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The gravitational and electromagnetic radiation from chiral superconducting cosmic string loops is calculated.
The formulas for energy, momentum, and angular momentum losses due to gravitational and electromagnetic
radiation from chiral loops of an arbitrary configuration are derived. After summation over all modes, expressions
for the corresponding radiation rates averaged over the loop oscillation period have the form of four-dimensional
integrals. These formulas are reduced to sums over the kinks for loops composed of piecewise linear strings.
For three examples of string loops, the total radiation rates are calculated numerically in dependence on the
chiral current along the string. In the limit of a nearly maximum current, which corresponds to a stationary
loop (vorton) configuration, we determine the upper bounds on the gravitational and electromagnetic radiation.
We also estimate the oscillation damping time of a nearly stationary loop.

PACS: 11.27.4+d, 41.20.J, 04.30

1. INTRODUCTION

We investigate the properties of the gravitational
and electromagnetic radiation of energy, momentum,
and angular momentum from superconducting closed
cosmic strings with a chiral current. Formation of cos-
mic strings in the early universe phase transitions is
predicted by many particle-physics models (see, e. g.,
reviews in [1, 2]). In 1985, Witten showed that cos-
mic strings can carry a superconducting electromag-
netic current [3]. Exact solutions of the equations of
motion for current-carrying cosmic strings were found
by Carter and Peter [4], Davis et al. [5], and Blanco-
Pillado et al. [6] in the case of a chiral (or null) current
J*J, = 0, which does not couple to any gauge field.

Ordinary cosmic strings (without a current) radiate
energy [7-12], momentum [7, 13, 14], and angular mo-
mentum [14] in the form of gravitational waves. If cos-
mic strings carry the electromagnetic current, cosmic
string loops radiate both gravitational and electromag-
netic waves. For a small current, the most intense radi-
ation is generated by a cusp on the loop. The radiation
from a single cusp of the chiral string loop with a small
current was studied by Blanco-Pillado and Olum [15].
The radiation of loops in the opposite case of a nearly

*E-mail:babichev@inr.npd.ac.ru
**E-mail:dokuchaev@inr.npd.ac.ru

672

maximum current was considered in [16]. In this paper,
we study the gravitational and electromagnetic radia-
tion from closed chiral string loops in the entire range of
the string current. The rates of the energy E, momen-
tum P, and angular momentum L losses (averaged over
the oscillation period) to the gravitational and electro-
magnetic waves can be expressed in the general form
as

B = TG,
LI =T LG?,
P =T% ug?,

PO = TG,
E™ =T%" ug’,
L™ =T{"Lpg®,

(1)

where the coefficients 'Y, T, T'Y", I, T'Y", and I'§™
depend on the particular string configuration and the
current on the string, £ is the string invariant length, u
is string mass per unit length, ¢ is the electromagnetic
charge, and we use units i = ¢ = 1. In what follows,
we calculate the coefficients Ty, T%, T9", T'9", T9",
and I'{™ as functions of the current on the string. It is
known that for ordinary loops (without a current), the
corresponding coefficients for the gravitational radia-
tion are of the respective orders I'}, ~ 100, I'% ~ 10,
and T'Y" ~ 10. We found that for loops with a chiral
current, the same coefficients 'Yy, T'%, and T'Y" be-
have as follows: they rapidly decrease with the current
at small current values and slowly decrease at large
current values. In general, the gravitational radiation
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rates are decreasing functions of the current on the
string. For the electromagnetic radiation, the situation
is quite different: the loss rates of the energy, momen-
tum, and angular momentum to electromagnetic waves
for all considered examples have a maximum near some
rather small value of the current.

The total rates of the energy, momentum, and an-
gular momentum per unit time (averaged over the pe-
riod) are usually calculated by summing the losses in
different Fourier modes. As noted by Allen et al. [11],
such calculations may not be accurate in practice be-
cause of a slow convergence of the corresponding sums
over mode numbers. In this paper, we perform the
summation over all radiation modes analytically and
derive formulas for the energy, momentum, and angu-
lar momentum loss rates to the gravitational and elec-
tromagnetic radiation from the chiral string loops of
a general configuration. As a result, the correspond-
ing radiation rates into the unit solid angle averaged
over the loop oscillation period are reduced to four-
dimensional integrals. In general, these integrals can
be calculated only numerically. For chiral loops com-
posed of piecewise linear strings, these formulas lead
to analytic expressions for the energy, momentum, and
angular momentum radiation into the unit solid angle.
For large currents (close to the maximum value), we
determine the upper bounds on the gravitational and
electromagnetic radiation. For weak radial oscillations
of a chiral ring, we find the temporal behavior of the
loop energy and current analytically. For some other
less symmetric loop examples, we estimate the damping
time of small-amplitude loop oscillations.

This paper is organized as follows. In Sec. 2, we
review some general properties of chiral cosmic strings.
In Sec. 3, we derive new expressions for the energy,
momentum, and angular momentum gravitational ra-
diation rates by chiral loops of a general configuration
into the unit solid angle. These expressions are reduced
to four-dimensional integrals where summation over all
radiation modes is performed analytically. In Sec. 4,
we derive similar formulas for the electromagnetic ra-
diation rates. In Sec. 5, the radiation and oscillation
damping to the vorton state of nearly stationary loops
are described. In Sec. 6, we present numerical calcula-
tions of the electromagnetic and gravitational radiation
rates for some illustrative examples of chiral loops and
study the dependence of the chiral string radiation on
the current. In Sec. 7, we describe the results obtained
and discuss some qualitative features of the gravita-
tional and electromagnetic radiation from chiral loops.
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2. MOTION OF A CHIRAL STRING IN FLAT
SPACE-TIME

In this section, for pedagogical reasons, we describe
some general properties of chiral cosmic strings, i.e.,
strings with a chiral current J*J, = 0. The general
solution of the equations of motion of the chiral string
can be written as [4-6]

£ 2@ + b)),

0
r =t
' 47

x(t,o)

(2)

where t is the Minkowski time, o parameterizes the
string total energy as

E:u/dcr,

L is the invariant length of the string, and a(¢) and b(n)
are arbitrary vector functions of ¢ = (2r/L)(o —t) and
n = (2r/L)(c + t) satisfying the conditions

(3)

(4)

For closed chiral strings (loops), the vector functions
a(¢) and b(n) form closed loops, called a- and b-loops.
The function k(n) in (4) can be expressed as [6]

_ AR

k*(n) =1 .

