СТРУКТУРНЫЕ СВОЙСТВА ГАЛОГЕНИДОВ RbMnX₃ (X — F, Cl, Br)

В. И. Зиненко^{*}, Н. Г. Замкова, С. Н. Софронова

Институт физики им. Л. В. Киренского Сибирского отделения Российской академии наук 660036, Красноярск, Россия

Поступила в редакцию 27 ноября 2002 г.

В работе приводятся результаты неэмпирического расчета энергий трех политипов (кубический, двухслойный и шестислойный гексагональные) для кристаллов RbMnX₃ (X — F, Cl, Br). Расчет проведен в модели ионного кристалла с учетом деформируемости, дипольной и квадрупольной поляризуемостей ионов. Исследовано поведение этих кристаллов под действием гидростатического давления. Показано, что при нормальном давлении кристаллы RbMnCl₃ и RbMnBr₃ имеют шестислойную гексагональную структуру. При давлениях больших 11 кбар RbMnCl₃ переходит в фазу с кубической структурой, а RbMnBr₃ при давлениях больших 90 кбар — в фазу с двухслойной гексагональной структурой. Кристалл RbMnF₃ при нормальных условиях имеет кубическую структуру и под действием давления фазовых превращений не испытывает. Полученные результаты находятся в удовлетворительном согласии с известными экспериментальными данными.

PACS: 61.50.-f

1. ВВЕДЕНИЕ

Кристаллы RbMnX₃ (X — F, Cl, Br) принадлежат к семейству перовскитоподобных кристаллов с общей формулой ABX₃. Структуры этих соединений можно представить как трехмерную упаковку ромбоэдрических слоев АХ₃, где А — крупный катион, Х — анион. Маленькие катионы В расположены между слоями и занимают центры октаэдров, образованных анионами. Упаковка слоев может быть кубической (рис. 1 а), когда анионные октаэдры связаны углами, или гексагональной (*h*-упаковка) (рис. 16, в), когда октаэдры соединены гранями. Большинство окисных соединений АВО₃ кристаллизуется в структуре перовскита (с-упаковка), и эта структура, как и физические свойства этих веществ, достаточно хорошо изучены в многочисленных исследованиях, как экспериментальными, так и теоретическими, в том числе и *ab initio*, методами. В соединениях же, где X — галоген (F, Cl, Br), могут реализоваться как *с*-упаковка, так и *h*-упаковка, а также смешанные ch-упаковки. Так, RbMnF₃ имеет кубическую структуру перовскита, а RbMnBr₃,

по-видимому, образует гексагональную структуру с двухслойной *h*-упаковкой. Кристалл RbMnCl₃ также имеет гексагональную структуру, но уже с шестислойной упаковкой слоев RbCl₃ (рис. 1*6*). Здесь пары октаэдров, соединенных гранями, связаны между собой через промежуточный октаэдр, соединенный с ними углами. Такая шестислойная упаковка называется *hcc*-упаковкой. Теоретические расчеты подобных гексагональных структур и физических свойств таких соединений практически отсутствуют из-за достаточно сложной структуры и большого числа атомов в элементарной ячейке.

С точки зрения модели жестких ионов образование гексагональных структур энергетически невыгодно, поскольку при h-упаковке слоев AX_3 ионы В сильно сближаются, что приводит к проигрышу в энергии Маделунга. Однако следует заметить, что гексагональные упаковки образуются, как правило, в соединениях, где X — хорошо поляризуемый анион (Cl, Br, I). Окружение некоторых ионов в гексагональных структурах нецентросимметрично, и, следовательно, при расчете энергии гексагональных структур необходимо учитывать энергию поляризации, возникающую за счет появления в таких струк-

^{*}E-mail: zvi@iph.krasn.ru

hcc-упаковка

Рис. 1. Расположение октаэдров в различных политипах ABX₃: *a*) кубическая упаковка (структура перовскита), *б*) двухслой ная гексагональная упаковка, *в*) шестислойная гексагональная упаковка

турах наведенных электрических моментов (дипольных, квадрупольных и т. д.). На важность учета энергии поляризации указывалось в работах [1–4], в которых исследовался ряд структур (флюорит, рутил, слоистые структуры и т. п.) в соединениях с общей формулой МХ₂. В работе [1] показано, что экспериментально наблюдаемые структуры с симметрией ниже кубической стабилизируются только при учете в полной энергии кристалла вклада от энергии поляризации, связанной с появлением на ионах низкосимметричных структур наведенных дипольных моментов. Однако все короткодействующие взаимодействия в [1] записаны в параметрической форме и число параметров достаточно велико (от 6 до 10). В работе [2] в рамках той же параметрической модели поляризуемых ионов [3] при исследовании различных фаз ZrO₂ была также учтена энергия поляризации, обусловленная наведенными квадрупольными моментами, и показано, что в низкосимметричных структурах она играет существенную роль. Но параметризация энергии, связанной с квадруполями, как отмечают и сами авторы работы [2], плохо обоснована.

