ZK9T®, 2003, rom 123, Beim. 5, crp. 1048-1058

© 2003

THEORETICAL INVESTIGATION OF THE RESONANT
HYPER-RAMAN SCATTERING BY OPTICAL PHONONS

L. E. Semenova’, K. A. Prokhorov

General Physics Institute, Russian Academy of Sciences
119991, Moscow, Russia

Submitted 1 November 2002

A theoretical model for the resonant hyper-Raman scattering in semiconductor crystals is presented. The Wan-
nier excitons are considered as intermediate states. The expressions for the resonant hyper-Raman scattering
cross section are obtained. The theoretical model developed allows taking into account different mechanisms

of the exciton—photon and exciton—phonon interactions.

PACS: 78.30.-j

1. INTRODUCTION

The Raman scattering (RS) is a powerful technique
in the study of excitations in semiconductors and their
interactions. The hyper-Raman scattering (HRS) is a
nonlinear optical process where two incident photons
are absorbed simultaneously and one photon of scat-
tered light and a phonon are created [1-4]. Because
the HRS is a three-photon process, it has other selec-
tion rules comparing to that of the Raman scattering,
and therefore allows obtaining information that is in-
accessible to RS methods.

Of special interest is the resonant HRS where the
energy of two incident photons or scattered photon
is close to that of electronic excitations [2,5,6]. In
this case, the HRS allows obtaining additional infor-
mation on electron—photon and electron-lattice inter-
actions and on some parameters of electronic transi-
tions. The resonant HRS by optical phonons was first
observed in a CdS crystal where resonant conditions
were provided by a temperature variation of the en-
ergy gap with a fixed frequency of the exciting radia-
tion [7]. Recently, the resonant HRS by optical phonons
in a cadmium sulfide was studied by means of a fre-
quency tunable optical parametric oscillator using a
KTP crystal [8]. Resonant effects in the HRS were also
reported in SrTiO3 [9,10], TiO2 [11,12], ZnSe [13, 14],
and Cu,O [15]. But publications devoted to theoreti-
cal investigations of the resonant HRS in semiconductor
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crystals are very scarce up to now. Some mechanisms
of the HRS were theoretically studied for the CdS crys-
tal [16-19]. In the paper by Garsia-Cristobal et al. [20],
the HRS process mediated by a dipole-allowed Frohlich
interaction was analyzed in detail and the HRS effi-
ciency was calculated with the excitonic effects taken
into account.

In this paper, a theoretical model for the resonant
HRS by optical phonons is given for semiconductor
crystals. We assume that virtual intermediate states
in the scattering process are the Wannier excitons.
We consider different mechanisms for the HRS in the
framework of the three-band model, i.e., we also take
transitions in higher-lying conduction bands and from
deeper valence bands into account. In Sec. 2, the basic
formulas for the HRS cross section are given. In Sec. 3,
expressions for the HRS tensor are derived using the
Green’s function formalism. Section 4 is devoted to a
discussion of different scattering mechanisms and their
contributions to the HRS efficiency.

2. BASIC FORMULAS

From a microscopic point of view, the first-order
HRS process can be described as follows: two incident
photons with the wave vector qr,, frequency wr, and
polarization e are absorbed simultaneously, a phonon
with the wave vector qp and frequency wp is then cre-
ated, and a scattered photon (qs, ws, €s) is finally
emitted. Using time-dependent perturbation theory,
the differential cross section for the one-phonon HRS
can be written as [21]
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where Hgr and Hpgp are the Hamiltonians of the

electron—photon and electron-lattice interactions, V' is
the crystal volume, N = ny/V is the photon density
of incident radiation, 1y, (ns) is the refractive index for
the frequency wy, (ws), |7) and |f) are the initial and fi-
nal states, |I;) (j = 1,2,3) are the intermediate virtual
states, and Fj, are the corresponding energies of the
electronic system. We assume that in the initial and
final states, the electronic system of a semiconductor is
in the ground state, but the virtual intermediate states
are the Wannier excitons.