(5)

where the function F(n) defines the auxiliary scalar
field

Lr

Bot) = o

(1)- (6)

According to (6), the scalar field ¢(o,t) is an arbitrary
function of the only parameter . The four-dimensional
current on the string is expressed through this scalar
field ¢(o,t) as [21]

(1) = /ﬁa¢%mtxfﬂ—wq$®(x—x@;w% (7)

where ' denotes Ox/dc and & denotes dx/0t. The
energy-momentum tensor of the string in this gauge is

TH = u/da (&hi” — 2P 2') 6B (x —x(0,t)) . (8)

Correspondingly, the total momentum and angular mo-
mentum of the string are given by

P:u/wﬂmm

L= u/da[x(o,t) x x(o,t)].
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3. GRAVITATIONAL RADIATION FROM
CHIRAL LOOPS

We consider a periodic system with the period T'.
In this system, the Fourier transform of the energy-
momentum tensor T#¥(x,t) is given by [14]

/

where w; = 271/T and n is an arbitrary unit vector. It
is useful to also define the Fourier transform of the first

1
T/dt/d?’xT“”(X,t)xp X

x exp {iw(t —n-x)}.

T4 (wr,m)

1
7 [t / BT (x,t) x

x exp {iw(t —n-x)}, (11)

moment,

THP (4, 1)
(12)

For convenience, we define the four-dimensional symbol
n* = (1,n). For any periodic system, the correspond-
ing gravitational energy, momentum, and angular mo-
mentum radiation rates per solid angle d) (averaged
over the period T') are given by the series

o

AP dP“(wn) dL o dL(wn)
—_— — - = 1
dQ T; Q7 dQ ~ aq -’ (13)
where [17]
dP“(w) Gw? ok 7 Loy n
—n =-—nt—PF;; P, Tllij_ETijTlm (14)
and [14]
sz(W) G ii ;. Tk %
aa —%e n? {wmlppq(3Tleqp+6Tkaql) +

+ WPl pr <2T,;*mq:f,p _ofr -
A lA* ~
= T Tmg + iTlkapq> +c.c} . (15)

Here, P;; = d;; —n;n; is the projection operator to the
plane perpendicular to the unit vector n. It is possi-
ble to simplify (14) and (15) further by rewriting them
in the corotating basis (e1,eq2,e3) = (n,v,w), where
v and w are arbitrary unit vectors perpendicular to
each other and to n. In this corotating basis, Eqs. (14)
and (15) become [14]

Guw?

dPH(w) iy

dQ
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dL(w) dL,  dLs
e 1
o —a ™ (17)
where
dL, G ek .
i { — iw(37{3Tpp + 673, Tp1)—
—w? (27§pq7pq — 2T§prqq—
* 1 *
— Tpa3Tpa + §qu37'm, +c.c. |,
. (18)
dLs G . . .
<0 =3 1w(3T19Tpp + 67'2prpl) +

2 * *
4+ w (272pq7pq — QTQPquq—

1
* *
Tpa2Tpa + EquQTpp +c.c.|.

Here, 7,4 and 7,4, are the respective Fourier transforms
of the energy-momentum tensor and its first moment
in the new corotating basis. We note that only the
subscripts p and ¢ with the values 2 and 3 appear in
Eqs. (16) and (18). For chiral loops, the Fourier trans-
forms 7,, can be expressed as

e m) = =LY, 0 + v W1,0), (19)

where the functions I,(l) and Y,(I) are expressed
through the «fundamental integralsy,

2m
L(l) = % /dfexp{—il(f-l—n-a)}a' - e,
° (20)
1
Y;(l) = g/dnexp{il(n—n-b)}b'-ej.
0

For the first moment (12), we can similarly find that

Tijk(wi,m) = —%[Ii(l)Njk(l) + (DN () +
+ Yi(l) M (1) + Y5 (1) Mir (D], (21)
where
M;; (1) = % X
< [dgexp (=il +n )} @ ei)(are),
by (22)
Ni;(l) = o %

X /dnexp {illn—n-b)} (b" e;)(b-e,).
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The crucial point of the calculation to follow is the
summation over all mode numbers [ in expressions (13)
for the requested rates of the radiated gravitational en-
ergy, momentum, and angular momentum. For this
summation, we first integrate expressions (20) and (22)
by parts to obtain an additional / in the denominator.
For example, the function I; becomes

d¢ fexp{~il(§+n-a)} (1 +n-a')] x

a e

X —— =
1+n-a
1 a e . 2m
__ﬁ mexp{—zl(f—l—n-a)} 0 +
1 2w , ,
a -e; .
0

where the first term is equal to zero because of the peri-
odicity of a- and b-loops. Expressions for the functions
Y;, M;j, and Nj; can be integrated by parts similarly.
We finally obtain

/de exp{—il({+n-a)},

Ii= 2mil

Y = — 5 Zl/dny]exp{zl( —n-b)},

2w

1 o (24)
Mij _/df <27rzl 27r12M”> )
0

x exp{—il(§+mn-a)},

2
le——/d LNy N )

= M\ oM T g
0

x exp {il( —n-b)},

where
Li= -1inela'}, Vi [12':]4]0’}’
Mij = -lj_lr.leia,y(a'eg%
At = :(a(’l iizl(:)ij)}l’ (25)
V=[] e,
Ny = :(fz'l'fizl(i;;j)} ' .

