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The joint influence of the polariton effect and Kerr-like nonlinearity on the propagation of optical pulses is stud-
ied. The existence of different families of envelope solitary wave solutions in the vicinity of the polariton gap is
shown. The properties of solutions depend strongly on the carrier wave frequency. In particular, solitary waves
inside and outside the polariton gap exhibit different velocity and amplitude dependences on their duration.
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1. INTRODUCTION

In recent years, a fast progress in the fabrication
of microcavities, organic and inorganic quantum wells,
etc. has resulted in a great interest in the investigation
of electromagnetic properties of these new objects, in-
cluding propagation of nonlinear pulses in such struc-
tures (see, e.g., [1-4]). For example, the propagation of
nonlinear pulses along a quantum well imbedded in a
microcavity was studied in [4] for two types of nonlin-
earities, a Kerr-like nonlinearity applied to envelopes of
sufficiently long pulses and a self-induced transparency
nonlinearity applied to short and intense pulses with
the frequency close to the two-level resonance. In this
study, the authors have chosen such propagation con-
ditions that the polariton effect of the formation of the
gap can be neglected in the dispersion law of an electro-
magnetic wave coupled to the polarization wave in the
medium. The problem of the pulse propagation can
then be reduced to either the nonlinear Schrodinger
(NLS) equation or the sine-Gordon equation with the
well-known soliton solutions. But the region of frequen-
cies in the vicinity of the polariton gap is very impor-
tant because some properties of the structures under
consideration manifest themselves in this region only.

We note that related problems were already stud-
ied a long time ago in the theory a nonlinear pulse
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propagation through a medium in the vicinity of ex-
citon resonances. In [5], the polariton self-induced
transparency pulses were found, but it was claimed
later [6, 7] that the polariton effect prevents the ex-
istence of self-induced transparency pulses. This con-
tradiction was resolved in Refs. [8], where it was shown
that polariton solitons exist due to a subtle balance of
small effects, and these solutions may therefore easily
be overlooked if a too rude approximation is made in
the evolution equations. The authors of [9, 10] later
confirmed this result in general and described some ad-
ditional remarkable properties of polariton self-induced
transparency pulses in the vicinity of the polariton
gap beyond the perturbation theory. Similar prob-
lems have also been studied for the Kerr nonlinearity
(see, e.g., Ref. [11] and references therein). But the ap-
proximations used were not justified well enough, and
some properties of polariton solitons remained unclear.
In [12], the governing equations for long pulses and the
carrier wave frequency sufficiently far from the polari-
ton gap were reduced to the perturbed NLS equation
for the envelope and the corresponding soliton solutions
were described. A closely related problem, pulse propa-
gation in a Kerr-nonlinear medium with a singular dis-
persion relation was studied in [13], where bright and
dark solitary wave solutions were found in the vicinity
of the linear resonance.

In this paper, we thoroughly investigate polariton
solitons in the case of the Kerr nonlinearity following
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the method developed by Akimoto and Ikeda [8] and
show the existence of localized solutions both inside
and outside the polariton gap.

2. MAIN EQUATIONS

We start with the standard equations of the classical
theory of electromagnetic waves propagating through
an isotropic medium (see, e.g., [14]),

’E ¢ O°E _4rm 9’P

or2 2 o2 2 o’ (1)
’P )
W—FUJTP-FX‘P‘ P=OéE, (2)

where € is the background dielectric constant and

_ co(w} —wi)
a= yy . (3)

These equations describe interaction of the electromag-
netic field E and the polarization wave P due to the
Kerr-like nonlinearity (measured by the parameter y).
We here ignore the effect of damping. The parameters
w3 and w? characterize the dispersion law w = w(k) of
linear waves, which is given by the equation

47 aw?

—, 2 2
F(k,w):wT—w —?m

= 0. (4)
As follows from (4), the dispersion law has a gap in the
frequency interval

wr <w < wr, (5)

where linear waves cannot propagate. As mentioned
above, the envelope function can be introduced for fre-
quencies sufficiently far from polariton gap (5), and
system (1), (2) can be reduced to the NLS equation
possessing well-known soliton solutions. Here, we are
interested in solutions of system (1), (2) for frequencies
near and inside polariton gap (5).

