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Identification of flavored multiskyrmions with the ground states of known hypernuclei is successful for several
of them, e.g., for the isodoublet 4 H-4He and isoscalars AHe and {Li. In other cases, agreement is not so
good, but as the baryon number increases, the behavior of the binding energy qualitatively agrees with the
data. Charmed or beautiful hypernuclei are predicted within this approach to be bound stronger than strange
hypernuclei. This conclusion is stable with respect to a certain variation of poorly known heavy flavor decay

constants.

PACS: 12.39.Dc, 21.60.Ev, 21.80.+a

1. INTRODUCTION

One of the actual questions of nuclear and ele-
mentary particle physics is the possibility of the ex-
istence of nuclear matter fragments with unusual prop-
erties, e.g., with flavor being different from that of u
and d quarks. This issue can have interesting con-
sequences in astrophysics and cosmology. The stel-
lar objects RXJ1856 and 3C58, recently observed at
Chandra X-ray Observatory can be interpreted just
as the strange quark matter stars. Experimental and
theoretical studies of such nuclear fragments were first
performed for strangeness (see, e.g., [1, 2] and refer-
ences therein) and to some extent, also for charm and
beauty quantum numbers [3-6]. Theoretical approaches
vary from standard nuclear potential models to topo-
logical soliton models (the Skyrme model and its ex-
tensions). In the latter case, extension of the original
SU(2) model to the SU(3) configuration space is nec-
essary. It is known that several different local minima
in the configuration space occur in SU(3) extensions
of the model [7]. Quantization of configurations near
each of these minima is possible, leading to the pre-
diction of the spectrum of quantum states with dif-
ferent flavor quantum numbers. Here, the quantiza-
tion of SU(2) bound skyrmions embedded in SU(3) is
considered following [8-10]. The physical interpreta-
tion of such quantum states seems to be simplest in
comparison with the others because the lowest-energy
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states can be identified with the usual nuclei. In this
way, we previously derived some spectrum of «flavored
multiskyrmions» regardless of their interpretation [10].
Here, we make an attempt to identify some of these
states with the known hypernuclei.

The chiral soliton models provide a picture of bary-
onic systems outside, at sufficiently large distances,
based on several fundamental principles and ingredi-
ents incorporated in the model Lagrangian. The de-
tails of baryon—baryon interactions do not enter the cal-
culations explicitly, although they certainly affect the
results implicitly, via some integral characteristics of
baryon systems, such as their masses, moments of in-
ertia (O and O below), ¥-term (T'), etc. The SU(2)
rational map ansatz [11], which well approximates the
results of numerical calculations [12], was used as the
starting point for the evaluation of static properties of
bound states of skyrmions necessary for their quantiza-
tion in the SU(3) configuration space. The knowledge
of the «flavor» moment of inertia and the Y-term then
allows estimating the flavor excitation energies [8, 10].
The masses of the lowest states with strangeness, charm
or beauty are calculated within the rigid oscillator ver-
sion of the bound state approach, and the binding en-
ergies of baryonic systems with different flavors, s, c or
b, are estimated.

Within the rational map approximation, at suffi-
ciently large B, the chiral field configuration has the
form of a «bubbles with universal properties of the
shell where the mass and baryon number of the baryon
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systems are concentrated. The width of the shell and
its average mass density are independent of the baryon
number [13]. This picture can be acceptable for not
large B (where B = A is the atomic number of the
nucleus), e.g., up to B ~ 16, and therefore, we here
discuss the hypernuclei not heavier than hyper-oxygen.

2. LAGRANGIAN AND THE MASS FORMULA

The Lagrangian of the Skyrme model, which in its
well-known form depends on the meson decay constants
F,. and Fp, the Skyrme constant e, etc., has been pre-
sented previously [9, 10], and we here give its density
for completeness,

L=LD 4 L™ 4 £0O) 4 5B (1)

which involves the term of the second order in the chiral
derivative

2
d”:—ﬁqwdm

the antisymmetric 4th order, or Skyrme term
d“:i;ﬂum2
32¢2 povde

the 6th order term
E(ﬁ) = Cg Tr([luly][lvl'y][l’vlu])’

and the symmetry (chiral and flavor) breaking terms

[SB %Tr(U-I-UT_Q)"'
Fomp —Fams gy - V(U + U1 -2 +
+ FI%T_SF’E Te(1 = V3A) (Ululy + LILUT). (2)
Here,

l, =0,UU!