Substituting (24) in (19) and (21), we find

2w 2w

212//d§dn7"] X

xexp{—zl[f—n+n-(a+b)]}, (26)

27 2w
L2u 1-
Tijk = —3%—312//(15(177 <7§jk + ﬁﬁjk) X
0 0

x exp{—il[{ —n+mn-(a+Db)]},
where
Tij = TiY; + L; Vi,
Tiji = ZiNji + ZiNik + ViMji + Vj Mg, (27)
Tisk = —LiNji — TiNik + YiMx + VM
Next, substituting (26) in (16) and (18), we find the

radiation rates of F, P, and L on the particular eigen-
frequency w; = 27rl/T.,

P
d dé“) - 312 / AP cos(iAz),  (28)
dL, GLp?
= —— X
dQ 1674
sin(lA - cos(IA
x /d% [#(3& +Ro) + Mm} :
dL,  GLp? y (29)
dQ 1674
" /d4§ [sm(lle) (375 + As) + cos(IIZAx)AS} ’
where we use the notation
Ar=6—-&—=m-n")+
+mnla(é) —a(’) +b(n) — b)),
1
P = pqﬁ’q 2 q,q7;’1’7
Ao =T 13Tpp + 2T 3pTp1,
Ns =T "19Tpp + 2T 2pTp1,s
Ay = 27’31)(17;11 - 27—’3107;11111 - Tlpq37;q +
1
+ §quq37;wv (30)
]\2 = 27-I3m7;q + 27—/3107;!111 - 7-lpq37;q +
1 -~
+ iT'qunpv
Az = 27’21)(17;11 - 27—/2107;11111 - Tlpq27;q +
1
+ §quq27;wv
A3 = 27;’21%17;%1 + 2T’2p7~;qq - 71’1)4127;%1 +

1 -
+ iT'qqﬂ;n

675 2%
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It is assumed that integration in (28) and (29) is over
the four-dimensional cube with the side (0, 27); we also
use the notation d*¢ = d¢ d¢' dn dn'.

We now find the form of expressions (28) and (29)

suitable for summing over the modes [. Using the
known values for infinite series [18]

= cos(lz) 1 , T

Z =—(z—7m)"——=, 0<ae<2r

2 3

—~ 4 12

= sin(lz) 1 3 (31)

> 5 =l —m)' =il +

0<az<2r,

we obtain the final expressions for the gravitational ra-
diation of energy, momentum, and angular momentum
rates [19] from (28) and (29) as

dpn .
W—n 16m S/dfP Az mod 27 — 7)?, (32)
dL,  GL©® [ 3
0 - 6l /d f{ [(Azmod 27 — 7)°—
_ 772Axm0d27r] </\2 + %/N\z> +
+ (Axm0d27r—7r)2A2},
(33)

dL G L2

Q  64nt

/d4 { [(Azmod 27 — 7)*—
_ ﬁQAmedQﬂ'] <A3 + 5[\3) +
+ (Az mod 27 — 7r)2A3} .

We note that the integrals in (32) and (33) do not con-
tain the terms 72/12 and 7* /12 originating in (31) be-
cause the corresponding contributions vanish in the in-
tegrals. The advantage of formulas (32) and (33) with
respect to the corresponding formulas (16) and (17)
is that there are no summations over modes. But
because of the presence of the function Az(mod)2m,
the four-dimensional integrals in (32) and (33) can-
not be reduced to products of lower-dimensional inte-
grals, and therefore numerical calculations of the four-
dimensional integrals become more complicated.

4. ELECTROMAGNETIC RADIATION FROM

CHIRAL LOOPS

We now consider the electromagnetic radiation from
an arbitrary relativistic periodic system in a similar

676

way. We calculate the electromagnetic radiation by
analogy with Durrer’s calculations of the gravitational
radiation [14]. In the Lorentz gauge, a retarded so-
lution for the electromagnetic potential A, in such a

system is given by

where j, is the four-dimensional current and we set
tret = t — |x — x'|. We consider formula (34) in the
limit r» = |x| > |x'|. Expanding (34) in a series in 1/r
and taking the first two terms into account, we obtain

ju(x’, tret)
x — x|

A, (x,t) = dx', (34)

1 .
Ay(x,t) = " /]u(x'7tret)dx' —

1 .
- 5 [ et 4007, 39

where n = x/r. Expanding ¢,¢; in a series in |x'|/r, we
then find

1 o
5 P +O(X' /%) ||, (36)

tret = t—r+n-x —
Equation (36) implies the useful relation

Ay =—Apon; +O(Au/r). (37)

Similarly to the case of the gravitational field
(THY « gH WY ¢« jH etc.), we have the Fourier
transforms of the current j# and its first and second
moments j*P and j#P9,

/dt/dsx] Wy, X

X exp{zw[(t -n-x)},

/dt/dsx] (wi, x)xP x

X exp{zw[(t -n-x)},

/dt/dsx] (wi, x)zPx? x

X exp{zw[(t -n-x)}.

7" (wi, m)

up (wi,n)
J I (38)

]upq (wi,n)

These quantities satisfy the conditions

jO _ nkjk
— iwjOP — P 4 iwny it = 0,

iwPp — npP™) + 2Py jP

=0,
(39)

( “0mn

=0,
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which follow from the relations
=0,
/j“(t, x') u[2'? exp{iw(t — n - x')}] dt d*x = 0,

[0 (1~ )]
x exp{iw(t —n-x')}} dtd®z = 0.

(40)

Using (38) and (40), we obtain from (35) that

oo

1 Z e iwi(t—r) Du (wi,n)+

r
=1

Au(x,t)

nP -

- 1wy ~
+ Tjup(wlvn)"‘Q_TquJupq(wlan) +

+ecc.+0(r3). (41)
To calculate the energy and momentum radiation
losses, we keep only terms of the order of 1/r in (41).
The radiation of energy from the system is determined
by the Poynting vector as [20]

dE°™  |E x H]
Q. 4r

(42)

where E and H are the electric and magnetic fields.
Using (41), we obtain from (42) that

APl = dP(w,)
dQ) _; aQ (43)
where
dPh, (@) e

We now calculate electromagnetic radiation of the
angular momentum. The angular momentum rate per
unit solid angle is given by [20]

dLem 3

dQ

[nxE]l(n-E) + [nxH](n-H)].  (45)

r
 4rm
In calculating [n x E] and [n x H], it suffices to keep
only terms of the order of 1/r. But the longitudinal
components n - E and n - H arise from terms of the

order of 1/72. As a result, the term 7° is canceled in
(45). This implies that the distance from the system r

