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POLARITON EFFECT IN NONLINEAR PULSE PROPAGATIONS. A. Darmanyan a*, A. M. Kam
hatnov a**, M. Nevière ba Institute of Spe
tros
opy, Russian A
ademy of S
ien
es142190, Troitsk, Mos
ow Region, Russiab Institut Fresnel, Fa
ulté des S
ien
es et Te
hniques de Saint Jérome13397, Marseille, Cedex 20, Fran
eSubmitted 15 July 2002The joint in�uen
e of the polariton e�e
t and Kerr-like nonlinearity on the propagation of opti
al pulses is stud-ied. The existen
e of di�erent families of envelope solitary wave solutions in the vi
inity of the polariton gap isshown. The properties of solutions depend strongly on the 
arrier wave frequen
y. In parti
ular, solitary wavesinside and outside the polariton gap exhibit di�erent velo
ity and amplitude dependen
es on their duration.PACS: 42.65.Tg, 42.25.Bs1. INTRODUCTIONIn re
ent years, a fast progress in the fabri
ationof mi
ro
avities, organi
 and inorgani
 quantum wells,et
. has resulted in a great interest in the investigationof ele
tromagneti
 properties of these new obje
ts, in-
luding propagation of nonlinear pulses in su
h stru
-tures (see, e.g., [1�4℄). For example, the propagation ofnonlinear pulses along a quantum well imbedded in ami
ro
avity was studied in [4℄ for two types of nonlin-earities, a Kerr-like nonlinearity applied to envelopes ofsu�
iently long pulses and a self-indu
ed transparen
ynonlinearity applied to short and intense pulses withthe frequen
y 
lose to the two-level resonan
e. In thisstudy, the authors have 
hosen su
h propagation 
on-ditions that the polariton e�e
t of the formation of thegap 
an be negle
ted in the dispersion law of an ele
tro-magneti
 wave 
oupled to the polarization wave in themedium. The problem of the pulse propagation 
anthen be redu
ed to either the nonlinear S
hrödinger(NLS) equation or the sine-Gordon equation with thewell-known soliton solutions. But the region of frequen-
ies in the vi
inity of the polariton gap is very impor-tant be
ause some properties of the stru
tures under
onsideration manifest themselves in this region only.We note that related problems were already stud-ied a long time ago in the theory a nonlinear pulse*E-mail: sdarmanyan�yahoo.
om**E-mail: kam
h�isan.troitsk.ru

propagation through a medium in the vi
inity of ex-
iton resonan
es. In [5℄, the polariton self-indu
edtransparen
y pulses were found, but it was 
laimedlater [6, 7℄ that the polariton e�e
t prevents the ex-isten
e of self-indu
ed transparen
y pulses. This 
on-tradi
tion was resolved in Refs. [8℄, where it was shownthat polariton solitons exist due to a subtle balan
e ofsmall e�e
ts, and these solutions may therefore easilybe overlooked if a too rude approximation is made inthe evolution equations. The authors of [9, 10℄ later
on�rmed this result in general and des
ribed some ad-ditional remarkable properties of polariton self-indu
edtransparen
y pulses in the vi
inity of the polaritongap beyond the perturbation theory. Similar prob-lems have also been studied for the Kerr nonlinearity(see, e.g., Ref. [11℄ and referen
es therein). But the ap-proximations used were not justi�ed well enough, andsome properties of polariton solitons remained un
lear.In [12℄, the governing equations for long pulses and the
arrier wave frequen
y su�
iently far from the polari-ton gap were redu
ed to the perturbed NLS equationfor the envelope and the 
orresponding soliton solutionswere des
ribed. A 
losely related problem, pulse propa-gation in a Kerr-nonlinear medium with a singular dis-persion relation was studied in [13℄, where bright anddark solitary wave solutions were found in the vi
inityof the linear resonan
e.In this paper, we thoroughly investigate polaritonsolitons in the 
ase of the Kerr nonlinearity following997
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hatnov, M. Nevière ÆÝÒÔ, òîì 123, âûï. 5, 2003the method developed by Akimoto and Ikeda [8℄ andshow the existen
e of lo
alized solutions both insideand outside the polariton gap.2. MAIN EQUATIONSWe start with the standard equations of the 
lassi
altheory of ele
tromagneti
 waves propagating throughan isotropi
 medium (see, e.g., [14℄),�2E�x2 � �0
2 �2E�t2 = 4�
2 �2P�t2 ; (1)�2P�t2 + !2TP+ � jPj2P = �E; (2)where �0 is the ba
kground diele
tri
 
