_{tr}(\mathbf{r}) \Psi_{s}(\mathbf{r}) \right], \quad (5)$$

операторов энергии атомных резервуаров накачки и вывода атомов из ловушки ($\beta = p, out$),

$$H_{R\beta} = \int d^3 r \times \left[-\frac{\hbar^2}{2m} \nabla \Psi_{\beta}^{\dagger}(\mathbf{r}) \nabla \Psi_{\beta}(\mathbf{r}) + \Psi_{\beta}^{\dagger}(\mathbf{r}) V_{\beta}(\mathbf{r}) \Psi_{\beta}(\mathbf{r}) \right], \quad (6)$$

оператора энергии электромагнитного поля, приложенного к ловушке ($\beta = EM$),

$$H_{R,EM} = \sum_{j} \hbar \omega_{j} b^{\dagger}_{EM,j} b_{EM,j}, \qquad (8)$$

а также свободной энергии резервуара фононного поля ($\beta = phon$),

$$H_{R,phon} = \sum_{\lambda=0}^{\infty} \hbar \omega_{phon,\lambda} b^{\dagger}_{phon,\lambda} b_{phon,\lambda}.$$
(9)

Члены взаимодействия системы атомов в ловушке с резервуарами имеют следующий вид:

$$V_{sRout} = \hbar \int d^3 r \, \Psi_{out}^{\dagger}(\mathbf{r}) \Lambda_{out}(\mathbf{r}, t) \Psi_s(\mathbf{r}) + \text{h.c.}, \quad (10)$$

$$V_{sRp} = \hbar \int d^3r \, \Psi_s^{\dagger}(\mathbf{r}) \Lambda_p(\mathbf{r}, t) \Psi_p(\mathbf{r}) + \text{h.c.}, \qquad (11)$$

$$V_{sRphon} = = \hbar \sum_{\lambda=0}^{\infty} \int d^3 r \, \Psi_s^{\dagger}(\mathbf{r}) b_{phon,\lambda} \Lambda_{sp,\lambda}(\mathbf{r}) \Psi_s(\mathbf{r}) + \text{h.c.}, \quad (12)$$

$$V_{coll} = \frac{1}{2} \int d^3 r \times \\ \times \int d^3 r' \Psi_s^{\dagger}(\mathbf{r}) \Psi_s^{\dagger}(\mathbf{r}') U(\mathbf{r} - \mathbf{r}') \Psi_s(\mathbf{r}) \Psi_s(\mathbf{r}').$$
(13)

Входящие в (10)–(12) функции Λ являются константами связи атомного поля ловушки с полями резервуаров.

Электромагнитное поле, приложенное к ловушке, в дальнейшем нами будет рассматриваться классически, при этом член (8) гамильтониана представляет собой *с*-числовую константу.

Нейтральные атомы, составляющие бозе-конденсат, находятся в параболической ловушке с потенциалом

$$V_{tr}(\mathbf{r}) = \frac{m}{2} \sum_{\alpha = x, y, z} \omega_{\alpha}^2 r_{\alpha}^2,$$

где *т* — масса атома. Эффективное взаимодействие между атомами в ловушке описывается с помощью псевдопотенциала

$$V(\mathbf{r} - \mathbf{r'}) = u\delta(\mathbf{r} - \mathbf{r'}), \quad u = 4\pi a_0 \hbar^2 / m,$$

где a_0 — длина столкновения при рассеянии S-волн, а также диполь-дипольного двух частичного потенциала взаимодействия $V_{dd}(\mathbf{r} - \mathbf{r}')$, т. е.

$$U(\mathbf{r} - \mathbf{r}') = V(\mathbf{r} - \mathbf{r}') + V_{dd}(\mathbf{r} - \mathbf{r}').$$

Члены в (11) и (10), содержащие операторы $\Psi_p(r)$ и $\Psi_{out}(r)$, относятся к резервуарам, из которых осуществляется накачка уровней ловушки внешними источниками, а также происходит вывод атомов из ловушки. В частности, вывод атомного поля может происходить путем взаимодействия атомов с резонансным радиочастотным полем, осуществляющим электронные переходы между зеемановскими подуровнями атомов [1,2]. В этом случае $\Lambda_{out}(\mathbf{r},t) = \Omega(\mathbf{r},t),$ где $\Omega(\mathbf{r},t) = \boldsymbol{\mu} \cdot \mathbf{B}(\mathbf{r},t)/\hbar$ — частота Раби атома в магнитном поле $\mathbf{B}(\mathbf{r},t), \boldsymbol{\mu}$ — магнитный момент перехода атома, а $\Psi_{out}(\mathbf{r})$ — оператор рождения свободного атома, выводимого из ловушки. Оператор накачки (11) определяется подобным образом с помощью оператора $\Psi_p(\mathbf{r})$ уничтожения атома из некогерентного резервуара накачки, в частном случае, находящегося в термодинамическом равновесии. В настоящей работе будет предполагаться в дальнейшем, что взаимодействие атомов с полями, осуществляющими накачку, вывод конденсата, а также стимулированное испарение, являются слабыми (частоты Раби малы), т. е. мы будем рассматривать случай непрерывного атомного лазера [1]. В то же время нами будут учитываться зависимости констант связи от времени.

Гамильтониан (4) с помощью полевых операторов (1), (2) может быть приведен к следующей форме:

$$H = \sum_{j} \hbar \omega_{j} a_{j}^{\dagger} a_{j} + \sum_{\alpha = p, out, phon} \sum_{\lambda = 0}^{\infty} \hbar \omega_{\alpha \lambda} b_{\alpha \lambda}^{\dagger} b_{\alpha \lambda} + \sum_{\lambda = 0}^{\infty} \left\{ \sum_{i > j} \hbar \left(\Gamma_{\lambda, i, j} b_{phon, \lambda}^{\dagger} a_{i} a_{j}^{\dagger} + \text{h.c.} \right) + \sum_{i} \hbar \left[\kappa_{\lambda, i}(t) b_{P, \lambda} a_{i}^{\dagger} + \text{h.c.} \right] + \sum_{j} \hbar \left(\mu_{\lambda, j}(t) b_{out, \lambda}^{\dagger} a_{j} + \text{h.c.} \right) \right\} + \frac{1}{2} \sum_{ijkl} \hbar g_{i, j, k, l} a_{i}^{\dagger} a_{j}^{\dagger} a_{k} a_{l}, \quad (14)$$

где энергия *j*-го состояния ловушки равна

$$\hbar\omega_j = \int d^3r \,\phi_j^*(\mathbf{r}) K(\mathbf{r}) \phi_j(\mathbf{r}),$$

$$K(\mathbf{r}) = -\frac{\hbar^2}{2m} \nabla^2 + V_{tr}(\mathbf{r}),$$
(15)

а $\hbar\omega_{\alpha\lambda}$ — энергия гармонического осциллятора λ резервуара α .

Константы связи, характеризующие взаимодействия с резервуарами, определяются согласно

$$\mu_{\lambda,i}(t) = \int d^3 r \, \Psi^*_{out,\lambda}(\mathbf{r}) \Lambda_{out}(\mathbf{r},t) \phi_i(\mathbf{r}), \qquad (16)$$

$$\kappa_{\lambda,j}(t) = \int d^3r \, \Psi_{p,\lambda}(\mathbf{r}) \Lambda_p(\mathbf{r},t) \phi_j^*(\mathbf{r}), \qquad (17)$$

$$\Gamma_{\lambda,i,j} = \int d^3 r \, \phi_j^*(\mathbf{r}) \Lambda_{sp,\lambda}(\mathbf{r}) \phi_i(\mathbf{r}). \tag{18}$$

Константы связи для упругих и неупругих столкновений между атомами, находящимися в ловушке, есть

$$g_{i,j,k,l} = \frac{u}{2} \int d^3 r \, \phi_i^*(\mathbf{r}) \phi_j^*(\mathbf{r}) \phi_k(\mathbf{r}) \phi_l(\mathbf{r}) + \frac{1}{2} \int d^3 r' \int d^3 r \, \phi_i^*(\mathbf{r}) \phi_j^*(\mathbf{r}') \times V_{dd}(\mathbf{r} - \mathbf{r}') \phi_k(\mathbf{r}) \phi_l(\mathbf{r}').$$
(19)

Первые два члена в (14) соответственно представляют собой энергию атомов, помещенных в ловушку, и собственную энергию осцилляторов резервуаров. Последующие три члена в (14), соответствующие $V_{sR\beta}$ в (4), представляют собой сумму потенциалов взаимодействий атомов в ловушке (системы) с резервуарами, обусловливающих спонтанный распад с дискретных уровней энергии ловушки, выход атомов из ловушки, а также накачку. Последний член — потенциал взаимодействия при упругих и неупругих бинарных столкновениях между атомами, захваченными в ловушке (V_{coll}).

