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POLARITON EFFECT IN NONLINEAR PULSE PROPAGATIONS. A. Darmanyan a*, A. M. Kamhatnov a**, M. Nevière ba Institute of Spetrosopy, Russian Aademy of Sienes142190, Troitsk, Mosow Region, Russiab Institut Fresnel, Faulté des Sienes et Tehniques de Saint Jérome13397, Marseille, Cedex 20, FraneSubmitted 15 July 2002The joint in�uene of the polariton e�et and Kerr-like nonlinearity on the propagation of optial pulses is stud-ied. The existene of di�erent families of envelope solitary wave solutions in the viinity of the polariton gap isshown. The properties of solutions depend strongly on the arrier wave frequeny. In partiular, solitary wavesinside and outside the polariton gap exhibit di�erent veloity and amplitude dependenes on their duration.PACS: 42.65.Tg, 42.25.Bs1. INTRODUCTIONIn reent years, a fast progress in the fabriationof miroavities, organi and inorgani quantum wells,et. has resulted in a great interest in the investigationof eletromagneti properties of these new objets, in-luding propagation of nonlinear pulses in suh stru-tures (see, e.g., [1�4℄). For example, the propagation ofnonlinear pulses along a quantum well imbedded in amiroavity was studied in [4℄ for two types of nonlin-earities, a Kerr-like nonlinearity applied to envelopes ofsu�iently long pulses and a self-indued transparenynonlinearity applied to short and intense pulses withthe frequeny lose to the two-level resonane. In thisstudy, the authors have hosen suh propagation on-ditions that the polariton e�et of the formation of thegap an be negleted in the dispersion law of an eletro-magneti wave oupled to the polarization wave in themedium. The problem of the pulse propagation anthen be redued to either the nonlinear Shrödinger(NLS) equation or the sine-Gordon equation with thewell-known soliton solutions. But the region of frequen-ies in the viinity of the polariton gap is very impor-tant beause some properties of the strutures underonsideration manifest themselves in this region only.We note that related problems were already stud-ied a long time ago in the theory a nonlinear pulse*E-mail: sdarmanyan�yahoo.om**E-mail: kamh�isan.troitsk.ru

propagation through a medium in the viinity of ex-iton resonanes. In [5℄, the polariton self-induedtranspareny pulses were found, but it was laimedlater [6, 7℄ that the polariton e�et prevents the ex-istene of self-indued transpareny pulses. This on-tradition was resolved in Refs. [8℄, where it was shownthat polariton solitons exist due to a subtle balane ofsmall e�ets, and these solutions may therefore easilybe overlooked if a too rude approximation is made inthe evolution equations. The authors of [9, 10℄ lateron�rmed this result in general and desribed some ad-ditional remarkable properties of polariton self-induedtranspareny pulses in the viinity of the polaritongap beyond the perturbation theory. Similar prob-lems have also been studied for the Kerr nonlinearity(see, e.g., Ref. [11℄ and referenes therein). But the ap-proximations used were not justi�ed well enough, andsome properties of polariton solitons remained unlear.In [12℄, the governing equations for long pulses and thearrier wave frequeny su�iently far from the polari-ton gap were redued to the perturbed NLS equationfor the envelope and the orresponding soliton solutionswere desribed. A losely related problem, pulse propa-gation in a Kerr-nonlinear medium with a singular dis-persion relation was studied in [13℄, where bright anddark solitary wave solutions were found in the viinityof the linear resonane.In this paper, we thoroughly investigate polaritonsolitons in the ase of the Kerr nonlinearity following997