We seek the solutions in the form of stationary lin-
early polarized waves, such that E and P can be con-
sidered as the scalar functions

E(x,t) = E(t —z/V)e?, 6
P(x,t) = [u(t —2/V) —iv(t — x/V)]e®, ®)

where V' is the velocity of the pulse and the phase 6(x, t)
is

O(x,t) = kx —wt — ¢(t —a/V). (7)

Substitution of Eqs. (6) and (7) in Eqs. (1) and (2) leads
to the system of equations for the variables u, v, &, ¢,

ii—(w2—w%+2wé+<ﬁ2)u—2(w+¢'§)1}—

— v+ x(u® +0P)u=0af, (8)

ii—(wQ—w%+2w¢.5+gz.$2)v+

+2(w+ )i+ du+ x(u® + 7)o =0, (9)
(-2 e [(o-2) w2 (£-22) 54
- i_;r [u—u(w+¢5)2 _¢;U_2(w+ci5)i)] » (10

1 € = k eow 1 e) ] -
- v 9| 0¥ -0 —
(7o) de2 5=+ (7)o ¢
= S [i-vw+ )+ dur2w+di], )
where the overdot denotes the derivative with respect

to&=t—a/V.

3. LINEAR APPROXIMATION

We suppose that the variables u, v, £, and ¢ tend
to zero at the tails of the pulse (i.e., at infinite |£|), and
system (8)—(11) can therefore be linearized in these re-
gions as

i — (w? — wh) u—2wi = af, (12)

i — (w? — wh) v+ 2wit = 0, (13)

= — (ii —w’u —2wd), (14)
k Eqw ; ar . .
2(———>5=c—2(v—w2v—|—2wu). (15)
For the exponential dependence

(€,u,v) = (€0, u0, vo) exp(—[¢|/7) at [§] = oo, (16)
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where 7 is the duration of the pulse, system (12)—(15)
reduces to algebraic equations that define the «disper-
sion law» and the velocity of the pulse as functions of
7. It is convenient to introduce the variables

ck c

X = Y =— 1
= v=o (17)

and define the characteristic parameters

1 1
= AN=—_ 18
ST o (w? — w272’ (18)
such that the ratio
A? w?
=35 =0 (19)
s wi — wr
is independent of 7. The variable
2_ 2
A= ST (20)
Wy —wWr

measures the frequency in the vicinity of the polariton
gap. The cases where A2 > 1 and A? < 0 correspond
to the upper and lower polariton branches respectively.
Substituting Eq. (16) in Eqs. (12)-(15), we arrive at
the system

(A2 — AQ) ug — 2sQ%0y = Z—;&],

(A2 - AQ) vo + 250%uy =0,

(X2 —5°Y?) & = eo(1 — 8%)E + (21)
+4r[(1 = s%)ug + 2svg),

25 (XY — €g) Eo = 4n[(1 — 5%)vg — 25uy)].

Eliminating ug and vg from Eqs. (21) gives the sys-
tem

X2 _ S2Y2 —
1—52)(A? — A?) — 45202
S P :
€0 { s°+ (A2 = A?)2 1+ 452014 } ' (22)
A% — A% 4+ (1-52)02
XY =€ {1 + (AZ — A?)? + 45204 }

solving which with Eq. (19) taken into account yields

v (2)-

w

Sl — 52)(A% — A?) 440
2 (A2 — A2)2 + 47202

o [(A2 = A2 — 1)2 + 47202
+(1+3)\/ ey B

() -
=% —(1-s%+

(1 - s2)(A2 — A2) + 4A2
(AQ _ A2)2 +4A2Q2

+(1+52)\/(A2_AZ_I)ZJ”LA2Q2 . (24)

(AQ _A2)2 +4AZQZ

In the limit of a uniform wave (7 — 00), when A2 — 0
and s2 — 0, Eq. (23) reproduces the dispersion law of
linear plane waves,

(2 -a(-g)er o

which can be transformed into the standard form after
substitution of Eq. (20). To find the velocity of the
envelope of a linear wave, we must take the limit as
52 — 0 in Eq. (24), which gives

(5)2 =0 _Aaqa?-n+0°. (26)
v AS(A2 - 1) '

As could be expected, this velocity V' coincides with
the group velocity of propagating linear plane waves
with dispersion law (4).