В настоящей работе рассмотрена модель атомного лазера с охлаждением атомов испарением [1, 2]. Предварительно охлажденные атомы поступают в ловушку из резервуаров, находящихся в термодинамическом равновесии. Предполагается, что атомы в ловушке могут находиться в четырех энергетических состояниях и характеризуются набором операторов рождения (уничтожения), a_i^{\dagger} (a_i), где *i* = 0, 1, 2, 3. Высоколежащие энергетические состояния ловушки предполагаются малозаселенными вследствие механизма стимулированного испарения, осуществляемого с помощью радиочастотного электромагнитного поля, приложенного к ловушке [1, 2]. Состояние бозе-конденсата достигается в нижнем энергетическом состоянии $|0\rangle$, откуда аккумулируемый конденсат поступает со скоростью κ_{out} в резервуар непрерывного спектра вакуумных состояний (выходное излучение лазера). Различные методы вывода бозе-конденсата из ловушки рассмотрены в работах [17, 25]. Накачка каждого из состояний ловушки осуществляется независимо со скоростями p_i из соответствующих каждому из этих состояний некогерентных резервуаров со средними числами заполнения $\overline{N}_i^{pump}.$ Процессы диссипации, связанные с обменом атомов в ловушке с соответствующими резервуарами со средними числами заполнения \overline{N}_i^{decay} , протекают со скоростями γ_i . Вопросы накачки атомного лазера из тепловых резервуаров рассмотрены в ряде работ [10, 19-21].

В случае бинарных столкновений между атомами в ловушке последний член в (14) представляет собой энергию взаимодействия при упругих и неупругих столкновениях между атомами в дипольном приближении. В рассмотренном нами ниже частном случае четырех уровней для него имеем

$$V_{coll} = V_{elast} + V_{inelast}, \tag{20}$$

где

$$V_{elast} = V_{jj} + V_{ij} = \sum_{j=0}^{3} \hbar g_{jjjj} a_j^{\dagger 2} a_j^2 + \sum_{i,j=0,i< j} \hbar g_{ijij} a_i^{\dagger} a_j^{\dagger} a_i a_j,$$

$$\begin{aligned} V_{inelast} &= \hbar g_{0211} a_0^{\dagger} a_2^{\dagger} a_1^2 + \hbar g_{1102} a_1^{\dagger^2} a_0 a_2 + \\ &+ \hbar g_{0312} a_1 a_2 a_3^{\dagger} a_0^{\dagger} + \hbar g_{1203} a_0 a_3 a_1^{\dagger} a_2^{\dagger} + \\ &+ \hbar g_{1322} a_1^{\dagger} a_3^{\dagger} a_2^2 + \hbar g_{2213} a_2^{\dagger^2} a_1 a_3, \quad (21) \\ g_{ijkl} &= g_{klij}^*. \end{aligned}$$

3. ПРОСТРАНСТВЕННОЕ РАСПРЕДЕЛЕНИЕ АТОМОВ В МОДАХ ЛОВУШКИ

Воспользуемся вариационным принципом для нахождения уравнений, определяющих пространственные зависимости $\{\phi_j(\mathbf{r})\}$ полевых операторов (1). Потребуем для каждого момента времени стационарности функционала

$$E\left[\phi_j(\mathbf{r}), \phi_j^*(\mathbf{r})\right] = \int d^3r \langle H(\mathbf{r}) \rangle$$

при вариации $\{\phi_j(r)\}$. Накладывая на базис функций $\{\phi_j(r)\}$ условие ортонормированности дискретного спектра,

$$\int d^3r \,\phi_i^*(\mathbf{r})\phi_j(\mathbf{r}) = \delta_{ij},$$

применим метод неопределенных множителей Лагранжа. Вариационное уравнение в этом случае принимает вид

$$\delta E - \sum_{j} \varepsilon_{j} \delta \int d^{3}r \, \phi_{j}^{*}(\mathbf{r}) \phi_{j}(\mathbf{r}) = 0, \qquad (22)$$

откуда следуют уравнения для собственных значений энергий уровней $\{\varepsilon_j\}$ и функций $\{\phi_j(\mathbf{r})\}$, вид которых может быть найден из соотношения, следующего из (22):

$$\frac{\delta}{\delta\phi_j^*} \int d^3r \langle \bar{H}(\mathbf{r}) \rangle = 0, \qquad (23)$$

где

$$\langle \bar{H}(\mathbf{r}) \rangle = \langle H[\phi_j(\mathbf{r})\phi_j^*(\mathbf{r})] \rangle - \sum_j \varepsilon_j \phi_j(\mathbf{r})\phi_j^*(\mathbf{r}) \langle n_j \rangle. \quad (24)$$

Определим теперь среднее значение полного гамильтониана (4) согласно

$$\langle H[\phi_j(\mathbf{r},t),\phi_j^*(\mathbf{r},t)]\rangle = \operatorname{Sp}\left(\sigma_{total}(t)H[\phi_j(\mathbf{r}),\phi_j^*(\mathbf{r})]\right),\,$$

где σ_{total} — полный оператор плотности системы и взаимодействующих с ней резервуаров. В результате усреднения с помощью зависящего от времени оператора плотности одночастичные собственные функции $\{\phi_j(\mathbf{r},t)\}$, а также собственные значения $\{\varepsilon_j(t)\}$ приобретают параметрическую зависимость от времени. Используя предположение о слабом взаимодействии системы с резервуарами (борновское приближение), рассмотрим полный оператор плотности в виде суммы:

$$\sigma_{total}(t) = \rho(t)f_0 + \Delta \rho^{(1)}(t), \qquad (25)$$

где $\rho(t) = \mathrm{Sp}_R(\sigma_{total}(t))$ — приведенный оператор плотности системы, представляющий собой след от полного оператора плотности по переменным резервуаров. Величина f_0 в (25) — произведение операторов плотности независимых резервуаров, находящихся в термодинамическом равновесии. В представлении взаимодействия последний член в (25) в первом приближении по потенциалу взаимодействия $V_{sR} = \sum_{\beta} V_{sR\beta}$ системы с резервуарами имеет вид

$$\Delta \rho^{(1)}(t) = \frac{1}{i\hbar} \int_{0}^{t} \left[V_{sR}(t'), \rho(t') f_0 \right] dt', \qquad (26)$$

где $[\dots,\dots]$ — коммутатор. Выполняя функциональное дифференцирование в вариационном уравнении (23) и используя (14)–(19), находим систему связанных дифференциальных уравнений для собственных значений вида (для любого j)

$$L_{coh}\left[\phi_j(\mathbf{r},t)\right] + L_{irr}\left[\phi_j(\mathbf{r},t)\right] = 0.$$
(27)