onstant and� = �0(!2L � !2T )4� : (3)These equations des
ribe intera
tion of the ele
tromag-neti
 �eld E and the polarization wave P due to theKerr-like nonlinearity (measured by the parameter �).We here ignore the e�e
t of damping. The parameters!2T and !2L 
hara
terize the dispersion law ! = !(k) oflinear waves, whi
h is given by the equationF (k; !) � !2T � !2 � 4�
2 �!2k2 � �0!2=
2 = 0: (4)As follows from (4), the dispersion law has a gap in thefrequen
y interval !T < ! < !L; (5)where linear waves 
annot propagate. As mentionedabove, the envelope fun
tion 
an be introdu
ed for fre-quen
ies su�
iently far from polariton gap (5), andsystem (1), (2) 
an be redu
ed to the NLS equationpossessing well-known soliton solutions. Here, we areinterested in solutions of system (1), (2) for frequen
iesnear and inside polariton gap (5).We seek the solutions in the form of stationary lin-early polarized waves, su
h that E and P 
an be 
on-sidered as the s
alar fun
tionsE(x; t) = E(t� x=V )ei�;P (x; t) = [u(t� x=V )� iv(t� x=V )℄ ei�; (6)where V is the velo
ity of the pulse and the phase �(x; t)is �(x; t) = kx� !t� �(t� x=V ): (7)

Substitution of Eqs. (6) and (7) in Eqs. (1) and (2) leadsto the system of equations for the variables u; v; E ; �,�u� �!2 � !2T + 2! _�+ _�2�u� 2(! + _�) _v �� ��v + �(u2 + v2)u = �E ; (8)�v � �!2 � !2T + 2! _�+ _�2� v ++ 2(! + _�) _u+ ��u+ �(u2 + v2)v = 0; (9)� 1V 2� �0
2� �E���k2� �0
2!2�+2� kV ��0!
2 � _� ++� 1V 2 � �0
2� _�2�E == 4�
2 h�u� u(! + _�)2 � ��v � 2(! + _�) _vi ; (10)� 1V 2� �0
2� ��E+2 � kV ��0!
2 +� 1V 2��0
2� _�� _E == 4�
2 h�v � v(! + _�)2 + ��u+ 2(! + _�) _ui ; (11)where the overdot denotes the derivative with respe
tto � = t� x=V .3. LINEAR APPROXIMATIONWe suppose that the variables u; v; E , and � tendto zero at the tails of the pulse (i.e., at in�nite j�j), andsystem (8)�(11) 
an therefore be linearized in these re-gions as �u� �!2 � !2T �u� 2! _v = �E ; (12)�v � �!2 � !2T � v + 2! _u = 0; (13)� 1V 2 � �0
2� �E � �k2 � �0
2!2�E == 4�
2 ��u� !2u� 2! _v� ; (14)2� kV � �0!
2 � _E = 4�
2 ��v � !2v + 2! _u� : (15)For the exponential dependen
e(E ; u; v) = (E0; u0; v0) exp(�j�j=�) at j�j ! 1; (16)998
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t in nonlinear pulse propagationwhere � is the duration of the pulse, system (12)�(15)redu
es to algebrai
 equations that de�ne the �disper-sion law� and the velo
ity of the pulse as fun
tions of� . It is 
onvenient to introdu
e the variablesX = 
k! ; Y = 
V ; (17)and de�ne the 
hara
teristi
 parameterss = 1!� ; �2 = 1(!2L � !2T )�2 ; (18)su
h that the ratio�2s2 = !2!2L � !2T � 
2 (19)is independent of � . The variable�2 = !2 � !2T!2L � !2T (20)measures the frequen
y in the vi
inity of the polaritongap. The 
ases where �2 > 1 and �2 < 0 
orrespondto the upper and lower polariton bran
hes respe
tively.Substituting Eq. (16) in Eqs. (12)�(15), we arrive atthe system��2 ��2�u0 � 2s
2v0 = �04�E0;��2 ��2� v0 + 2s
2u0 = 0;�X2 � s2Y 2� E0 = �0(1� s2)E0 ++ 4�[(1� s2)u0 + 2sv0℄;2s (XY � �0) E0 = 4�[(1� s2)v0 � 2su0℄: (21)Eliminating u0 and v0 from Eqs. (21) gives the sys-temX2 � s2Y 2 == �0 �1� s2 + (1� s2)(�2 ��2)� 4s2
2(�2 ��2)2 + 4s2
4 � ;XY = �0 �1 + �2 ��2 + (1� s2)
2(�2 ��2)2 + 4s2
4 � ; (22)solving whi
h with Eq. (19) taken into a