677

does not enter the final formula, as should be the case.
Using (41) and (40), we obtain

[n X E]l = —eijknjAk,o =

oo .
- Z % exp {—iw(t—r)} €¥n;ji+e.c.,
=1

oo .
[n x H]' = Z adl exp {—iw(t—r)} P ji+c.c.,
=" 46)
— i ; pq;
n-E=— Z 3 eXP {—iwi(t—r)} PPj,q+c.c.,
=1
i iwl . par,.
n-H= Z POl {—iwi(t—r)} " npjrq+c.c.
=1
Substituting (46) in (45), we obtain
B _ A o) .
aQ = da
where
dLg™ (W) _
aQ
w’ ijk Za
=i [(€9% Pog — Pitejpg) 1 ji Jpg +c.c.] . (48)

As for the gravitational field, we rewrite (44) and (48)
in the corotating basis (eq, e, e3) = (n, v, w),

2

dPE (w) w

dLem(w)  dL§™  dLg™m
o - o T i ™ (50)
where

drem w2 . .

dé = —E[LSLPP + 15 (123 — t32) + c.c.],
dLem 2 (51)

3 _ * *
= E[L2LW — 15(tag — 132) + c.cl],

and ? and (P? are components of j# and j*P in this
corotating basis.

For superconducting chiral strings, we obtain from
expression (7) for the current that

teonm) = D0 x ), (52)

where the function I;(1) is given by (20) and X (/) is

27

1 .
X(l) = E/dne”("_“'b)\/l —|b']2.

0

(53)
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Similarly, for the first moment ¢,,, we obtain

EO 0,0+ X0, 50

where M, is given by (22) and Z, is

——/dne n—nb)

We now integrate expressions (53) and (55) by parts
to obtain an additional [ in the denominator,

Lpg(wWi,n) =

VI=PP(b-e).  (55)

X =- 27TZZ/dn/\fexp{zl( —n-b)},

27 (56)

1 1 -
ZJ:_/dn<ﬁZJ+WZJ> X

0
x exp{il(n —n-b)},

where

T I /1 ——tﬂ|2],

1—-n-b’

Z; =

e
5 'm_qu(b'.ej)][

T 1—-n-b’

Substituting (20), (22
obtain

), and (56) in (52) and (54), we

2w 2w

= SR / / ddn 7, x

xexp{—il[{ —n+mn-(a+b)},

e (58)
Lj = §2q\3/l2_//d§dn (.7” + - J”)
X exp {—illE — 1+ n- (a+b)]},
where
Ti=TiX, Jy=TZ; + XMy, 50

JZj =:-—2%2§j'+ AﬁAhij.
Finally, substituting (58) in (49) and (51), we find the
expressions for electromagnetic radiation rates of the

energy, momentum, and angular momentum in a unit
solid angle at the frequency wy,

Pl (w >p em
# L / AP cos(1Az),  (60)

MITD, Tom 123, Bhm. 4, 2003
dLy™ _ Lg’p
aa 327t
" /d4§ {sm(llgAx)Agm 3 cos(lle)Aem}
(61)
dLem _ Eq B
B 3271'4
/d4 {sm (lAx) A m COS(Zle)Aem}
where
- jljpa
A" = T3 Tpp + 72(723 — J32),
AS™ = Td Top + T3 ( Tz — J32), (62)
A" = Ty Top — T3 ( oz — T32),
[\gm - jgljpp (j23 - L732)

As for the gravitational radiation, we use the values
for infinite series (31) to obtain the total electromag-
netic radiation rates of the energy, momentum, and
angular momentum [19],

dp‘u qlJ/ 4 2
em __ em(A o —
= "3, S/dfp (Azmod 27 — 7)°, (63)

dLy™ _ LePp [
a0 _1287r4/d€><

X E ((Azmod 27r—7)® —7? Az mod 27) AS™ —

— (Azmod 27 — 7T)2A§m:| ,

drem _ LPp 1
dQ __1287r4/d£

X E ((Az mod 2r—n)* —7® Az mod 27) Agm —

— (Azmod 27 — 7T)2A§m:| .

As a result, we found expressions for the electromag-
netically radiated energy, momentum, and angular mo-
mentum from chiral string loops in which the summa-
tion over modes [ is carried out.

5. RADIATION OF NEARLY STATIONARY
LOOPS

We can now consider small-amplitude oscillations
of the chiral string loop (i. e., the string that is close
to its vorton state) in more detail. An arbitrary func-
tion b(n) in the solution for string motion (2) is then

678
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such that b'(n) = k(n) < 1. If three-dimensional co-
ordinates are chosen such that the b-loop is near the
origin of the coordinate system (e.g., exactly intersects
the origin of the coordinate system), then b(n) < 1.
We now return to expressions (13). The expressions
for the functions Y; (/) and N;;(l) can be integrated by
parts twice to increase the power of [ in the denomina-
tor, while the expressions for I;(l) and M;;(I) are left
unchanged. We assume that b(n) is twice continuously
differentiable and b"'(n) is piecewise continuous. Inte-
grating in (20) and (22) by parts twice and using the
smallness of O'(1n), we obtain

2T
1 .
Yi(l) = 52 /dnednbm ‘e,
0
1 o (65)
Nil) = =gz [[dne™ (o) (b))

0

As has been noted, we are free to add any numerical
coefficient to (Az mod 27 — m)? in (32) without chang-
ing the value of the integral. Using this, we add —72/2,
and then Eq. (32) implies

i _
ao |
Gu® 4
T / 6P [(Armod 27 — m)? — 72/2]| <
2.3
< TPl (66)

It only remains to estimate the function P in (66). Us-
ing (20), (27), (30), and (65) we easily find
|P| < 1203, (67)

where b3 is the maximum value of |b"'(n)| on the seg-
ment 1 € (0,27). From (66) and (67), we then estimate
the energy losses as

o

< 24Gu2m b2, ‘PW

< 24GuPT*h3. (68)