Когерентная часть в (27) возникает в результате взятия квантовомеханического среднего от членов, содержащих операторы системы, с помощью первого слагаемого в (25), тогда как члены, определяющие изменение волновых функций атомов в ловушке, обусловливаемые взаимодействием с резервуарами (необратимые процессы), содержатся во втором слагаемом в (27). Для когерентных членов получим

$$L_{coh} \left[\phi_j(\mathbf{r}, t) \right] = K_j(\mathbf{r}, t) \phi_j(\mathbf{r}, t) \langle n_j(t) \rangle + \\ + \sum_{i,k,l} \phi_k(\mathbf{r}, t) \times \\ \times \int d^3 r' \phi_i^*(\mathbf{r}', t) U(\mathbf{r} - \mathbf{r}') \phi_l(\mathbf{r}', t) \times \\ \times \langle a_j^{\dagger}(t) a_i^{\dagger}(t) a_k(t) a_l(t) \rangle, \quad (28)$$

где

$$K_j(\mathbf{r},t) = -\frac{\hbar^2}{2m}\nabla^2 + V_{tr}(\mathbf{r}) - \varepsilon_j(t)$$

Необратимые члены в (27), возникающие при взятии среднего с помощью полного оператора плотности (25), в рамках используемой нами модели оказываются пропорциональными средним значениям операторов резервуаров. Поскольку в расчетах нами предполагается, что резервуары являются некогерентными или находятся в термодинамическом равновесии, нетрудно убедиться, что

$$\langle b_{\beta,\lambda} \rangle = \langle b_{\beta,\lambda}^{\dagger} \rangle = 0, \langle b_{\beta,\lambda} b_{\beta',\lambda'} \rangle = \langle b_{\beta,\lambda}^{\dagger} b_{\beta',\lambda'}^{\dagger} \rangle = 0, \langle b_{\beta,\lambda} b_{\beta',\lambda'}^{\dagger} \rangle = \delta_{\lambda,\lambda'} \delta_{\beta,\beta'} \left(\overline{N}_{\lambda}^{(\alpha)} + 1 \right),$$

$$\langle b_{\beta,\lambda}^{\dagger} b_{\beta',\lambda'} \rangle = \delta_{\lambda,\lambda'} \delta_{\beta,\beta'} \overline{N}_{\lambda}^{(\alpha)}.$$

$$(29)$$

Вследствие этого необратимые члены в (27), пропорциональные $b_{\beta,\lambda}$, $\langle b_{\beta,\lambda}^{\dagger} \rangle$, $\langle b_{\beta,\lambda} b_{\beta',\lambda'} \rangle$, $\langle b_{\beta,\lambda}^{\dagger} b_{\beta',\lambda'}^{\dagger} \rangle$, равны нулю. Таким образом, в используемом нами приближении Борна–Маркова для взаимодействия системы с резервуарами имеем

$$L_{irr}\left[\phi_{j}(\mathbf{r},t)\right] = 0. \tag{30}$$

Это означает, что рассмотренные нами необратимые процессы не приводят к появлению дополнительных членов в уравнениях для волновых функций, но вносят при этом изменение во времени средних $\langle n_j(t) \rangle$ и $\langle a_i^{\dagger}(t) a_i^{\dagger}(t) a_k(t) a_l(t) \rangle$, входящих в эти уравнения.

В настоящее время для расчета распределения плотности конденсата используются различные приближенные уравнения, непосредственно следующие из общего уравнения (28). Рассматривая систему атомов в ловушке как канонический ансамбль, находящийся в термодинамическом равновесии, и предполагая, что число атомов в ловушке фиксировано [27–35], для стационарного в этом случае оператора плотности системы имеем

где

$$H_0 = \sum_j \varepsilon_j a_j^{\dagger} a_j \equiv \sum_j \varepsilon_j N_j, \quad \beta \equiv \frac{1}{k_B T},$$

 $\rho_{can} = \frac{\exp\left[-\beta (H_0 - \mu N)\right]}{\operatorname{Sp}\left[\exp(-\beta H_0)\right]},$

а µ — химический потенциал.

Среднее квантовомеханическое для операторов О системы в этом случае определяется как

$$\langle O \rangle_T = \operatorname{Sp}(\rho_{can}O) / \operatorname{Sp}(\rho_{can}).$$
 (32)

Использование (31) и (32) позволяет получить из (28) следующую систему уравнений для $\{\varepsilon_i, \phi_i\}$:

$$K_{j}(\mathbf{r})\phi_{j}(\mathbf{r})\langle n_{j}\rangle_{T} + \phi_{j}(\mathbf{r}) \times$$

$$\times \int d^{3}r'\phi_{j}^{*}(\mathbf{r}')U(\mathbf{r}-\mathbf{r}')\phi_{j}(\mathbf{r}')\langle n_{j}(n_{j}-1)\rangle_{T} +$$

$$+ \sum_{i\neq j}\phi_{j}(\mathbf{r})\int d^{3}r'\phi_{i}^{*}(\mathbf{r}')U(\mathbf{r}-\mathbf{r}')\phi_{i}(\mathbf{r}') \times$$

$$\times \langle n_{i}\rangle_{T}\langle n_{j}\rangle_{T} = 0. \quad (33)$$

Значение химического потенциала μ может быть определено для каждого фиксированного числа атомов в ловушке, поскольку в тепловом равновесии выполняется соотношение

$$\overline{N} = \langle N \rangle = \sum_{j} \left\{ \exp\left[\beta(\varepsilon_j - \mu)\right] - 1 \right\}^{-1}.$$
 (34)

Задача вычисления пространственного распределения конденсата становится значительно проще в предположении, что температура канонического ансамбля T = 0 и заселенным оказывается только нижнее состояние ловушки с волновой функцией ϕ_0 , при этом $\varepsilon_0 = \mu$. Поскольку число частиц в каноническом ансамбле фиксировано, операторы a_0 (a_0^{\dagger}) уничтожения (рождения) должны быть заменены *с*-числами равными $\sqrt{N_0}$, тогда из (28) получаем

$$\left[K_0(\mathbf{r}) + N_0 \int d^3 r' \phi_0^*(\mathbf{r}') U(\mathbf{r} - \mathbf{r}') \phi_0(\mathbf{r}')\right] \times \\ \times \phi_0(\mathbf{r}) = 0, \quad (35)$$

где

(31)

$$K_0(\mathbf{r}) = -\frac{\hbar^2}{2m}\nabla^2 + V_{tr}(\mathbf{r}) - \mu, \quad \varepsilon_0 = \mu$$

Уравнение (35) сводится к обычному уравнению Гросса-Питаевского, если предположить, что эффективное взаимодействие между атомами вида

$$U(\mathbf{r} - \mathbf{r}') = u\delta(\mathbf{r} - \mathbf{r}') + V_{dd}(\mathbf{r} - \mathbf{r}')$$

содержит только первое слагаемое (псевдопотенциал).

В качестве наиболее грубого приближения для распределения плотности может быть рассмотрено уравнение для собственных функций и энергий ловушки:

$$T(\mathbf{r})\phi_j(\mathbf{r}) = \varepsilon_j \phi(\mathbf{r}),$$
$$T(\mathbf{r}) = -\frac{\hbar^2}{2m} \nabla^2 + V_{tr}(\mathbf{r})$$

При этом предполагается, что столкновения атомов в ловушке не влияют на пространственное распределение атомного поля.

Приближение собственных состояний ловушки было использовано в известных нам квантовомеханических моделях атомного лазера [3–11], при этом параметры связи (16), (17) и (19) считались постоянными во времени вследствие предположения о том, что распределения атомного поля для всех мод ловушки не зависят от времени.

