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RADIATION FROM COSMIC CHIRAL STRING LOOPSE. Babi
hev *, V. Doku
haev **Institute for Nu
lear Resear
h of the Russian A
ademy of S
ien
es119312, Mos
ow, RussiaSubmitted 13 November 2002The gravitational and ele
tromagneti
 radiation from 
hiral super
ondu
ting 
osmi
 string loops is 
al
ulated.The formulas for energy, momentum, and angular momentum losses due to gravitational and ele
tromagneti
radiation from 
hiral loops of an arbitrary 
on�guration are derived. After summation over all modes, expressionsfor the 
orresponding radiation rates averaged over the loop os
illation period have the form of four-dimensionalintegrals. These formulas are redu
ed to sums over the kinks for loops 
omposed of pie
ewise linear strings.For three examples of string loops, the total radiation rates are 
al
ulated numeri
ally in dependen
e on the
hiral 
urrent along the string. In the limit of a nearly maximum 
urrent, whi
h 
orresponds to a stationaryloop (vorton) 
on�guration, we determine the upper bounds on the gravitational and ele
tromagneti
 radiation.We also estimate the os
illation damping time of a nearly stationary loop.PACS: 11.27.+d, 41.20.J, 04.301. INTRODUCTIONWe investigate the properties of the gravitationaland ele
tromagneti
 radiation of energy, momentum,and angular momentum from super
ondu
ting 
losed
osmi
 strings with a 
hiral 
urrent. Formation of 
os-mi
 strings in the early universe phase transitions ispredi
ted by many parti
le-physi
s models (see, e. g.,reviews in [1, 2℄). In 1985, Witten showed that 
os-mi
 strings 
an 
arry a super
ondu
ting ele
tromag-neti
 
urrent [3℄. Exa
t solutions of the equations ofmotion for 
urrent-
arrying 
osmi
 strings were foundby Carter and Peter [4℄, Davis et al. [5℄, and Blan
o-Pillado et al. [6℄ in the 
ase of a 
hiral (or null) 
urrentJaJa = 0, whi
h does not 
ouple to any gauge �eld.Ordinary 
osmi
 strings (without a 
urrent) radiateenergy [7�12℄, momentum [7, 13, 14℄, and angular mo-mentum [14℄ in the form of gravitational waves. If 
os-mi
 strings 
arry the ele
tromagneti
 
urrent, 
osmi
string loops radiate both gravitational and ele
tromag-neti
 waves. For a small 
urrent, the most intense radi-ation is generated by a 
usp on the loop. The radiationfrom a single 
usp of the 
hiral string loop with a small
urrent was studied by Blan
o-Pillado and Olum [15℄.The radiation of loops in the opposite 
ase of a nearly*E-mail:babi
hev�inr.npd.a
.ru**E-mail:doku
haev�inr.npd.a
.ru

maximum 
urrent was 
onsidered in [16℄. In this paper,we study the gravitational and ele
tromagneti
 radia-tion from 
losed 
hiral string loops in the entire range ofthe string 
urrent. The rates of the energy _E, momen-tum _P , and angular momentum _L losses (averaged overthe os
illation period) to the gravitational and ele
tro-magneti
 waves 
an be expressed in the general formas _Egr = �grE G�2; _P gr = �grP G�2;_Lgr = �grL LG�2; _Eem = �emE �q2;_P em = �emP �q2; _Lem = �emL L�q2; (1)where the 
oe�
ients �grE , �grP , �grL , �emE , �emP , and �emLdepend on the parti
ular string 
on�guration and the
urrent on the string, L is the string invariant length, �is string mass per unit length, q is the ele
tromagneti

harge, and we use units ~ = 
 = 1. In what follows,we 
al
ulate the 
oe�
ients �grE , �grP , �grL , �emE , �emP ,and �emL as fun
tions of the 
urrent on the string. It isknown that for ordinary loops (without a 
urrent), the
orresponding 
oe�
ients for the gravitational radia-tion are of the respe
tive orders �grE � 100, �grP � 10,and �grL � 10. We found that for loops with a 
hiral
urrent, the same 
oe�
ients �grE , �grP , and �grL be-have as follows: they rapidly de
rease with the 
urrentat small 
urrent values and slowly de
rease at large
urrent values. In general, the gravitational radiation672
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hiral string loopsrates are de
reasing fun
tions of the 
urrent on thestring. For the ele
tromagneti
 radiation, the situationis quite di�erent: the loss rates of the energy, momen-tum, and angular momentum to ele
tromagneti
 wavesfor all 
onsidered examples have a maximum near somerather small value of the 
urrent.The total rates of the energy, momentum, and an-gular momentum per unit time (averaged over the pe-riod) are usually 
al
ulated by summing the losses indi�erent Fourier modes. As noted by Allen et al. [11℄,su
h 
al
ulations may not be a

urate in pra
ti
e be-
ause of a slow 
onvergen
e of the 
orresponding sumsover mode numbers. In this paper, we perform thesummation over all radiation modes analyti
ally andderive formulas for the energy, momentum, and angu-lar momentum loss rates to the gravitational and ele
-tromagneti
 radiation from the 
hiral string loops ofa general 
on�guration. As a result, the 
orrespond-ing radiation rates into the unit solid angle averagedover the loop os
illation period are redu
ed to four-dimensional integrals. In general, these integrals 
anbe 
al
ulated only numeri
ally. For 
hiral loops 
om-posed of pie
ewise linear strings, these formulas leadto analyti
 expressions for the energy, momentum, andangular momentum radiation into the unit solid angle.For large 
urrents (
lose to the maximum value), wedetermine the upper bounds on the gravitational andele
tromagneti
 radiation. For weak radial os
illationsof a 
hiral ring, we �nd the temporal behavior of theloop energy and 
urrent analyti
ally. For some otherless symmetri
 loop examples, we estimate the dampingtime of small-amplitude loop os
illations.This paper is organized as follows. In Se
. 2, wereview some general properties of 
hiral 
osmi
 strings.In Se
. 3, we derive new expressions for the energy,momentum, and angular momentum gravitational ra-diation rates by 
hiral loops of a general 
on�gurationinto the unit solid angle. These expressions are redu
edto four-dimensional integrals where summation over allradiation modes is performed analyti
ally. In Se
. 4,we derive similar formulas for the ele
tromagneti
 ra-diation rates. In Se
. 5, the radiation and os
illationdamping to the vorton state of nearly stationary loopsare des
ribed. In Se
. 6, we present numeri
al 
al
ula-tions of the ele
tromagneti
 and gravitational radiationrates for some illustrative examples of 
hiral loops andstudy the dependen
e of the 
hiral string radiation onthe 
urrent. In Se
. 7, we des
ribe the results obtainedand dis
uss some qualitative features of the gravita-tional and ele
tromagneti
 radiation from 
hiral loops.