is the left chiral derivative of the unitary matrix
U € SU(3). The 6th order term £(®) which can also
be presented as a baryon (topological) number den-
sity squared, was not included in the original Skyrme
model, and we omit it here as well. Recent calcula-
tions of flavor excitation energies performed by Shun-
deryuk provide the results that are close to those ob-
tained in [10] and in the present paper. The Wess—
Zumino term in the action, which can be written as a
5-dimensional differential form, plays a very important
role in the quantization procedure, but it does not con-
tribute to most of the static properties of skyrmions,
see, e.g., [8, 10].

892

The physical values of these constants are as follows:
F, = 186 MeV and e is close to e = 4, and we here take
the value e = 4.12 [14]. The chiral symmetry breaking
part of the Lagrangian depends on meson masses, the
pion mass m,, and the mass of the K', D or B meson,
which we call mp. The flavor symmetry breaking part
of the Lagrangian is of the usual form and is sufficient
to describe the mass splittings of the octet and decuplet
of baryons [14] within the collective coordinate quanti-
zation approach with configuration mixing. It is impor-
tant that the flavor decay constant (pseudoscalar decay
constant Fr, Fp or Fpg) is different from the pion de-
cay constant Fy. Experimentally, Fx/F,; ~ 1.22 and
Fp/F, ~2.28"11 [15]. The B-meson decay constant is
not measured yet. In view of this uncertainty, we take
two values of r. = Fp/F, for our estimates, r. = 1.5
and 2, and similarly for r, = Fg/F,, also following
theoretical estimates [16].

We begin our calculations with a unitary matrix of
chiral fields U € SU(2), as mentioned above. In the
most general case, the classical mass of SU(2) solitons
and other static characteristics necessary for our pur-
poses depend on 3 profile functions, f, o, and §. The
general parameterization of Uy for an SU(2) soliton
that we use here is given by

Uy=cy+spTm n

with

Ny = Ca,

Ny = SaC8,

Ny = 8453, Sf=sinf, cy=cosf, etc

For the rational map ansatz, f = f(r), and the pro-
file therefore depends on one variable only; the compo-
nents of the vector n are some rational functions of two
angular variables that define the direction of the radius
vector r [11].

The quantization of solitons in the SU(3) configu-
ration space was done in the spirit of the bound state
approach to the description of strangeness, proposed
in [17] and used in [18, 19]. We here use a somewhat
simplified and very transparent variant, the so-called
rigid oscillator version proposed in [8]. The details of
the quantization procedure can be found in [8-10], and
we do not reproduce them here. We only note that
the (u,d,¢) and (u,d,b) SU(3) groups are quite similar
to the (u,d, s) one; a simple redefiniton of hypercharge
must be made for the (u,d,c) group.

The following mass formula has been obtained
for the masses of states with definite quantum num-
bers: the baryon (topological) number B, flavor F
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(strangeness, charm or beauty), isospin I, and angu-
lar momentum .J [8, 10],

E(B,F.I,J)= Mg + |F|wrp +

1
+ [er BT (T, + 1) + (1 — cpp)I(I+1) +
2075
c J(J+1
+(CF,B_CF,B)IF(IF+1)] +¥ (3)
20,5

where wp p or Wr, p are the frequences of flavor (anti-
flavor) excitations,

w _ NCB(I’I/F,B_]‘) _ NCB(MF,B+1) (4)
F.B 78@1«13 ) F.B 78@1«13 )
with
. 1/2
16075 (MATE + (F — F2)T'p)
prp = |1+

(NeB)? ’

N, is the number of colors of the underlying QCD
(N, = 3 in all numerical estimates), and

2.2
Fpmp 2

2 T
F7r

my, =

The terms £+N.B/80F g in (4) arise from the Wess—
Zumino term in the action, which does not contribute
to the masses and momenta of inertia of skyrmions
[17, 8]. In terms of the quark models, the difference

_ N,B
a 4®F7B

W—w

is the energy necessary for the production of an addi-
tional ¢¢ pair. The hyperfine structure constants cg g
and ¢p,p are given by [§]