In the dipole approximation, the matrix element for
a transition from the ground state to an excitonic state
is given by [22]

<7’LL —1 K, A|HER| >
e

(271') hNL

O(K —qr)eglyy  (2)

mnr wr
030 = {me, = Mo par } (L) _ . (3)
where p, = —ihd/0r,, e and m are the charge and

mass of the electron, 7., is the interband matrix ele-
ment of the momentum operator, x,(r) is the hydro-
genic wave function of relative electron—hole motion,
K is the exciton wave vector, A = (c,v,\) describes
an exciton belonging to the valence band v and the
conduction band ¢, and A = ({, ¢, m) denotes a set of
inner quantum numbers of the exciton: the principal
quantum number ( is n for the discrete spectrum or
k for the continuous spectrum. In expression (3), the
first term in the curly brackets describes the allowed
dipole transitions to s-excitonic states. The second
term corresponds to another type of the dipole tran-
sitions (weakly forbidden transitions) that cause an ex-
citation of p-excitons [22,23]. The parameter McavlOZ is
defined by [22]

ngaz—z

where the prime on the summation indicates that the
terms with vanishing denominators are omitted. The
matrix element describing the transitions between ex-
citonic states can be written as [24]

ﬂ-cnﬂ-nv

E -E,
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(4)

<7’LL — 1;K',A'|I§TER|nL;K.,A> =

e 27hNT,
= S(K'— K — L7,
L oL ( ar)eslls,, (5)

(El3 — hws)(E12 — 2th)(Ell — th) ' (1)
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+ 601051)’” (MCB’CB - M’fv’ﬁ) <X2"v’ ‘ﬁB’ ‘Xé\v> (6)

In expression (6), the first term corresponds to the tran-
sitions between excitonic states belonging to different
pairs of bands (interband transitions), whereas the sec-
ond term describes the intraband dipole transitions be-
tween excitonic states.

It is known that there are two types of electron—
lattice interactions [25]. This is the deformation poten-
tial interaction, which is due to scattering of electrons
by perturbations of a periodic potential caused by the
displacement of atoms of the lattice. For longitudinal
optical (LO) phonons, the deformation potential inter-
action is supplemented by the Frohlich interaction due
to the electric field associated with these phonons. In
the general case, the matrix element of the exciton—
lattice interaction can be written as [26]

(np+ LK AN|Hgrnp; K, A) =
vnp +1
=2 \/PV S(K'+qp —K)Pan, (7)
Paa = (X2 [PIX2,) =
= <Xé\’,v’ |®c’05vv’ eXP(_iaeQP . I‘) -
- @vv’(scc’ exp(iothp : r)‘Xi\v>7 (8)

where np is the phonon number. For the deformation
potential interaction in a crystal with two atoms per
unit cell,

en’n = En’n (9)

he)
= = — 1
Y=17p =1/ Sop I (10)

where ) is the cell volume, M* is the reduced mass of
atoms in the cell, d is the lattice constant [25, 26], and
Zpn is the deformation potential defined by Bir and
Pikus [27]. For the Frohlich interaction, ©,/, and 7y
are given by

and

6n’n = qusz’n(l - 571’71) + iq}glé'ﬂ'n (11)

and
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where q is the unit vector in the direction of qp, and £4,
and g are the optical and static dielectric constants,
respectively [26]. The parameter a,() is determined
by ae(ny = my )/ (m +mj}) where mg and mj, are the
effective masses of electrons and holes.

After the substitution of (2), (5), and (7) in expres-

Y

sion (1), the HRS cross section becomes

do _ 2rheSnswi(np + 1) "

dQ meind w?
2
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where the HRS tensor f,3+(q) is given by
|
H3A3PA3A2 Hﬁgl\l Hxlo (14)

Bagr(@) =7 >
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Here, the exciton energy is
h2q2
Ex(q) = Eey + S + AE), (15)

where M = m} + mj, E., is the energy gap, and
AE) = AE¢ is the energy associated to the relative
motion of the electron and the hole (i.e., AE, R/n?
or AE, = RE?, where R is the Rydberg constant of an
exciton). Because the photon wave vector is small, we
assume that Ex(q) = Ea(0) in what follows.