2. MOTION OF A CHIRAL STRING IN FLATSPACE�TIMEIn this se
tion, for pedagogi
al reasons, we des
ribesome general properties of 
hiral 
osmi
 strings, i.e.,strings with a 
hiral 
urrent JaJa = 0. The generalsolution of the equations of motion of the 
hiral string
an be written as [4�6℄x0 = t; x(t; �) = L4� [a(�) + b(�)℄ ; (2)where t is the Minkowski time, � parameterizes thestring total energy asE = � Z d�; (3)L is the invariant length of the string, and a(�) and b(�)are arbitrary ve
tor fun
tions of � = (2�=L)(�� t) and� = (2�=L)(� + t) satisfying the 
onditionsa02 = 1; b02 = k2(�) � 1: (4)For 
losed 
hiral strings (loops), the ve
tor fun
tionsa(�) and b(�) form 
losed loops, 
alled a- and b-loops.The fun
tion k(�) in (4) 
an be expressed as [6℄k2(�) = 1� 4F 02(�)� ; (5)where the fun
tion F (�) de�nes the auxiliary s
alar�eld �(�; t) = L2�F (�): (6)A

ording to (6), the s
alar �eld �(�; t) is an arbitraryfun
tion of the only parameter �. The four-dimensional
urrent on the string is expressed through this s
alar�eld �(�; t) as [21℄j�(x; t) = qZ d��0(�; t)(x0�� _x�)Æ(3) (x�x(�; t)) ; (7)where x0 denotes �x=�� and _x denotes �x=�t. Theenergy-momentum tensor of the string in this gauge isT�� = � Z d� ( _x� _x� � x0�x0�) Æ(3) (x� x(�; t)) : (8)Correspondingly, the total momentum and angular mo-mentum of the string are given byP = � Z d� _x(�; t); (9)L = � Z d�[x(�; t) � _x(�; t)℄: (10)2 ÆÝÒÔ, âûï. 4 673



E. Babi
hev, V. Doku
haev ÆÝÒÔ, òîì 123, âûï. 4, 20033. GRAVITATIONAL RADIATION FROMCHIRAL LOOPSWe 
onsider a periodi
 system with the period T .In this system, the Fourier transform of the energy-momentum tensor T ��(x; t) is given by [14℄T̂��(!l;n) = 1T TZ0 dt Z d3xT ��(x; t) �� exp fi!l(t� n � x)g ; (11)where !l = 2�l=T and n is an arbitrary unit ve
tor. Itis useful to also de�ne the Fourier transform of the �rstmoment,T̂��p(!l;n) = 1T Z dt Z d3xT��(x; t)xp �� exp fi!l(t� n � x)g : (12)For 
onvenien
e, we de�ne the four-dimensional symboln� � (1;n). For any periodi
 system, the 
orrespond-ing gravitational energy, momentum, and angular mo-mentum radiation rates per solid angle d
 (averagedover the period T ) are given by the seriesd _P�d
 = 1Xn=1 d _P�(!n)d
 ; d _Ld
 = 1Xn=1 d _L(!n)d
 ; (13)where [17℄d _P�(!)d
 = �n�G!2� PijPlm �T̂ �ilT̂jm�12 T̂ �ij T̂lm� (14)and [14℄d _Li(!)d
 = � G2� �ijknj �i!nlP pq(3T̂ �klT̂qp+6T̂ �kpT̂ql) ++ !2P lmP pq �2T̂ �kmqT̂lp � 2T̂ �kmT̂lpq�� T̂ �lpkT̂mq + 12 T̂ �lmkT̂pq�+ 
.
.� : (15)Here, Pij = Æij �ninj is the proje
tion operator to theplane perpendi
ular to the unit ve
tor n. It is possi-ble to simplify (14) and (15) further by rewriting themin the 
orotating basis (e1; e2; e3) � (n;v;w), wherev and w are arbitrary unit ve
tors perpendi
ular toea
h other and to n. In this 
orotating basis, Eqs. (14)and (15) be
ome [14℄d _P�(!)d
 = n�G!2� ���pq�pq � 12��qq�pp� ; (16)

d _L(!)d
 = d _L2d
 v + d _L3d
 w; (17)where d _L2d
 = G2� �� i!(3��13�pp + 6��3p�p1)�� !2�2��3pq�pq � 2��3p�pqq�� ��pq3�pq + 12��qq3�pp�+ 
.
.� ;d _L3d
 = G2� �i!(3��12�pp + 6��2p�p1) ++ !2�2��2pq�pq � 2��2p�pqq�� ��pq2�pq + 12��qq2�pp�+ 
.
.� :
(18)

Here, �pq and �pqr are the respe
tive Fourier transformsof the energy-momentum tensor and its �rst momentin the new 
orotating basis. We note that only thesubs
ripts p and q with the values 2 and 3 appear inEqs. (16) and (18). For 
hiral loops, the Fourier trans-forms �pq 
an be expressed as�pq(!l;n) = �L�2 [Ip(l)Yq(l) + Yp(l)Iq(l)℄; (19)where the fun
tions Ip(l) and Yq(l) are expressedthrough the �fundamental integrals�,Ii(l) � 12� 2�Z0 d� exp f�il(� + n � a)g a0 � ei;Yj(l) � 12� 2�Z0 d� exp fil(� � n � b)gb0 � ej : (20)For the �rst moment (12), we 
an similarly �nd that�ijk(!l;n) = �L2�8� [Ii(l)Njk(l) + Ij(l)Nik(l) ++ Yi(l)Mjk(l) + Yj(l)Mik(l)℄; (21)whereMij(l) � 12� �� 2�Z0 d� exp f�il(� + n � a)g (a0 � ei)(a � ej);Nij(l) � 12� �� 2�Z0 d� exp fil(� � n � b)g (b0 � ei)(b � ej): (22)
674
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hiral string loopsThe 
ru
ial point of the 
al
ulation to follow is thesummation over all mode numbers l in expressions (13)for the requested rates of the radiated gravitational en-ergy, momentum, and angular momentum. For thissummation, we �rst integrate expressions (20) and (22)by parts to obtain an additional l in the denominator.For example, the fun
tion Ii be
omesIi(l) = 12� 2�Z0 d� [exp f�il(� + n � a)g (1 + n � a0)℄�� a0 � ei1 + n � a0 == � 12�il a0 � ei1 + n � a0 exp f�il(� + n � a)g ���2�0 ++ 12�il 2�Z0 d� � a0 � ej1 + n � a0 �0 exp f�il(� + n � a)g ; (23)where the �rst term is equal to zero be
ause of the peri-odi
ity of a- and b-loops. Expressions for the fun
tionsYj , Mij , and Nij 
an be integrated by parts similarly.We �nally obtainIi = 12�il 2�Z0 d� Ii exp f�il(� + n � a)g ;Yj = � 12�il 2�Z0 d� Yj exp fil(� � n � b)g ;Mij = 2�Z0 d�� 12�ilMij � 12�l2 ~Mij��� exp f�il(� + n � a)g ;Nij = � 2�Z0 d�� 12�ilNij + 12�l2 ~Nij��� exp fil(� � n � b)g ;
(24)

whereIi = � a0 � ei1 + n � a0 �0 ; Yj = � b0 � ej1� n � b0 �0 ;Mij = � a0 � ei1 + n � a0 �0 (a � ej);~Mij = � (a0 � ei)(a0 � ej)(1 + n � a0)2 �0 ;Nij = � b0 � ei1� n � b0 �0 (b � ej);~Nij = � (b0 � ei)(b0 � ej)(1� n � b0)2 �0 : (25)