_4_ Orppre —1)
crpp=1— —F1—""—-,
20F,B IiF,B
Or 5 3 (5)
cpp=1— —LBWEB = 2)
7 OF,B(1rB)*

Evidently, ¢ — 1 as 4 — oo. The contributions of the
order of 1/© ~ N7 ! that depend originally on angu-
lar velocities of rotations in the isospace and the usual
space are taken into account in (3). This expression
was obtained by quantizing the oscillator-type Hamil-
tonian describing the motion of the SU(2) skyrmion
in the SU(3) collective coordinate space. The classical
mass M, ~ N. and the energies wp ~ Ng = 1. The
motion along the «flavory direction s, ¢ or b is described
by the amplitude D [8, 10] that is small for the lowest
quantum states (lowest |F'|),

“1/4

D ~ [16T505 Mm% + N2B*] " /7 (2|F| + 1)'/2,

Y a b
SH 3He “He
L] L] L]
3H 1H “He
. » . » »
L] L] L] L] L] L]

I3

The location of the isoscalar state with odd B and

|F| =1 in the upper part of the (I5,Y") diagram (a).

The same for isodoublet states with even B (b). The

case of light hypernuclei A\H and AHe is considered as
an example

The amplitude D therefore decreases as 1/\/mp with
increasing the mass mp and with increasing the num-
ber of colors N., and the method works for any value
of mp, also for charm and beauty quantum numbers.

In (3), I is the isospin of the multiplet with a flavor
F, T, = p/2 is the so-called «right» isospin, the isospin
of the nonflavored component of the SU(3) multiplet
under consideration, with (p,¢q) being the numbers of
the upper and lower indices in the spinor that describes
it. Ir is the isospin carried by flavored mesons that are
bound by the SU(2) skyrmion,

I=T,+1Ir.

Evidently, Ir < |F|/2. The states predicted in the rigid
oscillator model do not correspond to definite SU(3)
or SU(4) representations. How they can be ascribed
to them was shown in [8, 10]. For example, the state
with B = 1, |F| = 1, and I = 0 must belong to the
octet of the (u,d, s) or (u,d,c) SU(3) group if N, = 3.
Here, we consider quantized states of the baryon system
that belong to the lowest possible SU(3) irreps (p, q),
p+2q =3B,

p=0, ¢=3B/2 foreven B

and

p=1, ¢=(3B-1)/2 forodd B.

These are 35, 80, and 143-plets for B = 3, 5, and T;
28, 55, and 91-plets for B = 4, 6, and 8, etc. For even
B, T, = 0 and for odd B, T, = 1/2 for the lowest
SU(3) irreps (see the Figure).

The flavor moment of inertia that enters the above
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formulas [8, 10, 17] for arbitrary SU(2) skyrmions is
given by [10]

@F:é/(l—cf)x
« {F,g + 5[0 + 53(0n)7] }d3r, (©)

where

(On;)* = (8a)* + s%(dP)?.

It is simply related to @&9) for the flavor symmetric
case,
0r =0 + (F3/F2 - 1)I/4,

with T defined in (7) below. The flavor inertia increases
with B almost proportionally to B. The isotopic mo-
ments of inertia are the diagonal components of the
corresponding tensor of inertia; in our case, this tensor
of inertia is close to the unit matrix multiplied by ©p.

The quantities ' (or the X-term), which define the
contribution of the mass term to the classical mass of
solitons, and T in /tF,B are given by

r= F?: (1—cp)d’r,
o )
Py /cf [(Df)? + 52 (8n:)%] dPr.

For the rational map ansatz, formulas (6) and (7)
can be slightly modified [10], but they already look suf-
ficiently simple in such a general form. The masses of
solitons were calculated in [12] and [10], the moments
of inertia T and T were calculated in [10] for several
values of B, and the missing quantities are calculated
here.

The contribution to ptp, g proportional to [ is sup-
pressed in comparison with the term of the order of T
by the small factor of the order of F3,/m3,, and is more
important for strangeness.