In Eqgs. (23) and (24), the three parameters A2, s2,
and Q2 depend on the frequency w. For further inves-
tigation, it is convenient to express s> and Q2 in terms
of A?,

2 2
2 A 2 wr

2 _ A2 2 — —
Q" =A +Ii, S —m7 K —w2_w2. (27)

Equations (23) and (24) then become
A2

ck 2_1 1
w ) A2 4 g2

(1= A2/(A% + K2)) (A? — A2) + 47
(AQ _A2)2 +4A2(A2 +:‘i2)

AZ
+ <1+7A2+/€2> X

LA = A2 1) 448742 + 1)
(AQ _ A2)2 +4A2(A2 + 52)

-1

<0)2:A2+n2 A? N

v A2 T ATy
(1— A2/(A2 4 52)) (A? — A2) 4 4A2
(A2 A2 1 4A2 (A2 1 12)

A2
+<1+m>x

A2 — A7 -1 4 4A2(A% 4 2)
(A2 —A2)2 + AA2(A? + 12)

, (29)
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Fig.1. Dispersion relation of the carrier wave for dif-

ferent values of the pulse duration 7 measured by the

parameter A (see Eq. (18)); A = 0.01 (1), 0.1 (2),
1(3), 10 (4)

where we have also put ¢y = 1, which is equivalent to
the replacement ¢ — ¢/,/€g. We recall that in Egs. (28)
and (29), k2 is a constant determined by the system
under consideration, the parameter A? measures the
wave frequency, and the parameter A2 measures the
pulse duration.

Linear uniform waves cannot propagate with fre-
quencies within polariton gap (5), or

0<A?<1. (30)

But at finite values of 7, two branches of the dispersion
curve join into one curve. Plots of A% against (ck/w)?
at several values of A2 are shown in Fig. 1. As we can
see, these curves depend essentially on the values of A2,
and the usual approach involving the transition to the
NLS equation for the envelope function can only be ap-
plied at A <« 1 and sufficiently far from the polariton
gap. The velocity parameter (¢/V)? of the pulse as a
function of A% is shown in Fig. 2 at several values of AZ.
It has real values even at frequencies inside polariton
gap (30). It is important to note that if general non-
linear equations have a pulse solution of form (6)—(7),
then its velocity must coincide with its «linear approx-
imation» (29) calculated for the tails of the pulse.

4. SOLITON SOLUTIONS

To find soliton solutions, we return to exact equa-
tions (8)—(11) and replace differentiation with respect
to & = t — x/V by differentiation with respect to

AZ
1k
2t
of
,2:_
4k ]
I E N T AP BRI N B P R
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
c/V
Fig.2. Pulse velocity as a function of the carrier

wave frequency for different values of the pulse du-
ration T measured by the parameter A (see Eq. (18))
A? =0.01(1),0.1(2),1(3), 10 (4)

¢ = &/7. Taking Eqs. (17)-(20) into account, we ar-
rive at the system

A%ii — (A% + 20/ A2 + k26 + A%9%)u —
— 2(AVA? + K2 + A29)0 —

. ‘ 1
— A%0v + Y (u? +vP)u = =5 (31)

A% — (A% + 20V A2 + k29 4+ A23%)v +
+ 2(AVA? + &2+ A2)u +

+ A%0u+ Y (u? + 0o =0, (32)
A? {(%)2 _ 1} g {(A2 +#2) <%>2 1
+2AVA? + K2 {i—f - 1} d+ A2 {(%)2 - 1} ¢s2}5 -

— 4 [A%z —u(VAT ¥ R2 A —
~ A% — 2(AVAT K2+ A%)o], (33)

_|_

A? {(2)2 _ 1} ¢;g+2{wm(§_f - 1) ;

v
N2 N
+ A7 [(v) - 1} ofé =
= 4r [A%’ —o(VA2 4+ k2 4+ Ap) +
+ A2ud + 2(AV/AZ + K2 + A?@u], (34)
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where

- X
=4 35

and the overdot now denotes the derivative with respect
to ¢ =¢/T.