We next estimate the upper bounds on the radiated
angular momentum. Similarly to the case of energy
and momentum radiation, we use Eqs. (33), (30), (27),
and (65) to find the upper bounds on losses of the an-
gular momentum to gravitational waves,

‘LW < 1227 <1 +

4
3V3
We now consider the electromagnetic radiation in
the case of a large current. To find the first-order ex-
pansion with respect to k in (53), we must take not

3

) GLu?bs.  (69)

679

only zero, but also the first term in the expansion of
exp(—iln - b) into account. Subsequent integration of
the resulting expression by parts gives

27
X() ~ —W/dne“”n-b”’. (70)
0
For the function Z;, we have
27
1 in (!
Zi(l) ~ 3 dne*(b" - e;). (71)
0

Similarly to the gravitational case, we can find the
bounds on the electromagnetic radiation for a large
current. Using (70), (71), (64), (63), (62), and (59),
we obtain

‘Eem‘ < 7r4q2,ub§, ‘Pem‘ §7T4q2ltb§a

‘Lem‘ < Vord (1 + ™

4
9v3

The presence of the third derivative b (n) in
(68), (69), and (65) is not surprising and resembles
the quadruple gravitational radiation formula (see,

e. g., [20])

) Lq? ub3.

. 2
E= 4G—5D,»j (73)
involving the third time derivative of the quadruple
moment D;;. Electromagnetic radiation involves d in
the dipole approach (d is the dipole moment). Argu-
ing similarly, we can conclude that in this case, the
second derivative of b(n), not the third, must be re-
stricted. But in the first order of the expansion in k,
the dipole radiation is equal to zero, the first nonzero
term is quadruple, and we therefore again obtain the
dependence on b,

We note that it is not necessary to restrict the third
derivative b’ in general. For example, if the string has
kinks (see below), the first derivative b’ is discontinu-
ous (and consequently, Y,,(1) o< 1/1, M(I) x 1/1). Con-
vergence of series (13), (43), and (47) is then ensured
by the behavior of fundamental integrals I,,(l) o 1/1 at
I>1.

It is possible to derive rather simple expressions for
the total energy, momentum, and angular momentum
radiated by chiral loops in the limit as loops are very
close to their stationary states, i. e., k < 1 in (4). Ad-
ditionally, it is supposed that k is independent of 1 and
the current j* is therefore constant along the string.
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Using expansions of (32), (33), (63), and (64) in pow-

ers of k, we can write the corresponding gravitational
and electromagnetic rates as

B9 = KY Gk,
|L9"| = K9" LGk,

|Pem‘ — I{I%quNkQa

|PY"| = K& Guk?,
E'em — IX’%mQZMkQ.,
[Le™| = K§™Lq® uk?,

(74)

where K™ and K9" are numerical coefficients depend-
ing only on the loop geometry. We see that radiation
rates of nearly stationary chiral loops are proportional
to k2. The geometrical numerical factors K in Eq. (74)
are in turn related to the corresponding coefficients T’
in Eq. (1) as

I = Kk (75)

We now evaluate the damping time of small-
amplitude oscillations of nearly stationary chiral strings
corresponding to the limit & < 1. For simplicity, we
again assume that k is independent of 7 in the con-
sidered limit (this assumption is valid in the solvable
examples considered above). The total loop charge con-
servation in (7) then gives

%EL 1 — k? = const. (76)
From this equation, we find the relation between the
energy E and the parameter k of the chiral string with
small-amplitude oscillations,

2
E~FE, <1+%>,

where E, = Ly is the energy of the stationary (vorton)
chiral loop configuration at k¥ = 0. Comparing (77)
with (74), we estimate the damping time of string os-
cillations [16] as

(77)

E,
T ARG + Kemgip)”

T (78)
We next express (78) through the vorton length. We
have E, = Lu, where L is the invariant length, and the
physical length of a stationary string is equal to half
the invariant length L,, = L/2 [22]. We find

T~ Lph
K’ng’u + K’equ :

(79)

Also assuming for simplicity that k depends only on
time and using Eqs. (74) and (77), we find the oscilla-

tion damping law

E* ~ kgexp{—t<

L
T

1

em
TC

(80)
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where ko = k(t = 0); therefore, the damping time due
to gravitational radiation is

Ev Lph

gr = 81
Te “OReG2 T KeGp (81)
and that due to electromagnetic radiation is
E L
Tem : ph (82)

~ QK’equ’u = IX’emqZ'

Substituting (80) in (77), we obtain

-l

The effective number of oscillations during the damping
time (oscillator quality) is

2

k 1
1+70exp

—or
s

1

D)

em
TC

E~Ev{

2

L 797 4 rem’

T Tg'r‘,,.em
Q=1 ~ (84)
To restore the standard CGS units, we replace
Gu®> — Gu’e, *>nu — ¢®pc®/h and choose the stan-
dard normalization for the string mass per unit length
Gu/c® = 107%ug and ¢, = q/e for the dimensionless
charge carrier on the string, where the elementary elec-
tric charge is e = 4.8 - 1071%. As a result, the damping
times are expressed as

Lphc
KorGu’

Lonh
I(emq2 !

79T~ em

(85)

Oscillator quality (84) for the gravitational and electro-
magnetic radiation is given by the respective formulas

1 2

TR G

1 1

e 2 3
Ke™ qepmq?

Qo QM ~ (86)

with g, = 62/Ch. The ratio of the damping times is

()

If ¢2 /g > 1.4-1073, the electromagnetic radiation pre-
vails in the chiral loop evolution (this is valid for the
standard values pug ~ 1 and ¢¢ ~ 1). If on the con-
trary ¢2/pue < 1.4 - 1073 (for example, if the current
is neutral and there is no electromagnetic radiation at
all), then the pure gravitational radiation determines

the evolution.

q2

rem Guh

Tor Kem

K9

2 I’em
~14.10 4% 2
Kor

He

(87)

6. NUMERICAL EXAMPLES OF RADIATING
LOOPS

In this section, we apply analytic formulas (32),
(33), (63), and (64) derived above for gravitational and
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electromagnetic radiation to some particular examples
of chiral loops. At the final steps, numerical calcula-
tions of four-dimensional integrals are used to find the
energy, momentum, and angular momentum radiation
rates as functions of the current on the string.

