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The influence of thermodynamic fluctuations on temperature pitch variations in planar cholesteric samples with
a finite surface anchoring energy is theoretically investigated in the framework of the continuum theory of liquid
crystals. It is shown that taking fluctuations into account allows explaining experimental observations, namely,
the absence of a temperature pitch jump hysteresis in sufficiently thick samples and its existence in thin ones.
A description of fluctuations, including two phenomenological parameters, is proposed. It allows us to predict
temperature points at which the pitch jumps in the sample between two configurations with the numbers of di-
rector half-turns differing by one, as a function of the anchoring energy, Frank elastic modulus, sample thickness,
and temperture (or fluctuation energy). It is shown that performing precise measurements of the pitch versus
the temperature in well-controled samples should allow determining the phenomenological constants and then
predicting the influence of fluctuations on pitch jump parameters in samples of an arbitrary thickness and (or)
surface anchoring energy. The corresponding calculations are performed using the Rapini-Popoular anchoring
potential. It is shown that the influence of fluctuations on the pitch variation is only negligible in sufficiently
thin layers. It is also noted that the results obtained could be useful for investigating pitch jump dynamics in

© 2003

the future.

PACS: 61.30.-v, 68.15.+e

1. INTRODUCTION

Temperature unwinding of the helical structure of
cholesteric liquid crystal layers of a finite thickness and
surface anchoring energy has not yet been investigated
sufficiently to clarify the physics of this phenomenom
and to ensure optimal applications of the correspond-
ing effects. Only cholesteric liquid crystal layers of a
finite thickness down to monomolecular layers [7] have
been investigated intensively and have revealed some
interesting phenomena that are in particular related
to the molecular anchoring at the layer surfaces. The
effects observed in the cholesteric liquid crystal layers

*E-mail: bel@landau.ac.ru

and their influence on the optical properties of the layer
are of a great applied value because just the electroop-
tics of liquid crystal layers forms a basis of numerous
efficient applications of liquid crystals in displays and
information processing devices.

Ag has been known since long ago, the temperature
evolution of the cholesteric liquid crystal structure [1, 2]
in samples with a finite surface anchoring energy can
be continuous at some ranges of the temperature with
jumpwise changes at certain temperature points, with
a strong hysteresis occurring when the temperature is
changed in opposite directions [2, 3]. This problem was
recently investigated in Ref. [4]. In this theoretical pa-
per, a simple model for temperature variations of the
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pitch was developed in the framework of the Frank elas-
ticity theory by taking the surface anchoring forces into
account.

However, recent experimental investigations [2, 3]
show that the simple model in Ref. [4], where the pitch
jump mechanism is related to the sliding of the direc-
tor at layer surfaces through the anchoring potential
barrier, is not directly applicable. The most probable
cause of the discrepancy between the theory and exper-
iments is that the theory neglects liquid crystal thermal
fluctuations in the layer. It turns out that this assump-
tion can be justified for sufficiently thin layers only. In
what follows, we therefore present the same model with
thermal fluctuations in the liquid crystal layer addi-
tionally taken into account. We show that taking ther-
mal fluctuations into account allows explaining the ten-
dencies observed in the experiments, predicting some
new effects accessible experimentally, and determining
the range of the parameters where the simple model is
valid.

In general our primary aim in this paper is to give
a qualitative an a semi-qualitative interpretation of the
avalable experimental data and to propose a model for
pitch variations.

2. ELASTIC MODEL WITHOUT
FLUCTUATIONS

We first summarize the main results of the simple
model without thermal fluctuations [4]. We examine
the cholesteric liquid crystal helix unwinding as the
temperature changes.

We consider a perfect planar layer of cholesteric lig-
uid crystal and assume that the anchoring energies and
the alignment directions are identical at both surfaces.
The pitch variations due to temperature changes are
determined by minimizing the free energy [1]

I(22d 2T 2 2
2 () O

F(T) = 2Ws(p)

where Ky is the twist Frank modulus, W (y) is the
surface anchoring potential, d is the sample thickness,
p(T) is the equilibrium pitch at temperature T in a bulk
cholesteric sample, pg(T') is the pitch measured at the
same temperature in the layer, and ¢ is the deviation
angle of the director with respect to the alignment di-
rection at the surface. Because the pitch value py(7T') in
the layer is determined by the angle ¢ and the equilib-
rium pitch p(T) is determined by the angle ¢o (7)) that
corresponds to a free deviation of the director from the
alignment direction at the surface (in the absence of
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anchoring), free energy (1) can also be expressed as a
function of these angles. As a result, the ¢ variations
due to pitch (temperature) changes can be described
by the equation [4]