We consider long pulses with A? <« AZ2. For this,
we introduce a small parameter ¢ by

A2 =A% <1, (36)

such that Eqs. (31)-(34) can be expanded in powers of
e. Because Eqgs. (28) and (29) lead to different series ex-
pansions in different intervals of A%, we must consider
all these cases separately.

4.1. Long pulse above the polariton gap

We begin with the case of waves with
A? > 1, (37)

for which a nonlinear pulse can be represented as the
envelope of propagating linear waves with dispersion
law (25). For long pulses with

2«1, 2« A’ -1, (38)
the coefficients in Eqs. (33) and (34) can be represented
as power series expansions in ¢,

(ck>2 = 1 A* = 3x2+4A25% .

" Azt T Ara o)

1
=—p+a252+..., (39)

s [reN? ] AT +2A%% £ R,
A {(v) 1} = T ATAT o)
27252—}—...7 (40)

2k 212 452 (A% 4 2K%) ,

2616—ﬂ363 + ... (41)

We suppose that the functions &, q.ﬁ, u, and v can also
be represented in the form of series expansions,

E=¢" i e"E,
n=0

and similarly for &, u, and v. Analysis of equa-
tions (31)—(34) and (39)—(41) shows that for self-
consistency of the procedure, the series expansions of
the fields must be as follows:
E=¢e(&+ €28 +
¢ = e(fo + 20 +

u = ¢e(ug + &%us +

bl

o)
c ) (42)
c )
v=-clevy +3v3 +...).
Substitution of these expansions in Eqs. (31)-(34)
then yields a sequence of equations for the coefficients

&o, &3, bp, ... In the first approximation, we obtain the
relations
1 2V A2 + g2
=____ ¢ = 43
u ===z v o, (43)

which correspond to the plane wave solution with a con-
stant amplitude. In the next approximation, it follows
from Eqs. (31) and (33) that
v A2 + K2 g Sé 53 —

Az 0T 16r2A6T0 T

WA ¥ K
Tﬁogo,

/A2 7\ . (44)
(72 +1- 4%) Eo — (A? + k)& =

—(‘;;0—}—4

=&y + A7 A\%us —

A2 42
-

/A2
<52+4FA2U2—2§%9050> .

Combination of these two equations yields the equation
for & after simple transformations,

Eo =6+ £3 (45)

X
16m2A8a, O

If ¥ < 0, this equation has the soliton solution

o = Y3 (46)
where
[3272A8a, At — 3k% + 4A%K?
a= T7 ay = ATAT 1) , (47)
and

1 x c\2 (A 4 k?)?
=2(-7) ) ~m@oy @
This shows that V' is equal to the group velocity given
by Eq. (26) and is independent of the duration of the
pulse. Because

A 1 %

== —F, )2:72 5
A ,/w2—w%7' wL—wT

9
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we obtain

o 327r2A6a21 1 . (49)
I CTPRED| B

T Vv

This is the NLS type soliton solution.

We note that the above calculations were done for
arbitrary values of k. But in a majority of applications,
we have

(wp — wr) K wr,

that is,
2
N Wy wr

" w? —wr - 2(wr —wr) > (50)

Expansions (39)—(41) are then valid only under the con-
dition that

1
2l 1 51
e 4(wL —wT)2T2 < ’ ( )
which implies that the spectral width of the pulse of
the order of 1/7 is much less than the width of the gap
(wr, — wr). In fact, condition (51) is already satisfied
suffuciently well for

Wwp — Wt
2

~

1
_—

4.2. Long pulse at A%2 =1

In this case, the pulse cannot be described by the
NLS equation for the wave packet of waves with wave
vectors around some nonzero value. From Eqs. (28)-
(29), we have the expansions

2
<%> —1l=-14+V1+4+r2+...=

w

= —1+ae+..., (52

2
o[@r-1-
2\3/2 a3 0 1) o
=(14£k%)%c— |2k +§n +§ et 4. =
:’_)/15—’_)/252+..., (53)

2A c2—]‘“—1 =2K% —4(1 + 28%)K%3 4+ ... =
T

=Pre— P’ +... (54)

We again seek solution of Egs. (31)—(34) in the form of
series expansions, which in this case are

E=eV2(E&+e&1+...),
¢251/200+...7
u=¢e"?(ug+ecur +...),

v=2e32p +....