S. A. Darmanyan, A. M. Kamhatnov, M. Nevière ÆÝÒÔ, òîì 123, âûï. 5, 2003the method developed by Akimoto and Ikeda [8℄ andshow the existene of loalized solutions both insideand outside the polariton gap.2. MAIN EQUATIONSWe start with the standard equations of the lassialtheory of eletromagneti waves propagating throughan isotropi medium (see, e.g., [14℄),�2E�x2 � �02 �2E�t2 = 4�2 �2P�t2 ; (1)�2P�t2 + !2TP+ � jPj2P = �E; (2)where �0 is the bakground dieletri onstant and� = �0(!2L � !2T )4� : (3)These equations desribe interation of the eletromag-neti �eld E and the polarization wave P due to theKerr-like nonlinearity (measured by the parameter �).We here ignore the e�et of damping. The parameters!2T and !2L haraterize the dispersion law ! = !(k) oflinear waves, whih is given by the equationF (k; !) � !2T � !2 � 4�2 �!2k2 � �0!2=2 = 0: (4)As follows from (4), the dispersion law has a gap in thefrequeny interval !T < ! < !L; (5)where linear waves annot propagate. As mentionedabove, the envelope funtion an be introdued for fre-quenies su�iently far from polariton gap (5), andsystem (1), (2) an be redued to the NLS equationpossessing well-known soliton solutions. Here, we areinterested in solutions of system (1), (2) for frequeniesnear and inside polariton gap (5).We seek the solutions in the form of stationary lin-early polarized waves, suh that E and P an be on-sidered as the salar funtionsE(x; t) = E(t� x=V )ei�;P (x; t) = [u(t� x=V )� iv(t� x=V )℄ ei�; (6)where V is the veloity of the pulse and the phase �(x; t)is �(x; t) = kx� !t� �(t� x=V ): (7)

Substitution of Eqs. (6) and (7) in Eqs. (1) and (2) leadsto the system of equations for the variables u; v; E ; �,�u� �!2 � !2T + 2! _�+ _�2�u� 2(! + _�) _v �� ��v + �(u2 + v2)u = �E ; (8)�v � �!2 � !2T + 2! _�+ _�2� v ++ 2(! + _�) _u+ ��u+ �(u2 + v2)v = 0; (9)� 1V 2� �02� �E���k2� �02!2�+2� kV ��0!2 � _� ++� 1V 2 � �02� _�2�E == 4�2 h�u� u(! + _�)2 � ��v � 2(! + _�) _vi ; (10)� 1V 2� �02� ��E+2 � kV ��0!2 +� 1V 2��02� _�� _E == 4�2 h�v � v(! + _�)2 + ��u+ 2(! + _�) _ui ; (11)where the overdot denotes the derivative with respetto � = t� x=V .3. LINEAR APPROXIMATIONWe suppose that the variables u; v; E , and � tendto zero at the tails of the pulse (i.e., at in�nite j�j), andsystem (8)�(11) an therefore be linearized in these re-gions as �u� �!2 � !2T �u� 2! _v = �E ; (12)�v � �!2 � !2T � v + 2! _u = 0; (13)� 1V 2 � �02� �E � �k2 � �02!2�E == 4�2 ��u� !2u� 2! _v� ; (14)2� kV � �0!2 � _E = 4�2 ��v � !2v + 2! _u� : (15)For the exponential dependene(E ; u; v) = (E0; u0; v0) exp(�j�j=�) at j�j ! 1; (16)998



ÆÝÒÔ, òîì 123, âûï. 5, 2003 Polariton e�et in nonlinear pulse propagationwhere � is the duration of the pulse, system (12)�(15)redues to algebrai equations that de�ne the �disper-sion law� and the veloity of the pulse as funtions of� . It is onvenient to introdue the variablesX = k! ; Y = V ; (17)and de�ne the harateristi parameterss = 1!� ; �2 = 1(!2L � !2T )�2 ; (18)suh that the ratio�2s2 = !2!2L � !2T � 
2 (19)is independent of � . The variable�2 = !2 � !2T!2L � !2T (20)measures the frequeny in the viinity of the polaritongap. The ases where �2 > 1 and �2 < 0 orrespondto the upper and lower polariton branhes respetively.Substituting Eq. (16) in Eqs. (12)�(15), we arrive atthe system��2 ��2�u0 � 2s
2v0 = �04�E0;��2 ��2� v0 + 2s
2u0 = 0;�X2 � s2Y 2� E0 = �0(1� s2)E0 ++ 4�[(1� s2)u0 + 2sv0℄;2s (XY � �0) E0 = 4�[(1� s2)v0 � 2su0℄: (21)Eliminating u0 and v0 from Eqs. (21) gives the sys-temX2 � s2Y 2 == �0 �1� s2 + (1� s2)(�2 ��2)� 4s2
2(�2 ��2)2 + 4s2
4 � ;XY = �0 �1 + �2 ��2 + (1� s2)
2(�2 ��2)2 + 4s2
4 � ; (22)solving whih with Eq. (19) taken into aount yieldsX2 = �k! �2 == �02 h(1� s2)� (1� s2)(�2 � �2) + 4�2(�2 � �2)2 + 4�2
2 ++ (1 + s2)s (�2 � �2 � 1)2 + 4�2
2(�2 � �2)2 + 4�2
2 i; (23)

