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RADIATION FROM COSMIC CHIRAL STRING LOOPSE. Babihev *, V. Dokuhaev **Institute for Nulear Researh of the Russian Aademy of Sienes119312, Mosow, RussiaSubmitted 13 November 2002The gravitational and eletromagneti radiation from hiral superonduting osmi string loops is alulated.The formulas for energy, momentum, and angular momentum losses due to gravitational and eletromagnetiradiation from hiral loops of an arbitrary on�guration are derived. After summation over all modes, expressionsfor the orresponding radiation rates averaged over the loop osillation period have the form of four-dimensionalintegrals. These formulas are redued to sums over the kinks for loops omposed of pieewise linear strings.For three examples of string loops, the total radiation rates are alulated numerially in dependene on thehiral urrent along the string. In the limit of a nearly maximum urrent, whih orresponds to a stationaryloop (vorton) on�guration, we determine the upper bounds on the gravitational and eletromagneti radiation.We also estimate the osillation damping time of a nearly stationary loop.PACS: 11.27.+d, 41.20.J, 04.301. INTRODUCTIONWe investigate the properties of the gravitationaland eletromagneti radiation of energy, momentum,and angular momentum from superonduting losedosmi strings with a hiral urrent. Formation of os-mi strings in the early universe phase transitions ispredited by many partile-physis models (see, e. g.,reviews in [1, 2℄). In 1985, Witten showed that os-mi strings an arry a superonduting eletromag-neti urrent [3℄. Exat solutions of the equations ofmotion for urrent-arrying osmi strings were foundby Carter and Peter [4℄, Davis et al. [5℄, and Blano-Pillado et al. [6℄ in the ase of a hiral (or null) urrentJaJa = 0, whih does not ouple to any gauge �eld.Ordinary osmi strings (without a urrent) radiateenergy [7�12℄, momentum [7, 13, 14℄, and angular mo-mentum [14℄ in the form of gravitational waves. If os-mi strings arry the eletromagneti urrent, osmistring loops radiate both gravitational and eletromag-neti waves. For a small urrent, the most intense radi-ation is generated by a usp on the loop. The radiationfrom a single usp of the hiral string loop with a smallurrent was studied by Blano-Pillado and Olum [15℄.The radiation of loops in the opposite ase of a nearly*E-mail:babihev�inr.npd.a.ru**E-mail:dokuhaev�inr.npd.a.ru

maximum urrent was onsidered in [16℄. In this paper,we study the gravitational and eletromagneti radia-tion from losed hiral string loops in the entire range ofthe string urrent. The rates of the energy _E, momen-tum _P , and angular momentum _L losses (averaged overthe osillation period) to the gravitational and eletro-magneti waves an be expressed in the general formas _Egr = �grE G�2; _P gr = �grP G�2;_Lgr = �grL LG�2; _Eem = �emE �q2;_P em = �emP �q2; _Lem = �emL L�q2; (1)where the oe�ients �grE , �grP , �grL , �emE , �emP , and �emLdepend on the partiular string on�guration and theurrent on the string, L is the string invariant length, �is string mass per unit length, q is the eletromagnetiharge, and we use units ~ =  = 1. In what follows,we alulate the oe�ients �grE , �grP , �grL , �emE , �emP ,and �emL as funtions of the urrent on the string. It isknown that for ordinary loops (without a urrent), theorresponding oe�ients for the gravitational radia-tion are of the respetive orders �grE � 100, �grP � 10,and �grL � 10. We found that for loops with a hiralurrent, the same oe�ients �grE , �grP , and �grL be-have as follows: they rapidly derease with the urrentat small urrent values and slowly derease at largeurrent values. In general, the gravitational radiation672



ÆÝÒÔ, òîì 123, âûï. 4, 2003 Radiation from osmi hiral string loopsrates are dereasing funtions of the urrent on thestring. For the eletromagneti radiation, the situationis quite di�erent: the loss rates of the energy, momen-tum, and angular momentum to eletromagneti wavesfor all onsidered examples have a maximum near somerather small value of the urrent.The total rates of the energy, momentum, and an-gular momentum per unit time (averaged over the pe-riod) are usually alulated by summing the losses indi�erent Fourier modes. As noted by Allen et al. [11℄,suh alulations may not be aurate in pratie be-ause of a slow onvergene of the orresponding sumsover mode numbers. In this paper, we perform thesummation over all radiation modes analytially andderive formulas for the energy, momentum, and angu-lar momentum loss rates to the gravitational and ele-tromagneti radiation from the hiral string loops ofa general on�guration. As a result, the orrespond-ing radiation rates into the unit solid angle averagedover the loop osillation period are redued to four-dimensional integrals. In general, these integrals anbe alulated only numerially. For hiral loops om-posed of pieewise linear strings, these formulas leadto analyti expressions for the energy, momentum, andangular momentum radiation into the unit solid angle.For large urrents (lose to the maximum value), wedetermine the upper bounds on the gravitational andeletromagneti radiation. For weak radial osillationsof a hiral ring, we �nd the temporal behavior of theloop energy and urrent analytially. For some otherless symmetri loop examples, we estimate the dampingtime of small-amplitude loop osillations.This paper is organized as follows. In Se. 2, wereview some general properties of hiral osmi strings.In Se. 3, we derive new expressions for the energy,momentum, and angular momentum gravitational ra-diation rates by hiral loops of a general on�gurationinto the unit solid angle. These expressions are reduedto four-dimensional integrals where summation over allradiation modes is performed analytially. In Se. 4,we derive similar formulas for the eletromagneti ra-diation rates. In Se. 5, the radiation and osillationdamping to the vorton state of nearly stationary loopsare desribed. In Se. 6, we present numerial alula-tions of the eletromagneti and gravitational radiationrates for some illustrative examples of hiral loops andstudy the dependene of the hiral string radiation onthe urrent. In Se. 7, we desribe the results obtainedand disuss some qualitative features of the gravita-tional and eletromagneti radiation from hiral loops.