4. УПРАВЛЯЮЩЕЕ УРАВНЕНИЕ ДЛЯ ПРИВЕДЕННОГО ОПЕРАТОРА ПЛОТНОСТИ СИСТЕМЫ

Путем стандартного исключения переменных резервуаров в рамках борновского и марковского приближений нами получено «управляющее» уравнение для приведенного оператора плотности системы. Присутствие резервуаров приводит к появлению в уравнении движения необратимых процессов диссипации и вывода поля из ловушки, накачки и спонтанного распада. В рассматриваемой нами самосогласованной модели неравновесного бозе-газа параметры связи $\mu_{\lambda,i}(t)$, $\kappa_{\lambda,i}(t)$, входящие в гамильтониан (14), определяемые путем интегрирования по пространственным переменным волновых функций поля (формулы (16)–(19)), в общем случае зависят от времени. Поскольку самосогласованная схема расчета предполагает нахождение волновых функций $\phi_i(\mathbf{r}, t)$ путем решения уравнений (27), (28) для каждого момента времени, параметры связи также зависят от времени. Простейшее приближение собственных состояний ловушки, используемое в настоящее время в моделях атомного лазера [3–11, 19–29], приводит, вообще говоря, к нарушению самосогласованности при расчете динамики неравновесного бозе-газа. В настоящей работе зависимость от времени параметров связи, описывающих процессы накачки и потери в ловушке, обусловливаемая изменением во времени волновых функций мод ловушки, включена в рассмотрение.

Поскольку все операторы (20), (21), входящие в гамильтониан, билинейны по операторам рождения—уничтожения, вклад в когерентную (унитарную) составляющую эволюции диагональных матричных элементов равен нулю. Все упругие процессы столкновений имеют дисперсионный характер и влияют на изменение во времени недиагональных матричных элементов и, следовательно, определяют величину когерентности поля первого порядка.

Уравнение движения для приведенного оператора плотности системы, $\rho(t) = \text{Sp}_R(\sigma_{total})$, представляет собой сумму членов, ответственных за необратимые процессы накачки и вывода атомов, находящихся в ловушке, а также потери и спонтанные переходы атомов. В представлении взаимодействия имеем

$$\dot{\rho}(t) = \frac{i}{\hbar} [\rho, V_{coll}] - \frac{1}{\hbar^2} \times \\ \times \sum_{\beta} \int_{0}^{t} \operatorname{Sp}_{R} \left\{ \left[V_{sR\beta}(t), \left[V_{sR\beta}(t'), \rho(t')f_{0} \right] \right] \right\} dt'.$$
(36)

В представлении взаимодействия временные зависимости операторов рождения (уничтожения), относящихся к системе и резервуарам, определяются согласно уравнениям

$$O_j(t) = O_j \exp(-i\omega_{O_j}t), \quad O_j^{\dagger}(t) = O_j^{\dagger} \exp(i\omega_{O_j}t),$$

где ω_{Oj} — собственная частота *j*-го осциллятора поля. Подставив в (36) выражение (25) для полного оператора плотности, удержим в полученном уравнении члены до второго порядка по потенциалу взаимодействия. Воспользуемся далее в полученном уравнении выражениями для потенциалов взаимодействия вида (14). Предполагая, что константы связи в (14) не зависят от координат, и применяя борновское и марковское приближения [36], для приведенного оператора плотности получаем следующее управляющее уравнение:

$$\dot{\rho} = -\frac{i}{\hbar} [V_{coll}, \rho] - \frac{1}{2} \sum_{j} \left\{ \gamma_{j} \left[\overline{N}_{j}^{decay} D[a_{j}^{\dagger}] + \left(\overline{N}_{j}^{decay} + 1 \right) D[a_{j}] \right] + p_{j} \left[\overline{N}_{j}^{pump} D[a_{j}^{\dagger}] + \left(\overline{N}_{j}^{pump} + 1 \right) D[a_{j}] \right] \right\} \rho + \frac{1}{2} \sum_{j>0} \left\{ \gamma_{sp,j} \left[\overline{N}_{j-1j}^{phon} D[a_{j-1}^{\dagger}a_{j}] + \left(\overline{N}_{j,j-1}^{phon} + 1 \right) \times D[a_{j-1}a_{j}^{\dagger}] \right\} \rho, \quad (37)$$

где $D[O]\rho \equiv 2O\rho O^{\dagger} - O^{\dagger}O\rho - \rho O^{\dagger}O$ для соответствующего оператора O. Члены в управляющем уравнении, пропорциональные сдвигу частоты, обусловленному взаимодействием системы с резервуарами, в (37) опущены, и в дальнейшем они будут предполагаться малыми. При выводе (37) использовано свойство стационарности случайных процессов:

$$\langle O_1(\tau)O_2(0)\rangle = \langle O_1(0)O_2(-\tau)\rangle,$$

где $O_1(t)$ и $O_2(t)$ — операторы случайных процессов, относящиеся к резервуарам.

Скорости потерь и накачки, входящие в (37), имеют вид

2 ЖЭТФ, вып.6

$$\frac{\gamma_i}{2} = \sum_{j=0}^{\infty} \operatorname{Re}\left\{\int_0^{\infty} d\tau \, \exp(i\omega_i \tau) \mu_{out,j,i}^*(0) \mu_{out,j,i}(\tau) \left(\langle b_{out,j}(\tau) b_{out,j}^{\dagger}(0) \rangle - \langle b_{out,j}^{\dagger}(0) b_{out,j}(\tau) \rangle \right)\right\}, \quad i > 0, \quad (38)$$

$$\frac{p_i}{2} = \sum_{j=0}^{\infty} \operatorname{Re}\left\{\int_0^{\infty} d\tau \,\exp(i\omega_i\tau)\kappa_{p,j,i}^*(0)\kappa_{p,j,i}(\tau) \left[\langle b_{p,j}(\tau)b_{p,j}^{\dagger}(0)\rangle - \langle b_{p,j}^{\dagger}(0)b_{p,j}(\tau)\rangle\right]\right\},\tag{39}$$

а средние числа заполнения резервуаров накачки и потерь —

$$\overline{N}_{i}^{decay} = \frac{2}{\gamma_{i}} \sum_{j=0}^{\infty} \operatorname{Re} \left\{ \int_{0}^{\infty} d\tau \, \exp(i\omega_{i}\tau) \mu_{p,j,i}^{*}(0) \mu_{p,j,i}(\tau) \langle b_{out,j}^{\dagger}(0) b_{out,j}(\tau) \rangle \right\},\tag{40}$$

$$\overline{N}_{i}^{pump} = \frac{2}{p_{i}} \sum_{j=0}^{\infty} \operatorname{Re} \left\{ \int_{0}^{\infty} d\tau \, \exp(i\omega_{i}\tau) \kappa_{p,j,i}^{*}(0) \kappa_{p,j,i}(\tau) \langle b_{p,j}^{\dagger}(0) b_{p,j}(\tau) \rangle \right\}.$$
(41)

Отметим, что величины p_i , \overline{N}_i^{pump} и γ_i , \overline{N}_i^{decay} могут принимать как положительные, так и отрицательные значения в зависимости от свойств резервуара и динамики взаимодействия.

Как отмечено выше, нами будет рассмотрена упрощенная модель атомного лазера, учитывающая четыре нижних состояния ловушки. Нами предполагается, что накачка осуществляется только в первое возбужденное состояние $|1\rangle$ ловушки, т.е. $p_j = 0$, если $j \neq 1$. Вывод бозе-конденсата производится из нижнего состояния $|0\rangle$ в вакуум. В этом случае уравнение (37) может быть записано в следующей форме:

$$\dot{\rho} = -\frac{i}{\hbar} [V_{coll}, \rho] + \frac{1}{2} \sum_{j} \left\{ \gamma_{j} \left[\overline{N}_{j}^{decay} D[a_{j}^{\dagger}] + \left(\overline{N}_{j}^{decay} + 1 \right) D[a_{j}] \right] \right\} \rho + \frac{1}{2} \kappa_{out} D[a_{0}] \rho + \frac{1}{2} \left[p_{1}^{eff} \overline{N}_{1}^{eff} D[a_{j}^{\dagger}] + \gamma_{1}^{eff} \overline{N}_{1}^{eff} D[a_{1}] \right] \rho + \frac{1}{2} \sum_{j>0} \left\{ \gamma_{sp,j} \left[\overline{N}_{j,j-1}^{phon} D[a_{j-1}^{\dagger}a_{j}] + \left(\overline{N}_{j,j-1}^{phon} + 1 \right) D[a_{j-1}a_{j}^{\dagger}] \right\} \right\} \rho, \quad (42)$$

где введены обозначения

$$p_1^{eff} \overline{N}_1^{eff} = \gamma_1 \overline{N}_1^{decay} + p_1 \overline{N}_1^{pump},$$
$$\gamma_1^{eff} \left(\overline{N}_1^{eff} + 1 \right) = \gamma_1 \left(\overline{N}_1^{decay} + 1 \right) + p_1 \left(\overline{N}_1^{pump} + 1 \right)$$

 эффективные скорости накачки и потерь состояния |1>. Индекс «*eff*» в дальнейшем в записи будет опускаться.