Y 2 = � V �2 == �02s2 h� (1� s2) + (1� s2)(�2 � �2) + 4�2(�2 � �2)2 + 4�2
2 ++ (1 + s2)s (�2 � �2 � 1)2 + 4�2
2(�2 � �2)2 + 4�2
2 i: (24)In the limit of a uniform wave (� !1), when �2 ! 0and s2 ! 0, Eq. (23) reprodues the dispersion law oflinear plane waves,�k! �2 = �0�1� 1�2� � 0; (25)whih an be transformed into the standard form aftersubstitution of Eq. (20). To �nd the veloity of theenvelope of a linear wave, we must take the limit ass2 ! 0 in Eq. (24), whih gives� V �2 = �0�6(�2 � 1) ��2(�2 � 1) + 
2�2 : (26)As ould be expeted, this veloity V oinides withthe group veloity of propagating linear plane waveswith dispersion law (4).In Eqs. (23) and (24), the three parameters �2, s2,and 
2 depend on the frequeny !. For further inves-tigation, it is onvenient to express s2 and 
2 in termsof �2,
2 = �2+�2; s2 = �2�2+�2 ; �2 = !2T!2L�!2T : (27)Equations (23) and (24) then beome�k! �2 = 12"1� �2�2 + �2 �� �1� �2=(�2 + �2)� (�2 � �2) + 4�2(�2 � �2)2 + 4�2(�2 + �2) ++�1 + �2�2 + �2���s (�2 � �2 � 1)2 + 4�2(�2 + �2)(�2 � �2)2 + 4�2(�2 + �2) #; (28)� V �2 = �2 + �22�2 "� 1 + �2�2 + �2 ++ �1� �2=(�2 + �2)� (�2 � �2) + 4�2(�2 � �2)2 + 4�2(�2 + �2) ++�1 + �2�2 + �2���s (�2 � �2 � 1)2 + 4�2(�2 + �2)(�2 � �2)2 + 4�2(�2 + �2) #; (29)999
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(ck/ω)2Fig. 1. Dispersion relation of the arrier wave for dif-ferent values of the pulse duration � measured by theparameter � (see Eq. (18)); �2 = 0:01 (1 ), 0:1 (2 ),1 (3 ), 10 (4 )where we have also put �0 = 1, whih is equivalent tothe replaement ! =p�0. We reall that in Eqs. (28)and (29), �2 is a onstant determined by the systemunder onsideration, the parameter �2 measures thewave frequeny, and the parameter �2 measures thepulse duration.Linear uniform waves annot propagate with fre-quenies within polariton gap (5), or0 < �2 < 1: (30)But at �nite values of � , two branhes of the dispersionurve join into one urve. Plots of �2 against (k=!)2at several values of �2 are shown in Fig. 1. As we ansee, these urves depend essentially on the values of �2,and the usual approah involving the transition to theNLS equation for the envelope funtion an only be ap-plied at � � 1 and su�iently far from the polaritongap. The veloity parameter (=V )2 of the pulse as afuntion of �2 is shown in Fig. 2 at several values of �2.It has real values even at frequenies inside polaritongap (30). It is important to note that if general non-linear equations have a pulse solution of form (6)�(7),then its veloity must oinide with its �linear approx-imation� (29) alulated for the tails of the pulse.4. SOLITON SOLUTIONSTo �nd soliton solutions, we return to exat equa-tions (8)�(11) and replae di�erentiation with respetto � = t � x=V by di�erentiation with respet to
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0:4 0:6 0:8 1:0 1:4=VFig. 2. Pulse veloity as a funtion of the arrierwave frequeny for di�erent values of the pulse du-ration � measured by the parameter � (see Eq. (18))�2 = 0:01 (1 ), 0:1 (2 ), 1 (3 ), 10 (4 )� = �=� . Taking Eqs. (17)�(20) into aount, we ar-rive at the system�2�u� (�2 + 2�p�2 + �2 _�+�2 _�2)u�� 2(�p�2 + �2 +�2 _�) _v �� �2 ��v + ~�(u2 + v2)u = 14�E ; (31)�2�v � (�2 + 2�p�2 + �2 _�+�2 _�2)v ++ 2(�p�2 + �2 +�2 _�) _u++�2 ��u+ ~�(u2 + v2)v = 0; (32)�2 �� V �2 � 1� �E �((�2 + �2)"�k! �2 � 1#++2�p�2 + �2 � 2kV ! � 1� _�+�2 �� V �2 � 1� _�2)E == 4�h�2�u� u(p�2 + �2 +� _�)2 �� �2v ��� 2(�p�2 + �2 +�2 _�) _vi; (33)�2 �� V �2 � 1� ��E + 2n�p�2 + �2� 2kV ! � 1�++�2 �� V �2 � 1� _�o _E == 4�h�2�v � v(p�2 + �2 +� _�)2 ++�2u��+ 2(�p�2 + �2 +�2 _�) _ui; (34)1000