2. MOTION OF A CHIRAL STRING IN FLATSPACE�TIMEIn this setion, for pedagogial reasons, we desribesome general properties of hiral osmi strings, i.e.,strings with a hiral urrent JaJa = 0. The generalsolution of the equations of motion of the hiral stringan be written as [4�6℄x0 = t; x(t; �) = L4� [a(�) + b(�)℄ ; (2)where t is the Minkowski time, � parameterizes thestring total energy asE = � Z d�; (3)L is the invariant length of the string, and a(�) and b(�)are arbitrary vetor funtions of � = (2�=L)(�� t) and� = (2�=L)(� + t) satisfying the onditionsa02 = 1; b02 = k2(�) � 1: (4)For losed hiral strings (loops), the vetor funtionsa(�) and b(�) form losed loops, alled a- and b-loops.The funtion k(�) in (4) an be expressed as [6℄k2(�) = 1� 4F 02(�)� ; (5)where the funtion F (�) de�nes the auxiliary salar�eld �(�; t) = L2�F (�): (6)Aording to (6), the salar �eld �(�; t) is an arbitraryfuntion of the only parameter �. The four-dimensionalurrent on the string is expressed through this salar�eld �(�; t) as [21℄j�(x; t) = qZ d��0(�; t)(x0�� _x�)Æ(3) (x�x(�; t)) ; (7)where x0 denotes �x=�� and _x denotes �x=�t. Theenergy-momentum tensor of the string in this gauge isT�� = � Z d� ( _x� _x� � x0�x0�) Æ(3) (x� x(�; t)) : (8)Correspondingly, the total momentum and angular mo-mentum of the string are given byP = � Z d� _x(�; t); (9)L = � Z d�[x(�; t) � _x(�; t)℄: (10)2 ÆÝÒÔ, âûï. 4 673



E. Babihev, V. Dokuhaev ÆÝÒÔ, òîì 123, âûï. 4, 20033. GRAVITATIONAL RADIATION FROMCHIRAL LOOPSWe onsider a periodi system with the period T .In this system, the Fourier transform of the energy-momentum tensor T ��(x; t) is given by [14℄T̂��(!l;n) = 1T TZ0 dt Z d3xT ��(x; t) �� exp fi!l(t� n � x)g ; (11)where !l = 2�l=T and n is an arbitrary unit vetor. Itis useful to also de�ne the Fourier transform of the �rstmoment,T̂��p(!l;n) = 1T Z dt Z d3xT��(x; t)xp �� exp fi!l(t� n � x)g : (12)For onveniene, we de�ne the four-dimensional symboln� � (1;n). For any periodi system, the orrespond-ing gravitational energy, momentum, and angular mo-mentum radiation rates per solid angle d
 (averagedover the period T ) are given by the seriesd _P�d
 = 1Xn=1 d _P�(!n)d
 ; d _Ld
 = 1Xn=1 d _L(!n)d
 ; (13)where [17℄d _P�(!)d
 = �n�G!2� PijPlm �T̂ �ilT̂jm�12 T̂ �ij T̂lm� (14)and [14℄d _Li(!)d
 = � G2� �ijknj �i!nlP pq(3T̂ �klT̂qp+6T̂ �kpT̂ql) ++ !2P lmP pq �2T̂ �kmqT̂lp � 2T̂ �kmT̂lpq�� T̂ �lpkT̂mq + 12 T̂ �lmkT̂pq�+ ..� : (15)Here, Pij = Æij �ninj is the projetion operator to theplane perpendiular to the unit vetor n. It is possi-ble to simplify (14) and (15) further by rewriting themin the orotating basis (e1; e2; e3) � (n;v;w), wherev and w are arbitrary unit vetors perpendiular toeah other and to n. In this orotating basis, Eqs. (14)and (15) beome [14℄d _P�(!)d
 = n�G!2� ���pq�pq � 12��qq�pp� ; (16)

d _L(!)d
 = d _L2d
 v + d _L3d
 w; (17)where d _L2d
 = G2� �� i!(3��13�pp + 6��3p�p1)�� !2�2��3pq�pq � 2��3p�pqq�� ��pq3�pq + 12��qq3�pp�+ ..� ;d _L3d
 = G2� �i!(3��12�pp + 6��2p�p1) ++ !2�2��2pq�pq � 2��2p�pqq�� ��pq2�pq + 12��qq2�pp�+ ..� :
(18)

Here, �pq and �pqr are the respetive Fourier transformsof the energy-momentum tensor and its �rst momentin the new orotating basis. We note that only thesubsripts p and q with the values 2 and 3 appear inEqs. (16) and (18). For hiral loops, the Fourier trans-forms �pq an be expressed as�pq(!l;n) = �L�2 [Ip(l)Yq(l) + Yp(l)Iq(l)℄; (19)where the funtions Ip(l) and Yq(l) are expressedthrough the �fundamental integrals�,Ii(l) � 12� 2�Z0 d� exp f�il(� + n � a)g a0 � ei;Yj(l) � 12� 2�Z0 d� exp fil(� � n � b)gb0 � ej : (20)For the �rst moment (12), we an similarly �nd that�ijk(!l;n) = �L2�8� [Ii(l)Njk(l) + Ij(l)Nik(l) ++ Yi(l)Mjk(l) + Yj(l)Mik(l)℄; (21)whereMij(l) � 12� �� 2�Z0 d� exp f�il(� + n � a)g (a0 � ei)(a � ej);Nij(l) � 12� �� 2�Z0 d� exp fil(� � n � b)g (b0 � ei)(b � ej): (22)
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ÆÝÒÔ, òîì 123, âûï. 4, 2003 Radiation from osmi hiral string loopsThe ruial point of the alulation to follow is thesummation over all mode numbers l in expressions (13)for the requested rates of the radiated gravitational en-ergy, momentum, and angular momentum. For thissummation, we �rst integrate expressions (20) and (22)by parts to obtain an additional l in the denominator.For example, the funtion Ii beomesIi(l) = 12� 2�Z0 d� [exp f�il(� + n � a)g (1 + n � a0)℄�� a0 � ei1 + n � a0 == � 12�il a0 � ei1 + n � a0 exp f�il(� + n � a)g ���2�0 ++ 12�il 2�Z0 d� � a0 � ej1 + n � a0 �0 exp f�il(� + n � a)g ; (23)where the �rst term is equal to zero beause of the peri-odiity of a- and b-loops. Expressions for the funtionsYj , Mij , and Nij an be integrated by parts similarly.We �nally obtainIi = 12�il 2�Z0 d� Ii exp f�il(� + n � a)g ;Yj = � 12�il 2�Z0 d� Yj exp fil(� � n � b)g ;Mij = 2�Z0 d�� 12�ilMij � 12�l2 ~Mij��� exp f�il(� + n � a)g ;Nij = � 2�Z0 d�� 12�ilNij + 12�l2 ~Nij��� exp fil(� � n � b)g ;
(24)