In the first approximation, we have

é U1 :2\/1+I€27..L0. (56)

Ug = — )
4T

In the next approximation, Eqs. (31) and (34) give

~ 3 51
T XU = g (57)
\ 1+I<.}2(é;0+51—07150 = —47u;.
Hence,
X o3
E1+4 = — &S,
B i T R (58)

V1+ RQ((‘.;;(] - 50) = —(51 +47TU1)7

and we arrive at the equation for &g,

X 3

— £
16721 + K2 0

Thus, we obtain the soliton solution

1/2 2 2\1/2
£ = %7 a = 3271-(1+h:)’ (60)
SHe-n] VTR

T \%

g() =& + (59)

where V' is given by

== @

Taking into account that

we can rewrite Egs. (60) and (61) in terms of the phys-
ical parameters

2
vt
ch [— (t— —)}

T (62)

c\?2 w3 T
-) =14 =L
(V) + w? — w?
The velocity of the pulse therefore depends on 7 (curves
in Fig. 2 intersect the straight line A? = 1 at different
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points depending on 7). Although the parameter x dis-
appeared from Eq. (62), expansions (52)—(54) are valid
for k > 1 provided the inequality (ke)? < 1 is satis-
fied. The ratio of the amplitude of solution (62) to that
of solution (49) is of the order of magnitude

1
\/—K—SNV(WL—WT)T>>17

that is, the amplitude at the boundary of the gap is
much greater than the amplitude of the soliton solution
sufficiently far from the gap. This implies that the pulse
must be sufficiently intense to deform the gap to such
extent that the wave propagation with the frequency
A? = 1 becomes possible. Beyond the gap, there are
linear waves that can propagate with arbitrarily small
amplitudes and nonlinear effects must only compensate
dispersive spreading of the wave packet built from lin-
ear waves.

4.3. Long pulse inside the polariton gap

For frequencies inside the polariton gap,
0<A?<1, (63)

we have the series expansions

(A* 4 K2)?

ck 2—1——1+ e+...=
" STt oAyt T T
= —14ae’+..., (64)
Lo ] (L= AYA? + )
A {(v) 1}_ A? *
A8+ 5A1K? — 3kt + A2k (4K% — 3) 2,
A1 A?) e2+...=
=90+ %" +..., (65)

2A<$—5—1> :%s—ws?’ﬁ-...:
= pre— P’ +..., (66)
where
1 -A% s A (67)

Because 49 # 0, the soliton solution is obtained in the
first approximation, and therefore £ and u do not have
a small factor proportional to a power of €. The equa-
tions of the first approximation are given by

1
— A%+ yud = Es, (68)

2

%5 + & = —4nu. (69)
If we were able to express u in terms of £ from Eq. (68)
and substitute the result in Eq. (69), we would obtain
the equation for £ having solitary wave solutions. Un-
fortunately, that can be done only numerically except
in the case where

IV|u? < A2 (70)

In this limit, we have

~ 1 _ X 3
UE - at T Arananpt (71)

and Eq. (69) takes the form

b &3, (72)

€=t T5mno(1 = A7)

It has the soliton solution

o \/327T2A6(1—A|2)(w% —w)
X

X ;, (73)

NHES)

where the pulse velocity is given by

(L) =14 UmADA Nl —u
Using the estimate
yo O
A7 A2’
we can transform condition (70) into
1-A?< 1. (75)

The frequency must therefore be sufficiently close to
the upper limit of the polariton gap.
Solution (73) only applies to sufficiently long pulses