ÆÝÒÔ, òîì 123, âûï. 5, 2003 Polariton e�et in nonlinear pulse propagationwhere ~� = �!2L � !2T ; (35)and the overdot now denotes the derivative with respetto � = �=� .We onsider long pulses with �2 � �2. For this,we introdue a small parameter " by�2 = "2�2; "� 1; (36)suh that Eqs. (31)�(34) an be expanded in powers of". Beause Eqs. (28) and (29) lead to di�erent series ex-pansions in di�erent intervals of �2, we must onsiderall these ases separately.4.1. Long pulse above the polariton gapWe begin with the ase of waves with�2 > 1; (37)for whih a nonlinear pulse an be represented as theenvelope of propagating linear waves with dispersionlaw (25). For long pulses with"2 � 1; "2 � �2 � 1; (38)the oe�ients in Eqs. (33) and (34) an be representedas power series expansions in ",�k! �2 � 1 = � 1�2 + �4 � 3�2 + 4�2�2�4(�2 � 1) "2 + : : : == � 1�2 + �2"2 + : : : ; (39)�2 �� V �2 � 1� = �6 + 2�4�2 + �4�4(�2 � 1) "2 + : : : == 2"2 + : : : ; (40)2��2kV ! � 1� = 2�2�3 "� 4�2(�2 + 2�2)�7 "3 + : : : == �1"� �3"3 + : : : (41)We suppose that the funtions E , _�, u, and v an alsobe represented in the form of series expansions,E = "� 1Xn=0 "nEn

and similarly for _�, u, and v. Analysis of equa-tions (31)�(34) and (39)�(41) shows that for self-onsisteny of the proedure, the series expansions ofthe �elds must be as follows:E = "(E0 + "2E2 + : : : );_� = "(�0 + "2�2 + : : : );u = "(u0 + "2u2 + : : : );v = "("v1 + "3v3 + : : : ): (42)Substitution of these expansions in Eqs. (31)�(34)then yields a sequene of equations for the oe�ientsE0; E2; �0; : : : In the �rst approximation, we obtain therelationsu0 = � 14��2 E0; v1 = 2p�2 + �2� _u0; (43)whih orrespond to the plane wave solution with a on-stant amplitude. In the next approximation, it followsfrom Eqs. (31) and (33) that� �E0 + 4p�2 + �2�2 �E0 � ~�16�2�6 E30 == E2 + 4��2u2 � 2p�2 + �� �0E0; 2 + 1� 4p�2 + �2�2 ! �E0 � (�2 + �2)�2E0 == ��2+�2�2  E2+4��2u2�2p�2+�� �0E0! : (44)
Combination of these two equations yields the equationfor E0 after simple transformations,�E0 = E0 + ~�16�2�8�2 E30 : (45)If ~� < 0, this equation has the soliton solutionE0 = ah � ; (46)wherea =s32�2�8�2j~�j ; �2 = �4 � 3�2 + 4�2�2�4(�2 � 1) ; (47)and � = 1� �t� xV � ; � V �2 = (�4 + �2)2�6(�2 � 1) : (48)This shows that V is equal to the group veloity givenby Eq. (26) and is independent of the duration of thepulse. Beause" = �� = 1p!2 � !2T � ; ~� = �!2L � !2T ;1001