Substituting (24) in (19) and (21), we �nd�ij = � L�8�2l2 2�Z0 2�Z0 d�d� Tij �� exp f�il[� � � + n � (a+ b)℄g ;�ijk = � L2�32�3l2 2�Z0 2�Z0 d�d� �Tijk + 1il ~Tijk� �� exp f�il[� � � + n � (a+ b)℄g ; (26)
whereTij = IiYj + IjYi;Tijk = IiNjk + IjNik + YiMjk + YjMik;~Tijk = �Ii ~Njk � Ij ~Nik + Yi ~Mjk + ~YjMik: (27)Next, substituting (26) in (16) and (18), we �nd theradiation rates of E, P, and L on the parti
ular eigen-frequen
y !l = 2�l=T ,d _P�(!)d
 = n� G�24�3l2 Z d4�P 
os(l�x); (28)d _Lvd
 = �GL�216�4 �� Z d4� �sin(l�x)l3 (3�2 + ~�2) + 
os(l�x)l2 �2� ;d _Lwd
 = GL�216�4 �� Z d4� �sin(l�x)l3 (3�3 + ~�3) + 
os(l�x)l2 �3� ; (29)
where we use the notation�x = � � �0 � (� � �0) ++ n[a(�) � a(�0) + b(�)� b(�0)℄;P = T 0pqTpq � 12T 0qqTpp;�2 = T 013Tpp + 2T 03pTp1;�3 = T 012Tpp + 2T 02pTp1;�2 = 2T 03pqTpq � 2T 03pTpqq � T 0pq3Tpq ++ 12T 0qq3Tpp;~�2 = 2 ~T 03pqTpq + 2T 03p ~Tpqq � ~T 0pq3Tpq ++ 12 ~T 0qq3Tpp;�3 = 2T 02pqTpq � 2T 02pTpqq � T 0pq2Tpq ++ 12T 0qq2Tpp;~�3 = 2 ~T 02pqTpq + 2T 02p ~Tpqq � ~T 0pq2Tpq ++ 12 ~T 0qq2Tpp:

(30)
675 2*



E. Babi
hev, V. Doku
haev ÆÝÒÔ, òîì 123, âûï. 4, 2003It is assumed that integration in (28) and (29) is overthe four-dimensional 
ube with the side (0; 2�); we alsouse the notation d4� = d� d�0 d� d�0.We now �nd the form of expressions (28) and (29)suitable for summing over the modes l. Using theknown values for in�nite series [18℄1Xl=1 
os(lx)l2 = 14(x� �)2 � �212 ; 0 � x � 2�;1Xl=1 sin(lx)l3 = 112[(x� �)3 � �2x℄ + �312 ;0 � x � 2�; (31)we obtain the �nal expressions for the gravitational ra-diation of energy, momentum, and angular momentumrates [19℄ from (28) and (29) asd _P�d
 = n� G�216�3 Z d4�P(�xmod 2� � �)2; (32)d _Lvd
 = �GL�264�4 Z d4���(�xmod 2� � �)3�� �2�xmod 2����2 + 13 ~�2� ++ (�xmod 2� � �)2�2� ;d _Lwd
 = GL�264�4 Z d4���(�xmod 2� � �)3�� �2�xmod 2����3 + 13 ~�3� ++ (�xmod 2� � �)2�3� :
(33)

We note that the integrals in (32) and (33) do not 
on-tain the terms �2=12 and �3=12 originating in (31) be-
ause the 
orresponding 
ontributions vanish in the in-tegrals. The advantage of formulas (32) and (33) withrespe
t to the 
orresponding formulas (16) and (17)is that there are no summations over modes. Butbe
ause of the presen
e of the fun
tion �x(mod)2�,the four-dimensional integrals in (32) and (33) 
an-not be redu
ed to produ
ts of lower-dimensional inte-grals, and therefore numeri
al 
al
ulations of the four-dimensional integrals be
ome more 
ompli
ated.4. ELECTROMAGNETIC RADIATION FROMCHIRAL LOOPSWe now 
onsider the ele
tromagneti
 radiation froman arbitrary relativisti
 periodi
 system in a similar

way. We 
al
ulate the ele
tromagneti
 radiation byanalogy with Durrer's 
al
ulations of the gravitationalradiation [14℄. In the Lorentz gauge, a retarded so-lution for the ele
tromagneti
 potential A� in su
h asystem is given byA�(x; t) = � Z j�(x0; tret)jx� x0j dx0; (34)where j� is the four-dimensional 
urrent and we settret = t � jx � x0j. We 
onsider formula (34) in thelimit r = jxj � jx0j. Expanding (34) in a series in 1=rand taking the �rst two terms into a

ount, we obtainA�(x; t) = 1r Z j�(x0; tret)dx0 �� 1r2 Z j�(x0; tret)x0idx0 +O(r�3); (35)where n = x=r. Expanding tret in a series in jx0j=r, wethen �ndtret = t�r+n � x0� 12rPijx0ix0j+O(jx0j2=r2)jx0j: (36)Equation (36) implies the useful relationA�;j = �A�;0nj +O(A�=r): (37)Similarly to the 
ase of the gravitational �eld(T �� $ j�; h�� $ j�, et
.), we have the Fouriertransforms of the 
urrent ~j� and its �rst and se
ondmoments ~j�p and ~j�pq ,~j�(!l;n) = 1T TZ0 dt Z d3xj�(!l;x)�� exp fi!l(t� n � x)g ;~j�p(!l;n) = 1T TZ0 dt Z d3xj�(!l;x)xp �� exp fi!l(t� n � x)g ;~j�pq(!l;n) = 1T TZ0 dt Z d3xj�(!l;x)xpxq �� exp fi!l(t� n � x)g :
(38)