3. STRANGE AND BEAUTIFUL
HYPERNUCLEI

It is convenient to calculate the energy difference be-
tween the state with a flavor F' belonging to the (p, q)
irrep and the ground state with F/ = 0 and the same
B, J, and (p,q) [10],

nrB —1
41r,BOF,B
X[I(I+1)—-T,(T,+1)] +
(ur,p —1)(ur,B —2)

43 O r,B

AEB7F = ‘F‘OJF,B +

+ Ir(Ip +1). (8)
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In deriving (3) and (8), we used that the so-called
«interference» moment of inertia, whose contribution
to the Lagrangian is proportional to the product of an-
gular rotation velocities in the isotopic and ordinary
3D spaces, is negligible compared with the isotopic and
orbital tensors of inertia [20] for all multiskyrmions ex-
cept those with B = 1,2. We also note that (8) is
independent of ©7 and depends only on @ when the
formulas for hyperfine splitting constants are used.

For the state with the isospin I = 0 and the unit
flavor number |F| = 1, the binding energy difference in
comparision with the ground state of the nucleus with
the same B, (p,q) and |F| =0 is

3(,UF71 —1)
8“%«*,1@F,1

3(,UF7B —1)
SM%:,B@F,B '

A€p,F = WF1—WF,B— (9)
Such states can exist for odd B, with Ir = T, = 1/2,
see Fig. a. For antiflavor excitations, we have similar
formulas with the substitution u — —pu.

For states with the maximal isospin

the energy difference can be simplified to [10]

AEBJ:‘ = ‘F‘ X
pre=1 (|F|+2) (urp—1)*
X |\wp g+T; - : . (10
ne 4urgOrB  8OrB 1% B (10

The case of isodoublets, even B, is described by (8)
with T,. = 0, see Table 2 and Fig. b. It follows from (10)
that when a nucleon is replaced by a flavored hyperon
in a baryon system, the binding energy of the system
with |F| =1 and T, = 0 changes by

3(uri—1) 3(urp—1)°
8M2F,1@F,1 8“%",B@F,B '

A€p,Fr = wp1—WF,B— (11)

For strangeness, Eq. (11) is negative, indicating
that stranglets should have binding energies smaller
than those of nuclei with the same B.

To obtain the values of the total binding energy of
hypernuclei shown in the Tables, we add the calculated
difference of binding energies given by (9) or (11) to the
known binding energy value of the usual (u, d) nucleus.
For example, for B = 3, it is the average of binding
energies of 3H and *He, for B = 4 it is the binding en-
ergy of “He (5.3 MeV = (28.3—23) MeV), etc., see the
Figure. A special care should be taken about the spin
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Table 1. The collective motion contributions to the binding energies of isoscalar hypernuclei with the unit flavor,
strangeness or beauty, S = —1 or b = —1, in MeV
AA ws Aes elot ol s wpr=to Aey, epot wyr=? Aey, epot
1 306 - - - 4501 - - 4805 - -
iH 289 -3 5 2.35 4424 75 83 4751 53 61
2He 287 —6 33 314 4422 76 103 4749 54 81
1Li 282 -3 29 37.6 4429 81 119 4744 59 97
1Be 291 —13 40 63.2 4459 40 97 4773 31 88
i'B 294 —16 99 - 4478 21 96 4786 18 93
13C 295 —18 78 104 4488 10 106 4793 11 107
PN 300 -23 91 118 4515 -17 97 4810 -7 108

ws and wyp are the strangeness and beauty excitation energies, Aeg p, in MeV, are the changes of binding energies of
the lowest baryon system with flavor s or b, |F| = 1, in comparison with the usual (u,d) nuclei with the same B.

Etot

tot

is the total binding energy of the hypernucleus. Experimental values €3, are taken from [1, 2]. The energies w

for B =1 are given for comparison. For beauty, the first 3 columns correspond to r, = Fg/F: = 1.5, and the last

3 ones to r, = 2.

Table 2. The binding energies of isodoublets of hypernuclei with the unit flavor, S = —1 or b= —1, in MeV

AA ws | Aes | e €erp A - N | A - B
{H-4He | 283 | —23 | 53 | 1052;10.11 | 4402 71| 99 || 4735 | 52 | 80
SHe SLi | 287 | —22 | 103 | 3L7; 30.8 4430 52 | 84 || 4752 | 40 | 72
SLi-SBe | 288 | —20 | 365 | 46.05; 444 || 4443 | 43 | 99 | 4765 | 33 | 89
0Be 108 | 202 | —23 | 42 | 67.3; 65.4 4465 24 | 89 || 4778 | 20 | 85
2B-12C | 204 | —24 | 67 | 87.6; 842 4481 10 | 102 || 4788 | 11 | 103
MCOUN | 209 | —28 | 77 | 109.3;106.3 || 4506 | —14 | 91 || 4805 | —5 | 100
N80 | 301 | —30 | o7 - 4521 | -28 | 100 || 4815 | —14 | 114