whereIi = � a0 � ei1 + n � a0 �0 ; Yj = � b0 � ej1� n � b0 �0 ;Mij = � a0 � ei1 + n � a0 �0 (a � ej);~Mij = � (a0 � ei)(a0 � ej)(1 + n � a0)2 �0 ;Nij = � b0 � ei1� n � b0 �0 (b � ej);~Nij = � (b0 � ei)(b0 � ej)(1� n � b0)2 �0 : (25)

Substituting (24) in (19) and (21), we �nd�ij = � L�8�2l2 2�Z0 2�Z0 d�d� Tij �� exp f�il[� � � + n � (a+ b)℄g ;�ijk = � L2�32�3l2 2�Z0 2�Z0 d�d� �Tijk + 1il ~Tijk� �� exp f�il[� � � + n � (a+ b)℄g ; (26)
whereTij = IiYj + IjYi;Tijk = IiNjk + IjNik + YiMjk + YjMik;~Tijk = �Ii ~Njk � Ij ~Nik + Yi ~Mjk + ~YjMik: (27)Next, substituting (26) in (16) and (18), we �nd theradiation rates of E, P, and L on the partiular eigen-frequeny !l = 2�l=T ,d _P�(!)d
 = n� G�24�3l2 Z d4�P os(l�x); (28)d _Lvd
 = �GL�216�4 �� Z d4� �sin(l�x)l3 (3�2 + ~�2) + os(l�x)l2 �2� ;d _Lwd
 = GL�216�4 �� Z d4� �sin(l�x)l3 (3�3 + ~�3) + os(l�x)l2 �3� ; (29)
where we use the notation�x = � � �0 � (� � �0) ++ n[a(�) � a(�0) + b(�)� b(�0)℄;P = T 0pqTpq � 12T 0qqTpp;�2 = T 013Tpp + 2T 03pTp1;�3 = T 012Tpp + 2T 02pTp1;�2 = 2T 03pqTpq � 2T 03pTpqq � T 0pq3Tpq ++ 12T 0qq3Tpp;~�2 = 2 ~T 03pqTpq + 2T 03p ~Tpqq � ~T 0pq3Tpq ++ 12 ~T 0qq3Tpp;�3 = 2T 02pqTpq � 2T 02pTpqq � T 0pq2Tpq ++ 12T 0qq2Tpp;~�3 = 2 ~T 02pqTpq + 2T 02p ~Tpqq � ~T 0pq2Tpq ++ 12 ~T 0qq2Tpp:

(30)
675 2*



E. Babihev, V. Dokuhaev ÆÝÒÔ, òîì 123, âûï. 4, 2003It is assumed that integration in (28) and (29) is overthe four-dimensional ube with the side (0; 2�); we alsouse the notation d4� = d� d�0 d� d�0.We now �nd the form of expressions (28) and (29)suitable for summing over the modes l. Using theknown values for in�nite series [18℄1Xl=1 os(lx)l2 = 14(x� �)2 � �212 ; 0 � x � 2�;1Xl=1 sin(lx)l3 = 112[(x� �)3 � �2x℄ + �312 ;0 � x � 2�; (31)we obtain the �nal expressions for the gravitational ra-diation of energy, momentum, and angular momentumrates [19℄ from (28) and (29) asd _P�d
 = n� G�216�3 Z d4�P(�xmod 2� � �)2; (32)d _Lvd
 = �GL�264�4 Z d4���(�xmod 2� � �)3�� �2�xmod 2����2 + 13 ~�2� ++ (�xmod 2� � �)2�2� ;d _Lwd
 = GL�264�4 Z d4���(�xmod 2� � �)3�� �2�xmod 2����3 + 13 ~�3� ++ (�xmod 2� � �)2�3� :
(33)

We note that the integrals in (32) and (33) do not on-tain the terms �2=12 and �3=12 originating in (31) be-ause the orresponding ontributions vanish in the in-tegrals. The advantage of formulas (32) and (33) withrespet to the orresponding formulas (16) and (17)is that there are no summations over modes. Butbeause of the presene of the funtion �x(mod)2�,the four-dimensional integrals in (32) and (33) an-not be redued to produts of lower-dimensional inte-grals, and therefore numerial alulations of the four-dimensional integrals beome more ompliated.4. ELECTROMAGNETIC RADIATION FROMCHIRAL LOOPSWe now onsider the eletromagneti radiation froman arbitrary relativisti periodi system in a similar

way. We alulate the eletromagneti radiation byanalogy with Durrer's alulations of the gravitationalradiation [14℄. In the Lorentz gauge, a retarded so-lution for the eletromagneti potential A� in suh asystem is given byA�(x; t) = � Z j�(x0; tret)jx� x0j dx0; (34)where j� is the four-dimensional urrent and we settret = t � jx � x0j. We onsider formula (34) in thelimit r = jxj � jx0j. Expanding (34) in a series in 1=rand taking the �rst two terms into aount, we obtainA�(x; t) = 1r Z j�(x0; tret)dx0 �� 1r2 Z j�(x0; tret)x0idx0 +O(r�3); (35)where n = x=r. Expanding tret in a series in jx0j=r, wethen �ndtret = t�r+n � x0� 12rPijx0ix0j+O(jx0j2=r2)jx0j: (36)Equation (36) implies the useful relationA�;j = �A�;0nj +O(A�=r): (37)Similarly to the ase of the gravitational �eld(T �� $ j�; h�� $ j�, et.), we have the Fouriertransforms of the urrent ~j� and its �rst and seondmoments ~j�p and ~j�pq ,~j�(!l;n) = 1T TZ0 dt Z d3xj�(!l;x)�� exp fi!l(t� n � x)g ;~j�p(!l;n) = 1T TZ0 dt Z d3xj�(!l;x)xp �� exp fi!l(t� n � x)g ;~j�pq(!l;n) = 1T TZ0 dt Z d3xj�(!l;x)xpxq �� exp fi!l(t� n � x)g :
(38)