3. THEORETICAL MODEL

3.1. Scattering mechanisms

We consider the resonant HRS process, i.e., the pro-
cess where the double frequency of the exciting radia-
tion is close to the energy gap E.,. If only the dipole-
allowed transitions are taken into account, the absorp-
tion of the incident photon leads to the excitation of an
s-excitonic state, while another photon induces an in-
traband transition to a p-exciton or an interband tran-
sition to an s-exciton belonging to the higher lying con-
duction band or the lower valence band. In case of
the resonant HRS, where 2fiw; ~ E,.,, the two-photon

[EAs (as) — hws] [Ea,(2qr) — 2hwi] [Ea, (az) — fwr]

transition to a p-exciton is of interest. It is known
that for the first-order HRS, the phonon wave vector is
small and the scattering process can be considered in
the Brillouin zone centre. In the approximation of the
zero wave vector of the phonon, the intraband Frohlich
interaction reduces to
Prrp & OOy <Xé\’,v’ la - r‘Xé\v> (16)
and therefore leads to transitions between the s- and
p-excitonic states. When ¢p = 0, the corresponding
matrix elements of the deformation potential and in-
terband Frohlich interactions are given by
Pry ® {0 cOpyr — OpyrOeer } <Xi\'lv’ |X?y> (17)
and therefore connect states with the same parity.
Thus, in the HRS process considered, the deformation
potential or interband Frohlich interaction leads to the
transition to a p-exciton, but the intraband Frohlich
coupling causes the transition to an s-state. Because
the transition from the p-excitonic state to the ground
state is weakly forbidden, the intraband Froéhlich mech-
anism plays a leading role in the scattering. The cor-

responding HRS tensor is therefore given by
|

(1) B'5_

28 (0) (23

P2 (221 ) (X (0))”

B

>

A3, A2, 1

aﬁ’y(q) = VyeTew | Mee Mz?vﬁ]

(Bey+A

|
If the HRS is considered in the framework of the

three-band model and the weakly forbidden dipole
transitions to the p-excitons belonging to the highest
valence band v and the lowest conduction band ¢ are
taken into account, we can also identify two other scat-
tering mechanisms including two-photon transitions to
s-excitonic states. The exciton—lattice interaction then

. 18
E,\3—th)(EC,,-I-AE)\Q—Qth)(ECU-I-AE,\l—th) ( )

causes the transition to a p-exciton belonging to the
same pair of bands (the intraband Fréhlich coupling) or
induces the interband transition to another s-excitonic
state (the deformation potential or interband Frohlich

® (a)

interaction). The corresponding HRS tensors Bosy

and ﬂ(?’)

o3(a) are given by
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where Ao3(N2,wr) describes the two-photon transition

to the s-excitonic state,

Aapa,w) = (ME% = MJP) (=M

y Z < cz‘pﬁ ‘Xcv >p0/ (Xé\é (I‘))* |

r=0
Foy + ABy, — +
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+ Z (7r Oy —
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«
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“LF

The first term in (21) describes the two-photon exci-
tation of the s-exciton in the framework of the two-
band model where the absorption of the first photon
is accompanied by the weakly forbidden transition to
a p-excitonic state. The intraband dipole transition to
the s-excitonic state occurs when the second photon is
absorbed. The second term in (21) describes the contri-
bution of the three-band model where the intermediate
state is assumed to be an s-exciton composed of an elec-
tron from some higher lying conduction band ¢ and a
hole from the valence band v, or an exciton belonging
to the conduction band ¢ and a deeper valence band v'.
In this case, the second photon induces the interband
transition of the electron or the hole.