6Ws((,9) 2[(22

(o)) d

[p = o (T)] = 0. (2)

The pitch jumps occur when the angle ¢ reaches
some critical value ¢. that depends on the shape of
the anchoring potential Wy (). The value of the free
rotation angle ¢o(7) at the jump point (or in other
words, the corresponding value of the pitch in a bulk
cholesteric liquid crystal) is related to the surface an-
choring potential by

oW (o) 1
o+ (—a@ )_ e O

where T} is the jump temperature and Sq = Koo /dW
is a dimensionless parameter (with W being the depth
of the surface potential).

Some results of this model, especially related to the
hysteresis phenomena, are presented in [4]. In particu-
lar, formulas are given for the height of the anchoring
barrier B between two director configurations in which
the numbers N of director half-turns differ by 1 in the
layer thickness.

In this paper, we give some additional results re-
lated to this simple model.

First of all, we examine the director deviation angle
for the temperature points of a special physical inter-
est. All our calculations are done using the Rapini-
Popoular anchoring potential [1,4, 5]

SDO(TJ‘) =

Ws(p) = —(W/2) cos” g,

for which the critical angle is p. = 7/4.

Figure 1 shows the director deviation angle ¢, (from
the rubbing direction) as a function of the parameter Sy
at the temperature corresponding to equal free energies
of the configurations with N and N + 1 director half-
turns in the layer thickness. The corresponding equa-
tion determining ¢, follows from (2) and is given by

sin(2¢e) + 4Sa[pe — /4] = 0. (4)

Figure 2 presents the director deviation angle (from
the rubbing direction) as a function of the layer thick-
ness for the temperature corresponding to equal free
energies of the configurations with N and N +1 director
half-turns in the layer thickness. We note that in thick
samples, the deviation angle ¢, approaches zero, while
in thin ones, it becomes larger, reaching = /4 (which is
the value of the critical angle ¢.) at zero thickness.
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Fig.1. The calculated director deviation angle (from

the rubbing direction) p. as a function of the parame-

ter Sy for the temperature corresponding to equal free

energies of configurations with N and N + 1 director
half-turns in the layer thickness

Fig.2. The calculated director deviation angle . ver-

sus the sample thickness normalized by the penetration

length K2 /W (other conditions are the same as in
Fig. 1)

In Figs. 3 and 4, we show the results of the cal-
culation of the barrier B, between two director con-
figurations with the numbers N of director half-turns
differing by 1 in the layer thickness as a function of the
parameter Sy (or the sample thickness) at the temper-
ature corresponding to equal free energies for N and
N + 1 configurations. We note that the expression for
B normalized by W can be found from Eq. (14) in [4],
which reduces to

B sin?(2¢,)

B, = cos?(2¢,) 35,

1
_57 (5)
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Fig.3. The calculated height of the barrier B, be-

tween director configurations in the layer differing by

1 in the number of the director half-turns N in the

layer thickness as a function of the parameter S, for

the temperature corresponding to equal free energies
for N and N + 1 configurations

(),4_"'|"'|"'|"'|

0.3F -

Fig.4. The calculated height of the barrier B. ver-

sus the sample thickness normalized by the penetration

length K> /W (other conditions are the same as in
Fig. 1)

where @, is the director deviation angle from the rub-
bing direction at the surface for the free director rota-
tion angle ¢g = 7/4 (see Figs. 1 and 2 for the calculated
values of @.).

It is useful to note that the limit of B, at Sq = 0,
or infinite thickness, is 0. The opposite limit at infinite
Sa, or zero thickness, is /2.

Figures 5 and 6 present the energy difference be-
tween N and N + 1 configurations versus ¢ and the
free rotation angle ¢q (director deviation angle from
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Fig.5. The calculated difference of the free energy of

configurations with N and N + 1 director half-turns

versus the free rotation angle ¢o; the calculations have

been performed (from the bottom to top curves) for
Sqe=1/2m, 1/7, 5/27, 5/m
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Fig.6. The calculated difference of the free energy

of configurations with N and N + 1 director half-turns

versus the director deviation angle from their alignment

direction ¢; the calculations have been performed (from

the left to right hand side curves) for S = 1/2m, 1/7,
5/2m, 5/m

the alignment direction) beginning at the point where

F(N)=F(N +1).