These quantities satisfy the onditions~j0 � nk ~jk = 0;� i! ~j0p � ~jp + i!nk ~jkp = 0;i!Pmn( ~j0mn � np~jpmn) + 2Ppq~jpq = 0; (39)676



ÆÝÒÔ, òîì 123, âûï. 4, 2003 Radiation from osmi hiral string loopswhih follow from the relationsj�;� = 0;Z j�(t;x0);�[x0p expfi!(t� n � x0)g℄ dt d3x = 0;Z j�(t;x0);� �[x02 � (n � x0)℄ �� expfi!(t� n � x0)gg dt d3x = 0: (40)
Using (38) and (40), we obtain from (35) thatA�(x; t) = 1r 1Xl=1 e�i!l(t�r) �~j�(!l;n)++ npr ~j�p(!l;n)+ i!l2r P pq~j�pq(!l;n)�++ ..+O(r�3): (41)To alulate the energy and momentum radiationlosses, we keep only terms of the order of 1=r in (41).The radiation of energy from the system is determinedby the Poynting vetor as [20℄d _Eemd
 = jE�Hj4� ; (42)where E and H are the eletri and magneti �elds.Using (41), we obtain from (42) thatd _P�emd
 = 1Xn=1 d _P�(!n)d
 ; (43)where d _P�em(!)d
 = n�!22�P pq~j�p~jq : (44)We now alulate eletromagneti radiation of theangular momentum. The angular momentum rate perunit solid angle is given by [20℄d _Lemd
 = r34� [[n�E℄(n �E) + [n�H℄(n �H)℄ : (45)In alulating [n � E℄ and [n �H℄, it su�es to keeponly terms of the order of 1=r. But the longitudinalomponents n � E and n � H arise from terms of theorder of 1=r2. As a result, the term r3 is aneled in(45). This implies that the distane from the system r

does not enter the �nal formula, as should be the ase.Using (41) and (40), we obtain[n�E℄i = ��ijknjAk;0 == � 1Xl=1 i!lr exp f�i!l(t�r)g �ijknj~jk+..;[n�H℄i = 1Xl=1 i!lr exp f�i!l(t�r)gP ij~jk+..;n � E = � 1Xl=1 i!lr2 exp f�i!l(t�r)gP pq~jpq+..;n �H = 1Xl=1 i!lr2 exp f�i!l(t�r)g �pqrnp~jrq+.. (46)
Substituting (46) in (45), we obtaind _Lemd
 = 1Xn=1 d _Lem(!n)d
 ; (47)whered _Lemi (!)d
 == !24� �(�ijkPpq � Pik�jpq)nj ~j�k ~jpq + ..� : (48)As for the gravitational �eld, we rewrite (44) and (48)in the orotating basis (e1; e2; e3) = (n;v;w),d _P�em(!)d
 = n�!22�~��p~�p; (49)d _Lem(!)d
 = d _Lem2d
 v + d _Lem3d
 w; (50)whered _Lem2d
 = �!24� [��3�pp + ��2(�23 � �32) + ..℄;d _Lem3d
 = !24� [��2�pp � ��3(�23 � �32) + ..℄; (51)and �p and �pq are omponents of j� and j�p in thisorotating basis.For superonduting hiral strings, we obtain fromexpression (7) for the urrent that�i(!l;n) = Lqp�2 [Ii(l)X(l)℄; (52)where the funtion Ii(l) is given by (20) and X(l) isX(l) � 12� 2�Z0 d� eil(��n�b)p1� jb0j2: (53)677



E. Babihev, V. Dokuhaev ÆÝÒÔ, òîì 123, âûï. 4, 2003Similarly, for the �rst moment �pq , we obtain�pq(!l;n) = L2qp�8� [Ip(l)Zq(l) +X(l)Mpq(l)℄; (54)where Mpq is given by (22) and Zq isZi(l) � 12� 2�Z0 d� eil(��n�b)p1� jb0j2 (b � ei): (55)We now integrate expressions (53) and (55) by partsto obtain an additional l in the denominator,X = � 12�il 2�Z0 d�X exp fil(� � n � b)g ;Zj = � 2�Z0 d�� 12�ilZj + 12�l2 ~Zj��� exp fil(� � n � b)g ; (56)where X = "p1� jb0j21� n � b0 #0 ;Zj = "p1� jb0j21� n � b0 #0 (bej);~Zj = "p1� jb0j2(b0 � ej)1� n � b0 #0 : (57)
Substituting (20), (22), and (56) in (52) and (54), weobtain�i = Lqp�8�2l2 2�Z0 2�Z0 d�d� Ji �� exp f�il[� � � + n � (a+ b)℄g ;�ij = L2qp�32�3l2 2�Z0 2�Z0 d�d� �Jij + 1il ~Jij��� exp f�il[� � � + n � (a+ b)℄g ; (58)
where Ji = IiX ; Jij = IiZj + XMij ;~Jij = �Ii ~Zj + X ~Mij : (59)Finally, substituting (58) in (49) and (51), we �nd theexpressions for eletromagneti radiation rates of theenergy, momentum, and angular momentum in a unitsolid angle at the frequeny !l,d _P�em(!l)d
 = n� q2�8�3l2 Z d4�Pem os(l�x); (60)

d _Lemvd
 = Lq2�32�4 �� Z d4� � sin(l�x)l3 ~�em2 � os(l�x)l2 �em2 � ;d _Lemwd
 = �Lq2�32�4 �� Z d4� � sin(l�x)l3 ~�em3 � os(l�x)l2 �em3 � ; (61)
where Pem = J 0pJp;�em2 = J 03Jpp + J 02(J23 �J32);~�em2 = J 03 ~Jpp + J 02( ~J23 � ~J32);�em3 = J 02Jpp �J 03(J23 �J32);~�em3 = J 02 ~Jpp �J 03( ~J23 � ~J32): (62)As for the gravitational radiation, we use the valuesfor in�nite series (31) to obtain the total eletromag-neti radiation rates of the energy, momentum, andangular momentum [19℄,d _P�emd
 = n� q2�32�3 Z d4�Pem(�xmod 2� � �)2; (63)d _Lemvd
 = Lq2�128�4 Z d4� ���13 �(�xmod 2���)3��2�xmod 2�� ~�em2 �� (�xmod 2� � �)2�em2 � ;d _Lemwd
 = � Lq2�128�4 Z d4� ���13 �(�xmod 2���)3��2�xmod 2�� ~�em3 �� (�xmod 2� � �)2�em3 � :