The rest of the notation and other detailes are as in Table 1.

of the nucleus. For 3 H and *H, {He and *He, §Li and
6Li, §3C and '3C, and in several other cases, the spins
of the ground states of the hypernucleus and the nu-
cleus coincide. For 3 He (J = 1/2) and ®He (J = 3/2),
ABe (J = 1/2) and ?Be (J = 3/2), {2C (J = 1) and
12¢ (J = 0) and in some other cases, the difference in
the rotation energies

J(T+1)
20;

must be taken into account. For example, this differ-
ence decreases the theoretical value of the binding en-

E; =

ergy for | Li by about 7 MeV, we have 29 MeV instead of
36 MeV. In those cases where the spin of the hypernu-
cleus is not known, this correction was not included in
Tables 1 and 2. Beginning with B ~ 10, the correction
to the energy of quantized states due to nonzero angu-
lar momentum is small and decreases with increasing B
because the corresponding moment of inertia increases
proportionally to B2,

Because Op p increases with increasing B and
Fp (mp), this leads to the increase of binding with
increasing B and the mass of the «flavory, in agree-
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ment with [9, 10]. For beauty (and charm, see be-
low), Eq. (11) is positive for 3 < B < 12. As follows
from Tables 1 and 2, our method underestimates the
binding energy of strangeness in nuclei beginning with
B = A ~ 9. This means that other sources of bind-
ing should be taken into account, in addition to the
collective motion of baryon system in the SU(3) con-
figuration space.

4. CHARMED HYPERNUCLEI

In this section, binding energies of charmed hyper-
nuclei are presented for two values of the charm decay
constant that correspond to the ratio r. = Fp/F, =
= 1.5 and r. = 2. Although the measurement of this
constant has been performed in [15], its variation in
some interval seems to be reasonable in view of its big
uncertainty. As follows from Tables 3 and 4, the pre-
dicted binding energies of charmed hypernuclei do not
essentially differ for the values r. = 1.5 and r. = 2.
This difference increases with increasing the atomic
number. For light hypernuclei, this difference is con-
siderably smaller than the difference between binding
energies for r, = 1.5 and r, = 2 (see Sec. 3).

For charmed nuclei, the repulsive Coulomb interac-
tion is greater than for ordinary nuclei with the same
atomic number. Moreover, because a charmed nucleus
has somewhat smaller dimensions than the ordinary nu-

Table 3.
nuclei (isoscalars) with unit charm, ¢ =1, in MeV

The binding energies of the charmed hyper-

AA | WneTES L Ae, | et || wieT2 | Ae, | elot

1 1535 - - 1673 - -

1647 | 24 32
1646 25 52

SHe | 1504 | 27 | 35
Li | 1505 | 25 | 52
1497 | 32 | 70 || 1641 | 30 | 68
1654 | 17 | 74

A

" Be

1B 1518 11 | 68
AC | 1525 4 79
BN | 1529 0 96
1

1658 13 87
1660 10 | 106

1668 3 117

PO | 1540 | —11 | 103

Ae., in MeV, and €’ are the same as in Tables 1, 2, for
the charm quantum number. The results are shown for
two values of the charm decay constant corresponding to
re = 1.5 and r. = 2. The chemical symbol is assigned to
each nucleus in accordance with its total electric charge.

Table 4. The binding energies of the charmed hy-
pernuclei (isodoublets), with unit charm, ¢ = 1, in
MeV

AA WS Aeg | €0t || wre=? | Ae, | elot
1He-1Li| 1493 12 | 40 || 1639 | 16 | 44
CLi-§Be | 1504 9 | 41 || 1646 | 14 | 46
8Be-3B | 1510 7T |63 ] 1648 | 15 | 71
0B-1°C | 1520 0 | 65| 1655 | 10 | 75
P2C-2N| 1526 | —4 | 88 || 1659 | 7 | 99
UN-{'O | 1536 | —14| 91 || 1666 1 1106
6O-15F | 1543 | —19[109| 1670 | —2 | 126

The rest of the notation and other details are as in Table 3.

clei (the effect that has not been taken into account in
the present analysis), this repulsion can decrease the
binding energies for charm by several MeV. This does
not change our qualitative conclusions, however. For
B = A = 5 and 13, our results shown in Tables 3
and 4 agree, within 15-20 MeV, with the early result
by Dover and Kahana [4], where binding of the charm
by several nuclei was studied within the potential ap-
proach. In general, we can speak about a qualitative
agreement with the results of this approach for B ~ 5—
10 [5, 6] (the results of the potential approach have
been reviewed in [6]).