Электростатические энергии решетки (энергия Маделунга и дипольная энергия) для пяти идеальных структур с различной последовательностью плотноупакованных слоев AX₃ (X = F, Cl, Br, I, O, S) в соединениях ABX₃ были вычислены в работе [4]. Авторы работы [4] предполагали одинаковую энергию короткодействующих сферически-симметричных ион-ионных взаимодействий в различных политипах и пренебрегали короткодействующими диполь-дипольными взаимодействиями. В [4] было получено, что в идеальных структурных политипах соединений ABX₃ (включая и окисные соединения) наиболее стабильной структурой оказывается двухслойная гексагональная упаковка (*h*).

В настоящей работе в рамках беспараметрической обобщенной модели Гордона-Кима [5] проведен расчет энергетики различных политипов для кристаллов RbMnX₃, где X — F, Cl, Br. При расчете полной энергии этих кристаллов учитывалась энергия поляризации, обусловленная наведенными как дипольными, так и квадрупольными моментами. Модель и метод расчета изложены в разд. 2. В разд. 3 приведены результаты расчета полных энергий трех кристаллов, а в разд. 4 исследовано влияние гидростатического давления. И, наконец, в разд. 5 кратко приведены основные результаты работы.

2. МОДЕЛЬ. МЕТОД РАСЧЕТА

В модели Гордона-Кима для ионных кристаллов полная электронная плотность записывается как сумма электронных плотностей отдельных ионов, составляющих кристалл,

$$\rho(\mathbf{r}) = \sum_{i} \rho(\mathbf{r} - \mathbf{R}_{i}). \tag{1}$$

Электронные плотности отдельных ионов рассчитываются с учетом кристаллического потенциала, аппроксимированного заряженной сферой Ватсона

$$V(r) = \begin{cases} -Z_{ion}/R_{w}, & r < R_{w}, \\ -Z_{ion}/r, & r > R_{w}. \end{cases}$$
(2)

Радиусы сфер Ватсона на отдельных ионах находились из условия минимума полной энергии кристалла.

В первоначальной модели Гордона–Кима электронная плотность ионов считалась сферически-симметричной, но, как отмечалось в [5], в реальном кристалле возможны искажения электронной плотности любой мультипольной симметрии. В [5] было предложено обобщение модели Гордона–Кима, позволяющее учитывать мультипольные искажения плотности любого порядка. Здесь мы учли дипольные и квадрупольные искажения электронной плотности

$$\rho(\mathbf{r}) = \sum_{l=0}^{2} \rho^{(l)}(\mathbf{r}),$$

$$\rho^{(l)}(\mathbf{r}) = \sum_{m=-l}^{l} \rho^{(l)}(\mathbf{r}) Y_{lm}(\theta, \phi).$$
(3)

Парные взаимодействия вычисляются в рамках теории функционала плотности,

$$\Phi_{ij}^{(l)'} = F\left\{\rho_i^{(l)}(\mathbf{r}' - \mathbf{R}_i) + \rho_j^{(l')}(\mathbf{r} - \mathbf{R}_i)\right\} - F\left\{\rho_i^{(l)}(\mathbf{r} - \mathbf{R}_i)\right\} - F\left\{\rho_j^{(l')}(\mathbf{r} - \mathbf{R}_i)\right\}.$$
 (4)

Полная энергия кристалла имеет вид

$$E = E_0 + E_{d-d} + E_{q-q} + E_{d-q} + E_{self},$$

$$E_{0} = -\frac{1}{2} \sum_{i,j=1}^{N_{a}} Z_{i} C_{ij}^{(0)} Z_{j} + \sum_{i,j=1}^{N_{a}} \Phi_{ij}^{(00)} (V_{i}, V_{j}, |\mathbf{R}_{i} - \mathbf{R}_{j}|),$$

$$E_{d-d} = \frac{1}{2} \sum_{i,j=1}^{N_a} \sum_{\alpha,\beta=1}^{3} d_i^{\alpha} \left(\frac{\delta_{ij}}{\alpha_i^d(V_i)} + \Phi_{ij,\alpha\beta}^{(11)} (V_i, V_j, |\mathbf{R}_i - \mathbf{R}_j|) - C_{ij,\alpha\beta}^{(2)} \right) d_j^{\beta} + \sum_{i,j=1}^{N_a} \sum_{\alpha=1}^{3} d_i^{\alpha} \left(\Phi_{ij,\alpha}^{(10)} (V_i, V_j, |\mathbf{R}_i - \mathbf{R}_j|) - C_{ij,\alpha}^{(1)} Z_j \right),$$
(5)
$$E_{q-q} = \frac{1}{2} \sum_{i,j=1}^{N_a} \sum_{\alpha,\beta,\gamma,\delta=1}^{3} q_i^{\alpha\beta} \left[\frac{\delta_{ij}}{\alpha_i^q(V_i)} - \frac{1}{36} \left(\Phi_{ij,\alpha\beta\gamma\delta}^{(22)} (V_i, V_j, |\mathbf{R}_i - \mathbf{R}_j|) - C_{ij,\alpha\beta\gamma\delta}^{(4)} \right) \right] q_j^{\gamma\delta} - C_{ij,\alpha\beta\gamma\delta}^{(4)} \right] q_j^{\gamma\delta} - C_{ij,\alpha\beta\gamma\delta}^{\gamma\delta} \left(\sum_{j=1}^{N_a} \sum_{$$