We first consider the class of piecewise linear kinky
loops. Let a(&) and b(n) be piecewise linear functions;
that is, vector functions a(§) and b(n) are closed loops
consisting of connected straight parts. The join points
of segments of a- and b-loops, where a’'(¢) and b’(n) are
discontinuous, are called «kinks». We take the a-loop
consisting of N, and b-loop consisting of N, segments
(parts). Kinks are labeled by i =0,1,... ,N, — 1, and
the value of ¢ on the kink labeled by i is denotes as &°.
In what follows, we use superscripts for the segment
labels and subscripts for tensor components. Because
we use only spatial tensor components, there should be
no confusion. Without the loss of generality, we can
set €9 = 0. We note that ¢+Na = ¢ 4 271 because
of periodicity. Using the notation A& = ¢+l — ¢
Al = a(¢h), and a' = (AT — AT)/AEY, and similarly
for the b-loop, we find

a(é) = A’ + (£ - ¢ha',
b(n) =B’ + (n—n’)b’,

£ele e,

nem . (88)

For piecewise linear loops, the functions Z,, V,, M,,,

Npg, X, and Z, in (25) and (57) become the sums of

delta functions because of the discontinuity of a’ and

b’ at the kinks. For example, the function Z, in (25) is
given by

al-e, a ep

- <1+ai-n_ 1+ai~!.n

i-1

I,=>

) 5 — &), (s9)

Similar expressions can be obtained for the other func-
tions. Due to the presence of delta functions in 7,
Vp. Mpg. Npg, X, and Z,, the integrations in (32),
(33), (63), and (64) can be carried out easily. To ob-
tain the expressions for the gravitational and electro-
magnetic radiation from the general formulas, we must
replace integrations in (32), (33), (63), and (64) by
summations over the kinks and make the substitutions

v = it = ¢~ ¢k (o ) +

+n-(al —a* + b/ —bl),
i1

; al-e a e 90)
T, 5Ti=-2 % & % (
P P 14+ai-n 1+4+a~1l-n’

4 b/ e bi~!l.e

) — P _ P
yp%yp_l—bj-n 1—bi-l.n’

Similar substitutions must be performed for the func-
tions Myq, Npg, X, and Z),.
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6.1. 2-4 piecewise loop

As the first example, we consider the chiral string
loop shown in Fig. 1. In this example, the a-loop con-
sists of 2 segments and lies along the z axis. One kink
of the a-loop is positioned at the origin (¢ = 0) and the
other kink (¢ = m) has the coordinates (cos a, 0, sin a).
The positions of the b-loop kinks are as follows: the first
kink at » = 0 has the coordinates (7k/2v/2)(1,0,0),
the second kink at n 7w/2 has the coordinates
(mk/2v/2)(0,1,0), the third kink at = 7 has the co-
ordinates (mk/2v/2)(—1,0,0), and the position of the
fourth kink at n = 37/2 is given by (7k/2v/2)(0, —1,0).
We call this loop the 2-4 piecewise loop. The depen-
dence of the radiated gravitational and electromagnetic
energy on the mode number [ is shown in Fig. 2 for the
2-4 piecewise loop with a = /2. The decrease of the
radiated energy with the mode number [ is more pro-
nounced for the larger current, as it should be physi-
cally, because the maximal speed of the string decreases
as the current increases. In Fig. 3, the dependence of
the total radiated energy on the parameter k is shown
for @« = w/2. We can see a monotonic increase of
the gravitational energy radiation with & (i. e., with
the decrease of the string current). At the same time,
the electromagnetic energy radiated by the string has
a maximum near kK ~ 0.9. The value of £ = kZ .
at which the maximum for the gravitational radiation
rate is reached is exactly 1, and for the electromagnetic
radiation rate, k5" ~ 0.9.

max
The corresponding rates for the angular momentum
as a function of the mode number are shown in Fig. 4.
For the electromagnetic radiation, we can also see weak
oscillations of the angular momentum rate in addition
to the overall decrease of the radiated angular momen-
tum with the mode number.

The total angular momentum radiation to electro-
magnetic and gravitational waves is shown in Fig. 5.
The graphs for the angular momentum rates look very
similar to the graphs for the energy radiation. The cor-
responding gravitational radiation rates increase mono-
tonically with k& and the electromagnetic radiation of
momentum has maxima near £ = 0.9. Using the gen-
eral expressions for gravitational and electromagnetic
radiation in Eqs. (32), (33), (63), and (64), we can
easily calculate the coefficients K in the case of large
currents. For a = 7/2, we find that K = 28.36,
K" = 141, K% = 4, and Ky = 0.25. The radi-
ated gravitational F9" and electromagnetic E¢™ pow-
ers are approximately equal to Kk? in accordance with
Eq. (75).

Durrer [14] found that for some particular class of
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2 4 piecewise loop

3 3 piecewise loop

hybrid loop

Fig.1. Schematic view of the vector functions a(¢) and b(n) for radiating loop examples considered in Secs. 6.1, 6.2,
and 6.3
E'agr E'fL7n
T T T T T 1 T T T T T
A
1014, - .
N mk=03 . mk=03
A ALk=1 A A k=09
AA 1071 - 4
n
1t ‘AA 4 ay
A AA
W =
A
10724 =" AAA‘AA E
107t ] .
n
- - A‘AAA
- "at M
-..- 1073 -
1072 '-'_,.. . .
n
.-.... -..-
""""'--._h ! iy
1077 E
10,3 B b | -M“!
0 10 20 30 40 50 0 10 20 30 40 50
N N