3.2. The Green’s function approach

To evaluate the HRS tensors obtained, it is nec-
essary to calculate the matrix elements and the sums
over all the intermediate discrete and continuous exci-
tonic states. The problem can be considerably simpli-
fied using the Green’s function method [28]. This ap-
proach was earlier used in theoretical investigation of
the two-photon absorption [24,29] and the first-order
resonant RS [26]. We have also applied the Green’s
functions for a theoretical treatment of the two-photon
resonant RS [30,31]. In accordance with this method,

Epriyn + AE>\3 - th)(Ew + AE)\Q — QHOJL) '

the sums over intermediate states can be expressed as
Whittaker functions W ,(z) [28,29],

Z Xé\v (I‘) (Xg‘v (0)) )

Eoy + AEy — hoor,

_ pI(1— ki)

2r
2rh2r Wiz /2 <fiL—a> (22)

and

XC'U XCU( ))*
87‘ Z E., + AE) — th

_ HL@2 - k1) Q
2nh?kra 1?2

2r
Wer 3/2 <a> . (23)

where I'(z) is the gamma function, and a and p are
the Bohr radius and the reduced mass of the exciton.
The parameter 7y, is defined as k1, = /R/(E¢y — hwr).
Hereafter, the respective indices «L» and «S» corre-
spond to the incident and scattered light. The Whit-
taker function has the integral representation [32]:

Zu+1/26—z/2

T2 —rtm

X /e—~tt—1/2—“+u(1 4 1)/ 2HRtagy

0

Wn,u(z) =

(24)
Re(p — k) > —%.

Because the frequency of the incident radiation is away
from the excitonic resonance for the resonant HRS
(k, < 1), the Green’s function approach enables us
to reduce the sum over A\; to the integral. Further,
after the substitution of explicit expressions for the hy-
grogenic wave function [33] and the r integration, the
sums over the intermediate states A\; can be calculated.
Taking the results obtained in [24, 29] into account, we
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Here, k} is defined for E i K = \/R'/(Epry — hwr).
The integrals Jy(n, &'), J2(n, k), and Jy(n, k) are given
in [24,29]:

T 1+6\" 2t +1—&'/nb\"
! :4
Ji(n, k") /dt( ; ) (2t+1+m’/nb>

0

2t+1—-r"/D

2t+1—/i/n>n

oo
16
J. =g [dtt' (1)
2(n. k) 3 n/ (1+1) <2t+1+n/n
0

3@ H3(r/n)* 26204 ) (142072 0,
[(2t41)2=(k/n)?]?
r t+1\" (2t +1—k/n\"
Ja(n, k) = 4/dt< t ) <2t+1+f~c/n>
y 2t+1 5, (30)
[(2t +1)% = (k/n)?]

where b = a/a’ (R' and o' are the Rydberg constant
and the Bohr radius of the exciton belonging to the
pair of bands, ¢’ and v').

When the energy of the scattered photon is below
the excitonic resonances (kg < 1), we can also apply
the Green’s functions to calculate the sums over A3 in
expressions (18) and (20). In the works devoted to
the second-order resonant RS, we calculated the sums
over Az similar to the ones in expressions (18) and (20)
for the intraband Frohlich interaction [30,31]. In the

(28) general case, taking the results obtained in [30] into
+ n account, we can write
[(2t +1)% = (s'/nb)]*’ i
(¢tm)
Z XC”U’ XC”U’|P|XC§) > —
II+AE)\3 hwg
9t+2 (TH—é)' (©) )
_ Yim (g, 0q)K'S nt+2 \| (n=0=1)! Jy ' (qa, kg, n), ¢=n, o
N (2€+1)!\/6(Ec/vr—ho.)5) e P, i ©) i
™ ! —
72+k+e/ F<€+1—E>Jl (qa,nS,E>, =k,
where
0 (©) ! (©) !
Q) _ ? Y I[ (aer"i 7’I’L) IE (ahQa K 7’I’L)
(@ 'm) = — {(—1) Ocrcdow = oyt~ Owdee = NET (1 (32)

Q = qa, Yim(Vy,¢q) is a spherical function of the angular coordinates of the phonon wave vector. The integral
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(e)(Q., k',m) is given by
0 Kl (—v
1+t (C+0)l(l+1—-v) (KQ
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) v=0