These quantities satisfy the 
onditions~j0 � nk ~jk = 0;� i! ~j0p � ~jp + i!nk ~jkp = 0;i!Pmn( ~j0mn � np~jpmn) + 2Ppq~jpq = 0; (39)676
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hiral string loopswhi
h follow from the relationsj�;� = 0;Z j�(t;x0);�[x0p expfi!(t� n � x0)g℄ dt d3x = 0;Z j�(t;x0);� �[x02 � (n � x0)℄ �� expfi!(t� n � x0)gg dt d3x = 0: (40)
Using (38) and (40), we obtain from (35) thatA�(x; t) = 1r 1Xl=1 e�i!l(t�r) �~j�(!l;n)++ npr ~j�p(!l;n)+ i!l2r P pq~j�pq(!l;n)�++ 
.
.+O(r�3): (41)To 
al
ulate the energy and momentum radiationlosses, we keep only terms of the order of 1=r in (41).The radiation of energy from the system is determinedby the Poynting ve
tor as [20℄d _Eemd
 = jE�Hj4� ; (42)where E and H are the ele
tri
 and magneti
 �elds.Using (41), we obtain from (42) thatd _P�emd
 = 1Xn=1 d _P�(!n)d
 ; (43)where d _P�em(!)d
 = n�!22�P pq~j�p~jq : (44)We now 
al
ulate ele
tromagneti
 radiation of theangular momentum. The angular momentum rate perunit solid angle is given by [20℄d _Lemd
 = r34� [[n�E℄(n �E) + [n�H℄(n �H)℄ : (45)In 
al
ulating [n � E℄ and [n �H℄, it su�
es to keeponly terms of the order of 1=r. But the longitudinal
omponents n � E and n � H arise from terms of theorder of 1=r2. As a result, the term r3 is 
an
eled in(45). This implies that the distan
e from the system r

does not enter the �nal formula, as should be the 
ase.Using (41) and (40), we obtain[n�E℄i = ��ijknjAk;0 == � 1Xl=1 i!lr exp f�i!l(t�r)g �ijknj~jk+
.
.;[n�H℄i = 1Xl=1 i!lr exp f�i!l(t�r)gP ij~jk+
.
.;n � E = � 1Xl=1 i!lr2 exp f�i!l(t�r)gP pq~jpq+
.
.;n �H = 1Xl=1 i!lr2 exp f�i!l(t�r)g �pqrnp~jrq+
.
. (46)
Substituting (46) in (45), we obtaind _Lemd
 = 1Xn=1 d _Lem(!n)d
 ; (47)whered _Lemi (!)d
 == !24� �(�ijkPpq � Pik�jpq)nj ~j�k ~jpq + 
.
.� : (48)As for the gravitational �eld, we rewrite (44) and (48)in the 
orotating basis (e1; e2; e3) = (n;v;w),d _P�em(!)d
 = n�!22�~��p~�p; (49)d _Lem(!)d
 = d _Lem2d
 v + d _Lem3d
 w; (50)whered _Lem2d
 = �!24� [��3�pp + ��2(�23 � �32) + 
.
.℄;d _Lem3d
 = !24� [��2�pp � ��3(�23 � �32) + 
.
.℄; (51)and �p and �pq are 
omponents of j� and j�p in this
orotating basis.For super
ondu
ting 
hiral strings, we obtain fromexpression (7) for the 
urrent that�i(!l;n) = Lqp�2 [Ii(l)X(l)℄; (52)where the fun
tion Ii(l) is given by (20) and X(l) isX(l) � 12� 2�Z0 d� eil(��n�b)p1� jb0j2: (53)677



E. Babi
hev, V. Doku
haev ÆÝÒÔ, òîì 123, âûï. 4, 2003Similarly, for the �rst moment �pq , we obtain�pq(!l;n) = L2qp�8� [Ip(l)Zq(l) +X(l)Mpq(l)℄; (54)where Mpq is given by (22) and Zq isZi(l) � 12� 2�Z0 d� eil(��n�b)p1� jb0j2 (b � ei): (55)We now integrate expressions (53) and (55) by partsto obtain an additional l in the denominator,X = � 12�il 2�Z0 d�X exp fil(� � n � b)g ;Zj = � 2�Z0 d�� 12�ilZj + 12�l2 ~Zj��� exp fil(� � n � b)g ; (56)where X = "p1� jb0j21� n � b0 #0 ;Zj = "p1� jb0j21� n � b0 #0 (bej);~Zj = "p1� jb0j2(b0 � ej)1� n � b0 #0 : (57)
Substituting (20), (22), and (56) in (52) and (54), weobtain�i = Lqp�8�2l2 2�Z0 2�Z0 d�d� Ji �� exp f�il[� � � + n � (a+ b)℄g ;�ij = L2qp�32�3l2 2�Z0 2�Z0 d�d� �Jij + 1il ~Jij��� exp f�il[� � � + n � (a+ b)℄g ; (58)
where Ji = IiX ; Jij = IiZj + XMij ;~Jij = �Ii ~Zj + X ~Mij : (59)Finally, substituting (58) in (49) and (51), we �nd theexpressions for ele
tromagneti
 radiation rates of theenergy, momentum, and angular momentum in a unitsolid angle at the frequen
y !l,d _P�em(!l)d
 = n� q2�8�3l2 Z d4�Pem 
os(l�x); (60)

d _Lemvd
 = Lq2�32�4 �� Z d4� � sin(l�x)l3 ~�em2 � 
os(l�x)l2 �em2 � ;d _Lemwd
 = �Lq2�32�4 �� Z d4� � sin(l�x)l3 ~�em3 � 
os(l�x)l2 �em3 � ; (61)
where Pem = J 0pJp;�em2 = J 03Jpp + J 02(J23 �J32);~�em2 = J 03 ~Jpp + J 02( ~J23 � ~J32);�em3 = J 02Jpp �J 03(J23 �J32);~�em3 = J 02 ~Jpp �J 03( ~J23 � ~J32): (62)As for the gravitational radiation, we use the valuesfor in�nite series (31) to obtain the total ele
tromag-neti
 radiation rates of the energy, momentum, andangular momentum [19℄,d _P�emd
 = n� q2�32�3 Z d4�Pem(�xmod 2� � �)2; (63)d _Lemvd
 = Lq2�128�4 Z d4� ���13 �(�xmod 2���)3��2�xmod 2�� ~�em2 �� (�xmod 2� � �)2�em2 � ;d _Lemwd
 = � Lq2�128�4 Z d4� ���13 �(�xmod 2���)3��2�xmod 2�� ~�em3 �� (�xmod 2� � �)2�em3 � :