2 «1-A% (76)

We note that in this case, the amplitude is independent
of the pulse width 7, but its velocity strongly depends
on 7. If kK > 1, the ratio of amplitude (73) to ampli-
tude (49) is of the order of magnitude

1

— ~ (wp —wr)T > 1,

KE
and as could be expected, is much greater than the am-
plitude of soliton solution (62) at the boundary of the

gap.
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When condition (75) is not satisfied, we must solve
Eqs. (68) and (69) numerically. For this, we introduce
new variables
_FE

VIR VIXI
where Y = —|X|. Equations (68) and (69) then reduce
to

U

€ (77)

1- A2 ..

1
AU+ U3 = —4—E,

™

(78)

Numerical solution of the first equation in (78) yields

the function
U=U(E), (79)

substitution of which in the second equation in (78)
gives the differential equation for E,

1-A? i’E
or
d*E E
¢ __ViE) (s1)
dc? oF
where
) E
V(E) = A L +4 /U(E’)dE’ (82)
“1-Aaz |2 T
0

can be considered as a potential in which a particle
moves in accordance with the Newton equation (81).
A typical plot of potential (82) is shown in Fig. 3.
The maximum value of E (the soliton amplitude a)
is determined by the point E = a where V(E) van-
ishes. The solution of Eq. (80) with the initial condi-
tions E(0) = a and E'(0) = 0 then provides the soliton
solution. We have done these calculations for several
values of A. The results are shown in Fig. 4, where the
dependence of the pulse profile £ on the scaled vari-
able /A2/(1 — A?)( is plotted. The dependence of
the amplitude on A is shown in Fig. 5.

5. CONCLUSION

We have studied the nonlinear optical pulse prop-
agation in a frequency region in the vicinity of the
polariton gap. The problem is described by a coupled
set of the Maxwell equations for the electromagnetic
field and a material equation for the macroscopic
polarization allowing a Kerr-like nonlinearity. To solve
this nonlinear system of equations analytically, we used

0.25

TTTTT <

~;

o

—0.25
—0.50
—0.75
—1.00
—1.25
—1.50

15 20

5 10

=] ||||||||||||||||||||||||||||||

=

Fig.3. The potential V' as a function of the electric

field amplitude for A = 0.2
E
[ T | 1T | L | L L | L | 1T | T ]
20 .
15 .
10 .
5E .
of ]
—6 —4 -2 0 2 4 6
(A%/(1—A%)%¢
Fig.4. Profiles of solitary wave solutions for three

different values of the carrier wave frequency (see
Eq. (20)) inside the polariton gap; A = 0.2 (1),
0.6 (2), 0.8 (3)

a
I T T T ]

20 F .
15F .
10 .
3 -:
i N R B T SR B
0 0.2 0.4 0.6 0.8 1.0

AQ

Fig.5. Dependence of the amplitude of the solitary

wave on the carrier wave frequency (see Eq. (20)) in-
side the polariton gap
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the approach [8] based on series expansion in powers of
a small parameter related to the width of the polariton
gap and pulse duration. Different bright solitary wave
solutions depending on the position of the carrier
wave frequency with respect to the polariton gap are
found and their parameters are expressed in terms of
material system parameters. QOutside the polariton
gap, the soliton solution corresponds to the well-known
soliton of the NLS equation for the envelope of a wave
packet made of plane waves. But inside the polariton
gap, there are no plane wave solutions and the notion
of their envelope loses its physical sense. Nonetheless,
solitary wave solutions can occur there with sufficiently
high values of the electromagnetic field strength such
that the local value of the polariton gap diminishes
in the center of the polariton gap due to the Kerr
nonlinearity.  The difference in physical situations
outside and inside the polariton gap is reflected in
different dependences of the soliton amplitude on the
pulse duration 7: the amplitude is independent of 7
inside the gap, is proportional to 7-1/2 at the gap
boundary, and is proportional to 77! sufficiently far
from the gap.

S. D. thanks Marseilles University for kind hospital-
ity and NATO Linkage Grant PST. CLG. 978177 for
partial support.
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