ount yieldsX2 = �
k! �2 == �02 h(1� s2)� (1� s2)(�2 � �2) + 4�2(�2 � �2)2 + 4�2
2 ++ (1 + s2)s (�2 � �2 � 1)2 + 4�2
2(�2 � �2)2 + 4�2
2 i; (23)

Y 2 = � 
V �2 == �02s2 h� (1� s2) + (1� s2)(�2 � �2) + 4�2(�2 � �2)2 + 4�2
2 ++ (1 + s2)s (�2 � �2 � 1)2 + 4�2
2(�2 � �2)2 + 4�2
2 i: (24)In the limit of a uniform wave (� !1), when �2 ! 0and s2 ! 0, Eq. (23) reprodu
es the dispersion law oflinear plane waves,�
k! �2 = �0�1� 1�2� � 0; (25)whi
h 
an be transformed into the standard form aftersubstitution of Eq. (20). To �nd the velo
ity of theenvelope of a linear wave, we must take the limit ass2 ! 0 in Eq. (24), whi
h gives� 
V �2 = �0�6(�2 � 1) ��2(�2 � 1) + 
2�2 : (26)As 
ould be expe
ted, this velo
ity V 
oin
ides withthe group velo
ity of propagating linear plane waveswith dispersion law (4).In Eqs. (23) and (24), the three parameters �2, s2,and 
2 depend on the frequen
y !. For further inves-tigation, it is 
onvenient to express s2 and 
2 in termsof �2,
2 = �2+�2; s2 = �2�2+�2 ; �2 = !2T!2L�!2T : (27)Equations (23) and (24) then be
ome�
k! �2 = 12"1� �2�2 + �2 �� �1� �2=(�2 + �2)� (�2 � �2) + 4�2(�2 � �2)2 + 4�2(�2 + �2) ++�1 + �2�2 + �2���s (�2 � �2 � 1)2 + 4�2(�2 + �2)(�2 � �2)2 + 4�2(�2 + �2) #; (28)� 
V �2 = �2 + �22�2 "� 1 + �2�2 + �2 ++ �1� �2=(�2 + �2)� (�2 � �2) + 4�2(�2 � �2)2 + 4�2(�2 + �2) ++�1 + �2�2 + �2���s (�2 � �2 � 1)2 + 4�2(�2 + �2)(�2 � �2)2 + 4�2(�2 + �2) #; (29)999
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(ck/ω)2Fig. 1. Dispersion relation of the 
arrier wave for dif-ferent values of the pulse duration � measured by theparameter � (see Eq. (18)); �2 = 0:01 (1 ), 0:1 (2 ),1 (3 ), 10 (4 )where we have also put �0 = 1, whi
h is equivalent tothe repla
ement 
! 
=p�0. We re
all that in Eqs. (28)and (29), �2 is a 
onstant determined by the systemunder 
onsideration, the parameter �2 measures thewave frequen
y, and the parameter �2 measures thepulse duration.Linear uniform waves 
annot propagate with fre-quen
ies within polariton gap (5), or0 < �2 < 1: (30)But at �nite values of � , two bran
hes of the dispersion
urve join into one 
urve. Plots of �2 against (
k=!)2at several values of �2 are shown in Fig. 1. As we 
ansee, these 
urves depend essentially on the values of �2,and the usual approa
h involving the transition to theNLS equation for the envelope fun
tion 
an only be ap-plied at � � 1 and su�
iently far from the polaritongap. The velo
ity parameter (
=V )2 of the pulse as afun
tion of �2 is shown in Fig. 2 at several values of �2.It has real values even at frequen
ies inside polaritongap (30). It is important to note that if general non-linear equations have a pulse solution of form (6)�(7),then its velo
ity must 
oin
ide with its �linear approx-imation� (29) 
al
ulated for the tails of the pulse.4. SOLITON SOLUTIONSTo �nd soliton solutions, we return to exa
t equa-tions (8)�(11) and repla
e di�erentiation with respe
tto � = t � x=V by di�erentiation with respe
t to