$$-\frac{1}{6}\sum_{i,j=1}^{N_a}\sum_{\alpha,\beta=1}^{3}q_i^{\alpha\beta}\left(\Phi_{ij,\alpha\beta}^{(20)}\left(V_i,V_j,|\mathbf{R}_i-\mathbf{R}_j|\right)-C_{ij,\alpha\beta}^{(2)}Z_j\right),$$

$$E_{d-q} = -\frac{1}{6} \sum_{i,j=1}^{N_a} \sum_{\alpha,\beta,\gamma=1}^{3} q_i^{\alpha\beta} \times \left(\Phi_{ij,\alpha\beta\gamma}^{(21)} \left(V_i, V_j, |\mathbf{R}_i - \mathbf{R}_j| \right) - C_{ij,\alpha\beta\gamma}^{(3)} \right) d_j^{\gamma},$$

где E_0 — энергия взаимодействия сферически-симметричных ионов, E_{d-d} , E_{q-q} , E_{d-q} соответственно, энергии, связанные с взаимодействием дипольных и квадрупольных моментов, $C_{ij}^{(n)} = \nabla^n (|\mathbf{R}_i - \mathbf{R}_j|)^{-1}$ — дальнодействующая часть взаимодействий, $E_{self} = \sum_{i=1}^{N_a} E_i^{ion}(V_i)$ — собственная энергия иона, N_a — число атомов в элементарной ячейке. При вычислении близкодействующих взаимодействий (4) для кинетической энергии использовано приближение Томаса-Ферми [6], а для обмен-корреляционной — приближение Хедина-Лундквиста [7]. Дальнодействующие взаимодействия $C_{ij}^{(n)}$ рассчитывались методом Эвальда. Расчет иона проводился по программе Либермана [8]. Для вычисления дипольных α^d и квадрупольных α^q поляризуемостей и соответствующих компонент электронной плотности использовалось модифицированное уравнение Штенхеймера [9].

Дипольные d_i^{α} и квадрупольные $q_i^{\alpha\beta}$ моменты находились из условия минимума энергии по отношения к соответствующему моменту:

$$\frac{\partial E}{\partial d_i^{\alpha}} = 0, \quad \frac{\partial E}{\partial q_i^{\alpha\beta}} = 0,$$

$$d_i^{\alpha} = \sum_{j=1}^{N_a} \sum_{\beta=1}^3 A_{ij}^{\alpha\beta} \times \times \sum_{k=1}^{N_a} \left(\Phi_{jk,\alpha\beta}^{(10)} \left(V_i, V_j, |\mathbf{R}_j - \mathbf{R}_k| \right) - C_{jk,\beta}^{(1)} Z_k + q_i^{\alpha\beta} \left(\Phi_{ij,\alpha\beta\gamma}^{(21)} \left(V_i, V_j, |\mathbf{R}_i - \mathbf{R}_j| \right) - C_{ij,\alpha\beta\gamma}^{(3)} \right) \right),$$

$$q_i^{\alpha\beta} = \frac{1}{6} \sum_{j=1}^{N_a} \sum_{\gamma,\delta=1}^3 \widetilde{B}_{ij}^{\alpha\beta,\gamma\delta} \times \times \sum_{k=1}^{N_a} \left(\Phi_{jk,\gamma\delta}^{(20)} \left(V_i, V_j, |\mathbf{R}_j - \mathbf{R}_k| \right) - C_{ij,\gamma\delta}^{(1)} Z_k + \widetilde{A}_{jk,\gamma\delta} \right),$$
(6)

 $A_{ij}^{\alpha\beta}$ — элементы матрицы, обратной матрице диполь-дипольного взаимодействия в (5);

$$\begin{split} \widetilde{B}_{ij}^{\alpha\beta,\gamma\delta} &= \left[\frac{\delta_{ij}}{\alpha_i^q(V_i)} - \right. \\ &- \frac{1}{36} \left(\Phi_{ij,\alpha\beta\gamma\delta}^{(22)} \left(V_i, V_j, |\mathbf{R}_i - \mathbf{R}_j| \right) - C_{ij,\alpha\beta\gamma\delta}^{(4)} \right) + \\ &+ \sum_{\lambda,\mu=1}^3 \left(\Phi_{ij,\alpha\beta\lambda}^{(21)} \left(V_i, V_j, |\mathbf{R}_i - \mathbf{R}_j| \right) - C_{ij,\alpha\beta\lambda}^{(3)} \right) \times \\ &\times A_{ij}^{\lambda\mu} \left(\Phi_{ij,\mu\gamma\delta}^{(21)} \left(V_i, V_j, |\mathbf{R}_i - \mathbf{R}_j| \right) - C_{ij,\mu\gamma\delta}^{(3)} \right) \right]^{-1}, \\ \widetilde{A}_{jk,\gamma\delta} &= \sum_{\lambda,\mu=1}^3 \left(\Phi_{ij,\lambda}^{(10)} \left(V_i, V_j, |\mathbf{R}_i - \mathbf{R}_j| \right) - C_{ij,\alpha}^{(1)} Z_j \right) \times \\ &\times A_{ij}^{\lambda\mu} \left(\Phi_{ij,\mu\gamma\delta}^{(21)} \left(V_i, V_j, |\mathbf{R}_i - \mathbf{R}_j| \right) - C_{ij,\alpha\gamma\delta}^{(3)} \right). \end{split}$$