S. A. Darmanyan, A. M. Kamhatnov, M. Nevière ÆÝÒÔ, òîì 123, âûï. 5, 2003we obtainE =s32�2�6�2j�j 1� 1h �1� �t� xV �� : (49)This is the NLS type soliton solution.We note that the above alulations were done forarbitrary values of �. But in a majority of appliations,we have (!L � !T )� !T ;that is, �2 = !2T!2L � !2T � !T2(!L � !T ) � 1: (50)Expansions (39)�(41) are then valid only under the on-dition that �2"2 � 14(!L � !T )2�2 � 1; (51)whih implies that the spetral width of the pulse ofthe order of 1=� is muh less than the width of the gap(!L � !T ). In fat, ondition (51) is already satis�edsu�uiently well for 1� � !L � !T2 :4.2. Long pulse at �2 = 1In this ase, the pulse annot be desribed by theNLS equation for the wave paket of waves with wavevetors around some nonzero value. From Eqs. (28)�(29), we have the expansions�k! �2 � 1 = �1 +p1 + �2"+ : : : == �1 + ��1"+ : : : ; (52)�2 �� V �2 � 1� == (1 + �2)3=2"��2�4 + 32�2 + 12� "2 + : : : == �1"� �2"2 + : : : ; (53)2��2kV ! � 1� = 2�2"� 4(1 + 2�2)�2"3 + : : : == ��1"� ��3"3 + : : : (54)

We again seek solution of Eqs. (31)�(34) in the form ofseries expansions, whih in this ase areE = "1=2(E0 + "E1 + : : : );_� = "1=2�0 + : : : ;u = "1=2(u0 + "u1 + : : : );v = "3=2v1 + : : : : (55)In the �rst approximation, we haveu0 = �E04� ; v1 = 2p1 + �2 _u0: (56)In the next approximation, Eqs. (31) and (34) give� u1 + ~�u30 = E14� ;p1+�2 �E0+E1���1E0 = �4�u1: (57)Hene, E1 + 4�u1 = � ~�16�2E30 ;p1 + �2( �E0 � E0) = �(E1 + 4�u1); (58)and we arrive at the equation for E0,�E0 = E0 + ~�16�2p1 + �2 E30 : (59)Thus, we obtain the soliton solutionE = "1=2ah �1� �t� xV �� ; a =s32�2(1 + �2)1=2j~�j ; (60)where V is given by� V �2 = 1 + (1 + �2)3=2" : (61)Taking into aount that" = � = 1p!2L � !2T � ;we an rewrite Eqs. (60) and (61) in terms of the phys-ial parametersE =s32�2!Lj�j� 1h�1� �t� xV �� ;� V �2 = 1 + !3L�!2L � !2T : (62)The veloity of the pulse therefore depends on � (urvesin Fig. 2 interset the straight line �2 = 1 at di�erent1002