2 3 410
�2
0 0:2 1:2�2�4
24

0:4 0:6 0:8 1:0 1:4
=VFig. 2. Pulse velo
ity as a fun
tion of the 
arrierwave frequen
y for di�erent values of the pulse du-ration � measured by the parameter � (see Eq. (18))�2 = 0:01 (1 ), 0:1 (2 ), 1 (3 ), 10 (4 )� = �=� . Taking Eqs. (17)�(20) into a

ount, we ar-rive at the system�2�u� (�2 + 2�p�2 + �2 _�+�2 _�2)u�� 2(�p�2 + �2 +�2 _�) _v �� �2 ��v + ~�(u2 + v2)u = 14�E ; (31)�2�v � (�2 + 2�p�2 + �2 _�+�2 _�2)v ++ 2(�p�2 + �2 +�2 _�) _u++�2 ��u+ ~�(u2 + v2)v = 0; (32)�2 �� 
V �2 � 1� �E �((�2 + �2)"�
k! �2 � 1#++2�p�2 + �2 � 
2kV ! � 1� _�+�2 �� 
V �2 � 1� _�2)E == 4�h�2�u� u(p�2 + �2 +� _�)2 �� �2v ��� 2(�p�2 + �2 +�2 _�) _vi; (33)�2 �� 
V �2 � 1� ��E + 2n�p�2 + �2� 
2kV ! � 1�++�2 �� 
V �2 � 1� _�o _E == 4�h�2�v � v(p�2 + �2 +� _�)2 ++�2u��+ 2(�p�2 + �2 +�2 _�) _ui; (34)1000
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t in nonlinear pulse propagationwhere ~� = �!2L � !2T ; (35)and the overdot now denotes the derivative with respe
tto � = �=� .We 
onsider long pulses with �2 � �2. For this,we introdu
e a small parameter " by�2 = "2�2; "� 1; (36)su
h that Eqs. (31)�(34) 
an be expanded in powers of". Be
ause Eqs. (28) and (29) lead to di�erent series ex-pansions in di�erent intervals of �2, we must 
onsiderall these 
ases separately.4.1. Long pulse above the polariton gapWe begin with the 
ase of waves with�2 > 1; (37)for whi
h a nonlinear pulse 
an be represented as theenvelope of propagating linear waves with dispersionlaw (25). For long pulses with"2 � 1; "2 � �2 � 1; (38)the 
oe�
ients in Eqs. (33) and (34) 
an be representedas power series expansions in ",�
k! �2 � 1 = � 1�2 + �4 � 3�2 + 4�2�2�4(�2 � 1) "2 + : : : == � 1�2 + �2"2 + : : : ; (39)�2 �� 
V �2 � 1� = �6 + 2�4�2 + �4�4(�2 � 1) "2 + : : : == 
2"2 + : : : ; (40)2��
2kV ! � 1� = 2�2�3 "� 4�2(�2 + 2�2)�7 "3 + : : : == �1"� �3"3 + : : : (41)We suppose that the fun
tions E , _�, u, and v 
an alsobe represented in the form of series expansions,E = "� 1Xn=0 "nEn