(64)
As a result, we found expressions for the eletromag-netially radiated energy, momentum, and angular mo-mentum from hiral string loops in whih the summa-tion over modes l is arried out.5. RADIATION OF NEARLY STATIONARYLOOPSWe an now onsider small-amplitude osillationsof the hiral string loop (i. e., the string that is loseto its vorton state) in more detail. An arbitrary fun-tion b(�) in the solution for string motion (2) is then678



ÆÝÒÔ, òîì 123, âûï. 4, 2003 Radiation from osmi hiral string loopssuh that b0(�) = k(�) � 1. If three-dimensional o-ordinates are hosen suh that the b-loop is near theorigin of the oordinate system (e.g., exatly intersetsthe origin of the oordinate system), then b(�) � 1.We now return to expressions (13). The expressionsfor the funtions Yj(l) and Nij(l) an be integrated byparts twie to inrease the power of l in the denomina-tor, while the expressions for Ij(l) and Mij(l) are leftunhanged. We assume that b(�) is twie ontinuouslydi�erentiable and b000(�) is pieewise ontinuous. Inte-grating in (20) and (22) by parts twie and using thesmallness of b0(�), we obtainYi(l) = � 12�l2 2�Z0 d�eil�b000 � ei;Nij(l) = � 12�l2 2�Z0 d�eil� [(b0 � ei) (b � ej)℄00 : (65)As has been noted, we are free to add any numerialoe�ient to (�xmod 2�� �)2 in (32) without hang-ing the value of the integral. Using this, we add ��2=2,and then Eq. (32) implies�����d _P�d
 ����� == ����n� G�216�3 Z d4�P �(�xmod 2� � �)2 � �2=2����� �� G�2�32 jPj : (66)It only remains to estimate the funtion P in (66). Us-ing (20), (27), (30), and (65) we easily �ndjPj � 12b23; (67)where b3 is the maximum value of jb000(�)j on the seg-ment � 2 (0; 2�). From (66) and (67), we then estimatethe energy losses as��� _Egr��� � 24G�2�4b23; ��� _Pgr��� � 24G�2�4b23: (68)We next estimate the upper bounds on the radiatedangular momentum. Similarly to the ase of energyand momentum radiation, we use Eqs. (33), (30), (27),and (65) to �nd the upper bounds on losses of the an-gular momentum to gravitational waves,��� _Lgr��� � 12p2�4�1 + 43p3�GL�2b23: (69)We now onsider the eletromagneti radiation inthe ase of a large urrent. To �nd the �rst-order ex-pansion with respet to k in (53), we must take not

only zero, but also the �rst term in the expansion ofexp(�iln � b) into aount. Subsequent integration ofthe resulting expression by parts givesX(l) ' � 12�l2 2�Z0 d�eil�n � b000: (70)For the funtion Zi, we haveZi(l) � � 12�l2 2�Z0 d� eil�(b00 � ei): (71)Similarly to the gravitational ase, we an �nd thebounds on the eletromagneti radiation for a largeurrent. Using (70), (71), (64), (63), (62), and (59),we obtain��� _Eem��� � �4q2�b23; ��� _P em��� � �4q2�b23;��� _Lem��� � p2�3 �1 + 4�9p3�Lq2�b23: (72)The presene of the third derivative b000(�) in(68), (69), and (65) is not surprising and resemblesthe quadruple gravitational radiation formula (see,e. g., [20℄) _E = G45 :::D2ij (73)involving the third time derivative of the quadruplemoment Dij . Eletromagneti radiation involves �d inthe dipole approah (d is the dipole moment). Argu-ing similarly, we an onlude that in this ase, theseond derivative of b(�), not the third, must be re-strited. But in the �rst order of the expansion in k,the dipole radiation is equal to zero, the �rst nonzeroterm is quadruple, and we therefore again obtain thedependene on b000.We note that it is not neessary to restrit the thirdderivative b000 in general. For example, if the string haskinks (see below), the �rst derivative b0 is disontinu-ous (and onsequently, Yp(l) / 1=l, M(l) / 1=l). Con-vergene of series (13), (43), and (47) is then ensuredby the behavior of fundamental integrals Ip(l) / 1=l atl � 1.It is possible to derive rather simple expressions forthe total energy, momentum, and angular momentumradiated by hiral loops in the limit as loops are verylose to their stationary states, i. e., k � 1 in (4). Ad-ditionally, it is supposed that k is independent of � andthe urrent j� is therefore onstant along the string.679



E. Babihev, V. Dokuhaev ÆÝÒÔ, òîì 123, âûï. 4, 2003Using expansions of (32), (33), (63), and (64) in pow-ers of k, we an write the orresponding gravitationaland eletromagneti rates as_Egr = KgrE G�2k2; j _Pgrj = KgrP G�2k2;j _Lgr j = KgrL LG�2k2; _Eem = KemE q2�k2;j _Pemj = KemP q2�k2; j _Lemj = KemL Lq2�k2; (74)where Kem and Kgr are numerial oe�ients depend-ing only on the loop geometry. We see that radiationrates of nearly stationary hiral loops are proportionalto k2. The geometrial numerial fators K in Eq. (74)are in turn related to the orresponding oe�ients �in Eq. (1) as � = Kk2: (75)We now evaluate the damping time of small-amplitude osillations of nearly stationary hiral stringsorresponding to the limit k � 1. For simpliity, weagain assume that k is independent of � in the on-sidered limit (this assumption is valid in the solvableexamples onsidered above). The total loop harge on-servation in (7) then givesqp�2 Lp1� k2 = onst: (76)From this equation, we �nd the relation between theenergy E and the parameter k of the hiral string withsmall-amplitude osillations,E ' Ev �1 + k22 � ; (77)where Ev = L� is the energy of the stationary (vorton)hiral loop on�guration at k = 0. Comparing (77)with (74), we estimate the damping time of string os-illations [16℄ as� � Ev2(KgrG�2 +Kemq2�) : (78)We next express (78) through the vorton length. Wehave Ev = L�, where L is the invariant length, and thephysial length of a stationary string is equal to halfthe invariant length Lph = L=2 [22℄. We �nd� � LphKgrG�+Kemq2 : (79)Also assuming for simpliity that k depends only ontime and using Eqs. (74) and (77), we �nd the osilla-tion damping lawk2 � k20 exp��t� 1�gr + 1�em �� ; (80)