В рассматриваемой модели стимулированное охлаждение атомов в ловушке осуществляется испарительным методом, при котором атомы из состояний |2> и |3> выводятся вследствие взаимодействия их с радиочастотным полем, изменяющим их электронные состояния. Считая, что скорости выхода из ловушки атомов из верхних состояний велики, т. е.

$$\gamma_2, \gamma_3 \gg p_1, \kappa_{out}, \Omega_j, \gamma_{sp,i},$$

 $i = 1, 2, 3, \quad j = 1, 2,$
(43)

для оператора плотности мы проведем адиабатическое исключение мод $|2\rangle$ и $|3\rangle$.

Используя гамильтониан (14), для операторов *a*₂ и *a*₃ в представлении взаимодействия запишем стохастические уравнения Гейзенберга–Ланжевена (см., например, [35]) в следующем виде:

$$\dot{a}_2 = \frac{i}{\hbar} [a_2, V_{coll}] - \frac{\gamma_2}{2} a_2 + \sqrt{\gamma_2} B_2(t), \qquad (44)$$

$$\dot{a}_3 = \frac{i}{\hbar} [a_3, V_{coll}] - \frac{\gamma_3}{2} a_3 + \sqrt{\gamma_3} B_3(t), \qquad (45)$$

где операторы B_2 и B_3 случайных источников удовлетворяют условиям

$$\langle B_i(t) \rangle_R = 0, \quad \langle B_i^{\dagger}(t) B_i(t') \rangle_R = 0, \langle B_i(t) B_i^{\dagger}(t') \rangle_R = \delta(t - t'), \quad i = 2, 3.$$

Используя в (44) и (45) члены V_{coll} , приведенные в (20), (21), пренебрегая дисперсионными членами вида $i\Delta_2a_2$, $i\Delta_3a_3$, обусловленными неупругими столкновениями, т. е. считая, что $\Delta_2, \Delta_3 \ll \gamma_2, \gamma_3$, нетрудно получить

$$\dot{a}_2 = -\frac{\gamma_2}{2}a_2 - ig_{0211}a_0^{\dagger}a_1^2 + \sqrt{\gamma_2} B_2(t), \qquad (46)$$

$$\dot{a}_3 = -\frac{\gamma_3}{2}a_3 - ig_{0312}a_2a_0^{\dagger}a_1 + \sqrt{\gamma_3} B_3(t).$$
 (47)

Согласно предположению об адиабатичности, положим $da_2/dt = 0$ и $da_3/dt = 0$. Решая алгебраические уравнения, найдем

$$a_2^{ad} = -i\frac{2g_{0211}}{\gamma_2}a_0^{\dagger}a_1^2 + \frac{2}{\sqrt{\gamma_2}}B_2(t), \qquad (48)$$

$$a_{3}^{ad} = -i \frac{4g_{0312}g_{0211}}{\gamma_{3}\gamma_{2}} a_{0}^{\dagger} a_{1}^{3} + \frac{2}{\sqrt{\gamma_{3}}} B_{3}(t) - i \frac{2g_{0211}}{\gamma_{3}\sqrt{\gamma_{2}}} B_{2}(t).$$
(49)

Подставив в члены $\gamma_2 D[a_2]\rho/2$ и $\gamma_3 D[a_3]\rho/2$ уравнения (42) адиабатические значения (48) и (49), после усреднения по резервуарам получим следующие члены управляющего уравнения:

$$\frac{\Omega_1}{2}D[a_0^{\dagger}a_1^2]\rho, \quad \frac{\Omega_2}{2}D[a_0^{\dagger 2}a_1^3]\rho,$$

где

$$\Omega_1 = \frac{4|g_{0211}|^2}{\gamma_2}, \quad \Omega_2 = \frac{16|g_{0211}|^2|g_{0312}|^2}{\gamma_2^2\gamma_3}. \tag{50}$$

В результате для необратимых процессов «управляющее» уравнение может быть записано в виде

$$\dot{\rho}|_{irr} = \left\{ \frac{\kappa_{out} + \gamma_0 \left(\overline{N}_0 + 1\right)}{2} D[a_0] + \frac{p_0}{2} \overline{N}_0 D[a_0^{\dagger}] + \frac{\gamma_1}{2} \left(\overline{N}_1 + 1\right) D[a_1] + \frac{p_1}{2} \overline{N}_1 D[a_1^{\dagger}] + \frac{\gamma_{sp}}{2} \left\{ \left(\overline{N}_{01} + 1\right) D[a_0^{\dagger}a_1] + \overline{N}_{01} D[a_1^{\dagger}a_0] \right\} + \frac{\Omega_1}{2} D[a_0^{\dagger}a_1^2] + \frac{\Omega_2}{2} D[a_0^{\dagger}^2 a_1^3] \right\} \rho. \quad (51)$$

Величина γ_{sp} представляет собой скорость спонтанных переходов между модами $|1\rangle$ и $|0\rangle$ ловушки, а $N_{01} = N(\omega_{phon,\lambda}) = \langle b^{\dagger}_{phon,\lambda}b_{phon,\lambda} \rangle$, $\hbar \omega_{phon,\lambda} =$ $= \hbar(\omega_1 - \omega_0) = \hbar \omega_{01}$ — среднее число фононов теплового резервуара спонтанного распада на частоте перехода $|1\rangle \rightarrow |0\rangle$ ловушки. При анализе спонтанного распада предполагается, что плотность состояний осцилляторов фононного резервуара слабо зависит от частоты [27, 28]. Параметры \overline{N}_0 и \overline{N}_1 , присутствующие в (51), есть средние числа атомов в резервуарах, связанных с состояниями соответственно $|0\rangle$ и $|1\rangle$, и вычисляются в общем случае с помощью формул (40) и (41).

Скорости Ω_1 и Ω_2 , определенные в (50), представляют собой эффективные скорости неупругих столкновений, участвующих в создании бозе-конденсата в основном состоянии ловушки и соответствующих, таким образом, вынужденным переходам в обычном лазере.

Отметим также, что условие (43), означающее, что скорости потерь нелазерных мод поля много больше скоростей накачки, когерентного выхода лазерной моды, а также эффективных скоростей неупругих столкновений, обеспечивает малость населенностей мод $|2\rangle$ и $|3\rangle$.