Fig.2. Radiated gravitational energy rate (left graph), B2’

in the units Gu? and the electromagnetic energy rate (right

graph) ES™ in the units ¢?j. For the 2-4 kinky loop, the energy radiation is drawn as a logarithmic function of the mode
number N for different values of the parameter k

ordinary cosmic string loops, the radiated angular mo-
mentum L9" is antiparallel to the stationary angular
momentum Lg; of the loop. This implies that the an-
gular momentum of the loops always decreases with
time due to gravitational radiation. Our results for

the angular momentum radiation to electromagnetic
and gravitational waves for string loops with the chi-
ral current agree with the results of Durrer in gen-
eral. The chiral loops considered in this paper also
lose angular momentum with time. But in contrast
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k
Fig.3. The total radiated gravitational and electromagnetic energy rates E9" in the units Gu? (left graph) and E™ in the
units ¢*p (right graph) correspondingly for the 2-4, 3-3 piecewise and hybrid kinky loops as a function of the parameter k.
The following parameters are chosen: a =7/2, f=7/2, v=0

Lgr Lem
: : : : : 1 : : : : :
10 "A 3 N
. m k=03 'A m k=03
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N
Fig.4. The angular momentum EY" radiated to gravitational waves in the units Gu? (left graph) and the angular momentum
E2™ radiated to electromagnetic waves in the units ¢*p (right graph). For the 2-4 kinky loop, the energy radiation is drawn
as a logarithmic function of the mode number N for different values of parameter &

to the examples considered by Durrer, we found that
for some configurations of chiral loops, L9" and L™

mentum of the loop L, but deviate by a small angle.
are not exactly antiparallel to the total angular mo-

In Tablg 1, the valqes eIm = (I.r‘”" . Lst)/‘LngLst\ and
e®m = (L™ - Lg)/|L™||Lst| determining the angle be-
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LW' Lem
T T T T T T T T
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k k

Fig.5. The total angular momentum radiated to gravitational and electromagnetic waves, L9" in the units G2 and L™
in the units g%y, respectively, for the 2-4, 3-3 piecewise and hybrid kinky loops as a function of the parameter k. For the
2-4 loop, a = /2, for 3-3 loop, 8 = /2, and for the hybrid loop, v =0

The cosine of the angle between L9 and L,; and between L™ and L.; for the 2-4 piecewise loop

k 0.2 0.4 0.6 0.8 1.0
2-4 loop, eI” -0.94 —0.95 -0.95 —0.96 -0.97
a=m/4 gem -0.97 -0.99 -0.99 -0.99 -

tween L and Ly, are presented for the 2-4 piecewise loop
with a = 7/4. We note that for symmetric configura-
tions with a = /2, the angular momentum radiation
1'497", Le™ is exactly antiparallel to Lg; at any k.

6.2. 3-3 piecewise loop

As the second example, we consider the two-
parameter piecewise linear loop with a and b-loops
consisting of three segments (Fig. 1).  Positions
of the a-loop kinks are given by the following
coordinates: the first kink at n 0 is at the
origin, the second kink at n 27/3 has the
coordinates  —(m/3)(cos B1,V/3,sinB), and the
third kink at n 47 /3 has the coordinates
(7/3)(cos f1, —V/3,sin f1).  The b-loop is given by
almost the same conditions, except for the angle 51 re-
placed by 5. We call this loop the 3-3 piecewise loop.
The total radiated energy rates to the gravitational
and electromagnetic waves for f; = 0 and 8> = 7/2
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are shown in Fig. 3. This loop also radiates momentum
and angular momentum. The total angular momentum
radiation rates are shown in Fig. 5. In Fig. 6, the
total momentum radiation rates to electromagnetic
and gravitational waves are shown for different values
of the parameters ; and 5. For the momentum
radiation, we can see a different situation from that
in the case of the energy and angular momentum
radiation: for each value of k, the momentum rate has
a local maximum on the interval k& € (0, 27).

6.3. Hybrid kinky loop

As the third example, we consider the loop with the
configuration

{f, 0<¢<m,

a=A

ﬂ-_f'/ WS&SQW (91)
b = k(sinn, —cosn, 0).
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Pg'r Pem
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Fig.6. The total momentum radiated to gravitational and

electromagnetic waves, respectively, P9" in the units Gu? and

P°™ in the units ¢*p, for the 3-3 piecewise loop with different parameters 3> and with 81 = 0 as a function of the parameter
k. The three cases are considered with 8 = 7/2, 82, = w/4, and 32 = /8

The b-loop in this example is a circle in the (x,y)
plane and A = (cos~;0;sinvy) (Fig. 1). For v = 7/2,
the gravitational and electromagnetic radiated energy
rates and angular momentum rates are shown in Figs. 3
and 5. The total gravitational energy radiation for
kE = 1 coincides with the result of Allen et al. [12]
(B9 ~ 39.0Gu2).

6.4. Weakly oscillating ring loop

As the final example, we consider the radially oscil-
lating loop,

a = (cos¢, —sinif, 0), (92)
b = k(cosn, —sinn, 0).
Unfortunately, because the calculation of integrals (32)
and (63) would take an enormous amount of computer
time, we cannot present the results for radiation rates of
oscillating rings for the entire range of currents (we note
that the radiated power diverges as the current tends
to zero). But in the large-current limit, the radiated
power rate is easy to calculate. For loop (92), the first
nonzero term in the expansion of the radiated power
in k is proportional to k2 in agreement with (74). Tt
suffices to take only the first term in (13) and (43), the
other terms are of higher orders in k. Substituting (92)

in (20) and (53) and keeping the leading nonzero term
at k < 1, we obtain

I(1) = % e [ Jy(—sin @) + Jo(— sinf)] cos b,
(1) = %e‘i¢[J2(—sin9) — Jo(—sind)],

E E (93)
Y5(1) = B e¥cosh, Y3(1)= ZE e,

X(1) = gei¢ sin 6.
Using (93), (19), (52), (14), and (44) and integrating

over the unit sphere, we next obtain the coefficients
K{" and Kg",

K9 =72 /d0 sin # {[JZ(Sin 6) = Jo(sin )] +
0

+2[3J3(sin6) — J§ (sin6)] cos® 6 +
+ [J2(sin @) + Jp(sin 9)]2 cos? 9}, (94)

e = [ dpsint o {[1s(sne) —Josin )+
0

+ [J2(sin 6) + Jo (sin A)]* cos® 9} ,

which are numerically given by K9 = 4.73 and
K™ = 2.28.
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Because of the symmetry of the oscillating ring, the
estimations of damping time (79), coefficient k& (80),
and total string energy (83) become exact in the large-
current limit.