and similarly for _�, u, and v. Analysis of equa-tions (31)�(34) and (39)�(41) shows that for self-
onsisten
y of the pro
edure, the series expansions ofthe �elds must be as follows:E = "(E0 + "2E2 + : : : );_� = "(�0 + "2�2 + : : : );u = "(u0 + "2u2 + : : : );v = "("v1 + "3v3 + : : : ): (42)Substitution of these expansions in Eqs. (31)�(34)then yields a sequen
e of equations for the 
oe�
ientsE0; E2; �0; : : : In the �rst approximation, we obtain therelationsu0 = � 14��2 E0; v1 = 2p�2 + �2� _u0; (43)whi
h 
orrespond to the plane wave solution with a 
on-stant amplitude. In the next approximation, it followsfrom Eqs. (31) and (33) that� �E0 + 4p�2 + �2�2 �E0 � ~�16�2�6 E30 == E2 + 4��2u2 � 2p�2 + �� �0E0; 
2 + 1� 4p�2 + �2�2 ! �E0 � (�2 + �2)�2E0 == ��2+�2�2  E2+4��2u2�2p�2+�� �0E0! : (44)
Combination of these two equations yields the equationfor E0 after simple transformations,�E0 = E0 + ~�16�2�8�2 E30 : (45)If ~� < 0, this equation has the soliton solutionE0 = a
h � ; (46)wherea =s32�2�8�2j~�j ; �2 = �4 � 3�2 + 4�2�2�4(�2 � 1) ; (47)and � = 1� �t� xV � ; � 
V �2 = (�4 + �2)2�6(�2 � 1) : (48)This shows that V is equal to the group velo
ity givenby Eq. (26) and is independent of the duration of thepulse. Be
ause" = �� = 1p!2 � !2T � ; ~� = �!2L � !2T ;1001
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hatnov, M. Nevière ÆÝÒÔ, òîì 123, âûï. 5, 2003we obtainE =s32�2�6�2j�j 1� 1
h �1� �t� xV �� : (49)This is the NLS type soliton solution.We note that the above 
al
ulations were done forarbitrary values of �. But in a majority of appli
ations,we have (!L � !T )� !T ;that is, �2 = !2T!2L � !2T � !T2(!L � !T ) � 1: (50)Expansions (39)�(41) are then valid only under the 
on-dition that �2"2 � 14(!L � !T )2�2 � 1; (51)whi
h implies that the spe
tral width of the pulse ofthe order of 1=� is mu
h less than the width of the gap(!L � !T ). In fa
t, 
ondition (51) is already satis�edsu�u
iently well for 1� � !L � !T2 :4.2. Long pulse at �2 = 1In this 
ase, the pulse 
annot be des
ribed by theNLS equation for the wave pa
ket of waves with waveve
tors around some nonzero value. From Eqs. (28)�(29), we have the expansions�
k! �2 � 1 = �1 +p1 + �2"+ : : : == �1 + ��1"+ : : : ; (52)�2 �� 
V �2 � 1� == (1 + �2)3=2"��2�4 + 32�2 + 12� "2 + : : : == �
1"� �
2"2 + : : : ; (53)2��
2kV ! � 1� = 2�2"� 4(1 + 2�2)�2"3 + : : : == ��1"� ��3"3 + : : : (54)