Для диагональных матричных элементов приведенной матрицы плотности $\rho_{n_0 n_1}(t) \equiv \equiv \langle n_0 n_1 | \rho(t) | n_0 n_1 \rangle$ получаем

$$\begin{split} \dot{\rho}_{n_0 n_1} &= \left[\kappa_{out} + \gamma_0 \left(\overline{N}_0 + 1\right)\right] \times \\ &\times \left[(n_0 + 1) \rho_{n_0 + 1, n_1} - n_0 \rho_{n_0 n_1}\right] + \\ &+ p_0 \overline{N}_0 \left[n_0 \rho_{n_0 - 1, n_1} - (n_0 + 1) \rho_{n_0 n_1}\right] + \\ &+ \gamma_1 \left(\overline{N}_1 + 1\right) \left[(n_1 + 1) \rho_{n_0, n_1 + 1} - n_1 \rho_{n_0 n_1}\right] + \\ &+ p_1 \overline{N}_1 \left[n_1 \rho_{n_0, n_1 - 1} - (n_1 + 1) \rho_{n_0 - 1, n_1 + 1} - \\ &- n_1 (n_0 + 1) \rho_{n_0 n_1}\right] + \\ &+ \overline{N}_{01} \left[n_1 (n_0 - 1) \rho_{n_0 + 1, n_1 - 1} - n_0 (n_1 + 1) \rho_{n_0 n_1}\right] \right\} + \\ &+ \Omega_1 \left[n_0 (n_1 + 1) (n_1 + 2) \rho_{n_0 - 1, n_1 + 2} - \\ &- (n_0 + 1) n_1 (n_1 - 1) \rho_{n_0 n_1}\right] + \\ &+ \Omega_2 \left[(n_0 - 1) n_0 (n_1 + 1) (n_1 + 2) (n_1 + 3) \rho_{n_0 - 2, n_1 + 3} - \\ &- (n_0 + 2) (n_0 + 1) n_1 (n_1 - 1) (n_1 - 2) \rho_{n_0 n_1}\right]. \end{split}$$

Квантовомеханические средние операторов числа атомов в нижнем энергетическом состоянии ловушки (лазерной моде) и дисперсии (флуктуации) числа атомов вычисляются с помощью диагональных элементов матрицы плотности согласно соотношениям

$$\langle n_{BC}(t) \rangle = \text{Sp}\left(a_0^{\dagger} a_0 \rho(t)\right) = \sum_{n_0, n_1} n_0 \rho_{n_0 n_1}(t), \quad (53)$$

2*

$$\langle (\Delta n_i(t))^2 \rangle \equiv \operatorname{Var} n_i = \operatorname{Sp} \left(a_i^{\dagger} a_i a_i^{\dagger} a_i \rho(t) \right) - \langle n_i \rangle^2 =$$
$$= \sum_{n_0, n_1} (n_i - \langle n_i \rangle)^2 \rho_{n_0 n_1}(t), \quad i = 0, 1.$$
(54)

Факторы Фано для бозе-конденсата в основном состоянии, а также для первого возбужденного состояния ловушки определяются как

$$F_i = \langle (\Delta n_i)^2 \rangle / \langle n_i \rangle, \quad i = 0, 1.$$
(55)

В дальнейших расчетах скоростями накачки всех мод, кроме моды $|1\rangle$, а также переходами атомов из лазерной моды $|0\rangle$ в термостат будем пренебрегать. Мы полагаем также, что выход бозе-конденсата из нижнего состояния ловушки происходит в вакуум со скоростью $\kappa_{out} \gg \gamma_0 (\overline{N}_0 + 1)$.

5. КВАНТОВАЯ ДИНАМИКА И СТАТИСТИКА АТОМНОГО ЛАЗЕРА

Самосогласованная теория атомного лазера, развитая в настоящей работе, предполагает, что уравнения для волновых функций полей $\{\phi_i(\mathbf{r},t)\}$ (27), (28), представляющие собой систему связанных уравнений для собственных значений, решаются методом итераций совместно с решением управляющего уравнения (51) для приведенного оператора плотности открытой системы. Решение такой связанной системы уравнений возможно лишь численно и представляется в настоящее время невозможным вследствие своей громоздкости. В данной работе нами проведены численные расчеты матрицы плотности системы в приближении собственных состояний ловушки, при котором константы диссипации и накачки не зависят от времени, т. е. в приближении использованном в [3-9, 11, 19-24, 27, 28].

Система связанных дифференциальных уравнений (52) для матричных элементов $\rho_{n_0n_1}(t)$ решалась нами численно для начальных условий $\rho_{n_0n_1}(0) = \delta_{n_0,0}\delta_{n_1,0}$, т.е. в случае отсутствия атомов в ловушке в начальный момент времени.

Характер динамики генерации атомного поля в рассмотренной нами трехуровневой модели лазера качественно зависит от соотношений между величинами скоростей p_1 накачки состояния $|1\rangle$ атомной ловушки, скоростью κ_{out} выхода бозе-конденсата нижнего состояния $|0\rangle$, скорости Ω_1 вынужденных переходов из состояния $|1\rangle$ в состояния $|0\rangle$ и $|2\rangle$, а также скорости γ_{sp} спонтанных переходов в состояния $|0\rangle$ из состояния $|1\rangle$ вследствие взаимодействия с резервуаром. В предположении, что величина γ_{sp} значительно меньше всех остальных указанных выше

Рис. 1. а) Зависимость от приведенного времени $\kappa_{out}t$ среднего числа атомов бозе-конденсата, $\langle n_0 \rangle$, дисперсии (флуктуаций) числа атомов, $\langle (\Delta n_0)^2 \rangle$, а также фактора Фано $F_0 = \langle (\Delta n_0)^2 \rangle / \langle n_0 \rangle$ для скорости накачки $p_1 = 100\kappa_{out}$, скорости столкновительных переходов $\Omega_1 = \kappa_{out}$ и среднего числа частиц резервуара $\overline{N}_1 = 1$ при $\gamma_{sp} \ll \Omega_1$. б) Динамика величин $\langle n_0 \rangle$, $\langle (\Delta n_1)^2 \rangle$ и $F_1 = \langle (\Delta n_1)^2 \rangle / \langle n_1 \rangle$ для тех же значений параметров, что и на рис. 1a

скоростей, режимы генерации атомного лазера могут быть разделены на два характерных типа. Если $p_1 > \Omega_1$ и $p_1, \Omega_1 \sim \kappa_{out}$, то для динамики развития генерации характерными становятся две ее стадии (см. рис. 1а, б): вначале происходит заселение состояния |1>, число частиц медленно растущего бозе-конденсата в состоянии $|0\rangle$ невелико, при этом флуктуации числа частиц резко возрастают до величин, характерных для хаотического теплового поля: $\langle (\Delta n_{BC})^2 \rangle \approx (\langle n_0 \rangle + 1) \langle n_0 \rangle$. На следующей стадии число атомов $\langle n_1 \rangle$ убывает, а $\langle n_0 \rangle$ растет с одновременным понижением флуктуаций $\langle (\Delta n_0)^2 \rangle$, приближающихся в стационарном состоянии к пуассоновской величине, равной $\langle n_0 \rangle_{ss}.$ При $p_1 > \Omega_1$ и $p_1, \Omega_1 \gg \kappa_{out}$ стационарный бозе-конденсат в состоянии |0> может находиться в сжатом субпуассоновском состояни
и $F_0\,<\,1$ с незначительным сжатием (см. рис. 1в).

В случае $p_1 \ll \Omega_1$ и $p_1, \Omega_1 \gg \kappa_{out}$ реализуется иной режим генерации бозе-конденсата (рис. 2). Стадия заполнения состояния $|1\rangle$ в динамике лазера отсутствует, также отсутствует резкий рост флуктуаций бозе-конденсата в состоянии $|0\rangle$. Флуктуации бозе-конденсата в состоянии $|0\rangle$. Флуктуации бозе-конденсата могут достигать субпуассоновских значений сжатого состояния (рис. 2*a*). Населенность $\langle n_1 \rangle$ состояния $|1\rangle$ оказывается малой для всех времен вплоть до установления стационарного состояния, флуктуации $\langle (\Delta n_1)^2 \rangle$ числа частиц становятся существенно субпуассоновскими: $F_1 < 1$. В этом режиме $p_1, \Omega_1 \gg \kappa_{out}$, независимо от значений скоростей переходов, населенность $\langle n_1 \rangle_{ss}$ составляет величину 0.333 при дисперсии числа частиц $\langle (\Delta n_1)^2 \rangle_{ss} = 0.667 \langle n_1 \rangle_{ss}$ (рис. 2*б*).