7. DISCUSSION

Electromagnetic and gravitational radiation plays
an important role in the evolution of the cosmic string
network. This network could be produced in the early
universe phase transitions and would generate large-
scale structures later. Previously, the properties of
cosmic string radiation were mainly studied for strings
with a small current or without any current. Here,
we described the radiation properties of chiral cos-
mic loops for the entire possible range of the cur-
rents. We succeeded in analytically summing the infi-
nite mode series of radiation rates for periodically oscil-
lating string loops. The expressions derived for the en-
ergy, momentum, and angular momentum rates contain
four-dimensional integrals depending on loop geometry.
Such an integral representation is especially convenient
for numerical calculations of radiation from relativis-
tically moving loops as compared with the method of
summation of a weakly convergent mode series. To find
the total rates of the radiated energy, momentum and
angular momentum, the expressions obtained were in-
tegrated over the unit sphere. Applying the derived
formulas to some particular examples of chiral string
loop configurations, we numerically calculated the co-
efficients I' in Eq. (1) as functions of k. The correspond-
ing calculations of the radiated energy, momentum, and
angular momentum rates were done for the following
examples (see Fig. 1): (i) a piecewise linear kinky loop
with the a-loop consisting of two straight parts and the
b-loop consisting of four straight parts (2-4 piecewise
loop); (ii) a piecewise linear loop such that the a- and
b-loops consist of three segments each (3-3 piecewise
loop); (iii) the hybrid loop in which the a-loop consists
of two straight parts and the b-loop is a circle (hybrid
kinky loop). For the first and second examples, the
four-dimensional integrals in our expressions for radi-
ated energy, momentum, and angular momentum be-
come multiple sums over the kinks. These sums can
be calculated analytically using symbolic computer ma-
nipulations (e. g., the «Mathematica» program packet).
To find the radiation in the third example (hybrid
loop), we calculated two-dimensional integrals (origi-
nating from a smooth a-loop) and summed over the
kinks of the b-loop. Unfortunately, we could not per-
form the calculations for strings with the a and b loops
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being arbitrary smooth curves because calculations of
the four-dimensional integrals would take an enormous
amount of time of the computer used.

The total gravitational radiation energy, momen-
tum, and angular momentum rates behave similarly:
they slowly increase with k when £ is sufficiently small
(and respectively the current is large) and rapidly in-
crease at large k (i. e., at small current). Overall, the
gravitational radiation rates are increasing functions of
k. For the electromagnetic radiation, the situation is
quite different: the energy, momentum, and angular
momentum losses to electromagnetic waves for all ex-
amples considered have a maximum near k ~ 0.9, i. e.,
when the current is rather small. For the examples con-
sidered, the maximum values of the coefficients T in (1)
are approximately equal to

Yy ~50, T'y ~1,

gt ~2, I'Y"~0.1,

9r
FL ~ 3’

95
TS ~0.1. (95)

We also found that for some nonsymmetric examples
of chiral loops, the angular momentum L radiated to
electromagnetic and gravitational waves is not exactly
opposite to the angular momentum of the loop Ly, but
slightly differs from it (even when there is no current
on the string), unlike in the loop examples considered
by Durrer [14].

The asymptotic fading of chiral cosmic string loops
into vortons was derived. It was found that the upper
bounds on the gravitational and electromagnetic radi-
ation rates of nearly stationary loops is proportional
to the squared third derivative of the oscillation ampli-
tude, see Eqs. (68), (69), and (72). We showed that if
the oscillation amplitude is small (k < 1) and the cur-
rent j# is constant along the string, the energy, momen-
tum, and angular momentum radiation rates to gravi-
tational and electromagnetic waves are proportional to
k2 and the proportionality coefficient depends only on
the form of the loop, see Eq. (74). In some examples
of chiral loops, we calculated the total radiated power
in the limit of the small-amplitude oscillations. For the
chiral ring with small-amplitude radial oscillations, the
radiated power per solid angle df2 for the electromag-
netic and gravitational radiation is found analytically,
Eq. (94). We also estimated the damping time of chi-
ral loops (78) with small-amplitude oscillations. In the
case of the gravitational radiation prevalence over the
electromagnetic one, this time is 79" ~ L,;,/K9" Gy,
where K97 is a numerical coefficient depending on the
string geometry. The damping time due to the gravita-
tional radiation of the chiral loops considered is by the
order of magnitude longer than the lifetime of ordinary
cosmic strings. On the contrary, if the electromagnetic
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radiation prevails, the decay time is 7™ ~ L, /K™ q>.
For the radially oscillating chiral ring with a large cur-
rent, expressions (80) and (83) for the temporal evolu-
tion of the total energy and the amplitude parameter
k become asymptotically exact.

We can find a characteristic size of the string L,
with oscillation damping time (85) equal to the uni-
verse lifetime to ~ 10'® s. In the case of the gravita-
tional radiation predominance, we find

Ly

~ 10%ug kpe (96)

GuK9mt,
- c
for K97 ~ 1. Chiral strings with the length L < L9"
(i. e., with the size of a typical galactic halo or less)
therefore have enough time to fade into vortons. On
the other hand, if the electromagnetic radiation pre-
vails, we have

q2 K’emto

Ly ~ T

~ 70¢> Mpc (97)
for K™ ~ 1, and the electromagnetically radiated chi-
ral loops with the length shorter than the size of galac-
tic clusters have therefore transformed to vortons. We
can see that only sufficiently long superconducting cos-
mic strings oscillate up to the present time. On the
contrary, small-scale chiral loops are transformed into
stationary vortons due to the oscillation damping.

It is interesting to estimate the current parameter
k at which the electromagnetic and gravitational
radiation rates become equal. From [15], we know
that at small currents, the electromagnetic radiation
is given by E°™ ~ ¢*u\/1— k. For the gravitational
radiation of small currents, we have E9" ~ 102 Gpu2.
Comparing these two expressions, we can easily find
the string current value at which these radiation rates
are equal, k ~ 1 — (10> Gu/q*)* ~ 1-107%.
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