3. РЕЗУЛЬТАТЫ РАСЧЕТА ПОЛНОЙ ЭНЕРГИИ

Как отмечалось во Введении, галогениды ABX₃ могут иметь как кубическую, так и гексагональную структуры. Здесь мы ограничимся обсуждением трех типов структур — кубической со структурой перовскита (*c*-упаковка) и двумя гексагональными с двухслойной и шестислойной упаковками (соответственно *h*- и *hcc*-упаковки) — и вычислим энергии для трех кристаллов, RbMnF₃, RbMnCl₃ и RbMnBr₃, в этих структурах.

Кристалл RbMnF₃ имеет структуру идеального перовскита с пространственной группой O_h^1 и одной молекулой в элементарной ячейке [10]. В этой структуре координаты всех атомов в элементарной ячейке фиксированы:

В RbMnBr₃ имеется последовательность структурных фазовых переходов, и, как полагают авторы работы [11], во всех фазах структура кристалла имеет искаженную форму двухслойной гексагональной упаковки. Высокосимметричная гексагональная фаза с пространственной группой D_{6h}^4 и с двумя молекулами в элементарной ячейке (рис. 16) в этом кристалле вплоть до температур плавления, по-видимому, не наблюдается [11]. Положения всех катионов в двухслойной гексагональной упаковке фиксированы, а анионы имеют один свободный параметр:

13 ЖЭТФ, вып. 4

94

90

Рис.2. Уравнение состояния (a) и зависимость энтальпии от давления (б) для кристалла RbMnF₃. Сплошная линия — кубическая структура, штриховая — шестислойная гексагональная, штрихпунктир — двухслойная гексагональная

В идеальной структуре x = 1/6.

Кристалл RbMnCl₃ имеет наиболее сложную из рассматриваемых здесь структур. В этом кристалле в высокосимметричной фазе реализуется шестислойная *hcc*-упаковка с шестью молекулами в элементарной ячейке [12]. Все ионы в этой структуре имеют по два кристаллографически неэквивалентных положения

Рис. 3. Уравнение состояния (a) и зависимость энтальпии от давления (б) для кристалла RbMnCl₃. Сплошная линия — кубическая структура, штриховая — шестислойная гексагональная, штрихпунктир — двухслойная гексагональная. На вставке показана зависимость от давления разности энтальпий шестислойной гексагональной и кубической структур

Здесь уже имеются пять свободных параметров. В идеальной гексагональной структуре, т. е. в структуре, в которой анионы образуют правильные октаэдры, эти параметры принимают значения

$$z_1 = -1/12, \quad z_2 = 1/6, \quad z_3 = 1/12,$$

 $y_1 = 1/2, \quad y_2 = 1/6.$

Обсудим сначала случай идеальных структур с плотноупакованными слоями MnX_3 (X = F, Cl, Br). В этом случае параметры элементарной ячейки a, b, c для рассматриваемых структур связаны между собой жесткими соотношениями:

Рис. 4. Уравнение состояния (a) и зависимость энтальпии от давления (b) для кристалла RbMnBr₃. Сплошная линия — кубическая структура, штриховая — шестислойная гексагональная, штрихпунктир — двухслойная гексагональная. На вставке показана зависимость от давления разности энтальпий кубической и двухслойной гексагональной (сплошная линия) и шестислойной и двухслойной гексагональной (штриховая линия) структур

- c (кубический перовскит) $a_c = b = c = a_0 \sqrt{2}$
- *h* (двухслойная гексагональная)

$$a_h = b = 2a_0, \quad c_h = 2a_0\sqrt{6/3}$$

hcc (шестислойная гексагональная)

$$a_h = b = 2a_0, \quad c_h = 2a_0\sqrt{6},$$

где a_0 — расстояние Rb–X (X = F, Cl, Br).

Полная энергия кристалла (5) минимизировалась по параметру ячейки кубической структуры и по радиусам сфер Ватсона для всех ионов. Эти радиусы сфер Ватсона сохранялись и для гексагональных структур, и, таким образом, все вклады в полную энергию кристалла для разных структур вычислялись с одними значениями собственной энергии, сферически-симметричной электронной плотности, дипольной и квадрупольной поляризуемостями ионов. Значения радиусов сфер Ватсона, собственной энергии ионов, дипольной и квадрупольной поляризуемостей ионов для рассматриваемых кристаллов приведены в табл. 1. Вычисленные значения отдельных вкладов в полную энергию для трех рассматриваемых структур представлены в табл. 2.

Для всех трех кристаллов в идеальных структурах с плотноупакованными слоями энергетически более выгодной оказывается кубическая структура перовскита (*c*-упаковка), хотя разница между энергиями *c*-упаковки и двух- (*h*) и шестислойными (*hcc*) гексагональными упаковками (так же, как и между энергиями *h*- и *hcc*-структур) заметно уменьшается с увеличением радиуса и поляризуемости аниона.