We again seek solution of Eqs. (31)�(34) in the form ofseries expansions, whi
h in this 
ase areE = "1=2(E0 + "E1 + : : : );_� = "1=2�0 + : : : ;u = "1=2(u0 + "u1 + : : : );v = "3=2v1 + : : : : (55)In the �rst approximation, we haveu0 = �E04� ; v1 = 2p1 + �2 _u0: (56)In the next approximation, Eqs. (31) and (34) give� u1 + ~�u30 = E14� ;p1+�2 �E0+E1���1E0 = �4�u1: (57)Hen
e, E1 + 4�u1 = � ~�16�2E30 ;p1 + �2( �E0 � E0) = �(E1 + 4�u1); (58)and we arrive at the equation for E0,�E0 = E0 + ~�16�2p1 + �2 E30 : (59)Thus, we obtain the soliton solutionE = "1=2a
h �1� �t� xV �� ; a =s32�2(1 + �2)1=2j~�j ; (60)where V is given by� 
V �2 = 1 + (1 + �2)3=2" : (61)Taking into a

ount that" = � = 1p!2L � !2T � ;we 
an rewrite Eqs. (60) and (61) in terms of the phys-i
al parametersE =s32�2!Lj�j� 1
h�1� �t� xV �� ;� 
V �2 = 1 + !3L�!2L � !2T : (62)The velo
ity of the pulse therefore depends on � (
urvesin Fig. 2 interse
t the straight line �2 = 1 at di�erent1002
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t in nonlinear pulse propagationpoints depending on �). Although the parameter � dis-appeared from Eq. (62), expansions (52)�(54) are validfor � � 1 provided the inequality (�")2 � 1 is satis-�ed. The ratio of the amplitude of solution (62) to thatof solution (49) is of the order of magnitude1p�" �p(!L � !T )� � 1;that is, the amplitude at the boundary of the gap ismu
h greater than the amplitude of the soliton solutionsu�
iently far from the gap. This implies that the pulsemust be su�
iently intense to deform the gap to su
hextent that the wave propagation with the frequen
y�2 = 1 be
omes possible. Beyond the gap, there arelinear waves that 
an propagate with arbitrarily smallamplitudes and nonlinear e�e
ts must only 
ompensatedispersive spreading of the wave pa
ket built from lin-ear waves.4.3. Long pulse inside the polariton gapFor frequen
ies inside the polariton gap,0 < �2 < 1; (63)we have the series expansions�
k! �2� 1 = �1+ (�4 + �2)2�4(�2 � 1)(�2 + �2)"2+ : : : == �1 + ~�2"2 + : : : ; (64)�2 �� 
V �2 � 1� = (1��2)(�2 + �2)�2 ++ �8 + 5�4�2 � 3�4 +�2�2(4�2 � 3)�4(1��2) "2 + : : : == ~
0 + ~
2"2 + : : : ; (65)2��
2kV ! � 1� = 2�2�3 "� 4�2(�2 + 2�2)�7 "3 + : : : == �1"� �3"3 + : : : ; (66)where "� 1��2; "� �2: (67)Be
ause ~
0 6= 0, the soliton solution is obtained in the�rst approximation, and therefore E and u do not havea small fa
tor proportional to a power of ". The equa-tions of the �rst approximation are given by��2u+ ~�u3 = 14�E ; (68)

1��2�2 �E + E = �4�u: (69)If we were able to express u in terms of E from Eq. (68)and substitute the result in Eq. (69), we would obtainthe equation for E having solitary wave solutions. Un-fortunately, that 
an be done only numeri
ally ex
eptin the 
ase where j~�ju2 � �2: (70)In this limit, we haveu �= � 14��2 E � ~��2(4��2)3 E3 (71)and Eq. (69) takes the form�E = E + ~�16�2�6(1��2)E3: (72)It has the soliton solutionE =s32�2�6(1��2)(!2L � !2T )j�j �� 1
h �1� �t� xV �� ; (73)where the pulse velo
ity is given by� 
V �2 = 1 + (1��2)(�2 + �2)(!2 � !2T )�2�2 : (74)Using the estimate u � a4��2 ;we 
an transform 
ondition (70) into1��2 � 1: (75)The frequen
y must therefore be su�
iently 
lose tothe upper limit of the polariton gap.Solution (73) only applies to su�
iently long pulses"2 � 1��2: (76)We note that in this 
ase, the amplitude is independentof the pulse width � , but its velo
ity strongly dependson � . If � � 1, the ratio of amplitude (73) to ampli-tude (49) is of the order of magnitude1�" � (!L � !T )� � 1;and as 
ould be expe
ted, is mu
h greater than the am-plitude of soliton solution (62) at the boundary of thegap.1003