where k0 = k(t = 0); therefore, the damping time dueto gravitational radiation is�gr � Ev2KgrG�2 = LphKgrG� (81)and that due to eletromagneti radiation is�em � Ev2Kemq2� = LphKemq2 : (82)Substituting (80) in (77), we obtainE � Ev �1 + k202 exp��t� 1�gr + 1�em ��� : (83)The e�etive number of osillations during the dampingtime (osillator quality) isQ = �T � 2L �gr�em�gr + �em : (84)To restore the standard CGS units, we replaeG�2 ! G�2, q2� ! q2�2=~ and hoose the stan-dard normalization for the string mass per unit lengthG�=2 = 10�6�6 and qe = q=e for the dimensionlessharge arrier on the string, where the elementary ele-tri harge is e = 4:8 � 10�10. As a result, the dampingtimes are expressed as�gr � LphKgrG�; �em � Lph~Kemq2 : (85)Osillator quality (84) for the gravitational and eletro-magneti radiation is given by the respetive formulasQgr � 1Kgr 2G�; Qem � 1Kem 1�emq2e ; (86)with �em = e2=~. The ratio of the damping times is�gr�em � q2G�~ �KemKgr � � 1:4 � 10�4 q2e�6 KemKgr : (87)If q2e=�6 & 1:4 �10�3, the eletromagneti radiation pre-vails in the hiral loop evolution (this is valid for thestandard values �6 � 1 and qe � 1). If on the on-trary q2e=�6 . 1:4 � 10�3 (for example, if the urrentis neutral and there is no eletromagneti radiation atall), then the pure gravitational radiation determinesthe evolution.6. NUMERICAL EXAMPLES OF RADIATINGLOOPSIn this setion, we apply analyti formulas (32),(33), (63), and (64) derived above for gravitational and680



ÆÝÒÔ, òîì 123, âûï. 4, 2003 Radiation from osmi hiral string loopseletromagneti radiation to some partiular examplesof hiral loops. At the �nal steps, numerial alula-tions of four-dimensional integrals are used to �nd theenergy, momentum, and angular momentum radiationrates as funtions of the urrent on the string.We �rst onsider the lass of pieewise linear kinkyloops. Let a(�) and b(�) be pieewise linear funtions;that is, vetor funtions a(�) and b(�) are losed loopsonsisting of onneted straight parts. The join pointsof segments of a- and b-loops, where a0(�) and b0(�) aredisontinuous, are alled �kinks�. We take the a-looponsisting of Na and b-loop onsisting of Nb segments(parts). Kinks are labeled by i = 0; 1; : : : ; Na � 1, andthe value of � on the kink labeled by i is denotes as �i.In what follows, we use supersripts for the segmentlabels and subsripts for tensor omponents. Beausewe use only spatial tensor omponents, there should beno onfusion. Without the loss of generality, we anset �0 = 0. We note that �i+Na = �i + 2� beauseof periodiity. Using the notation ��i = �i+1 � �i,Ai = a(�i), and ai = (Ai+1 �Ai)=��i, and similarlyfor the b-loop, we �nda(�) = Ai + (� � �i)ai; � 2 [�i; �i+1℄;b(�) = Bj + (� � �j)bj ; � 2 [�j ; �j+1℄: (88)For pieewise linear loops, the funtions Ip, Yp, Mpq ,Npq , X , and Zp in (25) and (57) beome the sums ofdelta funtions beause of the disontinuity of a0 andb0 at the kinks. For example, the funtion Ip in (25) isgiven byIp =Xi � ai � ep1 + ai � n � ai�1 � ep1 + ai�1 � n� Æ(� � �i): (89)Similar expressions an be obtained for the other fun-tions. Due to the presene of delta funtions in Ip,Yp, Mpq , Npq , X , and Zp, the integrations in (32),(33), (63), and (64) an be arried out easily. To ob-tain the expressions for the gravitational and eletro-magneti radiation from the general formulas, we mustreplae integrations in (32), (33), (63), and (64) bysummations over the kinks and make the substitutions�x! xijkl = �i � �k � (�j � �l) ++ n � (ai � ak + bj � bl);Ip ! Iip = ai � ep1 + ai � n � ai�1 � ep1 + ai�1 � n ;Yp ! Yjp = bj � ep1� bj � n � bj�1 � ep1� bj�1 � n : (90)Similar substitutions must be performed for the fun-tions Mpq , Npq, X , and Zp.