Обсудим отдельные вклады в энергию кристалла для разных структур, представленные в табл. 2. Как видно в этой таблице, в гексагональных *h*и hcc-упаковках имеется большой проигрыш в энергии Маделунга E^c. В то же время энергия короткодействующих взаимодействий сферической части электронной плотности ионов практически одинакова для обсуждаемых структур. Основную роль в стабилизации гексагональных структур играет поляризационная энергия, связанная с взаимодействием дипольных искажений электронной плотности ионов, находящихся в нецентросимметричных положениях в гексагональных структурах. Следует отметить, что если учитывать только дальнодействующий вклад парных взаимодействий E_{d-d}^c в энергию кристалла, то для кристаллов RbMnCl₃ и RbMnBr₃ наиболее выгодной оказывается гексагональная двухслойная упаковка. Структура перовскита для RbMnF₃ остается более энергетически выгодной. Соответствующие энергии $E' = E^{c} + E^{s} + E^{c}_{d-d}$ (см. табл. 2) имеют значения (в эВ):

 $\begin{array}{lll} {\rm RbMnF_3} & -36.8075(c), & -36.2930\;(h), \\ & & -36.6488\;(hcc) \\ {\rm RbMnCl_3} & -31.7615(c), & -33.3508\;(h), \\ & & -32.3969\;(hcc) \\ {\rm RbMnBr_3} & -30.2399(c), & -32.0773\;(h), \\ & & -30.9984\;(hcc) \end{array}$

Этот результат совпадает с выводами работы [4] (в [4] для фтористых соединений расчет проведен

с другими, чем в данной работе, значениями a_0 и α_d и получено, что *с*- и *h*-упаковки имеют почти одинаковую энергию). Однако, как это видно в табл. 2, суммарная поляризационная энергия диполь-дипольных взаимодействий $E_{d-d}^c + E_{d-d}^s$ (важно отметить, что величина E^s_{d-d} включает в себя не только вклады парных короткодействующих взаимодействий, но и вклады от многочастичных взаимодействий, в том числе и дальнодействующих) существенно меньше, чем E_{d-d}^c . Связано это с тем, что создаваемые на находящемся в нецентросимметричном положении ионе дальнодействующее поле от точечных зарядов решетки и поле от протяженных зарядов ближайшего окружения этого иона противоположны по знаку и в значительной степени компенсируют друг друга. Вклад в полную энергию кристалла от взаимодействий, связанных с квадрупольными искажениями электронной плотности ионов, как это видно в табл. 2, мал по сравнению с диполь-дипольной энергией и примерно одинаков для всех рассматриваемых структур.

Обратимся теперь к реальным гексагональным структурам. В этом случае полная энергия кристалла (5) минимизировалась уже как по параметрам решетки, так и по всем свободным параметрам для соответствующей структуры. При этом радиусы сфер Ватсона, приведенные в табл. 1, сохранялись и для реальных гексагональных структур, так как наши расчеты показали, что при переходе от одной структуры к другой и при минимизации по параметрам решетки радиусы сфер Ватсона либо совсем не меняются, либо меняются незначительно, даже для шестислойной гексагональной структуры с двумя неэквивалентными положениями ионов.

В табл. З приведены рассчитанные параметры структур вместе со всеми известными нам экспериментальными данными. Теоретические параметры элементарной ячейки согласуются с экспериментальными данными в пределах от 1 % до 8 %. Наибольшее расхождение наблюдается в определении параметра c_h для гексагональных структур (6 %–8 %). Рассчитанные шестислойные гексагональные структуры более вытянуты вдоль оси z по сравнению с экспериментальными. В тех же пределах находится согласие рассчитанных координат ионов в элементарной ячейке с экспериментальными положениями, при этом тенденция в смещениях ионов та же, что и в эксперименте.

Вычисленные величины дипольных и квадрупольных моментов ионов для трех структур приведены в табл. 4. Следует отметить, что в гексагональных структурах полный дипольный мо-

Кристалл		$R_w, \mathrm{\AA}$	$\alpha^d, \mathrm{\AA}^3$	$\alpha^q, \mathrm{\AA}^5$	E_{self} , эВ
	Rb	1.98	1.12	1.97	
${ m RbMnF_3}$	Mn	2.88	0.78	0.85	-120521.7921
	F	1.32	0.79	1.01	
$ m RbMnCl_3$	Rb	1.75	1.14	2.02	
	Mn	2.22	0.84	0.96	-149971.5256
	Cl	1.39	3.12	7.52	
	Rb	1.72	1.15	2.04	
${ m RbMnBr_3}$	Mn	2.22	0.84	7.52	-324847.5789
	Br	2.18	4.25	12.22	

Таблица 1. Значения радиусов сфер Ватсона, дипольной и квадрупольной поляризуемостей ионов и собственной энергии кристаллов RbMnX₃