As in the case where B = 1, the absolute values
of masses of multiskyrmions are controlled by poorly
known loop corrections to the classic masses, or the
Casimir energy [21]. As was done for the B = 2
states, the renormalization procedure is necessary to
obtain physically reasonable values of the masses of
multibaryons. This generates an uncertainty of about
few tens of MeV; because the binding energy of the
deuteron is 30 MeV instead of the measured value
2.225 MeV, approximately 30 MeV characterizes the
uncertainty of our approach [10]. This uncertainty is
mainly canceled in the differences of binding energies
Ae shown in Tables 1-4.

5. COMMENTS AND CONCLUSIONS

The version of the bound state soliton model pro-
posed in [8] and modified in [9, 10] for the flavor sym-
metry breaking case (Fp > Fy) allows calculating the
binding energy differences of ground states of flavored
and unflavored nuclei. Combined with several phe-
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nomenological arguments, this model is very successful
in some cases of light hypernuclei, e.g., isoscalars 3 He
and T Li. In other cases, the accuracy of describing the
binding energies is at the level 10-30 MeV, expected for
the whole method that takes only the collective motion
of the baryonic systems into account. There is also
a general qualitative agreement with the data in the
behavior of binding energy with increasing the atomic
number. It should be stressed that it is possibly one
of interesting examples where a field theoretical model
provides results that can be directly compared with ob-
servation data. This can be considered as an additional
argument in favor of the applicability of the chiral soli-
ton approach to the description of realistic properties
of nuclei. For the charm and beauty quantum numbers,
the results only slightly depend on the poorly known
values of the decay constants Fp or Fjg.

The tendency of the binding energies to decrease
with increasing the B number beginning with B ~ 10
is related to the fact that the rational map approx-
imation, leading to the one-shell bubble structure of
the classical configuration [11-13], is not good for such
values of B. At large values of the flavor symmetry
breaking mass, we have approximately

- mD\/F/GF FD

wE = 2.

For rational map configurations at large B, the X-term
[ grows faster than the inertia © p because the contri-
bution of the volume occupied by the chiral field config-
uration is more important for I" [13]. For larger B = A,
beginning with several tens, configurations of the type
of skyrmion crystals seem to be more realistic than con-
figurations of the rational map type.

Hypernuclei with |F| > 2 can be studied using
similar methods [10]. The analysis of hypernuclei
with «mixed» flavors is possible in principle, but is
more involved technically. For example, the isodou-
blet ¥ H-3 He consisting of (n,A, A.) and (p, A, A.) is
expected.

There is a rough agreement of our results with
the results in [19, 20], where the flavor excitation
frequences were calculated within another version of
the bound state approach and the collective coordinate
quantization method was used for strangeness. Some
details are different, however, and it would be inter-
esting to reproduce our results within other variants
of the chiral soliton model. The model that we used
overestimates the strangeness excitation energies, but
is more reliable for differences of energies entering (9)
and (11) and for charm and beauty quantum numbers.
Further theoretical studies and experimental search
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for the baryonic systems with flavor different from u
and d could shed more light on the dynamics of heavy
flavors in baryonic systems.

I am indebted to A. M. Shunderyuk for checking
numerical calculations and to V. Andrianov, A. Gal,
and T. Nagae for discussions and remarks. The work
was been supported by the RFBR (grant 01-02-16615).

Note added in proof (05.03.03). The variation of the
only model parameter, Skyrme constant e, has small
influence on the results presented here, negligible for
charm or beauty quantum numbers. Both quantities I’
and inertia O scale as 1/F,e®, and the flavor excita-
tion energies given by (4) at large mp depend on their
ratio, and are therefore scale-invariant.
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