6.1. 2-4 pieewise loopAs the �rst example, we onsider the hiral stringloop shown in Fig. 1. In this example, the a-loop on-sists of 2 segments and lies along the z axis. One kinkof the a-loop is positioned at the origin (� = 0) and theother kink (� = �) has the oordinates �(os�; 0; sin�).The positions of the b-loop kinks are as follows: the �rstkink at � = 0 has the oordinates (�k=2p2)(1; 0; 0),the seond kink at � = �=2 has the oordinates(�k=2p2)(0; 1; 0), the third kink at � = � has the o-ordinates (�k=2p2)(�1; 0; 0), and the position of thefourth kink at � = 3�=2 is given by (�k=2p2)(0;�1; 0).We all this loop the 2-4 pieewise loop. The depen-dene of the radiated gravitational and eletromagnetienergy on the mode number l is shown in Fig. 2 for the2-4 pieewise loop with � = �=2. The derease of theradiated energy with the mode number l is more pro-nouned for the larger urrent, as it should be physi-ally, beause the maximal speed of the string dereasesas the urrent inreases. In Fig. 3, the dependene ofthe total radiated energy on the parameter k is shownfor � = �=2. We an see a monotoni inrease ofthe gravitational energy radiation with k (i. e., withthe derease of the string urrent). At the same time,the eletromagneti energy radiated by the string hasa maximum near k � 0:9. The value of k = kgrmaxat whih the maximum for the gravitational radiationrate is reahed is exatly 1, and for the eletromagnetiradiation rate, kemmax � 0:9.The orresponding rates for the angular momentumas a funtion of the mode number are shown in Fig. 4.For the eletromagneti radiation, we an also see weakosillations of the angular momentum rate in additionto the overall derease of the radiated angular momen-tum with the mode number.The total angular momentum radiation to eletro-magneti and gravitational waves is shown in Fig. 5.The graphs for the angular momentum rates look verysimilar to the graphs for the energy radiation. The or-responding gravitational radiation rates inrease mono-tonially with k and the eletromagneti radiation ofmomentum has maxima near k = 0:9. Using the gen-eral expressions for gravitational and eletromagnetiradiation in Eqs. (32), (33), (63), and (64), we aneasily alulate the oe�ients K in the ase of largeurrents. For � = �=2, we �nd that KgrE = 28:36,KgrL = 1:41, KgrE = 4, and KgrL = 0:25. The radi-ated gravitational _Egr and eletromagneti _Eem pow-ers are approximately equal to Kk2 in aordane withEq. (75).Durrer [14℄ found that for some partiular lass of681
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Ėem

n

k = 0.9k = 1

k = 0.3 k = 0.3
10

1

10
−1

10
−2

10
−3

0 10 20 30 40 50

N

1

10
−1

10
−2

10
−3

10
−4

0 10 20 30 40 50

NFig. 2. Radiated gravitational energy rate (left graph), _Egrn in the units G�2 and the eletromagneti energy rate (rightgraph) _Eemn in the units q2�. For the 2-4 kinky loop, the energy radiation is drawn as a logarithmi funtion of the modenumber N for di�erent values of the parameter kordinary osmi string loops, the radiated angular mo-mentum _Lgr is antiparallel to the stationary angularmomentum Lst of the loop. This implies that the an-gular momentum of the loops always dereases withtime due to gravitational radiation. Our results for the angular momentum radiation to eletromagnetiand gravitational waves for string loops with the hi-ral urrent agree with the results of Durrer in gen-eral. The hiral loops onsidered in this paper alsolose angular momentum with time. But in ontrast682



ÆÝÒÔ, òîì 123, âûï. 4, 2003 Radiation from osmi hiral string loops

0 0.21.00.80.60.40.2
k

0

k
0.4 0.6 0.8 1.0
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are shown in Fig. 3. This loop also radiates momentumand angular momentum. The total angular momentumradiation rates are shown in Fig. 5. In Fig. 6, thetotal momentum radiation rates to eletromagnetiand gravitational waves are shown for di�erent valuesof the parameters �1 and �2. For the momentumradiation, we an see a di�erent situation from thatin the ase of the energy and angular momentumradiation: for eah value of k, the momentum rate hasa loal maximum on the interval k 2 (0; 2�).6.3. Hybrid kinky loopAs the third example, we onsider the loop with theon�gurationa = A( �; 0 � � � �;� � �; � � � � 2�;b = k(sin �; � os�; 0): (91)684
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Fig. 6. The total momentum radiated to gravitational and eletromagneti waves, respetively, _P gr in the units G�2 and_P em in the units q2�, for the 3-3 pieewise loop with di�erent parameters �2 and with �1 = 0 as a funtion of the parameterk. The three ases are onsidered with �2 = �=2, �2 = �=4, and �2 = �=8The b-loop in this example is a irle in the (x; y)plane and A = (os ; 0; sin ) (Fig. 1). For  = �=2,the gravitational and eletromagneti radiated energyrates and angular momentum rates are shown in Figs. 3and 5. The total gravitational energy radiation fork = 1 oinides with the result of Allen et al. [12℄( _Egr � 39:0G�2).6.4. Weakly osillating ring loopAs the �nal example, we onsider the radially osil-lating loop, a = (os �; � sin �; 0);b = k(os �; � sin �; 0): (92)Unfortunately, beause the alulation of integrals (32)and (63) would take an enormous amount of omputertime, we annot present the results for radiation rates ofosillating rings for the entire range of urrents (we notethat the radiated power diverges as the urrent tendsto zero). But in the large-urrent limit, the radiatedpower rate is easy to alulate. For loop (92), the �rstnonzero term in the expansion of the radiated powerin k is proportional to k2 in agreement with (74). Itsu�es to take only the �rst term in (13) and (43), theother terms are of higher orders in k. Substituting (92)

in (20) and (53) and keeping the leading nonzero termat k � 1, we obtainI2(1) = 12 e�i�[J2(� sin �) +J0(� sin �)℄ os �;I3(1) = i2 e�i�[J2(� sin �)�J0(� sin �)℄;Y2(1) = k2 ei� os �; Y3(1) = ik2 ei�;X(1) = k2 ei� sin �: (93)
Using (93), (19), (52), (14), and (44) and integratingover the unit sphere, we next obtain the oe�ientsKgrE and KemE ,Kgr = �2 �Z0 d� sin �n[J2(sin �)� J0(sin �)℄2 ++ 2 �3J22 (sin �)� J20 (sin �)� os2 � ++ [J2(sin �) + J0(sin �)℄2 os4 �o;Kem = �Z0 d� sin3 �n[J2(sin �)�J0(sin �)℄2++ [J2(sin �)+J0(sin �)℄2 os2 �o ; (94)
whih are numerially given by Kgr = 4:73 andKem = 2:28.685