(64)
As a result, we found expressions for the ele
tromag-neti
ally radiated energy, momentum, and angular mo-mentum from 
hiral string loops in whi
h the summa-tion over modes l is 
arried out.5. RADIATION OF NEARLY STATIONARYLOOPSWe 
an now 
onsider small-amplitude os
illationsof the 
hiral string loop (i. e., the string that is 
loseto its vorton state) in more detail. An arbitrary fun
-tion b(�) in the solution for string motion (2) is then678
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hiral string loopssu
h that b0(�) = k(�) � 1. If three-dimensional 
o-ordinates are 
hosen su
h that the b-loop is near theorigin of the 
oordinate system (e.g., exa
tly interse
tsthe origin of the 
oordinate system), then b(�) � 1.We now return to expressions (13). The expressionsfor the fun
tions Yj(l) and Nij(l) 
an be integrated byparts twi
e to in
rease the power of l in the denomina-tor, while the expressions for Ij(l) and Mij(l) are leftun
hanged. We assume that b(�) is twi
e 
ontinuouslydi�erentiable and b000(�) is pie
ewise 
ontinuous. Inte-grating in (20) and (22) by parts twi
e and using thesmallness of b0(�), we obtainYi(l) = � 12�l2 2�Z0 d�eil�b000 � ei;Nij(l) = � 12�l2 2�Z0 d�eil� [(b0 � ei) (b � ej)℄00 : (65)As has been noted, we are free to add any numeri
al
oe�
ient to (�xmod 2�� �)2 in (32) without 
hang-ing the value of the integral. Using this, we add ��2=2,and then Eq. (32) implies�����d _P�d
 ����� == ����n� G�216�3 Z d4�P �(�xmod 2� � �)2 � �2=2����� �� G�2�32 jPj : (66)It only remains to estimate the fun
tion P in (66). Us-ing (20), (27), (30), and (65) we easily �ndjPj � 12b23; (67)where b3 is the maximum value of jb000(�)j on the seg-ment � 2 (0; 2�). From (66) and (67), we then estimatethe energy losses as��� _Egr��� � 24G�2�4b23; ��� _Pgr��� � 24G�2�4b23: (68)We next estimate the upper bounds on the radiatedangular momentum. Similarly to the 
ase of energyand momentum radiation, we use Eqs. (33), (30), (27),and (65) to �nd the upper bounds on losses of the an-gular momentum to gravitational waves,��� _Lgr��� � 12p2�4�1 + 43p3�GL�2b23: (69)We now 
onsider the ele
tromagneti
 radiation inthe 
ase of a large 
urrent. To �nd the �rst-order ex-pansion with respe
t to k in (53), we must take not

only zero, but also the �rst term in the expansion ofexp(�iln � b) into a

ount. Subsequent integration ofthe resulting expression by parts givesX(l) ' � 12�l2 2�Z0 d�eil�n � b000: (70)For the fun
tion Zi, we haveZi(l) � � 12�l2 2�Z0 d� eil�(b00 � ei): (71)Similarly to the gravitational 
ase, we 
an �nd thebounds on the ele
tromagneti
 radiation for a large
urrent. Using (70), (71), (64), (63), (62), and (59),we obtain��� _Eem��� � �4q2�b23; ��� _P em��� � �4q2�b23;��� _Lem��� � p2�3 �1 + 4�9p3�Lq2�b23: (72)The presen
e of the third derivative b000(�) in(68), (69), and (65) is not surprising and resemblesthe quadruple gravitational radiation formula (see,e. g., [20℄) _E = G45 :::D2ij (73)involving the third time derivative of the quadruplemoment Dij . Ele
tromagneti
 radiation involves �d inthe dipole approa
h (d is the dipole moment). Argu-ing similarly, we 
an 
on
lude that in this 
ase, these
ond derivative of b(�), not the third, must be re-stri
ted. But in the �rst order of the expansion in k,the dipole radiation is equal to zero, the �rst nonzeroterm is quadruple, and we therefore again obtain thedependen
e on b000.We note that it is not ne
essary to restri
t the thirdderivative b000 in general. For example, if the string haskinks (see below), the �rst derivative b0 is dis
ontinu-ous (and 
onsequently, Yp(l) / 1=l, M(l) / 1=l). Con-vergen
e of series (13), (43), and (47) is then ensuredby the behavior of fundamental integrals Ip(l) / 1=l atl � 1.It is possible to derive rather simple expressions forthe total energy, momentum, and angular momentumradiated by 
hiral loops in the limit as loops are very
lose to their stationary states, i. e., k � 1 in (4). Ad-ditionally, it is supposed that k is independent of � andthe 
urrent j� is therefore 
onstant along the string.679
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haev ÆÝÒÔ, òîì 123, âûï. 4, 2003Using expansions of (32), (33), (63), and (64) in pow-ers of k, we 
an write the 
orresponding gravitationaland ele
tromagneti
 rates as_Egr = KgrE G�2k2; j _Pgrj = KgrP G�2k2;j _Lgr j = KgrL LG�2k2; _Eem = KemE q2�k2;j _Pemj = KemP q2�k2; j _Lemj = KemL Lq2�k2; (74)where Kem and Kgr are numeri
al 
oe�
ients depend-ing only on the loop geometry. We see that radiationrates of nearly stationary 
hiral loops are proportionalto k2. The geometri
al numeri
al fa
tors K in Eq. (74)are in turn related to the 
orresponding 
oe�
ients �in Eq. (1) as � = Kk2: (75)We now evaluate the damping time of small-amplitude os
illations of nearly stationary 
hiral strings
orresponding to the limit k � 1. For simpli
ity, weagain assume that k is independent of � in the 
on-sidered limit (this assumption is valid in the solvableexamples 
onsidered above). The total loop 
harge 
on-servation in (7) then givesqp�2 Lp1� k2 = 
onst: (76)From this equation, we �nd the relation between theenergy E and the parameter k of the 
hiral string withsmall-amplitude os
illations,E ' Ev �1 + k22 � ; (77)where Ev = L� is the energy of the stationary (vorton)
hiral loop 
on�guration at k = 0. Comparing (77)with (74), we estimate the damping time of string os-
illations [16℄ as� � Ev2(KgrG�2 +Kemq2�) : (78)We next express (78) through the vorton length. Wehave Ev = L�, where L is the invariant length, and thephysi
al length of a stationary string is equal to halfthe invariant length Lph = L=2 [22℄. We �nd� � LphKgrG�+Kemq2 : (79)Also assuming for simpli
ity that k depends only ontime and using Eqs. (74) and (77), we �nd the os
illa-tion damping lawk2 � k20 exp��t� 1�gr
 + 1�em
 �� ; (80)

where k0 = k(t = 0); therefore, the damping time dueto gravitational radiation is�gr
 � Ev2KgrG�2 = LphKgrG� (81)and that due to ele
tromagneti
 radiation is�em
 � Ev2Kemq2� = LphKemq2 : (82)Substituting (80) in (77), we obtainE � Ev �1 + k202 exp��t� 1�gr
 + 1�em
 ��� : (83)The e�e
tive number of os
illations during the dampingtime (os
illator quality) isQ = �T � 2L �gr�em�gr + �em : (84)To restore the standard CGS units, we repla
eG�2 ! G�2
, q2� ! q2�
2=~ and 
hoose the stan-dard normalization for the string mass per unit lengthG�=
2 = 10�6�6 and qe = q=e for the dimensionless
harge 
arrier on the string, where the elementary ele
-tri
 