Calculations have been performed using the formula
deduced from Eq. (1)

3

F(N,go) = F(N + 1,00 = 7/2) _

AE = W
_ % — cos”[p(70)] —
_sm [299(8931_ 7/2)] + cos® [p(wo — 7/2)],  (6)

for Sq =1/2m,1/7,5/2n, and 5/7, where the argument
of ¢ indicates that ¢ is a function of ¢g. In what fol-
lows, we assume that the value of Sy is larger than 1/27
in order to ensure that only one director configuration
with the number of director half-turns differing from
N by 1 can have a free energy below that of the initial
configuration. This assumption allows us to disregard
pitch jumps with AN = +2, +3, etc., which sometimes
occur in jump-wise changes of the director field [10].

As mentioned above, this model must be improved
by including the effects of liquid crystal thermal fluc-
tuations in the bulk of the layer. The corresponding
modification of the model is presented in the next sec-
tion.

3. THE INFLUENCE OF FLUCTUATIONS ON
PITCH CHANGES

The expressions given in the previous section relate
thermodynamic equilibrium values of the parameters.
But close to the points where the pitch jumps (transi-
tions between N and N + 1 configurations), bulk ther-
modynamic fluctuations can change the position of the
transition points. For example, the hysteresis can de-
crease and even completely disappear because of fluc-
tuations. In terms of the height of the surface anchor-
ing potential between two configurations related to the
transition, this implies that if in the simple model [4]
the height of the barrier B must be equal to zero for
the transition to occur, in a model taking fluctuations
into account the transition can occur at B # 0, namely,
for B differing from 0 by gkpT, where T is the tem-
perature, kg is the Boltzmann constant, and ¢ is some
phenomenological coefficient to be determined exper-
imentally. This means that the thermodynamic fluc-
tuations of the energy of the liquid crystal allow the
system to overcome the barrier, even if the equilibrium
energy of the system is below the barrier.

It is now very essential to stress that the anchoring
energy is proportional to the area of the layer surface
and is independent of the thickness of the layer. In
contrast, the bulk fluctuations of the energy, E;, are
proportional to the square root of the volume [6],

Ef = \/(AE?) ~ gkgTVV = qkgTVdS, (7)
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Fig. 7. The thickness d; at which the hysteresis in the

pitch jumps disappears is given at the intersection point

between the two curves representing the barrier B. and

the fluctuation energy E; as a function of the layer

thickness normalized by the penetration length Koo /W

(in the calculations, it was assumed that do = 0.4 and
qkpT/W = 0.13)

where AFE is the deviation of the energy from the equi-
librium value due to fluctuations, V' is the volume of
the system, S and d are the surface area and the layer
thickness, respectively. In what follows, we do not at-
tempt to maintain numerical accuracy, but only indi-
cate the form of the answers. Because the height of
the anchoring barrier B is independent of d, the ratio
V/(AE?)/W grows proportionally to v/d, such that for
some value of the layer thickness d, the fluctuation en-
ergy /(AE?) becomes larger than the height of the
surface anchoring potential barrier B.

Because fluctuations are reduced near the solid sur-
faces, we rewrite Eq. (7) as

By = VAR ~ ghpTd—d0)S,  (8)

where dj is some effective «surface thickness» in which
fluctuations are suppressed. In principle, dy could be
found from a microscopic theory, but we consider it as
a new phenomenological parameter.

We note that the coefficient ¢ in Eq. (8) is of the
dimension [L]=3/. Tt can of course be made dimension-
less by replacing ¢kgT in Eq. (8) with [L,] */?(qkpT),
where L, is, for instance, the anchoring penetration
length I(QQ/W.

To find the sample thickness for which the fluctu-
ation energy becomes equal to the barrier B,, we cal-
culated the fluctuation energy Ey together with B, as
a function of the layer thickness (Fig. 7). Because the
value of B, given by Eq. (4) is the barrier height at the

Fi

g.8. The calculated jump angle ¢; for thicknesses
d< df

temperature point of equal free energies of two config-
urations differing by 1 in N, the intersection point of
the curves for B, and for 1/(AE?) in Fig. 7 gives the
thickness dy for which the hysteresis disappears in the
pitch jumps.

This is why the hysteresis in the pitch jump must
disappear at layer thicknesses larger than dy. The jump
value of the director deviation angle ¢; then coincides
with the director deviation angle . corresponding to
the temperature at which the configurations with N
and N + 1 director half-turns in the layer thickness
have equal free energies (see Fig. 2). This statement is
confirmed by experimental observations resolving the
hysteresis only for sufficiently thin samples [2, 3].