ÆÝÒÔ, òîì 123, âûï. 5, 2003 Polariton e�et in nonlinear pulse propagationpoints depending on �). Although the parameter � dis-appeared from Eq. (62), expansions (52)�(54) are validfor � � 1 provided the inequality (�")2 � 1 is satis-�ed. The ratio of the amplitude of solution (62) to thatof solution (49) is of the order of magnitude1p�" �p(!L � !T )� � 1;that is, the amplitude at the boundary of the gap ismuh greater than the amplitude of the soliton solutionsu�iently far from the gap. This implies that the pulsemust be su�iently intense to deform the gap to suhextent that the wave propagation with the frequeny�2 = 1 beomes possible. Beyond the gap, there arelinear waves that an propagate with arbitrarily smallamplitudes and nonlinear e�ets must only ompensatedispersive spreading of the wave paket built from lin-ear waves.4.3. Long pulse inside the polariton gapFor frequenies inside the polariton gap,0 < �2 < 1; (63)we have the series expansions�k! �2� 1 = �1+ (�4 + �2)2�4(�2 � 1)(�2 + �2)"2+ : : : == �1 + ~�2"2 + : : : ; (64)�2 �� V �2 � 1� = (1��2)(�2 + �2)�2 ++ �8 + 5�4�2 � 3�4 +�2�2(4�2 � 3)�4(1��2) "2 + : : : == ~0 + ~2"2 + : : : ; (65)2��2kV ! � 1� = 2�2�3 "� 4�2(�2 + 2�2)�7 "3 + : : : == �1"� �3"3 + : : : ; (66)where "� 1��2; "� �2: (67)Beause ~0 6= 0, the soliton solution is obtained in the�rst approximation, and therefore E and u do not havea small fator proportional to a power of ". The equa-tions of the �rst approximation are given by��2u+ ~�u3 = 14�E ; (68)

1��2�2 �E + E = �4�u: (69)If we were able to express u in terms of E from Eq. (68)and substitute the result in Eq. (69), we would obtainthe equation for E having solitary wave solutions. Un-fortunately, that an be done only numerially exeptin the ase where j~�ju2 � �2: (70)In this limit, we haveu �= � 14��2 E � ~��2(4��2)3 E3 (71)and Eq. (69) takes the form�E = E + ~�16�2�6(1��2)E3: (72)It has the soliton solutionE =s32�2�6(1��2)(!2L � !2T )j�j �� 1h �1� �t� xV �� ; (73)where the pulse veloity is given by� V �2 = 1 + (1��2)(�2 + �2)(!2 � !2T )�2�2 : (74)Using the estimate u � a4��2 ;we an transform ondition (70) into1��2 � 1: (75)The frequeny must therefore be su�iently lose tothe upper limit of the polariton gap.Solution (73) only applies to su�iently long pulses"2 � 1��2: (76)We note that in this ase, the amplitude is independentof the pulse width � , but its veloity strongly dependson � . If � � 1, the ratio of amplitude (73) to ampli-tude (49) is of the order of magnitude1�" � (!L � !T )� � 1;and as ould be expeted, is muh greater than the am-plitude of soliton solution (62) at the boundary of thegap.1003



S. A. Darmanyan, A. M. Kamhatnov, M. Nevière ÆÝÒÔ, òîì 123, âûï. 5, 2003When ondition (75) is not satis�ed, we must solveEqs. (68) and (69) numerially. For this, we introduenew variables E = Epje�j ; u = Upje�j ; (77)where e� = �je�j. Equations (68) and (69) then redueto�2U + U3 = � 14�E; 1��2�2 �E +E = �4�U: (78)Numerial solution of the �rst equation in (78) yieldsthe funtion U = U(E); (79)substitution of whih in the seond equation in (78)gives the di�erential equation for E,1��2�2 d2Ed�2 = �E � 4�U(E); (80)or d2Ed�2 = ��V (E)�E ; (81)whereV (E) = �21��2 0�12E2 + 4� EZ0 U(E0)dE01A (82)an be onsidered as a potential in whih a partilemoves in aordane with the Newton equation (81).A typial plot of potential (82) is shown in Fig. 3.The maximum value of E (the soliton amplitude a)is determined by the point E = a where V (E) van-ishes. The solution of Eq. (80) with the initial ondi-tions E(0) = a and E0(0) = 0 then provides the solitonsolution. We have done these alulations for severalvalues of �. The results are shown in Fig. 4, where thedependene of the pulse pro�le E on the saled vari-able p�2=(1��2) � is plotted. The dependene ofthe amplitude on � is shown in Fig. 5.5. CONCLUSIONWe have studied the nonlinear optial pulse prop-agation in a frequeny region in the viinity of thepolariton gap. The problem is desribed by a oupledset of the Maxwell equations for the eletromagneti�eld and a material equation for the marosopipolarization allowing a Kerr-like nonlinearity. To solvethis nonlinear system of equations analytially, we used
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