1 ! ! v—~0—2
x Re ¢ (—i)f~vH! <t+—-|— ~ —iKQ> X
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2 "m0
!
WF| —n4041,0—0-220+2: Kb . (33)
t+1Jr"C _irQ
2nb 2b

where F(a,b;¢; z) is the hypergeometric function.
To calculate the sum over A3 in expression (19), we applied the method that was previously used by us
in [30, 31], and obtained the expression (for the intraband Frohlich interaction and kg < 2)

. A3 P|)<C§,00 ) —ihq Jp(qa, ks, n) (=n
A3 r < Xew | — Y (¢00) 0 i ) i 9 34
Zp’YX r=0 Ecv + AE}\g _ hOJS Ecv _ hLLJS Xcv ( ) Jp(qa,/ﬁs.,i/k)., C — k, ( )
where
1 [Ip(a.Q, K, n) Ip(ahQ.n,n)}
KoM — — 4 — 35
@ mm =75 { (0.Q) (@.Q)? (3%)
and
1 n—1
Ip(Q, k,n) /dtt1 K14 ¢)'+* {Tm i 7| —
pply KR
2 2 2
< 1 & nQ)n_Z
R AR s 4
2 2 1 Q)
~ rQRe 1 K kQ 2 <t+§_§_27> (36)
(t AERE T 7)

Next, after the substitution of the relations obtained for the sums over A\3 and A in expressions (18)—(20), we
have

1 277/7}7‘71'”0 Tey (MB b — MB B) qJ(SJB'
Bl (a) =i X
apBy 31t R3a3
— n? =1 Jf(qa, kg,n)Js(n, kL)
X K3 K ,;2 fwr) —n2 — i +
. /°°dk KO+R2) I (aasss i/ R ) | o
1—e—27/k E(wr)+k2 =iy, '
0
h'yFM G0
B (@) = —i Rza; 0
=1 Jp(qa, ks,n) /Oo dkk  Jp(qa,ks,i/k) i
— Bos(n, Bas [ <,
X {,; W Ewn) —n 2 i g(n,wr) + J 1—e 27/F E(wn)+R2 =i s\ mwr (38)
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where {(w) = (E¢p — 2hw)/R, vo = /R, Ty is

an exciton damping, and JF(Q,s,n) is the integral
9)((2, t,n) defined for the intraband Frohlich inter-
action, i.e., for Oy = i¢" Spp-

We note that the expressions obtained for the HRS
tensors can be simplified. As mentioned above, in the
case of resonant HRS, the energy of the incident pho-
ton is far from the resonance (E., — fiwy, > R), and
the parameters £z and &’ are therefore considerably
smaller than unity. Further, it is not dlfﬁcult to show
that Jy (n, k), Ja(n, k) = [1 = (k/n) ] for k < 1.

We note that expression (37) obtained via the
Green’s function method is applicable for the compu-
tation of the resonant HRS cross section only if the
scattered frequency is below excitonic resonances, i.e.

0

two-photon excitation of a p-exciton followed by the
transition to an s-exciton due to the Frohlich inter-
action. We therefore do not consider this case here.
Although the expression obtained using the Green’s
function method has a limited applicability range with
respect to the photon energy, this method consider-
ably simplifies cumbersome computations of the HRS
cross section and at the same time enables one to take
all the intermediate discrete and continuous excitonic
states into account. Moreover, because the phonon
wave vector is small, an approximation of the above ex-
pressions can be obtained. In [30, 31, 35], it was shown
that JI'(Q, k,n) weakly depends on Q for KQ < 1 and
in the limit as @ — 0 coincides with [8, 16]