Систематические расчеты показали, что условием создания бозе-конденсата в сжатом субпуассоновском состоянии является соотношение $\Omega_1 \gg p_1 \gg$ $\gg \kappa_{out} \gg \gamma_1$ независимо от значения \overline{N}_1 . Величина сжатия возрастает при увеличении числа бозонов в конденсате, $\langle n_0 \rangle_{ss} \gg 1$, в условиях, когда $\Omega_1, p_2 \gg \kappa_{out}$. Для значений параметров лазера, подчиняющихся соотношению $\Omega_1 \gg p_1 \gg \kappa_{out} \gg \gamma_1$, при которых $\langle n_0 \rangle_{ss} \sim 10^6$, максимальное подавление флуктуаций достигает почти двукратной величины по сравнению с уровнем дробового шума; фактор Фано при этом может достигать величины $F_{0,ss} \approx 0.54$ (рис. 2*a*).

Расчеты показали, что при $p_1 > \overline{N}_1 \gg \Omega_1$, $p_1 \overline{N}_1 > \kappa_{out} \gg \gamma_1$ стационарное среднее число атомов в бозе-конденсате может быть оценено с помощью формулы

Рис.2. а) Динамика факторов Фано $F_{0,1}$ при $p_1 = 10^6 \kappa_{out}$, $\Omega_1 = 10^9 \kappa_{out}$ и $\overline{N}_1 = 1$ при $\gamma_{sp} \ll \kappa_{out}$. б) Динамика $\langle n_1 \rangle$, $\langle (\Delta n_1)^2 \rangle$ и F_1 для тех же значений параметров, что на рис. 2a: $\Omega_1 \gg p_1 \gg \kappa_{out} \gg \gamma_{sp}$. 6) Динамика $\langle n_0 \rangle$, $\langle (\Delta n_0)^2 \rangle$ для тех же значений параметров, что на рис. 2a

$$\langle n_0 \rangle_{ss} \approx \frac{p_1}{2\kappa_{out}} \left(\overline{N}_1 - \frac{1}{2} + \sqrt{\frac{1}{4} + \frac{\kappa_{out}}{\Omega_1}} \right).$$
 (56)

В работе [23] для модели атомного лазера, подобной рассматриваемой нами, управляющее уравнение для оператора плотности было преобразовано в уравнение Фоккера-Планка для Р-функции квазивероятности в фазовом пространстве амплитуды и фазы атомного поля. Стохастические дифференциальные уравнения для чисел частиц и фаз полей в модах ловушки, следующие из полученного уравнения Фоккера-Планка, решались в [23] в стационарных условиях для средних величин. В пределе $\langle n_0 \rangle \gg 1$ полуклассическое среднее число атомов в нижнем состоянии ловушки найдено в [23, 26] в виде аналогичном (56), но произвольный в рамках проведенных в этих работах расчетов знак перед квадратным корнем в указанных работах был выбран отрицательным. Точные квантовомеханические расчеты, проведенные нами с высокой точностью, подтверждают справедливость формулы (56), в которой знак корня положительный.

В то же время при $p_1 \sim \overline{N}_1, \Omega_1$ среднее число атомов в бозе-конденсате подчиняется формуле $\langle n_0 \rangle_{ss} = \eta p_1 \overline{N}_1 / \kappa_{out}$, где $\eta \approx 2$. Такое соотношение качественно согласуется с результатами расчета, приведенными для подобной схемы лазера в [3], а именно, $\langle n_0 \rangle_{ss} = 2p_1 \overline{N}_1 / 3\kappa_{out}$ для рассмотренного в этой работе случая $\Omega_1 > p_1, \overline{N}_1 \gg \kappa_{out}$. Порог генерации рассмотренного нами лазера выражается соотношением $p_1 \overline{N}_1 > \kappa_{out}$.

При расчетах, обсуждавшихся выше, предполагалось, что скорость спонтанных переходов между модами ловушки много меньше скоростей остальных процессов. Расчеты, проведенные в условиях, когда скорость спонтанных переходов сопоставима со скоростью выхода из ловушки когерентного конденсата: $\gamma_{sp} = 0.5 \kappa_{out}$ при $\overline{N}_{01} = 1$, приведены на рис. 3. Сравнение величин, характеризующих конденсат в таких условиях, со случаем отсутствия спонтанные переходы не влияют на величину стационарного среднего $\langle n_0 \rangle_{ss}$, но значительно увеличивают флуктуации $\langle (\Delta n_0)^2 \rangle_{ss}$ бозе-конденсата, а также изменяют динамику развития генерации атомного лазера.

Приведенные выше расчеты динамики лазера выполнялись нами в рамках трехуровневой модели в предположении, что $\Omega_2 \ll \kappa_{out}$. Чтобы оценить влияние высоколежащих энергетических уровней ловушки на характеры динамики и статистики генерируемого конденсата, нами проведены расчеты в условиях, когда $\Omega_1 \sim \Omega_2$, т.е. для четырехуровневой мо-

Рис. 3. Влияние спонтанных переходов на динамику атомного лазера. Сплошной линией изображена динамика характеристик бозе-конденсата для параметров спонтанных переходов: $\gamma_{sp} = 0.001\kappa_{out}$ и $\overline{N}_{01} = 0.001$, штрихами обозначены те же величины при $\gamma_{sp} = 0.5\kappa_{out}$ и $\overline{N}_{01} = 1$. Значения остальных параметров: $p_1 = 2\kappa_{out}$, $\Omega_1 = 0.1\kappa_{out}$ и $\overline{N}_1 = 1$

Рис. 4. Сравнение динамики изменения от времени фактора Фано для трех- и четырехуровневых схем атомного лазера при $p_1 = 800\kappa_{out}$, $\Omega_1 = \Omega_2 = 1.6 \cdot 10^4\kappa_{out}$, $\overline{N}_1 = 1$, γ_{sp}/κ_{out} , $\overline{N}_{01} \ll 1$ (четырехуровневая схема — сплошная линия) и $\Omega_2 = 0$ (трехуровневая схема — штриховая линия), значения остальных параметров те же

дели атомного лазера. На рис. 4 приведены зависимости от времени фактора Фано четырехуровневой схемы при $\Omega_1 = \Omega_2$ и трехуровневой схемы при $\Omega_2 = 0$. Сравнение показывает, что даже при значительной заселенности верхних уровней флуктуации бозе-конденсата в основном состоянии ловушки возрастают лишь незначительно (на несколько процентов) при больших значениях скоростей столкновительных переходов.

Проведенные расчеты позволяют сделать вывод о том, что создание бозе-конденсата с минимальными субпуассоновскими флуктуациями числа частиц возможно в режиме стимулированного охлаждения, при котором населенности верхних уровней ловушки всегда много меньше населенностей состояния |1>, через которое производится накачка, а также основного состояния |0> ловушки.

В ряде работ [27-35] исследовались флуктуации числа частиц бозе-конденсата в условиях теплового равновесия при фиксированном числе частиц в ловушке в рамках стандартного описания идеального газа с помощью канонического или микроканонического ансамбля. В работе [31] проведены численные и аналитические расчеты флуктуаций для канонического ансамбля не взаимодействующих между собой частиц. В [31] показано, что для 10²-10⁶ атомов в ловушке флуктуации бозе-конденсата почти линейно приближаются к нулю при $T/T_c \to 0$, где $T_c -$ критическая температура бозе-конденсации. Результаты работ [30, 32, 34, 35], полученные для микроканонического ансамбля (изолированного состояния атомов в ловушке), качественно согласуются с данными из [31], причем величина флуктуации для микроканонического ансамбля всегда больше, чем для канонического ансамбля. В [35] отмечается, что при малых значениях T/T_c величина флуктуации не зависит от полного числа N частиц. Аналогичные данные приводятся в работе [32] как для канонического, так и для микроканонического ансамблей.