Таблица 2. Вычисленные значения (на одну молекулу) полных энергий $E_{full} = E - E_{self}$ и отдельных вкладов (E^c – энергия Маделунга, E^s – энергия короткодействующих сферически-симметричных ион-ионных взаимодействий, E^c_{d-d} , E^c_{q-q} , E^c_{d-q} – соответственно энергии дальнодействующих диполь-дипольных, квадруполь-квадрупольных и квадруполь-дипольных взаимодействий, а E^s_{d-d} , E^s_{d-q} – соответственно короткодействующих сферически-симметричных и квадруполь-квадрупольных взаимодействий, а E^s_{d-d} , E^s_{d-q} – соответственно короткодействующие части этих взаимодействий) для идеальных плотноупакованных структур

<i>Е</i> , эВ	$\frac{\text{RbMnF}_3}{a_0 = 3.11 \text{ Å}}$			$\frac{\text{RbMnCl}_3}{a_0 = 3.63 \text{ Å}}$			$RbMnBr_3$ $a_0 = 3.85 \text{ Å}$		
	c h hcc		С	h	hcc	С	h	hcc	
E^c	-40.5623	-37.6163	-39.6310	-34.6722	-32.1426	-33.8919	-32.6861	-30.3322	-32.0129
E^{s}	3.7548	3.8042	3.7675	2.9107	2.8909	2.8898	2.4462	2.4549	2.4604
E_{d-d}^c	0.0	-2.4809	-0.7853	0.0	-4.0991	-1.3888	0.0	-4.2000	-1.4459
E_{d-d}^s	0.0	1.8489	0.6014	0.0	2.9942	1.0591	0.0	3.0232	1.0873
E_{q-q}^c	-0.2286	-0.1249	-0.1963	-0.6357	-0.2520	-0.5269	-0.7159	-0.2804	-0.5950
E_{q-q}^s	0.2146	0.1049	0.1803	0.6341	0.2409	0.5225	0.6952	0.2747	0.5850
E_{d-q}^c	0.0	-0.0697	-0.0211	0.0	-0.1791	-0.1318	0.0	-0.2020	-0.1706
E_{d-q}^s	0.0	0.0568	0.0185	0.0	0.1547	0.1247	0.0	0.1865	0.1692
E_{full}	-36.8215	-34.4770	-36.0660	-31.7631	-30.3921	-31.3433	-30.2606	-29.0753	-29.9197

мент элементарной ячейки равен нулю. Тензоры квадрупольных моментов были приведены к главным осям, два из трех главных значений независимы: $q_{zz} = -(q_{xx} + q_{yy})$. В кубической структуре $q_{xx} = q_{yy} = -q_{zz}/2$. С рассчитанными параметрами элементарной ячейки, координатами ионов и величинами дипольных и квадрупольных моментов были вычислены отдельные вклады и полная энергия для трех кристаллов в двух гексагональных структурах и результаты представлены в табл. 5.

Как видно в табл. 5, в гексагональных структурах релаксация кристаллической решетки к равновесным значениям параметров элементарной ячейки и координат ионов в ней приводит к перераспределению величин разных вкладов в полную энергию кристалла и к еще более тонкому, по сравнению с идеальными упаковками, балансу между этими вкладами. В кристалле RbMnF₃ кубическая фа-

		${ m RbMnF_3}$	RbMnCl_3	${ m RbMnBr_3}$
		Кубическая		
	Расчет	4.4	5.1	5.5
a_c	Эксперимент [10]	4.2		
	Двухсл	тойная гексагоналы	ная	
	Расчет	5.9	6.7	6.8
a_h	Эксперимент [14]			7.5
	Расчет	6.0	6.9	7.2
c_h	Эксперимент [14]			6.6
x/a_h	Теория	0.1587	0.1727	0.1867
	Шестис	слойная гексагональ	ная	•
	Расчет	6.2	7.1	7.3
a_h	Эксперимент [12]		7.1	
	Расчет	15.7	19.0	20.8
c_h	Эксперимент [12]		17.8	
,	Расчет	0.4880	0.5008	0.5088
y_1/a_h	Эксперимент [12]		0.4928	
1	Расчет	0.1590	0.1456	0.1563
y_2/a_h	Эксперимент [12]		0.1616	
1	Расчет	-0.1253	-0.1310	-0.133
z_1/c_h	Эксперимент [12]		-0.0888	
,	Расчет	0.1510	0.1543	0.1376
z_2 / c_h	Эксперимент [12]		0.1603	
	Расчет	0.0873	0.1000	0.106
z_3 / c_h	Эксперимент [12]		0.0820	

Таблица	3.	Параметрь	і элементаі	оных ячеек	и коорл	пинаты	ионов в	разных	структура	аx
raomiqu		riapamerpe	a oblementa		n noope	gn na i bi	NONOD D	pashbix	cipy.ciyp.	~~~

за со структурой перовскита, в соответствии с экспериментом [10], остается более выгодной по сравнению с неидеальными гексагональными структурами, хотя значения энергий последних (по сравнению с энергиями идеальных структур) значительно ближе к значению энергии кубической структуры.