harge is e = 4:8 � 10�10. As a result, the dampingtimes are expressed as�gr � Lph
KgrG�; �em � Lph~Kemq2 : (85)Os
illator quality (84) for the gravitational and ele
tro-magneti
 radiation is given by the respe
tive formulasQgr � 1Kgr 
2G�; Qem � 1Kem 1�emq2e ; (86)with �em = e2=
~. The ratio of the damping times is�gr�em � q2G�~ �KemKgr � � 1:4 � 10�4 q2e�6 KemKgr : (87)If q2e=�6 & 1:4 �10�3, the ele
tromagneti
 radiation pre-vails in the 
hiral loop evolution (this is valid for thestandard values �6 � 1 and qe � 1). If on the 
on-trary q2e=�6 . 1:4 � 10�3 (for example, if the 
urrentis neutral and there is no ele
tromagneti
 radiation atall), then the pure gravitational radiation determinesthe evolution.6. NUMERICAL EXAMPLES OF RADIATINGLOOPSIn this se
tion, we apply analyti
 formulas (32),(33), (63), and (64) derived above for gravitational and680
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hiral string loopsele
tromagneti
 radiation to some parti
ular examplesof 
hiral loops. At the �nal steps, numeri
al 
al
ula-tions of four-dimensional integrals are used to �nd theenergy, momentum, and angular momentum radiationrates as fun
tions of the 
urrent on the string.We �rst 
onsider the 
lass of pie
ewise linear kinkyloops. Let a(�) and b(�) be pie
ewise linear fun
tions;that is, ve
tor fun
tions a(�) and b(�) are 
losed loops
onsisting of 
onne
ted straight parts. The join pointsof segments of a- and b-loops, where a0(�) and b0(�) aredis
ontinuous, are 
alled �kinks�. We take the a-loop
onsisting of Na and b-loop 
onsisting of Nb segments(parts). Kinks are labeled by i = 0; 1; : : : ; Na � 1, andthe value of � on the kink labeled by i is denotes as �i.In what follows, we use supers
ripts for the segmentlabels and subs
ripts for tensor 
omponents. Be
ausewe use only spatial tensor 
omponents, there should beno 
onfusion. Without the loss of generality, we 
anset �0 = 0. We note that �i+Na = �i + 2� be
auseof periodi
ity. Using the notation ��i = �i+1 � �i,Ai = a(�i), and ai = (Ai+1 �Ai)=��i, and similarlyfor the b-loop, we �nda(�) = Ai + (� � �i)ai; � 2 [�i; �i+1℄;b(�) = Bj + (� � �j)bj ; � 2 [�j ; �j+1℄: (88)For pie
ewise linear loops, the fun
tions Ip, Yp, Mpq ,Npq , X , and Zp in (25) and (57) be
ome the sums ofdelta fun
tions be
ause of the dis
ontinuity of a0 andb0 at the kinks. For example, the fun
tion Ip in (25) isgiven byIp =Xi � ai � ep1 + ai � n � ai�1 � ep1 + ai�1 � n� Æ(� � �i): (89)Similar expressions 
an be obtained for the other fun
-tions. Due to the presen
e of delta fun
tions in Ip,Yp, Mpq , Npq , X , and Zp, the integrations in (32),(33), (63), and (64) 
an be 
arried out easily. To ob-tain the expressions for the gravitational and ele
tro-magneti
 radiation from the general formulas, we mustrepla
e integrations in (32), (33), (63), and (64) bysummations over the kinks and make the substitutions�x! xijkl = �i � �k � (�j � �l) ++ n � (ai � ak + bj � bl);Ip ! Iip = ai � ep1 + ai � n � ai�1 � ep1 + ai�1 � n ;Yp ! Yjp = bj � ep1� bj � n � bj�1 � ep1� bj�1 � n : (90)Similar substitutions must be performed for the fun
-tions Mpq , Npq, X , and Zp.

6.1. 2-4 pie
ewise loopAs the �rst example, we 
onsider the 
hiral stringloop shown in Fig. 1. In this example, the a-loop 
on-sists of 2 segments and lies along the z axis. One kinkof the a-loop is positioned at the origin (� = 0) and theother kink (� = �) has the 
oordinates �(
os�; 0; sin�).The positions of the b-loop kinks are as follows: the �rstkink at � = 0 has the 
oordinates (�k=2p2)(1; 0; 0),the se
ond kink at � = �=2 has the 
oordinates(�k=2p2)(0; 1; 0), the third kink at � = � has the 
o-ordinates (�k=2p2)(�1; 0; 0), and the position of thefourth kink at � = 3�=2 is given by (�k=2p2)(0;�1; 0).We 
all this loop the 2-4 pie
ewise loop. The depen-den
e of the radiated gravitational and ele
tromagneti
energy on the mode number l is shown in Fig. 2 for the2-4 pie
ewise loop with � = �=2. The de
rease of theradiated energy with the mode number l is more pro-noun
ed for the larger 
urrent, as it should be physi-
ally, be
ause the maximal speed of the string de
reasesas the 
urrent in
reases. In Fig. 3, the dependen
e ofthe total radiated energy on the parameter k is shownfor � = �=2. We 
an see a monotoni
 in
rease ofthe gravitational energy radiation with k (i. e., withthe de
rease of the string 
urrent). At the same time,the ele
tromagneti
 energy radiated by the string hasa maximum near k � 0:9. The value of k = kgrmaxat whi
h the maximum for the gravitational radiationrate is rea
hed is exa
tly 1, and for the ele
tromagneti
radiation rate, kemmax � 0:9.The 
orresponding rates for the angular momentumas a fun
tion of the mode number are shown in Fig. 4.For the ele
tromagneti
 radiation, we 
an also see weakos
illations of the angular momentum rate in additionto the overall de
rease of the radiated angular momen-tum with the mode number.The total angular momentum radiation to ele
tro-magneti
 and gravitational waves is shown in Fig. 5.The graphs for the angular momentum rates look verysimilar to the graphs for the energy radiation. The 
or-responding gravitational radiation rates in
rease mono-toni
ally with k and the ele
tromagneti
 radiation ofmomentum has maxima near k = 0:9. Using the gen-eral expressions for gravitational and ele
tromagneti
radiation in Eqs. (32), (33), (63), and (64), we 
aneasily 
al
ulate the 
oe�
ients K in the 
ase of large
urrents. For � = �=2, we �nd that KgrE = 28:36,KgrL = 1:41, KgrE = 4, and KgrL = 0:25. The radi-ated gravitational _Egr and ele
tromagneti
 _Eem pow-ers are approximately equal to Kk2 in a

ordan
e withEq. (75).Durrer [14℄ found that for some parti
ular 
lass of681
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a(�)