If the sample thickness is less than dy, hysteresis oc-
curs and the jump value of the deviation angle ¢; does
not coincide with the deviation angle ¢, and exeeds it,
while remaining smaller than the critical angle ..

The physical reason why the fluctuation energy be-
comes larger than the surface anchoring barrier at some
layer thickness is in the fact that the height of the
surface anchoring potential is independent of the layer
thickness, whereas the thermal fluctuation energy in-
creases as the layer thickness increases.

The results of the calculations for the jump angle
¢; at thicknesses smaller than d; and for the behav-
ior of the jump angle ¢; at thicknesses both larger and
smaller than dy are presented in Figs. 8 and 9, respec-
tively.

Figure 8 shows that the jump angle ¢; is essentially
reduced by fluctuations, and the hysteresis is therefore
also reduced. For the layer thicknesses d > dy, the hys-
teresis completely disappears, and the jump angle ¢;
is equal to .. For d < dy, the hysteresis reveals itself,
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Fi

g.9. The calculated jump angle ¢; at thicknesses
both larger and smaller than dy

but is less than in the model that does not take thermal
fluctuations into account. This is why the jump angle
@; is less than the critical angle ¢, that determines
the jump angle in the model neglecting thermal fluctu-
ations. It is only in sufficiently thin samples that the
jump angle ¢; approaches the critical angle ¢, (which
is /4 for the Rapini anchoring potential), when fluc-
tuations may be neglected.

4. TRANSITION IN A LIMITED AREA OF
THE LAYER

It was tacitly assumed above that the N — N + 1
transitions driven by fluctuations occur over the entire
surface area of the layer simultaneously. We now ex-
amine the role of the surface area S of the layer that
is subjected to the transition. The difference between
the anchoring barrier and the fluctuation energy can be
estimated as

E; — B ~+/(d—dy)S —bS, (9)
where b is some coefficient. If we assume that the layer
thickness d is fixed, the maximum of expression (8) is
reached for the surface area

g* — d — dy
4%

This is the surface area of the sample in which the tran-
sition is most favorable.

If the surface area of the sample is larger than S*,
we must analyze the situation where only a part of the
layer experiences a fluctuation-induced N — N + 1
transition. The question then arises about the energy

cost of the defect separating this region from the rest
of the layer. The answer can be found using an esti-
mate similar to (9) where we add the line energy of the
defect line. The corresponding estimate allows us to
determine the minimal surface area S,,;, of the region
of the layer subjected to the N — N + 1 transition,
which does not collapse and spontaneously increases in
size after nucleation.

It is known [1] that in a wedge Cano—Grandjean
structure, regions with NV and N + 1 half-pitches are
separated by linear defects (x disclination lines). We
therefore also assume that the region induced by fluctu-
ations with NV + 1 half-turns of the director is separated
from the rest by a linear defect of the same type.

Consequently, we must now find the maximum of
an expression of the type

Ef —B—E;~\/(d—do)S —bS —tV/S,  (10)

where the last term represents the energy E, of the
linear defect, proportional to its length and its energy
per unit length (which we assume to be independent of
the layer thickness, even if we know that it varies as
In(d/r.), where r. is the core radius). Expression (10)
passes through a maximum at

(T~ 1)°

5= 402

where it is assumed that
d—dy >t

(otherwise, the fluctuation energy is insufficient for cre-
ating a linear defect). It follows from Eq. (10) that
the maximal possible surface area for the fluctuation-
induced N — N + 1 transition is given by

(VT—d 1)’

= (11)

Smaee =
To ensure a further growth of the area with the N 41
configuration after the fluctuation transition, the con-
dition
SF(N +1) + K25V'S < SF(N) (12)
must be satisfied, assuming that the energy of the de-
fect is of the order of Kss per unite length. This con-
dition gives the minimal surface area of the fluctuation
that can grow,

- 2
K 29

FIN-F(N+1)] °

(13)

Smin =

where the corresponding differences F(N) — F(N + 1)
are shown in Figs. 5 and 6 as a function of ¢o; (¢;)
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for some values of S;. We note that after the pitch
jump to the N + 1 configuration, the angle o differs
from the initial angle at the jump point ¢; in the N
configuration.

Finally, the condition Sy,q; > Smin must be satis-
fied for a fluctuation transition to the NV + 1 configura-
tion to occur in the layer.

We note that expression (12), which gives the en-
ergy gain during the N — N +1 transition, may also be
useful in describing the dynamics of defects (associated
with the pitch jumps); this has not yet been studied
in detail, contrary to the case with homeotropic ancho-
ring [8].