В кристалле RbMnCl₃, также в соответствии с экспериментом [12], наиболее стабильной оказывается структура с шестислойной *hcc*-упаковкой, хотя энергия кубической *c*-упаковки очень близка к энергии этой гексагональной структуры. Здесь необходимо отметить, что в данном расчете энергетическая выгодность шестислойной гексагональной структуры по сравнению с кубической структурой перовскита обусловлена вкладами в полную энергию кристалла квадруполь-квадрупольных и квадруполь-дипольных взаимодействий. Поляризационной энергии, связанной с дипольными искажениями электронной плотности ионов, оказывается недостаточно для стабилизации гексагональной структуры в этом кристалле.

Дипольный вклад в полную энергию кристалла стабилизирует шестислойную гексагональную структуру в RbMnBr₃. Энергия *hcc*-структуры в этом кристалле существенно ниже энергий *c*- и *h*-структур. Энергетическая выгодность шестислойной гексагональной структуры в кристалле RbMnBr₃ обусловлена двумя факторами:

		${ m RbMnF_3}$	$ m RbMnCl_3$	${ m RbMnBr_3}$
		Кубическа	Я	
q_{zz}	Х	0.0745	0.068	-0.309
	•	Двухслойная гексаг	ональная	·
	Rb	0.00	0.00	0.00
d	Mn	0.00	0.00	0.00
	X	0.191	0.620	0.965
	Rb	0.025	0.004	-0.016
q_{xx}	Mn	-0.030	-0.032	-0.033
	X	0.044	-0.247	-1.183
	Rb	0.025	0.004	-0.016
q_{yy}	Mn	-0.031	-0.034	-0.035
	X	-0.059	-0.125	0.031
		Шестислойная гекса	гональная	
	Rb_1	0.0	0.0	0.0
	Rb_2	0.166	0.197	0.230
d	Mn ₁	0.0	0.0	0.0
	Mn_2	0.014	0.267	0.064
	X_1	0.102	0.372	0.520
	X_2	0.062	0.477	0.808
	Rb_1	0.029	0.065	0.077
	Rb_2	0.011	0.021	0.029
q_{xx}	Mn_1	0.059	0.136	0.146
1	Mn_2	-0.024	-0.054	-0.056
	X_1	0.006	-0.077	-0.361
	X_2	-0.047	-0.318	0.299
	Rb_1	0.028	0.065	0.077
q_{yy}	Rb_2	0.011	0.021	0.029
	Mn ₁	0.059	0.136	0.146

	_	
Таблица 4.	Величины дипольных и квадрупольных моментов ионов в разных структурах	(ватомных единицах)

во-первых, большая величина дипольной поляризуемости иона брома приводит к большему вкладу дипольной энергии по сравнению с таким вкладом в соединениях с фтором и хлором; во-вторых, смещения ионов в RbMnBr₃ таковы, что разница в энергиях Маделунга *с*- и *hcc*-структур в этом соединении существенно меньше, чем разница энергий Маделунга в соединении RbMnCl₃.

Следует отметить, что в данном расчете для всех трех рассматриваемых кристаллов двухслойная гексагональная структура оказывается энергетически невыгодной по сравнению как с кубической структурой перовскита, так и с гексагональной шестислойной структурой.

4. ФАЗОВЫЕ ПЕРЕХОДЫ ПОД ДАВЛЕНИЕМ

Под действием гидростатического давления многие галогенные соединения ABX₃ испытывают фазовые переходы между разными политипами, причем предпочтительно в структуры с большей долей ку-

E - D	$ m RbMnF_3$			${ m RbMnCl}_3$			${ m RbMnBr_3}$		
Е, эв	С	h	hcc	С	h	hcc	С	h	hcc
E^{c}	-40.5623	-39.1902	-40.3444	-34.6722	-32.6301	-33.8317	-32.6861	-29.0245	-31.3275
E^s	3.7548	5.0400	3.9007	2.9107	3.1097	2.8239	2.4462	1.9673	2.4971
E_{d-d}^c	0.0	-2.4313	-0.2443	0.0	-4.1234	-0.8318	0.0	-4.4966	-1.3753
E_{d-d}^s	0.0	2.0824	0.1405	0.0	2.8193	0.1261	0.0	1.8115	-0.1070
E_{q-q}^c	-0.2286	-0.1247	-0.2044	-0.6357	-0.1133	-0.4500	-0.7159	-0.03979	-0.4177
E_{q-q}^s	0.2146	0.1167	0.1870	0.6341	0.0778	0.4072	0.6952	-0.2429	0.2511
E_{d-q}^c	0.0	-0.0812	-0.0095	0.0	-0.1207	-0.0850	0.0	-0.1175	-0.1515
E^s_{d-q}	0.0	0.0748	0.0073	0.0	0.1046	0.0563	0.0	0.0061	0.0591
E _{full}	-36.8215	-34.5136	-36.5671	-31.7631	-30.8761	-31.7850	-30.2606	-30.1364	-30.5716

Таблица 5. Вычисленные значения (на одну молекулу) полных энергий $E_{full} = E - E_{self}$ и отдельных вкладов (обозначения те же, что и в табл. 2)