b(�) hybrid loop2�4 pie
ewise loop 3�3 pie
ewise loopFig. 1. S
hemati
 view of the ve
tor fun
tions a(�) and b(�) for radiating loop examples 
onsidered in Se
s. 6:1, 6:2,and 6:3
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NFig. 2. Radiated gravitational energy rate (left graph), _Egrn in the units G�2 and the ele
tromagneti
 energy rate (rightgraph) _Eemn in the units q2�. For the 2-4 kinky loop, the energy radiation is drawn as a logarithmi
 fun
tion of the modenumber N for di�erent values of the parameter kordinary 
osmi
 string loops, the radiated angular mo-mentum _Lgr is antiparallel to the stationary angularmomentum Lst of the loop. This implies that the an-gular momentum of the loops always de
reases withtime due to gravitational radiation. Our results for the angular momentum radiation to ele
tromagneti
and gravitational waves for string loops with the 
hi-ral 
urrent agree with the results of Durrer in gen-eral. The 
hiral loops 
onsidered in this paper alsolose angular momentum with time. But in 
ontrast682
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Fig. 3. The total radiated gravitational and ele
tromagneti
 energy rates _Egr in the units G�2 (left graph) and _Eem in theunits q2� (right graph) 
orrespondingly for the 2-4, 3-3 pie
ewise and hybrid kinky loops as a fun
tion of the parameter k.The following parameters are 
hosen: � = �=2, � = �=2, 
 = 0
k = 1
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Fig. 4. The angular momentum _Egrn radiated to gravitational waves in the units G�2 (left graph) and the angular momentum_Eemn radiated to ele
tromagneti
 waves in the units q2� (right graph). For the 2-4 kinky loop, the energy radiation is drawnas a logarithmi
 fun
tion of the mode number N for di�erent values of parameter kto the examples 
onsidered by Durrer, we found thatfor some 
on�gurations of 
hiral loops, _Lgr and _Lemare not exa
tly antiparallel to the total angular mo- mentum of the loop Lst, but deviate by a small angle.In Table 1, the values "gr = ( _Lgr � Lst)=j _Lgr jjLstj and"em = ( _Lem �Lst)=j _LemjjLstj determining the angle be-683
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Fig. 5. The total angular momentum radiated to gravitational and ele
tromagneti
 waves, _Lgr in the units G�2 and _Lemin the units q2�, respe
tively, for the 2-4, 3-3 pie
ewise and hybrid kinky loops as a fun
tion of the parameter k. For the2-4 loop, � = �=2, for 3-3 loop, � = �=2, and for the hybrid loop, 
 = 0The 
osine of the angle between _Lgr and Lst and between _Lem and Lst for the 2-4 pie
ewise loopk 0.2 0.4 0.6 0.8 1.02-4 loop, "gr �0:94 �0:95 �0:95 �0:96 �0:97� = �=4 "em �0:97 �0:99 �0:99 �0:99 �tween _L and Lst are presented for the 2-4 pie
ewise loopwith � = �=4. We note that for symmetri
 
on�gura-tions with � = �=2, the angular momentum radiation_Lgr , _Lem is exa
tly antiparallel to Lst at any k.6.2. 3-3 pie
ewise loopAs the se
ond example, we 
onsider the two-parameter pie
ewise linear loop with a and b-loops
onsisting of three segments (Fig. 1). Positionsof the a-loop kinks are given by the following
oordinates: the �rst kink at � = 0 is at theorigin, the se
ond kink at � = 2�=3 has the
oordinates �(�=3)(
os�1;p3; sin�1), and thethird kink at � = 4�=3 has the 
oordinates(�=3)(
os�1;�p3; sin�1). The b-loop is given byalmost the same 
onditions, ex
ept for the angle �1 re-pla
ed by �2. We 
all this loop the 3-3 pie
ewise loop.The total radiated energy rates to the gravitationaland ele
tromagneti
 waves for �1 = 0 and �2 = �=2

are shown in Fig. 3. This loop also radiates momentumand angular momentum. The total angular momentumradiation rates are shown in Fig. 5. In Fig. 6, thetotal momentum radiation rates to ele
tromagneti
and gravitational waves are shown for di�erent valuesof the parameters �1 and �2. For the momentumradiation, we 
an see a di�erent situation from thatin the 
ase of the energy and angular momentumradiation: for ea
h value of k, the momentum rate hasa lo
al maximum on the interval k 2 (0; 2�).6.3. Hybrid kinky loopAs the third example, we 
onsider the loop with the
on�gurationa = A( �; 0 � � � �;� � �; � � � � 2�;b = k(sin �; � 
os�; 0): (91)684
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Fig. 6. The total momentum radiated to gravitational and ele
tromagneti
 waves, respe
tively, _P gr in the units G�2 and_P em in the units q2�, for the 3-3 pie
ewise loop with di�erent parameters �2 and with �1 = 0 as a fun
tion of the parameterk. The three 
ases are 
onsidered with �2 = �=2, �2 = �=4, and �2 = �=8The b-loop in this example is a 
ir
le in the (x; y)plane and A = (
os 
; 0; sin 
) (Fig. 1). For 
 = �=2,the gravitational and ele
tromagneti
 radiated energyrates and angular momentum rates are shown in Figs. 3and 5. The total gravitational energy radiation fork = 1 
oin
ides with the result of Allen et al. [12℄( _Egr � 39:0G�2).6.4. Weakly os
illating ring loopAs the �nal example, we 
onsider the radially os
il-lating loop, a = (
os �; � sin �; 0);b = k(
os �; � sin �; 0): (92)Unfortunately, be
ause the 
al
ulation of integrals (32)and (63) would take an enormous amount of 
omputertime, we 
annot present the results for radiation rates ofos
illating rings for the entire range of 
urrents (we notethat the radiated power diverges as the 
urrent tendsto zero). But in the large-
urrent limit, the radiatedpower rate is easy to 
al
ulate. For loop (92), the �rstnonzero term in the expansion of the radiated powerin k is proportional to k2 in agreement with (74). Itsu�
es to take only the �rst term in (13) and (43), theother terms are of higher orders in k. Substituting (92)

in (20) and (53) and keeping the leading nonzero termat k � 1, we obtainI2(1) = 12 e�i�[J2(� sin �) +J0(� sin �)℄ 
os �;I3(1) = i2 e�i�[J2(� sin �)�J0(� sin �)℄;Y2(1) = k2 ei� 
os �; Y3(1) = ik2 ei�;X(1) = k2 ei� sin �: (93)
Using (93), (19), (52), (14), and (44) and integratingover the unit sphere, we next obtain the 
oe�
ientsKgrE and KemE ,Kgr = �2 �Z0 d� sin �n[J2(sin �)� J0(sin �)℄2 ++ 2 �3J22 (sin �)� J20 (sin �)� 
os2 � ++ [J2(sin �) + J0(sin �)℄2 
os4 �o;Kem = �Z0 d� sin3 �n[J2(sin �)�J0(sin �)℄2++ [J2(sin �)+J0(sin �)℄2 
os2 �o ; (94)
whi
h are numeri
ally given by Kgr = 4:73 andKem = 2:28.685
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haev ÆÝÒÔ, òîì 123, âûï. 4, 2003Be
ause of the symmetry of the os
illating ring, theestimations of damping time (79), 
oe�
ient k (80),and total string energy (83) be
ome exa
t in the large-
urrent limit. 7. DISCUSSIONEle
tromagneti
 and gravitational radiation playsan important role in the evolution of the 
osmi
 stringnetwork. This network 
ould be produ
ed in the earlyuniverse phase transitions and would generate large-s
ale stru
tures later. Previously, the properties of
osmi
 string radiation were mainly studied for stringswith a small 
urrent or without any 
urrent. Here,we des
ribed the radiation properties of 
hiral 
os-mi
 loops for the entire possible range of the 
ur-rents. We su