Канонический ансамбль частиц с учетом спонтанных переходов между состояниями ловушки рассмотрен в [27–29], квантовомеханические расчеты также указывают на достижение фоковского состояния идеального бозе-конденсата при $T/T_c \rightarrow 0$.

Авторы работы [35] приходят к другим выводам. Использованная в этой работе теория Хартри–Фока–Боголюбова–Попова, учитывающая межатомные столкновения в ловушке при фиксированном числе частиц и постоянной температуре, указывает на стремление квантовой статистики атомного поля к пуассоновской, характерной для когерентного состояния бозе-конденсата при $T/T_c \rightarrow 0$. Расчеты в [33] проведены в условиях термодинамического равновесия ($T \neq 0$) для большого канонического ансамбля атомов с учетом столкновений между атомами в ловушке. Сравнение полученных в этой работе результатов с данными для канонического и микроканонического ансамблей идеального газа позволяет предположить, что в условиях теплового равновесия фоковское состояние поля с субпуассоновскими флуктуациями числа частиц возможно лишь для идеального газа при фиксированном числе частиц. Если же число частиц зависит от других параметров системы (большой канонический ансамбль), идеальный бозе-газ испытывает тепловые (хаотические) флуктуации при любой температуре, однако учет столкновений между атомами при низких температурах ($T < T_c$) приводит к уменьшению флуктуаций до пуассоновского уровня, характерного для когерентного состояния поля.

В настоящей работе нами показано, что в термодинамически неравновесных условиях возможно создание бозе-конденсата в состоянии с ограниченным по величине сжатием. Рассмотренная модель лазера позволяет достигать двукратного понижения флуктуаций атомного поля по сравнению с пуассоновским уровнем.

6. ЗАКЛЮЧЕНИЕ

Рассмотренная в настоящей работе модель взаимодействия системы бозе-частиц, заключенных в ловушке, с резервуарами указывает на возможность реализации как суперпуассоновских, так и субпуассоновских статистик создаваемого в ловушке бозе-конденсата. В схеме стимулированного испарительного охлаждения, при которой в процессе установления стационарного режима лишь небольшое число нижних энергетических состояний ловушки оказывается заметно заселено, субпуассоновское сжатие бозе-конденсата в основном состоянии ловушки не превышает двукратной величины.

Расчеты показали, что в рассмотренной схеме влияние верхних состояний ловушки на статистику бозе-конденсата оказывается незначительным. В то же время спонтанные переходы между состояниями ловушки приводят к значительному росту флуктуаций числа частиц.

Проведенные нами расчеты показали, что непрерывный атомный лазер на испарительном принципе позволяет создать как бозе-микроконденсат со средним числом частиц $\langle n_0 \rangle \sim 10$, так и бозе-макроконденсат с $\langle n_0 \rangle \sim 10^6$, находящийся в сжатом субпуассоновском состоянии. Однако микроконденсат характеризуется незначительным отклонением флуктуаций числа частиц от пуассоновского, тогда как в случае макроконденсата присутствует большое сжатие, достигающее почти

двукратной величины (фактор Фано $F_{BC} \rightarrow 0.5$). Условием генерации сжатого бозе-конденсата является малость скорости выхода из ловушки когерентного атомного поля и скорости спонтанных переходов между модами ловушки по сравнению со скоростями некогерентной накачки и вынужденных переходов при столкновении между атомами в ловушке. Полученные результаты позволяют сделать предположение о существовании схем атомных лазеров, генерирующих относительно небольшие бозе-конденсаты в состояниях близких к фоковскому. Такие лазеры могут рассматриваться как источники отдельных групп ультрахолодных атомов с заранее заданным точным числом частиц, необходимых для ряда актуальных в настоящее время экспериментов в оптике атомов и фотонов.

Автор благодарит А. Н. Ораевского за полезные обсуждения.

ЛИТЕРАТУРА

- M.-O. Mewes, M. R. Andrews, D. M. Kurn et al., Phys. Rev. Lett. 78, 582 (1997).
- I. Bloch, T. W. Hansch, and T. Eslinger, Phys. Rev. Lett. 82, 3008 (1999).
- M. Holland, K. Burnett, C. Gardiner et al., Phys. Rev. A 54, R1757 (1996).
- H. M. Wiseman and M. J. Collett, Phys. Lett. 202A, 246 (1995).
- 5. Ch. J. Borde, Phys. Lett. 204A, 217 (1995).
- U. Janicke and H. Wilkens, Europhys. Lett. 35, 561 (1996).
- M. Guzman, M. Moore, and P. Meystre, Phys. Rev. A 53, 977 (1996).
- H. M. Wiseman, A. Martin, and D. F. Walls, Quant. Semiclass. Opt. 8, 737 (1996).
- 9. H. M. Wiseman, Phys. Rev. A 56, 2068 (1997).
- M. J. Steel, M. K. Olsen, L. I. Plimak et al., Phys. Rev. A 58, 4824 (1998).
- R. Quadt, H. M. Wiseman, and D. F. Walls, Phys. Lett. 219A, 19 (1996).
- 12. R. J. C. Spreew, T. Pfau, and M. Wilkens, Europhys. Lett. 32, 469 (1995).
- 13. G. M. Moy, J. J. Hope, and C. M. Savage, Phys. Rev. A 55, 3631 (1997).

- 14. А. Н. Ораевский, ЖЭТФ 103, 981 (1993).
- 15. A. Imamoglu, R. J. Ram, S. Pau, and Y. Yamamoto, Phys. Rev. A 53, 4250 (1996).
- 16. А. Н. Ораевский, КЭ 24, 1127 (1997).
- 17. M. Naraschewski, A. Schenzle, and H. Wallis, Phys. Rev. A 56, 603 (1997).
- 18. B. Kneer, T. Wang, K. Vogel et al., Phys. Rev. A 58, 4841 (1998).
- 19. M. J. Steel and D. F. Walls, Phys. Rev. A 56, 3832 (1997).
- 20. J. I. Cirac and M. Lewenstein, Phys. Rev. A 53, 2466 (1996).
- 21. C. M. Savage, J. R. Roustekovski, and D. F. Walls, Phys. Rev. A 57, 3805 (1998).
- 22. M. J. Moore and P. Meystre, Phys. Rev. A 56, 2989 (1997).
- 23. O. Zobay and P. Meystre, Phys. Rev. A 57, 4710 (1998).
- 24. E. V. Goldstein, O. Zobay, and P. Meystre, Phys. Rev. A 58, 2373 (1998).
- 25. G. M. Moy, J. J. Hope, and C. M. Savage, Phys. Rev. A 59, 667 (1999).
- 26. H. P. Breuer, D. Fallen, B. Kappler and F. Petruccione, Phys. Rev. A 60, 3188 (1999).
- 27. M. O. Scully, Phys. Rev. Lett. 82, 3927 (1999).
- 28. V. V. Kocharovsky, M. O. Scully, S.-Y. Zhu, and M. S. Zubairy, Phys. Rev. A 61, 023609 (2000).
- 29. J. J. Hope, G. M. Moy, M. J. Collett, and C. M. Savage, Phys. Rev. A 61, 023603 (2000).
- 30. D. Jaksch, C. W. Gardiner, and P. Zoller, Phys. Rev. A 56, 575 (1997).
- 31. H. D. Politzer, Phys. Rev. A 54, 5048 (1996).
- 32. M. Gajda and K. Rzazewski, Phys. Rev. Lett. 78, 2686 (1997).
- 33. R. J. Dodd, C. W. Clark, M. Edwards, and K. Burnett, Opt. Express 1, 284 (1997).
- 34. N. L. Balazs and T. Bergeman, Phys. Rev. A 58, 2359 (1998).
- 35. S. Grossman and M. Holthaus, Phys. Rev. Lett. 79, 3557 (1997).
- 36. М. Лэкс, Флуктуации и когерентные явления, Мир, Москва (1974).