for hws < Eup —‘R (ks < 1). As a‘ result of using e FA1N" (2 41— r/n\"
the Green’s functions for the summation over A3, ex- Js(n,k) =4 [ dt ; S+ 1+ r/n
pressions (38) and (39) can be used only when kg < 2 0
and k' < 1. For higher frequencies of the incident ra-
diation, the exciton—lattice matrix elements must be « d+2—5 (40)
calculated and summation over all the intermediate [(2t +1)2— (m/n)2]3 .
excitonic states Ao and A3 must be performed. This
approach was used by Garsia-Cristébal et al. [20] to It can also be shown that as xQ@ — 0,
calculate the efficiency of the HRS induced by the  Jp(Q,&,n) — J3(n,x), where [16, 18]
|
95 [ 2t +1—k/n\"
J. == [dtt'rQ )t [ —
() = 5 [ der = (G
0
y 32t +1— k) [(2t+ 1) + (k/n)* = 262t + 1)] — k3(1 —n~2) (41)
[(2t +1)2 = (s/n)?)*
Expanding I (Q, k,n) in a series in ), we have
(©) ~ 1
(Qa Klvn) ~ 2!‘6’2a (60’051)1)’ - @vv’(scc’) Jl (Tl, K’,) (42)

for Q < 1. Thus, the approximation of the zero wave
vector of the phonon allows considerable simplifying
the computations. In addition, the phonon energy is
often greater than the exciton Rydberg, fiw, > R, and

the expressions obtained via the Green’s function ap-
proach can therefore be applicable in a sufficiently wide
frequency range.
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4. DISCUSSION

In the general case, different mechanisms of
electron—photon and electron—phonon interactions
can be involved in the resonant HRS process. Their
contributions depend on the electronic structure and
parameters of the crystal, the incident frequency,
the selection rules, and the scattering geometry.
Specifically, if the one-photon dipole transition is
allowed (m., # 0) and the two-photon transition is
forbidden in the semiconductor, the HRS process is
described by the tensor ﬂsﬁ)v(q) corresponding to the
intraband Frohlich scattering. Therefore, the LO lines
are dominant in the resonant HRS spectra.

For the crystal with the dipole-forbidden transition
(mey = 0), the resonant HRS process can be caused by
the two-photon excitation of an s-exciton. This «for-
bidden» HRS is described by the tensors ,Bf(ligv(q) and

%) (a), and therefore, both the Frohlich and defor-
mation potential scattering mechanisms are involved
in the resonant process. Consequently, an effect of the
deformation potential interaction in the hyper-Raman
spectra can be expected in this case. Such a «forbid-
deny» resonant HRS near the energy gap was experi-
mentally investigated in Ti;O, which is a centrosym-
metric crystal [11,12]. Because its lowest conduction
and top valence bands have the same parity, the inter-
band dipole transition is strictly forbidden in it. In the
rutile, Watanabe et al. [11,12] observed the resonant
HRS by transverse optical (TO) phonons along with a
scattering by LO phonons.

At first sight, the «forbidden» resonant HRS under
consideration is similar to the resonant RS in which
the one-photon interband transition is replaced by a
two-photon transition. As mentioned above, both the
two-band and three-band models contribute to the two-
photon excitation of an s-exciton. The parameter M2*
in expression (27) can be written as

aa __
Moy =

-3

c' '

cclscc vo! T ﬂ'gfvsvv’(scc’)ﬂ'?lv/ 43
= . (43)
c'v’

where spp = 14 E¢y/2Ep, . Taking into account that
M. — My, = m/u, it is easy to show that the differ-
ence of the two-band and three-band contributions is
contained in the expression for By (n,wr). In partic-
ular, B, (n,wy,) can be approximated by

Z (ﬂ'cc’(svv’ - 71'v’vfscc’)ﬂ'c’v’ %

Boo(nywy) & T
c'v

c' '

X [Jl (TL, IiIL) — QJQ(TL, h}L)] (44)

for Eci¢y, Eyy > E.,. Owing to this, the resonance pro-
file of the HRS can contain additional features caused
by the interference of dissimilar transitions. Their ap-
pearance is governed by the semiconductor parameters
and the exciton—lattice interaction mechanism.

Of special interest is the HRS if the one-photon and
two-photon transitions are allowed in a crystal. In this
case, the scattering mechanisms described by Baﬁ)w(q)

ﬂt(fﬁ)v( ), and Baﬁ’y( ) are involved in the hyper-Raman
process. It is obvious that the <<allowed>> HRS mecha-
nism, which is determined by Baﬁ’y( ), gives the main
contribution to the HRS intensity because it assumes
only the dipole-allowed transitions and is described in
the framework of the two-band model, as distinct from
5226)7( ) and ﬂam( ). This conclusion agrees with
experimental results because only the resonant HRS
by LO phonons was reported in CdS and ZnSe crys-
tals [8,13,14]. The «forbidden» scattering mechanisms
should not be neglected, however.