eeded in analyti
ally summing the in�-nite mode series of radiation rates for periodi
ally os
il-lating string loops. The expressions derived for the en-ergy, momentum, and angular momentum rates 
ontainfour-dimensional integrals depending on loop geometry.Su
h an integral representation is espe
ially 
onvenientfor numeri
al 
al
ulations of radiation from relativis-ti
ally moving loops as 
ompared with the method ofsummation of a weakly 
onvergent mode series. To �ndthe total rates of the radiated energy, momentum andangular momentum, the expressions obtained were in-tegrated over the unit sphere. Applying the derivedformulas to some parti
ular examples of 
hiral stringloop 
on�gurations, we numeri
ally 
al
ulated the 
o-e�
ients � in Eq. (1) as fun
tions of k. The 
orrespond-ing 
al
ulations of the radiated energy, momentum, andangular momentum rates were done for the followingexamples (see Fig. 1): (i) a pie
ewise linear kinky loopwith the a-loop 
onsisting of two straight parts and theb-loop 
onsisting of four straight parts (2-4 pie
ewiseloop); (ii) a pie
ewise linear loop su
h that the a- andb-loops 
onsist of three segments ea
h (3-3 pie
ewiseloop); (iii) the hybrid loop in whi
h the a-loop 
onsistsof two straight parts and the b-loop is a 
ir
le (hybridkinky loop). For the �rst and se
ond examples, thefour-dimensional integrals in our expressions for radi-ated energy, momentum, and angular momentum be-
ome multiple sums over the kinks. These sums 
anbe 
al
ulated analyti
ally using symboli
 
omputer ma-nipulations (e. g., the �Mathemati
a� program pa
ket).To �nd the radiation in the third example (hybridloop), we 
al
ulated two-dimensional integrals (origi-nating from a smooth a-loop) and summed over thekinks of the b-loop. Unfortunately, we 
ould not per-form the 
al
ulations for strings with the a and b loops

being arbitrary smooth 
urves be
ause 
al
ulations ofthe four-dimensional integrals would take an enormousamount of time of the 
omputer used.The total gravitational radiation energy, momen-tum, and angular momentum rates behave similarly:they slowly in
rease with k when k is su�
iently small(and respe
tively the 
urrent is large) and rapidly in-
rease at large k (i. e., at small 
urrent). Overall, thegravitational radiation rates are in
reasing fun
tions ofk. For the ele
tromagneti
 radiation, the situation isquite di�erent: the energy, momentum, and angularmomentum losses to ele
tromagneti
 waves for all ex-amples 
onsidered have a maximum near k � 0:9, i. e.,when the 
urrent is rather small. For the examples 
on-sidered, the maximum values of the 
oe�
ients � in (1)are approximately equal to�grE � 50; �grP � 1; �grL � 3;�emE � 2; �emP � 0:1; �emL � 0:1: (95)We also found that for some nonsymmetri
 examplesof 
hiral loops, the angular momentum _L radiated toele
tromagneti
 and gravitational waves is not exa
tlyopposite to the angular momentum of the loop Lst, butslightly di�ers from it (even when there is no 
urrenton the string), unlike in the loop examples 
onsideredby Durrer [14℄.The asymptoti
 fading of 
hiral 
osmi
 string loopsinto vortons was derived. It was found that the upperbounds on the gravitational and ele
tromagneti
 radi-ation rates of nearly stationary loops is proportionalto the squared third derivative of the os
illation ampli-tude, see Eqs. (68), (69), and (72). We showed that ifthe os
illation amplitude is small (k � 1) and the 
ur-rent j� is 
onstant along the string, the energy, momen-tum, and angular momentum radiation rates to gravi-tational and ele
tromagneti
 waves are proportional tok2 and the proportionality 
oe�
ient depends only onthe form of the loop, see Eq. (74). In some examplesof 
hiral loops, we 
al
ulated the total radiated powerin the limit of the small-amplitude os
illations. For the
hiral ring with small-amplitude radial os
illations, theradiated power per solid angle d
 for the ele
tromag-neti
 and gravitational radiation is found analyti
ally,Eq. (94). We also estimated the damping time of 
hi-ral loops (78) with small-amplitude os
illations. In the
ase of the gravitational radiation prevalen
e over theele
tromagneti
 one, this time is �gr � Lph=KgrG�,where Kgr is a numeri
al 
oe�
ient depending on thestring geometry. The damping time due to the gravita-tional radiation of the 
hiral loops 
onsidered is by theorder of magnitude longer than the lifetime of ordinary
osmi
 strings. On the 
ontrary, if the ele
tromagneti
686
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osmi
 
hiral string loopsradiation prevails, the de
ay time is �em � Lph=Kemq2.For the radially os
illating 
hiral ring with a large 
ur-rent, expressions (80) and (83) for the temporal evolu-tion of the total energy and the amplitude parameterk be
ome asymptoti
ally exa
t.We 
an �nd a 
hara
teristi
 size of the string Lvwith os
illation damping time (85) equal to the uni-verse lifetime t0 ' 1018 s. In the 
ase of the gravita-tional radiation predominan
e, we �ndLgrv � G�Kgrt0
 � 102�6 kp
 (96)for Kgr � 1. Chiral strings with the length L < Lgrv(i. e., with the size of a typi
al gala
ti
 halo or less)therefore have enough time to fade into vortons. Onthe other hand, if the ele
tromagneti
 radiation pre-vails, we haveLemv � q2Kemt0~ � 70q2e Mp
 (97)for Kem � 1, and the ele
tromagneti
ally radiated 
hi-ral loops with the length shorter than the size of gala
-ti
 
lusters have therefore transformed to vortons. We
an see that only su�
iently long super
ondu
ting 
os-mi
 strings os
illate up to the present time. On the
ontrary, small-s
ale 
hiral loops are transformed intostationary vortons due to the os
illation damping.It is interesting to estimate the 
urrent parameterk at whi
h the ele
tromagneti
 and gravitationalradiation rates be
ome equal. From [15℄, we knowthat at small 
urrents, the ele
tromagneti
 radiationis given by _Eem � q2�p1� k. For the gravitationalradiation of small 
urrents, we have _Egr � 102G�2.Comparing these two expressions, we 
an easily �ndthe string 
urrent value at whi
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