бически упакованных слоев [13]. Здесь мы приводим результаты вычисления энтальпии

$$H(\Omega) = (E(\Omega) - E_{self}) + P\Omega$$

 $(E(\Omega)$ дается выражением (5), P — давление, Ω объем элементарной ячейки) для трех рассматриваемых кристаллов в разных структурах. Для получения уравнения состояния энтальпия $H(\Omega)$ при заданном значении давления Р минимизировалась по объему, при этом соотношение между параметрами элементарной ячейки *c/a* сохранялось при всех значениях давления. Уравнение состояния $\Omega(P)$ и зависимость энтальпии H(P) показаны на рис. 2–4. Как видно на этих рисунках, поведение трех рассматриваемых кристаллов под действием гидростатического давления различно. В RbMnF₃ структура перовскита остается энергетически выгодной и при воздействии гидростатического давления. Кристалл RbMnCl₃ при давлениях больших 11 кбар переходит из фазы с шестислойной гексагональной упаковкой в фазу со структурой перовскита. Значение полученной в данном расчете величины давления P = 11 кбар очень хорошо согласуется с экспериментальной величиной P = 7 кбар [13]. Объем элементарной ячейки при переходе $hcc \rightarrow c$ уменьшается и полученное в расчете при этом значение параметра элементарной ячейки кубической фазы $a_0^{cal} = 5.094 \,\text{\AA}$ также находится в хорошем согласии с экспериментальным значением $a_0^{exp} = 5.058 \text{ Å} [13].$

Поведение кристаллов RbMnCl₃ и RbMnBr₃ под

действием гидростатического давления подтверждает высказываемое в литературе [10] утверждение о стабилизации под давлением фазы со структурой перовскита в галогенидах ABX₃. Однако в случае кристалла RbMnBr₃ в данном расчете фаза со структурой перовскита не реализуется вплоть до давлений 100 кбар (рис. 4). Более того, как это видно на рис. 4, при P > 90 кбар в этом кристалле энергетически более выгодной становится фаза с двухслойной гексагональной упаковкой. Экспериментальные исследования RbMnBr₃ под действием гидростатического давления нам неизвестны.

5. ЗАКЛЮЧЕНИЕ

В данной работе в рамках беспараметрической модели ионного кристалла с учетом дипольной и квадрупольной поляризуемостей рассчитаны энергии трех структур: кубической (*c*-упаковка), двухслойной гексагональной (*h*-упаковка) и шестислойной гексагональной (*hcc*-упаковка) для кристаллов RbMnF₃, RbMnCl₃ и RbMnBr₃ и исследовано поведение этих кристаллов под действием гидростатического давления.

Получено, что в кристалле RbMnF₃ и при нормальных условиях, и при воздействии давления стабильна фаза со структурой перовскита, причем энергия этой фазы существенно ниже энергий фаз с *h*и *hcc*-упаковками.

В кристалле RbMnCl₃ при нормальных услови-

ях наиболее стабильной оказывается гексагональная hcc-структура, а при воздействии гидростатического давления этот кристалл переходит в фазу со структурой перовскита. Полученные в расчете величины давления фазового перехода и параметра элементарной ячейки находятся в хорошем согласии с экспериментальными данными.

Для кристалла RbMnBr₃ мы не получили энергетическую выгодность двухслойной гексагональной структуры при нормальных условиях. Энергия шестислойной гексагональной структуры в наших расчетах всегда ниже, несмотря на то что энергия поляризации двухслойной гексагональной структуры дает больший отрицательный вклад в полную энергию кристалла, чем энергия поляризации в шестислойной гексагональной структуре.

Работа выполнена при финансовой поддержке РФФИ-«Енисей» (грант № 02-02-97707).

ЛИТЕРАТУРА

- M. Wilson and P. A. Madden, J. Phys.: Condens. Matter 6, 159 (1994).
- M. Wilson, U. Schonberger, and M. W. Finnis, Phys. Rev. B 54, 9147 (1996).

- M. Wilson and P. A. Madden, J. Phys.: Condens. Matter 5, 2687 (1993).
- J. W. Weenk and H. A. Harwig, J. Phys. Chem. Sol. 38, 1055 (1977).
- **5**. О. В. Иванов, Е. Г. Максимов, ЖЭТФ **108**, 1841 (1995).
- L. H. Thomas, Proc. Cambr. Phil. Soc. 23, 542 (1926);
 E. Fermi, Z. Phys. 48, 73 (1928).
- L. Hedin and B. I. Lundqvist, J. Phys. C 4, 2064 (1971).
- D. A. Liberman, D. T. Cromer, and J. J. Waber, Comput. Phys. Comm. 2, 107 (1971).
- 9. G. D. Mahan, Phys. Rev. A 22, 1780 (1980).
- H. P. Copla, E. G. Sieverts, and R. H. Van der Linde, Physica 51, 573 (1971).
- T. Kato, K. Machida, T. Ishii, and K. Iio, Phys. Rev. B 50, 13039 (1994).
- J. Goodyear, G. A. Steigmann, and E. M. Ali, Acta Cryst. B 33, 256 (1977).
- 13. J. M. Longo and J. A. Kafalas, J. Sol. St. Chem. 3, 429 (1971).
- H. J. Seifert and E. Dan, Z. Annorg. Allgem. Chem. 391, 302 (1972).