Because the «forbidden» resonant HRS is due to
the two-photon transition to s-excitonic states, the res-
onant enhancement for this scattering mechanism oc-
curs when the doubled energy of the incident photons,
2hwr , coincides with the energy level of the 1s exciton,
FEys. On the other hand, a resonant increase of the
«allowed» HRS occurs for other frequencies of the in-
cident radiation (2hwr, & Esyp), i.e., the resonance sets
earlier for the «forbidden» HRS than for the «allowed»
scattering. In addition, a new scattering mechanism
can be involved in the hyper-Raman process and can
contribute to the HRS intensity. It is known that the
intensive forbidden LO line was observed in the RS
spectra for some semiconductors when the incident fre-
quency was near the excitonic resonance [36,37]. Its
appearance was explained by the forbidden Frohlich
interaction that corresponds to the second term in the
expansion of the intraband Fréhlich coupling matrix
element,

Para ~ (X0l @ tx0y) +
iomg—my 21 A

— 2 T 45
qu mz_'_mz <Xcv|(qP ) |Xcv>7 ( )
and induces transitions between s-excitons. For the
resonant HRS, a similar scattering mechanism is ac-
companied by the following sequence of processes: the
two-photon transition to an s-excitonic state, the intra-
band transition between s-excitons due to the Frohlich
interaction, and the return of the electronic system to
the ground state. The corresponding tensor BS;L(q)
coincides with ﬂg’ﬁ)v(q) for O, = i¢" "6, . The es-
timations performed show that for 2hw; ~ E;s, the
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The contributions of three scattering mechanisms,

1859, (), 183, ()|, and [B5 (a)[?, to the HRS as
a function of the parameter {(wr) = (E.» — 2hw)/R
(curves 1, 2, and 3, respectively)

contributions of the «allowed» and «forbidden» scatter-
ing mechanisms, ﬂélg,y(q) and ﬂélgzy(q), can be compa-
rable providing substantially different effective masses
mj and m} and a small magnitude of v;,. As an ex-
ample, Figure shows the result of the computation of

the hyper-Raman tensors |5SL3)7((1)\27 |Bé26),y(q)\2, and

B (@) for ga = 0.15, mZ /m}, = 0.2, |meo| ~ h/d,
d=5A, R=0.03¢V, E., = 100R, hwp = 1.5R, and
I' = 0.02R. In the calculation, the virtual transition in
the one higher lying conduction band ¢ (E.. = 1.5E,,)
was only taken into account in expression (28). It
can be seen from the figure that |ﬂé?v(q)\2 sharply in-
creases as the doubled frequency approaches the two-
photon resonance with the 1s excitonic state. When
2hwy, ~ E1,, the contributions of «forbiddeny» and «al-
lowed» HRS become magnitudes of the same order. If
the «forbiddeny scattering mechanisms play an appre-
ciable role in the resonant HRS, they can affect the
frequency dependence of the HRS intensity. Such a
feature was observed in a ZnSe crystal where a small
enhancement was found for 2hwr, &~ F1s along with the
increase of the HRS signal as the doubled frequency
approaches the resonance with a 2p exciton [13]. Inter-
esting peculiarities of the HRS in a CdS crystal were
also observed [8].