S. A. Darmanyan, A. M. Kam
hatnov, M. Nevière ÆÝÒÔ, òîì 123, âûï. 5, 2003When 
ondition (75) is not satis�ed, we must solveEqs. (68) and (69) numeri
ally. For this, we introdu
enew variables E = Epje�j ; u = Upje�j ; (77)where e� = �je�j. Equations (68) and (69) then redu
eto�2U + U3 = � 14�E; 1��2�2 �E +E = �4�U: (78)Numeri
al solution of the �rst equation in (78) yieldsthe fun
tion U = U(E); (79)substitution of whi
h in the se
ond equation in (78)gives the di�erential equation for E,1��2�2 d2Ed�2 = �E � 4�U(E); (80)or d2Ed�2 = ��V (E)�E ; (81)whereV (E) = �21��2 0�12E2 + 4� EZ0 U(E0)dE01A (82)
an be 
onsidered as a potential in whi
h a parti
lemoves in a

ordan
e with the Newton equation (81).A typi
al plot of potential (82) is shown in Fig. 3.The maximum value of E (the soliton amplitude a)is determined by the point E = a where V (E) van-ishes. The solution of Eq. (80) with the initial 
ondi-tions E(0) = a and E0(0) = 0 then provides the solitonsolution. We have done these 
al
ulations for severalvalues of �. The results are shown in Fig. 4, where thedependen
e of the pulse pro�le E on the s
aled vari-able p�2=(1��2) � is plotted. The dependen
e ofthe amplitude on � is shown in Fig. 5.5. CONCLUSIONWe have studied the nonlinear opti
al pulse prop-agation in a frequen
y region in the vi
inity of thepolariton gap. The problem is des
ribed by a 
oupledset of the Maxwell equations for the ele
tromagneti
�eld and a material equation for the ma
ros
opi
polarization allowing a Kerr-like nonlinearity. To solvethis nonlinear system of equations analyti
ally, we used
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ÆÝÒÔ, òîì 123, âûï. 5, 2003 Polariton e�e
t in nonlinear pulse propagationthe approa
h [8℄ based on series expansion in powers ofa small parameter related to the width of the polaritongap and pulse duration. Di�erent bright solitary wavesolutions depending on the position of the 
arrierwave frequen
y with respe
t to the polariton gap arefound and their parameters are expressed in terms ofmaterial system parameters. Outside the polaritongap, the soliton solution 
orresponds to the well-knownsoliton of the NLS equation for the envelope of a wavepa
ket made of plane waves. But inside the polaritongap, there are no plane wave solutions and the notionof their envelope loses its physi
al sense. Nonetheless,solitary wave solutions 
an o

ur there with su�
ientlyhigh values of the ele
tromagneti
 �eld strength su
hthat the lo
al value of the polariton gap diminishesin the 
enter of the polariton gap due to the Kerrnonlinearity. The di�eren
e in physi
al situationsoutside and inside the polariton gap is re�e
ted indi�erent dependen
es of the soliton amplitude on thepulse duration � : the amplitude is independent of �inside the gap, is proportional to ��1=2 at the gapboundary, and is proportional to ��1 su�
iently farfrom the gap.S. D. thanks Marseilles University for kind hospital-ity and NATO Linkage Grant PST. CLG. 978177 forpartial support. REFERENCES1. Con�ned Ele
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