E. Babihev, V. Dokuhaev ÆÝÒÔ, òîì 123, âûï. 4, 2003Beause of the symmetry of the osillating ring, theestimations of damping time (79), oe�ient k (80),and total string energy (83) beome exat in the large-urrent limit. 7. DISCUSSIONEletromagneti and gravitational radiation playsan important role in the evolution of the osmi stringnetwork. This network ould be produed in the earlyuniverse phase transitions and would generate large-sale strutures later. Previously, the properties ofosmi string radiation were mainly studied for stringswith a small urrent or without any urrent. Here,we desribed the radiation properties of hiral os-mi loops for the entire possible range of the ur-rents. We sueeded in analytially summing the in�-nite mode series of radiation rates for periodially osil-lating string loops. The expressions derived for the en-ergy, momentum, and angular momentum rates ontainfour-dimensional integrals depending on loop geometry.Suh an integral representation is espeially onvenientfor numerial alulations of radiation from relativis-tially moving loops as ompared with the method ofsummation of a weakly onvergent mode series. To �ndthe total rates of the radiated energy, momentum andangular momentum, the expressions obtained were in-tegrated over the unit sphere. Applying the derivedformulas to some partiular examples of hiral stringloop on�gurations, we numerially alulated the o-e�ients � in Eq. (1) as funtions of k. The orrespond-ing alulations of the radiated energy, momentum, andangular momentum rates were done for the followingexamples (see Fig. 1): (i) a pieewise linear kinky loopwith the a-loop onsisting of two straight parts and theb-loop onsisting of four straight parts (2-4 pieewiseloop); (ii) a pieewise linear loop suh that the a- andb-loops onsist of three segments eah (3-3 pieewiseloop); (iii) the hybrid loop in whih the a-loop onsistsof two straight parts and the b-loop is a irle (hybridkinky loop). For the �rst and seond examples, thefour-dimensional integrals in our expressions for radi-ated energy, momentum, and angular momentum be-ome multiple sums over the kinks. These sums anbe alulated analytially using symboli omputer ma-nipulations (e. g., the �Mathematia� program paket).To �nd the radiation in the third example (hybridloop), we alulated two-dimensional integrals (origi-nating from a smooth a-loop) and summed over thekinks of the b-loop. Unfortunately, we ould not per-form the alulations for strings with the a and b loops

being arbitrary smooth urves beause alulations ofthe four-dimensional integrals would take an enormousamount of time of the omputer used.The total gravitational radiation energy, momen-tum, and angular momentum rates behave similarly:they slowly inrease with k when k is su�iently small(and respetively the urrent is large) and rapidly in-rease at large k (i. e., at small urrent). Overall, thegravitational radiation rates are inreasing funtions ofk. For the eletromagneti radiation, the situation isquite di�erent: the energy, momentum, and angularmomentum losses to eletromagneti waves for all ex-amples onsidered have a maximum near k � 0:9, i. e.,when the urrent is rather small. For the examples on-sidered, the maximum values of the oe�ients � in (1)are approximately equal to�grE � 50; �grP � 1; �grL � 3;�emE � 2; �emP � 0:1; �emL � 0:1: (95)We also found that for some nonsymmetri examplesof hiral loops, the angular momentum _L radiated toeletromagneti and gravitational waves is not exatlyopposite to the angular momentum of the loop Lst, butslightly di�ers from it (even when there is no urrenton the string), unlike in the loop examples onsideredby Durrer [14℄.The asymptoti fading of hiral osmi string loopsinto vortons was derived. It was found that the upperbounds on the gravitational and eletromagneti radi-ation rates of nearly stationary loops is proportionalto the squared third derivative of the osillation ampli-tude, see Eqs. (68), (69), and (72). We showed that ifthe osillation amplitude is small (k � 1) and the ur-rent j� is onstant along the string, the energy, momen-tum, and angular momentum radiation rates to gravi-tational and eletromagneti waves are proportional tok2 and the proportionality oe�ient depends only onthe form of the loop, see Eq. (74). In some examplesof hiral loops, we alulated the total radiated powerin the limit of the small-amplitude osillations. For thehiral ring with small-amplitude radial osillations, theradiated power per solid angle d
 for the eletromag-neti and gravitational radiation is found analytially,Eq. (94). We also estimated the damping time of hi-ral loops (78) with small-amplitude osillations. In thease of the gravitational radiation prevalene over theeletromagneti one, this time is �gr � Lph=KgrG�,where Kgr is a numerial oe�ient depending on thestring geometry. The damping time due to the gravita-tional radiation of the hiral loops onsidered is by theorder of magnitude longer than the lifetime of ordinaryosmi strings. On the ontrary, if the eletromagneti686



ÆÝÒÔ, òîì 123, âûï. 4, 2003 Radiation from osmi hiral string loopsradiation prevails, the deay time is �em � Lph=Kemq2.For the radially osillating hiral ring with a large ur-rent, expressions (80) and (83) for the temporal evolu-tion of the total energy and the amplitude parameterk beome asymptotially exat.We an �nd a harateristi size of the string Lvwith osillation damping time (85) equal to the uni-verse lifetime t0 ' 1018 s. In the ase of the gravita-tional radiation predominane, we �ndLgrv � G�Kgrt0 � 102�6 kp (96)for Kgr � 1. Chiral strings with the length L < Lgrv(i. e., with the size of a typial galati halo or less)therefore have enough time to fade into vortons. Onthe other hand, if the eletromagneti radiation pre-vails, we haveLemv � q2Kemt0~ � 70q2e Mp (97)for Kem � 1, and the eletromagnetially radiated hi-ral loops with the length shorter than the size of gala-ti lusters have therefore transformed to vortons. Wean see that only su�iently long superonduting os-mi strings osillate up to the present time. On theontrary, small-sale hiral loops are transformed intostationary vortons due to the osillation damping.It is interesting to estimate the urrent parameterk at whih the eletromagneti and gravitationalradiation rates beome equal. From [15℄, we knowthat at small urrents, the eletromagneti radiationis given by _Eem � q2�p1� k. For the gravitationalradiation of small urrents, we have _Egr � 102G�2.Comparing these two expressions, we an easily �ndthe string urrent value at whih these radiation ratesare equal, k � 1� (102G�=q2)2 � 1�10�4.This work was supported in part by the RussianFoundation for basi Researh (grants 00-15-96632 and00-15-96697) and by the INTAS (grant 99-1065).REFERENCES1. E. P. S. Shellard and A. Vilenkin, Cosmi Strings andother Topologial Defets, Cambridge University Press,Cambridge (1994).
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