The increase in the HRS intensity by LO phonons
(by more than two orders of magnitude) was found in a
CdS crystal when the doubled frequency of the exciting
radiation approaches the excitonic resonances [8]. The
signal then decreases, which was explained by attenua-
tion of the scattered light near the fundamental absorp-

tion edge. We apply the theoretical model developed
here to analyze the HRS in CdS. The 90°-scattering ge-
ometry with the incident radiation propagating along
to the optical axis z of the crystal was used in the exper-
iment [8]. In this configuration (e, is directed perpen-
diculary to the z axis), the dipole transition to the s-
excitonic state is allowed for the A, B, and C series. All
the three excitonic series can therefore participate in
the «allowed» HRS. As regards the «forbidden» mech-
anisms, the two-photon transition is allowed to the
dipole-forbidden s-exciton of the I's symmetry for the
A series and to the dipole-allowed s-exciton for the B or
C series. Therefore, in the configuration used in the ex-
periment [8], resonant HRS caused by the two-photon
transitions to s-excitons and p-excitons can contribute
to the HRS intensity. We evaluated the HRS cross sec-
tion as a function of the doubled energy of incident

photons for the «allowed» (ﬂsﬁ)v(q)) and «forbidden»

(ﬂfjgv(q) + B&;L(q)) scattering mechanisms separately.
In the calculation, we used the known parameters of
CdS (hwp = 0.038 eV, m} = 0.2m, mj = 1.34m [38])
and took the following values for the A, B, and C ex-
citonic series: FEq.,4 = 2.579 eV, E.,p = 2.596 eV,
E.oc = 266 eV, Ry = 0.028 eV, Rp = 0.03 €V,
Re = 0.026 €V [39,40], fis4 = 0.0014, fisp = 0.001,
and fisc = 0.0013 (here, fi5 is the oscillator strength
for the transition to the 1s exciton state) [41]. We
also used the energies of the excitons with n = 1
and n = 2 (Eqp=1 = 2.548 €V, Ep,=1 = 2.56 €V,
and Eyp—2 = 2.568 eV [40]) and the damping
(T4 = 0.004 eV, Tp = 0.005 eV, and T'c = 0.026 eV
[41]) known for the temperature at which the measure-
ments were made (7' = 80 K) [8]. We considered the
higher lying conduction band (E., ~ 6.2 ¢V) as the
intermediate band [42]. The estimations have shown
that the HRS intensity enhancement caused by the «al-
lowed» HRS is approximately an order of magnitude
less than the increase measured in the experiment when
the doubled energy of incident photons varies from 2.49
to 2.53 eV. On the other hand, the cross section gain
calculated for «forbidden» resonant HRS was found to
be comparable to the change of the HRS intensity ob-
served. Consequently, it is plausible that the resonant
HRS observed was induced by the «forbidden» scatter-
ing mechanisms. Let us consider expression (37) where
we can write M2 8 — M85 = (m/u)dzs for CdS. From
this fact, it transpires that the scattering mechanism
described by ,Bélﬁ)v(q) is effective if the polarization vec-
tor of the exciting radiation lies in the plane determined
by the photon wave vectors (i.e., gg # 0 in this case).
The «allowed» HRS mechanism is therefore forbidden
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if the incident radiation is polarized along the x axis
and the scattering light propagates in the y direction.
Only the «forbidden» scattering mechanisms then con-
tribute to the HRS intensity. Also the appearance of
the intensive forbidden 2L O line, which is characteristic
of the resonant RS in the HRS spectra near the exci-
tonic resonance, agrees well with our assumption. The
strong HRS by LO phonons in CdS for the two-photon
resonance with the 2p exciton was reported in [13]. But
the measurements were performed in the z(yy, z + )y
geometry where the scattering described by Bsg,y(q) is
allowed according to our model. The above discussion
shows that additional experimental research of the res-
onant HRS in a CdS crystal is of great interest.

5. CONCLUSIONS

A theoretical model for the resonant hyper-Raman
scattering in semiconductors was developed. The
model includes the Wannier excitons as intermediate
states in the scattering process. Different mechanisms
of exciton—photon and exciton—lattice interactions
were considered and their contributions to the HRS
cross section were analyzed for the crystals with both
allowed and forbidden dipole transitions. Agreement
with the experimental results was found. It was shown
that under the resonant conditions, the «forbidden»
HRS can give the contribution compatible with the one
of the «alloweds» HRS. The model developed allows
one to calculate the cross section for the HRS when
the doubled energy of incident photons is below and
in the range of excitonic resonances.

This work was supported by RFBR (grant Ne01-02-
16526).
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