5. ON THE DETERMINATION OF THE
PHENOMENOLOGICAL CONSTANTS

The phenomenological constants ¢ and dy intro-
duced above could in principle be found from the mi-
croscopic theory of liquid crystals. But the complexity
of liquid crystals and many uncertainties in their pa-
rameters do not allow us to expect a good accuracy of
the corresponding calculations. A more practical way
to determine them is therefore to compare the present
theory with experimental measurements.

As regards dg, it has a clear physical meaning and
can be estimated quite well. It must be of the or-
der of the penetration length Kas/W of the anchoring,
i.e., of a micrometer order with K5, = 107% dyn and
W = 1072 erg/cm? [1]. The parameter ¢ cannot be
estimated so easily (it can be found in a nonanalyti-
cal form in the framework of the rather sophisticated
approach of fluctuations in liquid crystal in restricted
geometries [9]).

We now analyze what measurements could be used
to extract the information about the phenomenologi-
cal parameters under discussion. Keeping in mind that
the coefficients in expressions (9) and (10) are related
to the introduced phenomenological parameters as

_ B Ko
N quT’ N quT7

(14)

we can find their values. Indeed, in accordance with
Eqs. (8) or (10) and (13), this can be done by first
measuring the sample thickness at which the hysteresis
in jumps of the pitch disappears and then by measur-
ing the minimal surface area of the region where the
N — N + 1 transition occurs and does not collapse
(i.e., grows) in later time. We thus obtain two rela-
tions that allow finding the two parameters dy and q.
The corrersponding measurements would consist of
measuring the director deviation angle ¢ as a function

of the temperature for different sample thicknesses d
(or strength of the anchoring W). From these mea-
surements, one can extract the jump angle ¢; and the
value of d (or W) at which the temperature hysteresis
for jumps disappears. Another measurement could be
performed at the temperature of the pitch jump and
would consist in measuring the minimal surface area of
the region that is subjected to the N — N + 1 tran-
sition due to the fluctuation and which begins to grow
after nucleation.

6. CONCLUSION

The results of the previous sections show that the
dependence of the temperature-induced pitch jump
hysteresis on the sample thickness can be explained
by taking thermal fluctuations into account. In ad-
dition, our phenomenological theory should allow us
to make quantitative predictions, provided the intro-
duced phenomenological constants are determined from
experiments. In theory, it should be sufficient to deter-
mine dy and ¢ in a sample of a given thickness d in
order to be able to predict the angle of the pitch jump
and the hysteresis value for any other values of d or
the anchoring strenth W. Unfortunately, the experi-
ments performed up to now do not allow us to deter-
mine these phenomenological constants. A specially
designed experiment for studying hysteresis phenom-
ena in cholesteric layers would therefore be desirable.
We can nevertheless give a rough estimate of ¢ from the
experiments described in Ref. [2]. In this work, hystere-
sis was observed for the layer thickness d = 4.8 ym and
was not observed for d = 18 pym. If we assume that
hysteresis disappears for d = 10 ym and the area of
fluctuation S is of the order 10* ym?, the dimension-
less ¢ = 0.2 (by taking L, = 1 pm). This value looks
quite reasonable, because according to [6], this quantity
can be estimated as y/Cy./C,, where C, and Cy, are
the total specific heat of the substance and the part of
specific heat related to liquid crystal elasticity, respec-
tively. It should also be mentioned that the method
chosen in [2,3] for measuring the pitch with the help
of spectral optical measurements in the region of the
reflection band, which are then fitted to the theoretical
curves (see, e.g., [11]), gives a very precise measure-
ment of the pitch. Other methods can be also used
for the same purpose. We note that in the situations
where Mauguin approximation of the cholesteric optics
is valid, measurements of the rotation of the polariza-
tion plane of the light crossing the layer should give

1046



MWITD, Tom 123, BHIm. 5, 2003

Temperature pitch variations in planar cholesteric layers ...

similar information about the changes of the pitch in
the layer.

We finally emphasize that this work could be used
as a starting point for studying dynamics of pitch jumps
in cholesteric layers.

Although the accuracy of our results is open to de-
bate and the results are mostly based on assumptions,
we believe that the proposed model for specific pitch
changes demonstrates the possibility of the scenario
considered in our paper, and a reasonable agreement
with experimental data shows that weare on the right
track.

The authors greatly appreciated the advices of
A. Muratov related to numerical calculations. One
of the authors (E. K.) is indebted to INTAS grant
Ne01-0105 for partial support.
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